1
|
Li S, Zhao Y, Lyu X, Chen Y, Zhang T, Lin S, Liu Z, Cai X, Tian T, Lin Y. Enzyme-Responsive Nanoparachute for Targeted miRNA Delivery: A Protective Strategy Against Acute Liver and Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411210. [PMID: 39717886 PMCID: PMC11905073 DOI: 10.1002/advs.202411210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/10/2024] [Indexed: 12/25/2024]
Abstract
MicroRNA (miRNA)-based therapy holds significant potential; however, its structural limitations pose a challenge to the full exploitation of its biomedical functionality. Framework nucleic acids are promising owing to their transportability, biocompatibility, and functional editability. MiRNA-125 is embedded into a nucleic acid framework to create an enzyme-responsive nanoparachute (NP), enhancing the miRNA loading capacity while preserving the attributes of small-scale framework nucleic acids and circumventing the uncertainty related to RNA exposure in conventional loading methods. An enzyme-sensitive sequence is designed in NP as a bioswitchable apparatus for cargo miRNAs release. NP is compared with conventional delivery modes and delivery vehicles, confirming its excellent transportability and sustained release properties. Moreover, NP confers good enzyme and serum resistance to the cargo miRNAs. Simultaneously, it can easily deliver miRNA-125 to liver and kidney lesions owing to its passive targeting properties. This allows for Keap1/Nrf2 pathway regulation and p53 protein targeting in the affected tissues. Additionally, NP negatively regulates the expression of Bax and Caspase-3. These combined actions help to inhibit oxidation, prevent cell cycle arrest, and reduce the apoptosis of liver and kidney cells. Consequently, this strategy offers a potential treatment for acute liver and kidney injury.
Collapse
Affiliation(s)
- Songhang Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Yuxuan Zhao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Xiaoying Lyu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Ye Chen
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Shiyu Lin
- Department of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityShanghai200011P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Taoran Tian
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
- College of Biomedical EngineeringSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
2
|
Qin W, Huang J, Zhang M, Xu M, He J, Liu Q. Nanotechnology-Based Drug Delivery Systems for Treating Acute Kidney Injury. ACS Biomater Sci Eng 2024; 10:6078-6096. [PMID: 39226188 PMCID: PMC11480945 DOI: 10.1021/acsbiomaterials.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Acute kidney injury (AKI) is a disease that is characterized by a rapid decline in renal function and has a relatively high incidence in hospitalized patients. Sepsis, renal hypoperfusion, and nephrotoxic drug exposure are the main causes of AKI. The major therapy measures currently include supportive treatment, symptomatic treatment, and kidney transplantation. These methods are supportive treatments, and their results are not satisfactory. Fortunately, many new treatments that markedly improve the AKI therapy efficiency are emerging. These include antioxidant therapy, ferroptosis therapy, anti-inflammatory therapy, autophagy therapy, and antiapoptotic therapy. In addition, the development of nanotechnology has further promoted therapeutic effects on AKI. In this review, we highlight recent advances in the development of nanocarriers for AKI drug delivery. Emphasis has been placed on the latest developments in nanocarrier modification and design. We also summarize the applications of different nanocarriers in AKI treatment. Finally, the advantages and challenges of nanocarrier applications in AKI are summarized, and several nanomedicines that have been approved for clinical trials to treat diverse kidney diseases are listed.
Collapse
Affiliation(s)
- Wanbing Qin
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Jiaqi Huang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Manting Zhang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Mingwei Xu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Junbing He
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Qinghua Liu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
- Department
of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
- NHC Key
Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong
Provincial Key Laboratory of Nephrology, Guangzhou, 510080 Guangdong, China
| |
Collapse
|
3
|
Cheng HT, Ngoc Ta YN, Hsia T, Chen Y. A quantitative review of nanotechnology-based therapeutics for kidney diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1953. [PMID: 38500369 DOI: 10.1002/wnan.1953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Kidney-specific nanocarriers offer a targeted approach to enhance therapeutic efficacy and reduce off-target effects in renal treatments. The nanocarriers can achieve organ or cell specificity via passive targeting and active targeting mechanisms. Passive targeting capitalizes on the unique physiological traits of the kidney, with factors like particle size, charge, shape, and material properties enhancing organ specificity. Active targeting, on the other hand, achieves renal specificity through ligand-receptor interactions, modifying nanocarriers with molecules, peptides, or antibodies for receptor-mediated delivery. Nanotechnology-enabled therapy targets diseased kidney tissue by modulating podocytes and immune cells to reduce inflammation and enhance tissue repair, or by inhibiting myofibroblast differentiation to mitigate renal fibrosis. This review summarizes the current reports of the drug delivery systems that have been tested in vivo, identifies the nanocarriers that may preferentially accumulate in the kidney, and quantitatively compares the efficacy of various cargo-carrier combinations to outline optimal strategies and future research directions. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Hui-Teng Cheng
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Zhu Bei City, Taiwan
| | - Yen-Nhi Ngoc Ta
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu, Taiwan
| | - Tiffaney Hsia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
4
|
Dong L, Li Y, Cong H, Yu B, Shen Y. A review of chitosan in gene therapy: Developments and challenges. Carbohydr Polym 2024; 324:121562. [PMID: 37985064 DOI: 10.1016/j.carbpol.2023.121562] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Gene therapy, as a revolutionary treatment, has been gaining more and more attention. The key to gene therapy is the selection of suitable vectors for protection of exogenous nucleic acid molecules and enabling their specific release in target cells. While viral vectors have been widely used in researches, non-viral vectors are receiving more attention due to its advantages. Chitosan (CS) has been widely used as non-viral organic gene carrier because of its good biocompatibility and its ability to load large amounts of nucleic acids. This paper summarizes and evaluates the potential of chitosan and its derivatives as gene delivery vector materials, along with factors influencing transfection efficiency, performance evaluation, ways to optimize infectious efficiency, and the current main research development directions. Additionally, it provides an outlook on its future prospects.
Collapse
Affiliation(s)
- Liang Dong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Guo Y, Wang H, Lyu R, Wang J, Wang T, Shi J, Lyu L. Nanocarrier-Mediated Delivery of MicroRNAs for Fibrotic Diseases. Mol Diagn Ther 2024; 28:53-67. [PMID: 37897655 DOI: 10.1007/s40291-023-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/30/2023]
Abstract
MicroRNAs (miRNAs) are endogenous noncoding RNAs that mediate the fibrotic process by regulating multiple targets. MicroRNA-based therapy can restore or inhibit miRNA expression and is expected to become an effective approach to prevent and alleviate fibrotic diseases. However, the safe, targeted, and effective delivery of miRNAs is a major challenge in translating miRNA therapy from bench to bedside. In this review, we briefly describe the pathophysiological process of fibrosis and the mechanism by which miRNAs regulate the progression of fibrosis. Additionally, we summarize the miRNA nanodelivery tools for fibrotic diseases, including chemical modifications and polymer-based, lipid-based, and exosome-based delivery systems. Further clarification of the role of miRNAs in fibrosis and the development of a novel nanodelivery system may facilitate the prevention and alleviation of fibrotic diseases in the future.
Collapse
Affiliation(s)
- Yanfang Guo
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Hanying Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Rumin Lyu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Juan Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Ting Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jingpei Shi
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Kunming Medical University, Kunming, 650106, Yunnan, China.
| | - Lechun Lyu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
| |
Collapse
|
6
|
Liu MX, Xu L, Cai YT, Wang RJ, Gu YY, Liu YC, Zou YJ, Zhao YM, Chen J, Zhang XL. Carbon Nitride-Based siRNA Vectors with Self-Produced O 2 Effects for Targeting Combination Therapy of Liver Fibrosis via HIF-1α-Mediated TGF-β1/Smad Pathway. Adv Healthc Mater 2023; 12:e2301485. [PMID: 37463681 DOI: 10.1002/adhm.202301485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Hypoxia is an important feature, which can upregulate the hypoxia-inducible factor-1α (HIF-1α) expression and promote the activation of hepatic stellate cells (HSCs), leading to liver fibrosis. Currently, effective treatment for liver fibrosis is extremely lacking. Herein, a safe and effective method is established to downregulate the expression of HIF-1α in HSCs via targeted delivery of VA-PEG-modified CNs-based nanosheets-encapsulated (VA-PEG-CN@GQDs) HIF-1α small interfering RNA (HIF-1α-siRNA). Due to the presence of lipase in the liver, the reversible release of siRNA can be promoted to complete the transfection process. Simultaneously, VA-PEG-CN@GQD nanosheets enable trigger the water splitting process to produce O2 under near-infrared (NIR) irradiation, thereby improving the hypoxic environment of the liver fibrosis site and maximizing the downregulation of HIF-1α expression to improve the therapeutic effect, as demonstrated in liver fibrosis mice. Such combination therapy can inhibit the activation of HSCs via HIF-1α-mediated TGF-β1/Smad pathway, achieving outstanding therapeutic effects in liver fibrosis mice. In conclusion, this study proposes a novel strategy for the treatment of liver fibrosis by regulating the hypoxic environment and the expression of HIF-1α at lesion site.
Collapse
Affiliation(s)
- Ming-Xuan Liu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Li Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Yu-Ting Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Ruo-Jia Wang
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Ying-Ying Gu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yan-Chao Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Yu-Jin Zou
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yong-Mei Zhao
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Xiao-Ling Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| |
Collapse
|
7
|
Wu Q, Yang L, Zou L, Yang W, Liu Q, Zhang A, Cao J, Shi G, He J, Yang X. Small Ceria Nanoclusters with High ROS Scavenging Activity and Favorable Pharmacokinetic Parameters for the Amelioration of Chronic Kidney Disease. Adv Healthc Mater 2023; 12:e2300632. [PMID: 37167626 DOI: 10.1002/adhm.202300632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The over production of reactive oxygen species (ROS) plays a critical role in the progression of chronic kidney disease (CKD). Organic ROS scavengers currently used for CKD treatment do not satisfy low dosage and high efficiency requirements. Ceria nanomaterials featured with renewable ROS scavenging activity are potential candidates for CKD treatment. Herein, a method for the synthesis of ceria nanoclusters (NCs) featured with small size of ≈1.2 nm is reported. The synthesized NCs are modified by three hydrophilic ligands with different molecular weights, including succinic acid (SA), polyethylene glycol diacid 600 (PEG600), and polyethylene glycol diacid 2000 (PEG2000). The surface modified NCs exhibit excellent ROS scavenging activity due to the high Ce3+ /Ce4+ ratio in their crystal structures. Compared with bigger-sized ceria nanoparticles (NPs) (≈45 nm), NCs demonstrate smoother blood concentration-time curve, lower organ accumulation, and faster metabolic rate superiorities. The administration of NCs to CKD mice, especially PEG600 and PEG2000 modified NCs, can effectively inhibit oxidative stress, inflammation, renal fibrosis, and apoptosis in their kidneys. Due to these benefits, the constructed NCs can ameliorate the progression of CKD. These findings suggest that NCs is a potential redox nanomedicine for future clinical treatment of CKD.
Collapse
Affiliation(s)
- Qianqian Wu
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Lu Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Ling Zou
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Wang Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Qingshan Liu
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Anwei Zhang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Jiang Cao
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Guangyou Shi
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Jian He
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Xiaochao Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
8
|
Yang J, Chen C, Miao X, Wang T, Guan Y, Zhang L, Chen S, Zhang Z, Xia Z, Kang J, Li H, Yin T, Hei Z, Yao W. Injury Site Specific Xenon Delivered by Platelet Membrane-Mimicking Hybrid Microbubbles to Protect Against Acute Kidney Injury via Inhibition of Cellular Senescence. Adv Healthc Mater 2023; 12:e2203359. [PMID: 36977502 DOI: 10.1002/adhm.202203359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Inhalation of xenon gas improves acute kidney injury (AKI). However, xenon can only be delivered through inhalation, which causes non-specific distribution and low bioavailability of xenon, thus limiting its clinical application. In this study, xenon is loaded into platelet membrane-mimicking hybrid microbubbles (Xe-Pla-MBs). In ischemia-reperfusion-induced AKI, intravenously injected Xe-Pla-MBs adhere to the endothelial injury site in the kidney. Xe-Pla-MBs are then disrupted by ultrasound, and xenon is released to the injured site. This release of xenon reduced ischemia-reperfusion-induced renal fibrosis and improved renal function, which are associated with decreased protein expression of cellular senescence markers p53 and p16, as well as reduced beta-galactosidase in renal tubular epithelial cells. Together, platelet membrane-mimicking hybrid microbubble-delivered xenon to the injred site protects against ischemia-reperfusion-induced AKI, which likely reduces renal senescence. Thus, the delivery of xenon by platelet membrane-mimicking hybrid microbubbles is a potential therapeutic approach for AKI.
Collapse
Affiliation(s)
- Jing Yang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Xiaoyan Miao
- Department of Medical Ultrasonic, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Tienan Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Yu Guan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Linan Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Sufang Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Zheng Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Zhengyuan Xia
- Department of Medicine, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jiayi Kang
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Haobo Li
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Tinghui Yin
- Department of Medical Ultrasonic, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| |
Collapse
|
9
|
Vallorz EL, Janda J, Mansour HM, Schnellmann RG. Kidney targeting of formoterol containing polymeric nanoparticles improves recovery from ischemia reperfusion-induced acute kidney injury in mice. Kidney Int 2022; 102:1073-1089. [PMID: 35779607 DOI: 10.1016/j.kint.2022.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
Abstract
The β2 adrenergic receptor agonist, formoterol, is an inducer of mitochondrial biogenesis and restorer of mitochondrial and kidney function in acute and chronic models of kidney injury. Unfortunately, systemic administration of formoterol has the potential for adverse cardiovascular effects, increased heart rate, and decreased blood pressure. To minimize these effects, we developed biodegradable and biocompatible polymeric nanoparticles containing formoterol that target the kidney, thereby decreasing the effective dose, and lessen cardiovascular effects while restoring kidney function after injury. Male C57Bl/6 mice, treated with these nanoparticles daily, had reduced ischemia-reperfusion-induced serum creatinine and kidney cortex kidney injury molecule-1 levels by 78% and 73% respectively, compared to control mice six days after injury. With nanoparticle therapy, kidney cortical mitochondrial number and proteins reduced by ischemic injury, recovered to levels of sham-operated mice. Tubular necrosis was reduced 69% with nanoparticles treatment. Nanoparticles improved kidney recovery even when the dosing frequency was reduced from daily to two days per week. Finally, compared to treatment with formoterol-free drug alone, these nanoparticles did not increase heart rate nor decrease blood pressure. Thus, targeted kidney delivery of formoterol-containing nanoparticles is an improvement in standard formoterol therapy for ischemia-reperfusion-induced acute kidney injuries by decreasing the dose, dosing frequency, and cardiac side effects.
Collapse
Affiliation(s)
- Ernest L Vallorz
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA
| | - Heidi M Mansour
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA; The University of Arizona College of Medicine, Tucson, Arizona, USA; The University of Arizona, BIO5 Institute, Tucson, Arizona, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA; The University of Arizona College of Medicine, Tucson, Arizona, USA; The University of Arizona, BIO5 Institute, Tucson, Arizona, USA; Southern Arizona VA Health Care System, USA.
| |
Collapse
|
10
|
Gu X, Liu Z, Tai Y, Zhou LY, Liu K, Kong D, Midgley AC, Zuo XC. Hydrogel and nanoparticle carriers for kidney disease therapy: trends and recent advancements. PROGRESS IN BIOMEDICAL ENGINEERING 2022; 4:022006. [DOI: 10.1088/2516-1091/ac6e18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Abstract
Achieving local therapeutic agent concentration in the kidneys through traditional systemic administration routes have associated concerns with off-target drug effects and toxicity. Additionally, kidney diseases are often accompanied by co-morbidities in other major organs, which negatively impacts drug metabolism and clearance. To circumvent these issues, kidney-specific targeting of therapeutics aims to achieve the delivery of controlled doses of therapeutic agents, such as drugs, nucleic acids, peptides, or proteins, to kidney tissues in a safe and efficient manner. Current carrier material approaches implement macromolecular and polyplex hydrogel constructs, prodrug strategies, and nanoparticle (NP)-based delivery technologies. In the context of multidisciplinary and cross-discipline innovations, the medical and bioengineering research fields have facilitated the rapid development of kidney-targeted therapies and carrier materials. In this review, we summarize the current trends and recent advancements made in the development of carrier materials for kidney disease targeted therapies, specifically hydrogel and NP-based strategies for acute kidney disease, chronic kidney disease, and renal cell carcinoma. Additionally, we discuss the current limitations in carrier materials and their delivery mechanisms.
Collapse
|
11
|
Wonnacott A, Denby L, Coward RJM, Fraser DJ, Bowen T. MicroRNAs and their delivery in diabetic fibrosis. Adv Drug Deliv Rev 2022; 182:114045. [PMID: 34767865 DOI: 10.1016/j.addr.2021.114045] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/21/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
The global prevalence of diabetes mellitus was estimated to be 463 million people in 2019 and is predicted to rise to 700 million by 2045. The associated financial and societal costs of this burgeoning epidemic demand an understanding of the pathology of this disease, and its complications, that will inform treatment to enable improved patient outcomes. Nearly two decades after the sequencing of the human genome, the significance of noncoding RNA expression is still being assessed. The family of functional noncoding RNAs known as microRNAs regulates the expression of most genes encoded by the human genome. Altered microRNA expression profiles have been observed both in diabetes and in diabetic complications. These transcripts therefore have significant potential and novelty as targets for therapy, therapeutic agents and biomarkers.
Collapse
Affiliation(s)
- Alexa Wonnacott
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Laura Denby
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Richard J M Coward
- Bristol Renal, Dorothy Hodgkin Building, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Donald J Fraser
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Timothy Bowen
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
12
|
Liu Q, Chen X, Kan M, Yang J, Gong Q, Jin R, Dai Y, Jin J, Zang H. Gypenoside XLIX loaded nanoparticles targeting therapy for renal fibrosis and its mechanism. Eur J Pharmacol 2021; 910:174501. [PMID: 34529980 DOI: 10.1016/j.ejphar.2021.174501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/18/2023]
Abstract
Renal fibrosis is the main pathological feature of the occurrence and development of chronic nephropathy. At present, there is no effective treatment, except for renal transplantation and dialysis. Previous studies have shown that nano-preparations can be used as a therapeutic tool to target organs. In this study, we studied the therapeutic effect and mechanism of Chinese medicine monomer Gypenoside (Gyp) XLIX on renal fibrosis and explored the targeting and therapeutic effects of polylactic acid-co-glycoside (PLGA)-Gyp XLIX nanoparticles in unilateral ureteral occlusion (UUO) kidney. Gyp XLIX and PLGA-Gyp XLIX nanoparticles were used to treat UUO mice and Human renal tubular epithelial (HK2) cells stimulated by transforming growth factor-β (TGF-β). Histopathological and molecular biological techniques were used to detect the expression of type I collagen and alpha-smooth muscle actin (α-SMA). To investigate the in vivo targeting of PLGA nanoparticles, they were loaded with 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide and injected into UUO mice. We evaluated the effect of Gyp XLIX nanoparticles on TGF-β/Smad3 pathway, a central driver for renal fibrosis in Smad-deficient HK2 cells. Fluorescence imaging showed that the PLGA nanoparticles around 120 nm could be targeted to the UUO kidney. Compared with Gyp XLIX, PLGA-Gyp XLIX nanoparticles could effectively inhibit renal fibrosis and reduce collagen deposition and reduce renal tubular necrosis. Gyp XLIX decreased the phosphorylation of Smad3, but could not further reduce the levels of type I collagen and α-SMA in Smad-deficient cells. This study opens a promising way for targeted drug treatment of renal fibrosis.
Collapse
Affiliation(s)
- Qixia Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xiaohui Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Min Kan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jing Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Qian Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, China
| | - Rui Jin
- People's Hospital of Jieshou City, Jieshou, 236500, Anhui, China
| | - Yulong Dai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Juan Jin
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| | - Hongmei Zang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
13
|
Wang X, Deng B, Yu M, Zeng T, Chen Y, Hu J, Wu Q, Li A. Constructing a passive targeting and long retention therapeutic nanoplatform based on water-soluble, non-toxic and highly-stable core-shell poly(amino acid) nanocomplexes. Biomater Sci 2021; 9:7065-7075. [PMID: 34590101 DOI: 10.1039/d1bm01246k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drug delivery nanoplatforms have been applied in bioimaging, medical diagnosis, drug delivery and medical therapy. However, insolubility, toxicity, instability, nonspecific targeting and short retention of many hydrophobic drugs limit their extensive applications. Herein, we have constructed a passive targeting and long retention therapeutic nanoplatform of core-shell gefitinib/poly (ethylene glycol)-polytyrosine nanocomplexes (Gef-PY NCs). The Gef-PY NCs have good water-solubility, non-toxicity (correspond to 1/10 dosage of effective gefitinib (hydrochloride) (Gef·HCl) (normal drug administration and slow-release) and high stability (120 days, 80% drug retention at 4 or 25 °C). The core-shell Gef-PY NCs present unexpected kidney targeting and drug slow-release capacity (ca. 72 h). The good water-solubility, non-toxicity and high stability of Gef-PY NCs effectively solve the bottleneck question that Gef-based therapy could be used only in intraperitoneal injection due to its insolubility and severe toxicity. Such excellent properties (e.g., water-solubility, non-toxicity, high stability, kidney targeting and long retention) of Gef-PY NCs create their prominent anti-fibrosis capabilities, such as decreasing approximately 40% tubulointerstitial fibrosis area and 68% expression of collagen I within 7 days. This therapeutic efficacy is well-matched with that of 10 times the dosage of toxic Gef·HCl. It is very hopeful that Gef-PY NCs could realize clinical applications and such a strategy offers an effective route to design high-efficiency treatments for kidney- and tumor-related diseases.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Bingqing Deng
- Nanobiological Medicine Center, Key Lab of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Meng Yu
- Nanobiological Medicine Center, Key Lab of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Tao Zeng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yuyu Chen
- Nanobiological Medicine Center, Key Lab of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Jianqiang Hu
- Nanobiological Medicine Center, Key Lab of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Qianqing Wu
- Nanobiological Medicine Center, Key Lab of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Chen X, Liu Q, Yang J, Kan M, Jin R, Pu T, Yang Y, Xing T, Meng X, Zang H. Eleutheroside B-loaded poly (lactic-co-glycolic acid) nanoparticles protect against renal fibrosis via Smad3-dependent mechanism. Phytother Res 2021; 35:6401-6416. [PMID: 34585457 DOI: 10.1002/ptr.7293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/12/2022]
Abstract
Although renal fibrosis is a common complication of chronic kidney disease (CKD), effective options for its treatment are currently limited. In this study, we evaluated the renal protective effect and possible mechanism of eleutheroside B. In order to solve the allergic reactions, side effects, and low oral bioavailability of eleutheroside B, we successfully prepared PLGA (poly [lactic-co-glycolic acid])-eleutheroside B nanoparticles (NPs) with the diameter of about 128 nm. In vitro and in vivo results showed that eleutheroside B could inhibit expression levels of α-smooth muscle actin (α-SMA) and collagen I. Molecular docking results showed that eleutheroside B bound to Smad3 and significantly decreased the expression of phospho-Smad3 (p-Smad3). Silencing Smad3 reversed the fibrotic protective effect of eleutheroside B in HK2 cells. Furthermore, small animal imaging showed that NPs can selectively accumulate in the UUO kidneys of mice, and retention time reached as long as 7 days. In conclusion, our results suggested that eleutheroside B is a potential drug to protect renal fibrosis and PLGA-eleutheroside B NPs could facilitate specific targeted therapy for renal fibrosis.
Collapse
Affiliation(s)
- Xiaohui Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Qixia Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Jing Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Min Kan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Rui Jin
- People's Hospital of Jieshou City, Fuyang, China
| | - Tian Pu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University (AHMU), Hefei, China
| | - Yaru Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Tian Xing
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaoming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Hongmei Zang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
15
|
Huang X, Ma Y, Li Y, Han F, Lin W. Targeted Drug Delivery Systems for Kidney Diseases. Front Bioeng Biotechnol 2021; 9:683247. [PMID: 34124026 PMCID: PMC8193852 DOI: 10.3389/fbioe.2021.683247] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases have gradually become a global health burden. Along with the development of nanotechnology, many hybrids or nanomaterials have been utilized to promote treatment efficiency with negligible side effects. These therapeutic agents have been successfully applied in many fields. In particular, some efforts have also been made to ameliorate the treatment of kidney diseases through targeted delivery nanomaterials. Though most of the delivery systems have not yet been transmitted into clinical use or even still at an early stage, they have shown great potential in carrying immunosuppressants like tacrolimus and triptolide, antioxidants, or siRNAs. Excitingly, some of them have achieved significant treatment effectiveness and reduced systemic side effect in kidney disease animal models. Here, we have reviewed the recent advances and presented nanotherapeutic devices designed for kidney targeted delivery.
Collapse
Affiliation(s)
- Xiaohan Huang
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Zhejiang University School of Medicine, The First Affiliated Hospital, Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Yanhong Ma
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Zhejiang University School of Medicine, The First Affiliated Hospital, Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Yangyang Li
- Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Han
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Zhejiang University School of Medicine, The First Affiliated Hospital, Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Weiqiang Lin
- Department of Nephrology, The Fourth Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
16
|
Lai X, Geng X, Li M, Tang M, Liu Q, Yang M, Shen L, Zhu Y, Wang S. Glutathione-responsive PLGA nanocomplex for dual delivery of doxorubicin and curcumin to overcome tumor multidrug resistance. Nanomedicine (Lond) 2021; 16:1411-1427. [PMID: 34047204 DOI: 10.2217/nnm-2021-0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: This work aims to develop an injectable nano-drug delivery system to overcome tumor multidrug resistance (MDR). Methods: A drug delivery nanoplatform based on PEGylated PLGA with glutathione (GSH) responsivity was constructed for dual delivery of doxorubicin and curcumin (termed DCNP), and its MDR reversal efficiency was studied in vitro and in vivo. Results: The DCNPs exhibited a rapid drug release profile under high GSH concentration and could enhance the cellular uptake and cytotoxicity of doxorubicin to MDR cancer cells. Moreover, the DCNPs showed better biocompatibility, longer blood circulation and enhanced antitumor efficiency compared with free drugs. Conclusion: The GSH-responsive nanocarrier is believed to be a promising candidate for overcoming tumor MDR.
Collapse
Affiliation(s)
- Xuandi Lai
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, PR China
| | - Xinran Geng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Mengqing Li
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, PR China
| | - Mengxiong Tang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, PR China
| | - Qiong Liu
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, PR China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Yu Zhu
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, PR China
| | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, PR China
| |
Collapse
|
17
|
Xu M, Li S, Wang J, Huang S, Zhang A, Zhang Y, Gu W, Yu X, Jia Z. Cilomilast Ameliorates Renal Tubulointerstitial Fibrosis by Inhibiting the TGF-β1-Smad2/3 Signaling Pathway. Front Med (Lausanne) 2021; 7:626140. [PMID: 33553218 PMCID: PMC7859332 DOI: 10.3389/fmed.2020.626140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Renal tubulointerstitial fibrosis is the key pathological feature in chronic kidney diseases (CKDs) with no satisfactory therapies in clinic. Cilomilast is a second-generation, selective phosphodiesterase-4 inhibitor, but its role in renal tubulointerstitial fibrosis in CKD remains unclear. Material and Methods: Cilomilast was applied to the mice with unilateral ureteric obstruction (UUO) and renal fibroblast cells (NRK-49F) stimulated by TGF-β1. Renal tubulointerstitial fibrosis and inflammation after UUO or TGF-β1 stimulation were examined by histology, Western blotting, real-time PCR and immunohistochemistry. KIM-1 and NGAL were detected to evaluate tubular injury in UUO mice. Results:In vivo, immunohistochemistry and western blot data demonstrated that cilomilast treatment inhibited extracellular matrix deposition, profibrotic gene expression, and the inflammatory response. Furthermore, cilomilast prevented tubular injury in UUO mice, as manifested by reduced expression of KIM-1 and NGAL in the kidney. In vitro, cilomilast attenuated the activation of fibroblast cells stimulated by TGF-β1, as shown by the reduced expression of fibronectin, α-SMA, collagen I, and collagen III. Cilomilast also inhibited the activation of TGF-β1-Smad2/3 signaling in TGF-β1-treated fibroblast cells. Conclusion: The findings of this study suggest that cilomilast is protective against renal tubulointerstitial fibrosis in CKD, possibly through the inhibition of TGF-β1-Smad2/3 signaling, indicating the translational potential of this drug in treating CKD.
Collapse
Affiliation(s)
- Man Xu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Shumin Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiajia Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaowen Yu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Wei S, Xu C, Zhang Y, Shi Z, Wu M, Yang B. Ultrasound Assisted a Peroxisome Proliferator-Activated Receptor (PPAR)γ Agonist-Loaded Nanoparticle-Microbubble Complex to Attenuate Renal Interstitial Fibrosis. Int J Nanomedicine 2020; 15:7315-7327. [PMID: 33061383 PMCID: PMC7537998 DOI: 10.2147/ijn.s262052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Objective To investigate the antifibrotic effect of the combination of a PPARγ agonist-loaded nanoparticle-microbubble complex with ultrasound (US) exposure on renal interstitial fibrosis (RIF). Materials and Methods Polylactide-co-glycolide (PLGA) nanoparticles were used to load PPARγ agonist (rosiglitazone, RSG) and prepare PLGA-RSG nanoparticles (PLNPs-RSG); then, a novel complex between PLNPs-RSG and SonoVue microbubbles (MBs) (PLNPs-RSG-MBs) was prepared. The size distribution, zeta potentials, RSG-loading capacity and entrapment efficiency were measured, and the release of RSG was assessed using a UV-vis spectrophotometer. The in vitro cytotoxicity and in vivo systemic toxicity assays were performed. The cellular uptake assessment was performed using a confocal laser scanning microscope (CLSM). The in vivo biodistribution assessment was performed using fluorescence imaging with a near-infrared (NIR) imaging system. Furthermore, this complex was administered to a unilateral ureteral obstruction (UUO) rat model with the assistance of US exposure to investigate the antifibrotic effect. Results This PLNPs-RSG-MBs complex had a size of 2199.5± 988.1 nm and a drug-loading efficiency of 28.5%. In vitro cytotoxicity and in vivo systemic toxicity assays indicated that the PLNPs-RSG-MBs complex displayed excellent biocompatibility. In addition, the complex showed high cellular uptake efficiency in vitro and kidney-targeting ability in vivo. In a UUO rat model, the combination of the PLNPs-RSG-MBs complex with US exposure significantly reduced collagen deposition and successfully attenuated renal fibrosis. Conclusion The combination of the PLNPs-RSG-MBs complex with US exposure may be a promising approach for the treatment of RIF.
Collapse
Affiliation(s)
- Shuping Wei
- Department of Ultrasound, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Chaoli Xu
- Department of Ultrasound, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yidan Zhang
- Department of Ultrasound, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Zhongqing Shi
- Department of Cardiac Function, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Min Wu
- Department of Ultrasound, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Bin Yang
- Department of Ultrasound, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Tan L, Deng X, Lai X, Zeng T, Li A, Hu J, Xiong Z. Mesoscale nanoparticles encapsulated with emodin for targeting antifibrosis in animal models. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AbstractThe aim of this study is to explore the kidney-targeting capability of mesoscale nanoparticles (MNPs)-emodin (Em-MNPs) and its potential antifibrosis in the animal model. First, MNPs and Em-MNPs were synthesized via nanoprecipitation method, and their diameters were both ∼400 nm with the uniform size. The entrapment efficiency of MNPs was 45.1% when adding emodin at the concentration of 12 mg/mL. Moreover, cytotoxicity assay showed that Em-MNPs presented excellent biocompatibility in rat proximal tubular cells. Cellular uptake assay demonstrated that Em-MNPs had high-efficiency uptake, especially in the cytoplasm. Ex vivo organ fluorescence imaging revealed that Em-MNPs possessed specific kidney-targeting ability with relative long retention time in the kidney (∼24 h). In the renal unilateral ureteral obstruction model, Em-MNPs treatment could significantly alleviate kidney tubule injury and reduce extracellular matrix deposition compared with free MNPs. Herein, Em-MNPs with specific kidney-targeting and preferable antifibrosis effects in animal model may pave an avenue for treating renal diseases.
Collapse
Affiliation(s)
- Lishan Tan
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Xiulong Deng
- Department of Chemical and Chemical Engineering, Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, Jiangxi Province, 341000, China
| | - Xuandi Lai
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Tao Zeng
- Department of Nephrology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Aiqing Li
- Department of Nephrology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianqiang Hu
- Department of Nephrology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zuying Xiong
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| |
Collapse
|
20
|
Giménez VMM, Fuentes LB, Kassuha DE, Manucha W. Current Drug Nano-targeting Strategies for Improvement in the Diagnosis and Treatment of Prevalent Pathologies such as Cardiovascular and Renal Diseases. Curr Drug Targets 2020; 20:1496-1504. [PMID: 31267869 DOI: 10.2174/1389450120666190702162533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND The kidney and cardiovascular system are closely related to each other during the modulation of the cardiovascular homeostasis. However, the search for new alternatives for the treatment and diagnosis of cardiovascular diseases does not take into account this relationship, so their evaluation results and the advantages offered by their global and integrative analysis are wasted. For example, a variety of receptors that are overexpressed in both pathologies is large enough to allow expansion in the search for new molecular targets and ligands. Nanotechnology offers pharmacological targeting strategies to kidney, heart, and blood vessels for overcoming one of the essential restrictions of traditional cardiovascular therapies the ones related to their unspecific pharmacodynamics distribution in these critical organs. RECENT FINDINGS Drug or contrast agent nano-targeting for treatment or diagnosis of atherosclerosis, thrombosis, renal cancer or fibrosis, glomerulonephritis, among other renal, cardiac and blood vessels pathologies would allow an increase in their efficacy and a reduction of their side effects. Such effects are possible because, through pharmacological targeting, the drug is mainly found at the desired site. Review Purpose: In this mini-review, active, passive, and physical targeting strategies of several nanocarriers that have been assessed and proposed for the treatment and diagnosis of different cardiovascular diseases, are being addressed.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Quimicas, Facultad de Ciencias Quimicas y Tecnologicas, Universidad Catolica de Cuyo, San Juan, Argentina
| | - Lucía Beatriz Fuentes
- Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Diego Enrique Kassuha
- Instituto de Investigaciones en Ciencias Quimicas, Facultad de Ciencias Quimicas y Tecnologicas, Universidad Catolica de Cuyo, San Juan, Argentina
| | - Walter Manucha
- Instituto de Medicina y Biologia Experimental de Cuyo, Consejo Nacional de Investigacion Científica y Tecnologica (IMBECU-CONICET), Mendoza, Argentina.,Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
21
|
Midgley AC, Wei Y, Zhu D, Gao F, Yan H, Khalique A, Luo W, Jiang H, Liu X, Guo J, Zhang C, Feng G, Wang K, Bai X, Ning W, Yang C, Zhao Q, Kong D. Multifunctional Natural Polymer Nanoparticles as Antifibrotic Gene Carriers for CKD Therapy. J Am Soc Nephrol 2020; 31:2292-2311. [PMID: 32769144 DOI: 10.1681/asn.2019111160] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Progressive fibrosis is the underlying pathophysiological process of CKD, and targeted prevention or reversal of the profibrotic cell phenotype is an important goal in developing therapeutics for CKD. Nanoparticles offer new ways to deliver antifibrotic therapies to damaged tissues and resident cells to limit manifestation of the profibrotic phenotype. METHODS We focused on delivering plasmid DNA expressing bone morphogenetic protein 7 (BMP7) or hepatocyte growth factor (HGF)-NK1 (HGF/NK1) by encapsulation within chitosan nanoparticles coated with hyaluronan, to safely administer multifunctional nanoparticles containing the plasmid DNA to the kidneys for localized and sustained expression of antifibrotic factors. We characterized and evaluated nanoparticles in vitro for biocompatibility and antifibrotic function. To assess antifibrotic activity in vivo, we used noninvasive delivery to unilateral ureteral obstruction mouse models of CKD. RESULTS Synthesis of hyaluronan-coated chitosan nanoparticles containing plasmid DNA expressing either BMP7 or NGF/NKI resulted in consistently sized nanoparticles, which-following endocytosis driven by CD44+ cells-promoted cellular growth and inhibited fibrotic gene expression in vitro. Intravenous tail injection of these nanoparticles resulted in approximately 40%-45% of gene uptake in kidneys in vivo. The nanoparticles attenuated the development of fibrosis and rescued renal function in unilateral ureteral obstruction mouse models of CKD. Gene delivery of BMP7 reversed the progression of fibrosis and regenerated tubules, whereas delivery of HGF/NK1 halted CKD progression by eliminating collagen fiber deposition. CONCLUSIONS Nanoparticle delivery of HGF/NK1 conveyed potent antifibrotic and proregenerative effects. Overall, this research provided the proof of concept on which to base future investigations for enhanced targeting and transfection of therapeutic genes to kidney tissues, and an avenue toward treatment of CKD.
Collapse
Affiliation(s)
- Adam C Midgley
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China .,Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongzhen Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Dashuai Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Fangli Gao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Anila Khalique
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenya Luo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huan Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiangsheng Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiasen Guo
- Department of Genetics and Cellular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guowei Feng
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xueyuan Bai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China.,State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Wen Ning
- Department of Genetics and Cellular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Qiang Zhao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China .,Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
22
|
Lai X, Geng X, Tan L, Hu J, Wang S. A pH-Responsive System Based on Fluorescence Enhanced Gold Nanoparticles for Renal Targeting Drug Delivery and Fibrosis Therapy. Int J Nanomedicine 2020; 15:5613-5627. [PMID: 32884257 PMCID: PMC7440925 DOI: 10.2147/ijn.s260069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/17/2020] [Indexed: 11/23/2022] Open
Abstract
Background Stimuli-responsive gold nano-assemblies have attracted attention as drug delivery systems in the biomedical field. However, there are challenges achieving targeted delivery and controllable drug release for specific diseases. Materials and Methods In this study, a glutathione (GSH)-modified fluorescent gold nanoparticle termed AuLA-GSH was prepared and a Co2+-induced self-assembly drug delivery platform termed AuLA-GSH-Co was constructed. Both the pH-responsive character and drug loading behavior of AuLA-GSH-Co were studied in vitro. Kidney-targeting capability was investigated in vitro and in vivo. Finally, the anti-fibrosis efficiency of AuLA-GSH-Co in a mouse model of unilateral ureteral obstruction (UUO) was explored. Results AuLA-GSH-Co was sensitive to pH changes and released Co2+ in acidic conditions, allowing it to have controllable drug release abilities. AuLA-GSH-Co was found to improve cellular uptake of Co2+ ions compared to CoCl2 in vitro. AuLA-GSH exhibited specific renal targeting and prolonged renal retention time with low non-specific accumulation in vivo. Moreover, the anti-fibrosis efficiency of AuLA-GSH-Co was higher compared to CoCl2 in a mouse model of unilateral ureteral obstruction (UUO). Conclusion AuLA-GSH-Co could greatly enhance drug delivery efficiency with renal targeting capability and obviously relieve renal fibrosis, providing a promising strategy for renal fibrosis therapy.
Collapse
Affiliation(s)
- Xuandi Lai
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, People's Republic of China
| | - Xinran Geng
- Nanobiological Medicine Center, Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Lishan Tan
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, People's Republic of China
| | - Jianqiang Hu
- Nanobiological Medicine Center, Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, People's Republic of China
| |
Collapse
|
23
|
Huang C, Zeng T, Li J, Tan L, Deng X, Pan Y, Chen Q, Li A, Hu J. Folate Receptor-Mediated Renal-Targeting Nanoplatform for the Specific Delivery of Triptolide to Treat Renal Ischemia/Reperfusion Injury. ACS Biomater Sci Eng 2019; 5:2877-2886. [PMID: 33405591 DOI: 10.1021/acsbiomaterials.9b00119] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Caili Huang
- Nanobiological Medicine Center, Key Laboratory of Fuel Cell Technology of Guangdong Province, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Tao Zeng
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiawen Li
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lishan Tan
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiulong Deng
- Nanobiological Medicine Center, Key Laboratory of Fuel Cell Technology of Guangdong Province, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yanchao Pan
- Nanobiological Medicine Center, Key Laboratory of Fuel Cell Technology of Guangdong Province, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qi Chen
- Nanobiological Medicine Center, Key Laboratory of Fuel Cell Technology of Guangdong Province, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianqiang Hu
- Nanobiological Medicine Center, Key Laboratory of Fuel Cell Technology of Guangdong Province, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
24
|
Deng X, Zeng T, Li J, Huang C, Yu M, Wang X, Tan L, Zhang M, Li A, Hu J. Kidney-targeted triptolide-encapsulated mesoscale nanoparticles for high-efficiency treatment of kidney injury. Biomater Sci 2019; 7:5312-5323. [PMID: 31617509 DOI: 10.1039/c9bm01290g] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insolubility and toxicity of TP restrict clinical applications in renal diseases. Here, TP-encapsulated mesoscale nanoparticles offer a new therapeutic strategy for renal diseases due to good biocompability, kidney targeting and slow release.
Collapse
|