1
|
Li Y, Du B, Yu L, Luo H, Rong H, Gao X, Yin J. Strategies and challenges of cytosolic delivery of proteins. J Drug Target 2025; 33:837-852. [PMID: 39862226 DOI: 10.1080/1061186x.2025.2458616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/11/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The cytosolic delivery of therapeutic proteins represents a promising strategy for addressing diseases caused by protein dysfunction. Despite significant advances, efficient delivery remains challenging due to barriers such as cell membrane impermeability, endosomal sequestration and protein instability. This review summarises recent progress in protein delivery systems, including physical, chemical and biological approaches, with a particular focus on strategies that enhance endosomal escape and targeting specificity. We further discuss the clinical translatability of these approaches and propose future directions for improving delivery efficiency and safety, ultimately unlocking the therapeutic potential of intracellular proteins.
Collapse
Affiliation(s)
- Yuanyuan Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Baojie Du
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Lichao Yu
- School of Life Science and Technology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hong Luo
- School of Life Science and Technology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Xiangdong Gao
- School of Life Science and Technology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jun Yin
- School of Life Science and Technology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Mandal AK, Sahoo A, Almalki WH, Almujri SS, Alhamyani A, Aodah A, Alruwaili NK, Abdul Kadir SZBS, Mandal RK, Almalki RA, Lal JA, Rahman M. Phytoactives for Obesity Management: Integrating Nanomedicine for Its Effective Delivery. Nutr Rev 2025; 83:1152-1170. [PMID: 39331591 DOI: 10.1093/nutrit/nuae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Obesity is a global health concern that requires urgent investigation and management. While synthetic anti-obesity medications are available, they come with a high risk of side-effects and variability in their efficacy. Therefore, natural compounds are increasingly being used to treat obesity worldwide. The proposition that naturally occurring compounds, mainly polyphenols, can be effective and safer for obesity management through food and nutrient fortification is strongly supported by extensive experimental research. This review focuses on the pathogenesis of obesity while reviewing the efficacy of an array of phytoactives used for obesity treatment. It details mechanisms such as enzyme inhibition, energy expenditure, appetite suppression, adipocyte differentiation, lipid metabolism, and modulation of gut microbiota. Comprehensive in vitro, in vivo, and preclinical studies underscore the promise of phytoactives in combating obesity, which have been thoroughly reviewed. However, challenges, such as poor bioavailability and metabolism, limit their potential. Advances in nanomedicines may overcome these constraints, offering a new avenue for enhancing the efficacy of phytoactives. Nonetheless, rigorous and targeted clinical trials are essential before applying phytoactives as a primary treatment for obesity.
Collapse
Affiliation(s)
- Ashok Kumar Mandal
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Abdulrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Alhussain Aodah
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| | | | | | - Rami A Almalki
- Clinical Pharmacy Unit, Pharmaceutical Care Department, King Faisal Hospital, Makkah Health Cluster, Makkah 24382, Saudi Arabia
| | - Jonathan A Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology, and Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|
3
|
Wu Y, Deng S, Wei S, Wei W, He Y, Guo J. Adipocyte-Targeted Nanotechnology and Cell-Based Therapy for Obesity Treatment. ChemMedChem 2025; 20:e202400611. [PMID: 39390653 DOI: 10.1002/cmdc.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Obesity is a critical risk factor for the development of metabolic diseases and is often associated with dysfunctional adipocytes. Prevalent treatments such as lifestyle intervention, pharmacotherapy, and bariatric surgery are often accompanied by adverse side effects and poor patient compliance. Nanotechnology and cell-based therapy offer innovative approaches for targeted obesity treatments, as they can directly target adipocytes, regulate lipid metabolism, and minimize off-target effects. Here, we provide an overview of the intricate relationship between adipocytes and obesity, highlighting the potential of nanotechnology and cell-based therapy in obesity treatment. Additionally, we discuss the advancements of adipose-derived mesenchymal stem cells (ADMSCs) in obesity progression, including the latest challenges and considerations for developing adipose-targeted treatments for obesity. The objective is to provide a perspective on the design and development of nanotechnology and cell-based therapy for treating obesity and related comorbidities.
Collapse
Affiliation(s)
- Yue Wu
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Siqi Deng
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Siyu Wei
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wenqi Wei
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Bioproducts Institute, Department of Chemical and Biological Engineering, The, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- State Key Laboratory of Polymer Materials Engineering, Department of Chemical and Biological Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
4
|
Liu Y, Fu X, Zhao X, Cui R, Yang W. The role of exercise-related FNDC5/irisin in depression. Front Pharmacol 2024; 15:1461995. [PMID: 39484160 PMCID: PMC11524886 DOI: 10.3389/fphar.2024.1461995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024] Open
Abstract
The complexity of depression presents a significant challenge to traditional treatment methods, such as medication and psychotherapy. Recent studies have shown that exercise can effectively reduce depressive symptoms, offering a new alternative for treating depression. However, some depressed patients are unable to engage in regular physical activity due to age, physical limitations, and other factors. Therefore, pharmacological agents that mimic the effects of exercise become a potential treatment option. A newly discovered myokine, irisin, which is produced during exercise via cleavage of its precursor protein fibronectin type III domain-containing protein 5 (FNDC5), plays a key role in regulating energy metabolism, promoting adipose tissue browning, and improving insulin resistance. Importantly, FNDC5 can promote neural stem cell differentiation, enhance neuroplasticity, and improve mood and cognitive function. This review systematically reviews the mechanisms of action of exercise in the treatment of depression, outlines the physiology of exercise-related irisin, explores possible mechanisms of irisin's antidepressant effects. The aim of this review is to encourage future research and clinical applications of irisin in the prevention and treatment of depression.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiying Fu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xing Zhao
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Hu X, Wang Z, Wang W, Cui P, Kong C, Chen X, Lu S. Irisin as an agent for protecting against osteoporosis: A review of the current mechanisms and pathways. J Adv Res 2024; 62:175-186. [PMID: 37669714 PMCID: PMC11331170 DOI: 10.1016/j.jare.2023.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Osteoporosis is recognized as a skeletal disorder characterized by diminished bone tissue quality and density. Regular physical exercise is widely acknowledged to preserve and enhance bone health, but the detailed molecular mechanisms involved remain unclear. Irisin, a factor derived from muscle during exercise, influences bone and muscle. Since its discovery in 2012, irisin has been found to promote bone growth and reduce bone resorption, establishing a tangible link between muscle exertion and bone health. Consequently, the mechanism by which irisin prevents osteoporosis have attracted significant scientific interest. AIM OF THE REVIEW This study aims to elucidate the multifaceted relationship between exercise, irisin, and bone health. Focusing on irisin, a muscle-derived factor released during exercise, we seek to understand its role in promoting bone growth and inhibiting resorption. Through a review of current research article on irisin in osteoporosis, Our review provides a deep dive into existing research on influence of irisin in osteoporosis, exploring its interaction with pivotal signaling pathways and its impact on various cell death mechanisms and inflammation. We aim to uncover the molecular underpinnings of how irisin, secreted during exercise, can serve as a therapeutic strategy for osteoporosis. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Irisin, secreted during exercise, plays a vital role in bridging muscle function to bone health. It not only promotes bone growth but also inhibits bone resorption. Specifically, Irisin fosters osteoblast proliferation, differentiation, and mineralization predominantly through the ERK, p38, and AMPK signaling pathways. Concurrently, it regulates osteoclast differentiation and maturation via the JNK, Wnt/β-catenin and RANKL/RANK/OPG signaling pathways. This review further delves into the profound significance of irisin in osteoporosis and its involvement in diverse cellular death mechanisms, including apoptosis, autophagy, ferroptosis, and pyroptosis.
Collapse
Affiliation(s)
- Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Peng Cui
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
6
|
Wang Y, He X, Huang K, Cheng N. Nanozyme as a rising star for metabolic disease management. J Nanobiotechnology 2024; 22:226. [PMID: 38711066 PMCID: PMC11071342 DOI: 10.1186/s12951-024-02478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Nanozyme, characterized by outstanding and inherent enzyme-mimicking properties, have emerged as highly promising alternatives to natural enzymes owning to their exceptional attributes such as regulation of oxidative stress, convenient storage, adjustable catalytic activities, remarkable stability, and effortless scalability for large-scale production. Given the potent regulatory function of nanozymes on oxidative stress and coupled with the fact that reactive oxygen species (ROS) play a vital role in the occurrence and exacerbation of metabolic diseases, nanozyme offer a unique perspective for therapy through multifunctional activities, achieving essential results in the treatment of metabolic diseases by directly scavenging excess ROS or regulating pathologically related molecules. The rational design strategies, nanozyme-enabled therapeutic mechanisms at the cellular level, and the therapies of nanozyme for several typical metabolic diseases and underlying mechanisms are discussed, mainly including obesity, diabetes, cardiovascular disease, diabetic wound healing, and others. Finally, the pharmacokinetics, safety analysis, challenges, and outlooks for the application of nanozyme are also presented. This review will provide some instructive perspectives on nanozyme and promote the development of enzyme-mimicking strategies in metabolic disease therapy.
Collapse
Affiliation(s)
- Yanan Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China
| | - Xiaoyun He
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China.
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China.
| |
Collapse
|
7
|
Kim J, Lee E, Lee ES. Development of 5-Fluorouracil/pH-Responsive Adjuvant-Embedded Extracellular Vesicles for Targeting α vβ 3 Integrin Receptors in Tumors. Pharmaceutics 2024; 16:599. [PMID: 38794261 PMCID: PMC11125367 DOI: 10.3390/pharmaceutics16050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
To selectively target and treat murine melanoma B16BL6 tumors expressing αvβ3 integrin receptors, we engineered tumor-specific functional extracellular vesicles (EVs) tailored for the targeted delivery of antitumor drugs. This objective was achieved through the incorporation of a pH-responsive adjuvant, cyclic arginine-glycine-aspartic acid peptide (cRGD, serving as a tumor-targeting ligand), and 5-fluorouracil (5-FU, employed as a model antitumor drug). The pH-responsive adjuvant, essential for modulating drug release, was synthesized by chemically conjugating 3-(diethylamino)propylamine (DEAP) to deoxycholic acid (DOCA, a lipophilic substance capable of integrating into EVs' membranes), denoted as DEAP-DOCA. The DOCA, preactivated using N-(2-aminoethyl)maleimide (AEM), was chemically coupled with the thiol group of the cRGD-DOCA through the thiol-maleimide click reaction, resulting in the formation of cRGD-DOCA. Subsequently, DEAP-DOCA, cRGD-DOCA, and 5-FU were efficiently incorporated into EVs using a sonication method. The resulting tumor-targeting EVs, expressing cRGD ligands, demonstrated enhanced in vitro/in vivo cellular uptake specifically for B16BL6 tumors expressing αvβ3 integrin receptors. The ionization characteristics of the DEAP in DEAP-DOCA induced destabilization of the EVs membrane at pH 6.5 through protonation of the DEAP substance, thereby expediting 5-FU release. Consequently, an improvement in the in vivo antitumor efficacy was observed for B16BL6 tumors. Based on these comprehensive in vitro/in vivo findings, we anticipate that this EV system holds substantial promise as an exceptionally effective platform for antitumor therapeutic delivery.
Collapse
Affiliation(s)
- Jiseung Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 1462, Gyeonggi-do, Republic of Korea; (J.K.); (E.L.)
| | - Eunsol Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 1462, Gyeonggi-do, Republic of Korea; (J.K.); (E.L.)
| | - Eun Seong Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 1462, Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Lhamyani S, Gentile AM, Mengual-Mesa M, Grueso E, Giráldez-Pérez RM, Fernandez-Garcia JC, Vega-Rioja A, Clemente-Postigo M, Pearson JR, González-Mariscal I, Olveira G, Bermudez-Silva FJ, El Bekay R. Au@16-pH-16/miR-21 mimic nanosystem: An efficient treatment for obesity through browning and thermogenesis induction. Biomed Pharmacother 2024; 171:116104. [PMID: 38198956 DOI: 10.1016/j.biopha.2023.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Despite the abundance of registered clinical trials worldwide, the availability of effective drugs for obesity treatment is limited due to their associated side effects. Thus, there is growing interest in therapies that stimulate energy expenditure in white adipose tissue. Recently, we demonstrated that the delivery of a miR-21 mimic using JetPEI effectively inhibits weight gain in an obese mouse model by promoting metabolism, browning, and thermogenesis, suggesting the potential of miR-21 mimic as a treatment for obesity. Despite these promising results, the implementation of more advanced delivery system techniques for miR-21 mimic would greatly enhance the advancement of safe and efficient treatment approaches for individuals with obesity in the future. Our objective is to explore whether a new delivery system based on gold nanoparticles and Gemini surfactants (Au@16-ph-16) can replicate the favorable effects of the miR-21 mimic on weight gain, browning, and thermogenesis. We found that dosages as low as 0.2 μg miR-21 mimic /animal significantly inhibited weight gain and induced browning and thermogenic parameters. This was evidenced by the upregulation of specific genes and proteins associated with these processes, as well as the biogenesis of beige adipocytes and mitochondria. Significant increases in miR-21 levels were observed in adipose tissue but not in other tissue types. Our data indicates that Au@16-ph-16 could serve as an effective delivery system for miRNA mimics, suggesting its potential suitability for the development of future clinical treatments against obesity.
Collapse
Affiliation(s)
- Said Lhamyani
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain; Obesity and Nutrition CIBER (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Adriana-Mariel Gentile
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain
| | - María Mengual-Mesa
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Universidad de Málaga. Andalucía Tech, Faculty of Health Sciences, Department of Systems and Automation Engineering, Malaga, Spain
| | - Elia Grueso
- Departamento de Física Química, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Rosa M Giráldez-Pérez
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - José Carlos Fernandez-Garcia
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain; Obesity and Nutrition CIBER (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Vega-Rioja
- Laboratorio de Inmunología y Alergia-FISEVI, UGC de Alergología. Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Medicina. Facultad de Medicina. Universidad de Sevilla, Sevilla, Spain
| | - Mercedes Clemente-Postigo
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Obesity and Nutrition CIBER (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga, Spain; Department of Cell Biology, Genetics, and Physiology, Faculty of Science, University of Malaga, Malaga, Spain
| | - John R Pearson
- Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Isabel González-Mariscal
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Inserm UMR1190, CHU de Lille, Universite de Lille, Institute Pasteur de Lille, Lille, France
| | - Gabriel Olveira
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain; The Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Departamento de Medicina y Cirugía, Universidad de Málaga, Málaga, Spain
| | - Francisco-Javier Bermudez-Silva
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain; The Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Rajaa El Bekay
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain; Obesity and Nutrition CIBER (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Ashour MM, Mabrouk M, Aboelnasr MA, Beherei HH, Tohamy KM, Das DB. Anti-Obesity Drug Delivery Systems: Recent Progress and Challenges. Pharmaceutics 2023; 15:2635. [PMID: 38004612 PMCID: PMC10674714 DOI: 10.3390/pharmaceutics15112635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Obesity has reached an epidemic proportion in the last thirty years, and it is recognized as a major health issue in modern society now with the possibility of serious social and economic consequences. By the year 2030, nearly 60% of the global population may be obese or overweight, which emphasizes a need for novel obesity treatments. Various traditional approaches, such as pharmacotherapy and bariatric surgery, have been utilized in clinical settings to treat obesity. However, these methods frequently show the possibility of side effects while remaining ineffective. There is, therefore, an urgent need for alternative obesity treatments with improved efficacy and specificity. Polymeric materials and chemical strategies are employed in emerging drug delivery systems (DDSs) to enhance therapy effectiveness and specificity by stabilizing and controlling the release of active molecules such as natural ingredients. Designing DDSs is currently a top priority research objective with an eye towards creating obesity treatment approaches. In reality, the most recent trends in the literature demonstrate that there are not enough in-depth reviews that emphasize the current knowledge based on the creation and design of DDSs for obesity treatment. It is also observed in the existing literature that a complex interplay of different physical and chemical parameters must be considered carefully to determine the effectiveness of the DDSs, including microneedles, for obesity treatment. Additionally, it is observed that these properties depend on how the DDS is synthesized. Although many studies are at the animal-study stage, the use of more advanced DDS techniques would significantly enhance the development of safe and efficient treatment approaches for obese people in the future. Considering these, this review provides an overview of the current anti-obesity treatment approaches as well as the conventional anti-obesity therapeutics. The article aims to conduct an in-depth discussion on the current trends in obesity treatment approaches. Filling in this knowledge gap will lead to a greater understanding of the safest ways to manage obesity.
Collapse
Affiliation(s)
- Mohamed M. Ashour
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt;
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Mohamed A. Aboelnasr
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (K.M.T.)
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Khairy M. Tohamy
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (K.M.T.)
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, UK
| |
Collapse
|
10
|
Tao X, Liu Y, Ding Z, Xie S, Cao W, Li X. Injectable cell-targeting fiber rods to promote lipolysis and regulate inflammation for obesity treatment. Biomater Sci 2023; 11:5663-5673. [PMID: 37432672 DOI: 10.1039/d3bm00619k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Obesity has become a worldwide public health problem and continues to be one of the leading causes of chronic diseases. Obesity treatment is challenged by large drug doses, high administration frequencies and severe side effects. Herein, we propose an antiobesity strategy through the local administration of HaRChr fiber rods loaded with chrysin and grafted with hyaluronic acid and AtsFRk fiber fragments loaded with raspberry ketone and grafted with adipocyte target sequences (ATSs). The hyaluronic acid grafts double the uptake levels of HaRChr by M1 macrophages to promote phenotype transformation from M1 to M2 through upregulating CD206 and downregulating CD86 expressions. ATS-mediated targeting and sustained release of raspberry ketone from AtsFRk increase the secretion of glycerol and adiponectin, and Oil red O staining shows much fewer lipid droplets in adipocytes. The combination treatment with AtsFRk and the conditioned media from HaRChr-treated macrophages elevates adiponectin levels, suggesting that M2 macrophages may secrete anti-inflammatory factors to stimulate adipocytes to produce adiponectin. Diet-induced obese mice showed significant weight losses of inguinal (49.7%) and epididymal (32.5%) adipose tissues after HaRChr/AtsFRk treatment, but no effect was observed on food intake. HaRChr/AtsFRk treatment reduces adipocyte volumes, lowers serum levels of triglycerides and total cholesterol and restores adiponectin levels to those of normal mice. In the meantime, HaRChr/AtsFRk treatment significantly elevates the gene expression of adiponectin and interleukin-10 and downregulates tissue necrosis factor-α expression in the inguinal adipose tissues. Thus, local injection of cell-targeting fiber rods and fragments demonstrates a feasible and effective antiobesity strategy through improving lipid metabolism and normalizing the inflammatory microenvironment.
Collapse
Affiliation(s)
- Xinyan Tao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China.
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Yuan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Zhenhua Ding
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Shuang Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China.
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Wenxiong Cao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China.
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Xiaohong Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China.
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| |
Collapse
|
11
|
Xuan L, Ju Z, Skonieczna M, Zhou P, Huang R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (Beijing) 2023; 4:e327. [PMID: 37457660 PMCID: PMC10349198 DOI: 10.1002/mco2.327] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Zhao Ju
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Magdalena Skonieczna
- Department of Systems Biology and EngineeringInstitute of Automatic ControlSilesian University of TechnologyGliwicePoland
- Biotechnology Centre, Silesian University of TechnologyGliwicePoland
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyDepartment of Radiation BiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
12
|
Mukherjee S, Diéguez C, Fernø J, López M. Obesity wars: hypothalamic sEVs a new hope. Trends Mol Med 2023:S1471-4914(23)00088-6. [PMID: 37210227 DOI: 10.1016/j.molmed.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
There are currently several pharmacological therapies available for the treatment of obesity, targeting both the central nervous system (CNS) and peripheral tissues. In recent years, small extracellular vesicles (sEVs) have been shown to be involved in many pathophysiological conditions. Because of their special nanosized structure and contents, sEVs can activate receptors and trigger intracellular pathways in recipient cells. Notably, in addition to transferring molecules between cells, sEVs can also alter their phenotypic characteristics. The purpose of this review is to discuss how sEVs can be used as a CNS-targeted strategy for treating obesity. Furthermore, we will evaluate current findings, such as the sEV-mediated targeting of hypothalamic AMP-activated protein kinase (AMPK), and discuss how they can be translated into clinical application.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
13
|
Lu B, Wu C, Zhang J, Zhang J, Zhang J. Oral Ionic Liquid for Transdermal Delivery and Obesity Treatment. ACS Biomater Sci Eng 2023. [PMID: 37115006 DOI: 10.1021/acsbiomaterials.3c00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Obesity is currently a prerequisite for more than 70% of adults, including chronic obesity and long-term obesity. With the increase of diabetes patients in the world, it is urgent to develop effective oral drugs to replace insulin. However, the gastrointestinal tract is a main obstacle to oral drug preparations. Here, a highly effective oral drug was developed, mainly formulated as an ionic liquid (IL) prepared by l-(-)-carnitine and geranic acid. Density functional theory (DFT) calculations showed that l-(-)-carnitine and geranic acid can exist stably through hydrogen bonding. IL can significantly enhance the transdermal transport of drugs. In vitro study of intestinal permeability showed that particles formed by IL can prevent the absorption of intestinal fat. Compared with the control group, oral administration of IL (10 mL kg-1) significantly reduced blood glucose, white adipose tissue in the liver and epididymis, and the expression of SREBP-1c and ACC in IL. Therefore, these results and high-throughput sequencing analysis showed that IL can effectively reduce the intestinal absorption of adipose tissue to reduce blood glucose. IL has good biocompatibility and stability. Therefore, IL has a certain application value in the field of oral drug-delivery carriers, which provides an effective means for the treatment of diabetes and is a potential tool to solve the epidemic of obesity.
Collapse
Affiliation(s)
- Beibei Lu
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen 518020, Guangdong, China
- Department of Shenzhen People's Hospital Geriatrics Center, Shenzhen 518020, Guangdong, China
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Chengyu Wu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Jichuan Zhang
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen 518020, Guangdong, China
- Department of Shenzhen People's Hospital Geriatrics Center, Shenzhen 518020, Guangdong, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| |
Collapse
|
14
|
Guo M, Yao J, Li J, Zhang J, Wang D, Zuo H, Zhang Y, Xu B, Zhong Y, Shen F, Lu J, Ding S, Hu C, Xu L, Xiao J, Ma X. Irisin ameliorates age-associated sarcopenia and metabolic dysfunction. J Cachexia Sarcopenia Muscle 2023; 14:391-405. [PMID: 36510115 PMCID: PMC9891925 DOI: 10.1002/jcsm.13141] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Age-associated sarcopenia is characterized of progressed loss of skeletal muscle power, mass, and function, which affects human physical activity and life quality. Besides, accompanied with sarcopenia, aged population also faces a series of metabolic dysfunctions. Irisin, the cleaved form of fibronectin type III domain-containing protein 5 (FNDC5), is a myokine induced by exercise and has been shown to exert multiple beneficial effects on health. The goal of the study is to investigate the alterations of Fndc5/irisin in skeletal muscles during ageing and whether irisin administration could ameliorate age-associated sarcopenia and metabolic dysfunction. METHODS The mRNA and protein levels of FNDC5/irisin in skeletal muscle and serum from 2- and 24-month-old mice or human subjects were analysed using qRT-PCR and western blot. FNDC5/irisin knockout mice were generated to investigate the consequences of FNDC5/irisin deletion on skeletal muscle mass, as well as morphological and molecular changes in muscle during ageing via histological and molecular analysis. To identify the therapeutic effects of chronic irisin treatment in mice during ageing, in vivo intraperitoneal administration of 2 mg/kg recombinant irisin was performed three times per week in ageing mice (14-month-old) for 4 months or in aged mice (22-month-old) for 1 month to systematically investigate irisin's effects on age-associated sarcopenia and metabolic performances, including grip strength, body weights, body composition, insulin sensitivity, energy expenditure, serum parameters and phenotypical and molecular changes in fat and liver. RESULTS We showed that the expression levels of irisin, as well as its precursor Fndc5, were reduced at mRNA and protein expression levels in muscle during ageing. In addition, via phenotypic analysis of FNDC5/irisin knockout mice, we found that FNDC5/irisin deficiency in aged mice exhibited aggravated muscle atrophy including smaller grip strength (-3.23%, P < 0.05), muscle weights (quadriceps femoris [QU]: -20.05%; gastrocnemius [GAS]: -17.91%; tibialis anterior [TA]: -19.51%, all P < 0.05), fibre size (QU: P < 0.01) and worse molecular phenotypes compared with wild-type mice. We then delivered recombinant irisin protein intraperitoneally into ageing or aged mice and found that it could improve sarcopenia with grip strength (+18.42%, P < 0.01 or +13.88%, P < 0.01), muscle weights (QU: +9.02%, P < 0.01 or +16.39%, P < 0.05), fibre size (QU: both P < 0.05) and molecular phenotypes and alleviated age-associated fat tissues expansion, insulin resistance and hepatic steatosis (all P < 0.05), accompanied with altered gene signatures. CONCLUSIONS Together, this study revealed the importance of irisin in the maintenance of muscle physiology and systematic energy homeostasis during ageing and suggested a potent therapeutic strategy against age-associated metabolic diseases via irisin administration.
Collapse
Affiliation(s)
- Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jing Yao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Jun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hui Zuo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bo Xu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yinzhao Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Fei Shen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Jian Lu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China.,Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China.,Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China
| |
Collapse
|
15
|
Nanotechnology for Manipulating Cell Plasticity. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
16
|
Trandafir LM, Dodi G, Frasinariu O, Luca AC, Butnariu LI, Tarca E, Moisa SM. Tackling Dyslipidemia in Obesity from a Nanotechnology Perspective. Nutrients 2022; 14:nu14183774. [PMID: 36145147 PMCID: PMC9504099 DOI: 10.3390/nu14183774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity and dyslipidemia are the main features of metabolic syndrome, expressed mainly by adipose tissue dysfunction and connected by similar pathways and pharmacotherapy. Conventional drugs used in these two associated disorders are limited due to poor drug efficiency, non-specificity, and toxic side effects. Therefore, novel solutions for tackling obesity-associated diseases and providing insights into the development of innovative or improved therapies are necessary. Targeted nanotherapy is a revolutionary technology, offering a promising solution for combatting the disadvantages of currently available therapies for treating obesity and dyslipidemia due to its superior features, which include specific cell targeting, the protection of drugs against physiological degradation, and sustained drug release. This review presents a brief assessment of obesity and dyslipidemia, their impacts on human health, current treatment, and limitations, and the role and potential use of nanotechnology coupled with targeted drug delivery and nutraceuticals as emerging therapies. To the best of our knowledge, this paper presents, for the first time in the literature, a comparison between obesity and dyslipidemia nano-formulations based on drugs and/or natural extracts applied in experimental studies.
Collapse
Affiliation(s)
- Laura M. Trandafir
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Gianina Dodi
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
- Correspondence: (G.D.); (E.T.)
| | - Otilia Frasinariu
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Alina C. Luca
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Lacramioara I. Butnariu
- Department of Medical Genetics, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Elena Tarca
- Department of Pediatric Surgery, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
- Correspondence: (G.D.); (E.T.)
| | - Stefana M. Moisa
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| |
Collapse
|
17
|
Nanotechnology for Manipulating Cell Plasticity. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_21-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
18
|
Rabiei M, Kashanian S, Bahrami G, Derakhshankhah H, Barzegari E, Samavati SS, McInnes SJP. Dissolving microneedle-assisted long-acting Liraglutide delivery to control type 2 diabetes and obesity. Eur J Pharm Sci 2021; 167:106040. [PMID: 34655736 DOI: 10.1016/j.ejps.2021.106040] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023]
Abstract
Integrating nanoparticles (NPs) as a smart and targeted tool for drug delivery with dissolving microneedle (DMN) patch, the non-invasive device for drug delivery, is a promising for future therapeutic delivery applications. Liraglutide (Lira) encapsulation in poly (lactic-co-glycolic acid) (PLGA) NPs provides a sustained release of Lira to 15 days in a biphasic profile which 80% of released content happens in the first 8 days. Embedding such sustained release NPs in the DMN comprising poly vinyl pyrrolidone (PVP) 50% w/v, eliminates the need for Lira subcutaneous injection. Additionally, NPs containing DMN enhance mechanical strength of needles to 5.31 N compared to DMN with pure Lira content which was 4.32 N. The flexible backing layer of the DMN was obtained via blending of PVP and poly vinyl alcohol (PVA) in 10% w/v. Circular dichroism (CD) analysis showed that Lira encapsulated in NPs maintained its native secondary structure even after solidification in DMN. In this study, the capacity of 2 kinds of 500 μm and 1000 μm needles to deliver the desired dose of drug was obtained based on experimental and mathematical methods.
Collapse
Affiliation(s)
- Morteza Rabiei
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
| | - Soheila Kashanian
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran; Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC), Razi University, Kermanshah, Iran; Department of Medical Biotechnology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran.
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyedeh Sabereh Samavati
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
| | - Steven J P McInnes
- University of South Australia, STEM, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
19
|
Aguilar-Pérez KM, Ruiz-Pulido G, Medina DI, Parra-Saldivar R, Iqbal HMN. Insight of nanotechnological processing for nano-fortified functional foods and nutraceutical-opportunities, challenges, and future scope in food for better health. Crit Rev Food Sci Nutr 2021; 63:4618-4635. [PMID: 34817310 DOI: 10.1080/10408398.2021.2004994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the twenty-first century food sector, nanotechnological processing is a new frontier that has vibrant impact on enhancing the food quality, nutritional value, food safety, and nano-fortified functional foods aspects. In addition, the added-value of various robust nano-scale materials facilitates the targeted delivery of nutraceutical ingredients and treatment of obesity and comorbidities. The recent advancement in nanomaterial-assisted palatability enhancement of healthy foods opened up a whole new area of research and development in food nanoscience. However, there is no comprehensive review available on promises of nanotechnology in the food industry in the existing literature. Thus, herein, an effort has been made to cover this leftover literature gap by spotlighting the new nanotechnological frontier and their future scope in food engineering for better health. Following a brief introduction, promises of nanotechnology have revolutionized the twenty-first century food sector of the modern world. Next, recent and relevant examples discuss the exploitation and deployment of nanomaterials in food to attain certain health benefits. A detailed insight is also given by discussing the role of nano-processing in nutraceutical delivery to treat obesity and comorbidities. The latter half of the work focuses on improving healthy foods' palatability and food safety aspects to meet the growing consumer demands. Furthermore, marketed products and public acceptance of nanotechnologically designed food items as well as future prospects are also covered herein.
Collapse
Affiliation(s)
- Katya M Aguilar-Pérez
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico, Mexico
| | - Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico, Mexico
| | - Dora I Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico, Mexico
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
20
|
Szunerits S, Melinte S, Barras A, Pagneux Q, Voronova A, Abderrahmani A, Boukherroub R. The impact of chemical engineering and technological advances on managing diabetes: present and future concepts. Chem Soc Rev 2021; 50:2102-2146. [PMID: 33325917 DOI: 10.1039/c9cs00886a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monitoring blood glucose levels for diabetic patients is critical to achieve tight glycaemic control. As none of the current antidiabetic treatments restore lost functional β-cell mass in diabetic patients, insulin injections and the use of insulin pumps are most widely used in the management of glycaemia. The use of advanced and intelligent chemical engineering, together with the incorporation of micro- and nanotechnological-based processes have lately revolutionized diabetic management. The start of this concept goes back to 1974 with the description of an electrode that repeatedly measures the level of blood glucose and triggers insulin release from an infusion pump to enter the blood stream from a small reservoir upon need. Next to the insulin pumps, other drug delivery routes, including nasal, transdermal and buccal, are currently investigated. These processes necessitate competences from chemists, engineers-alike and innovative views of pharmacologists and diabetologists. Engineered micro and nanostructures hold a unique potential when it comes to drug delivery applications required for the treatment of diabetic patients. As the technical aspects of chemistry, biology and informatics on medicine are expanding fast, time has come to step back and to evaluate the impact of technology-driven chemistry on diabetics and how the bridges from research laboratories to market products are established. In this review, the large variety of therapeutic approaches proposed in the last five years for diabetic patients are discussed in an applied context. A survey of the state of the art of closed-loop insulin delivery strategies in response to blood glucose level fluctuation is provided together with insights into the emerging key technologies for diagnosis and drug development. Chemical engineering strategies centered on preserving and regenerating functional pancreatic β-cell mass are evoked in addition as they represent a permanent solution for diabetic patients.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Sorin Melinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Anna Voronova
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| |
Collapse
|
21
|
Vaiserman A, Koliada A, Zayachkivska A, Lushchak O. Nanodelivery of Natural Antioxidants: An Anti-aging Perspective. Front Bioeng Biotechnol 2020; 7:447. [PMID: 31998711 PMCID: PMC6965023 DOI: 10.3389/fbioe.2019.00447] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
The aging process is known to be associated with heightened oxidative stress and related systemic inflammation. Therefore, antioxidant supplementation is regarded as a promising strategy to combat aging and associated pathological conditions. Food-grade antioxidants from plant-derived extracts are the most common ingredients of these supplements. Phyto-bioactive compounds such as curcumin, resveratrol, catechins, quercetin are among the most commonly applied natural compounds used as potential modulators of the free radical-induced cellular damages. The therapeutic potential of these compounds is, however, restricted by their low bioavailability related to poor solubility, stability, and absorbance in gastrointestinal tract. Recently, novel nanotechnology-based systems were developed for therapeutic delivery of natural antioxidants with improved bioavailability and, consequently, efficacy in clinical practice. Such systems have provided many benefits in preclinical research over the conventional preparations, including superior solubility and stability, extended half-life, improved epithelium permeability and bioavailability, enhanced tissue targeting, and minimized side effects. The present review summarizes recent developments in nanodelivery of natural antioxidants and its application to combat pathological conditions associated with oxidative stress.
Collapse
Affiliation(s)
- Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, Kyiv, Ukraine
| | - Alexander Koliada
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, Kyiv, Ukraine
| | - Alina Zayachkivska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
22
|
Nurunnabi M, Ibsen KN, Tanner EEL, Mitragotri S. Oral ionic liquid for the treatment of diet-induced obesity. Proc Natl Acad Sci U S A 2019; 116:25042-25047. [PMID: 31767747 PMCID: PMC6911186 DOI: 10.1073/pnas.1914426116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
More than 70% of American adults are overweight or obese, a precondition leading to chronic diseases, including diabetes and hypertension. Among other factors, diets with high fat and carbohydrate content have been implicated in obesity. In this study, we hypothesize that the choline and geranate (CAGE) ionic liquid can reduce body weight by decreasing fat absorption through the intestine. In vitro studies performed using docosahexaenoic acid (DHA), a model fat molecule, show that CAGE forms particles 2 to 4 μm in diameter in the presence of fat molecules. Ex vivo permeation studies in rat intestine showed that formation of such large particles reduces intestinal fat absorption. In vivo, CAGE reduces DHA absorption by 60% to 70% compared with controls. DHA administered with CAGE was retained in the intestine even after 6 h. Rats fed with a high-fat diet (HFD) and 10 μL of daily oral CAGE exhibited 12% less body weight gain compared with rats fed with an HFD without CAGE for 30 d. Rats that were given CAGE also ate less food than the control groups. Serum biochemistry and histology results indicated that CAGE was well tolerated by the rats. Collectively, our data support the hypothesis that CAGE interacts with fat molecules to prevent their absorption through intestinal tissue and potentially providing a feeling of satiety. We conclude that CAGE offers an effective means to control body weight and a promising tool to tackle the obesity epidemic.
Collapse
Affiliation(s)
- Md Nurunnabi
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902
| | - Kelly N Ibsen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Eden E L Tanner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| |
Collapse
|
23
|
Huang D, Deng M, Kuang S. Polymeric Carriers for Controlled Drug Delivery in Obesity Treatment. Trends Endocrinol Metab 2019; 30:974-989. [PMID: 31668904 PMCID: PMC6927547 DOI: 10.1016/j.tem.2019.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023]
Abstract
The global rise in the prevalence of obesity and affiliated metabolic syndrome poses a significant threat to human health. Various approaches, including bariatric surgery and pharmacotherapy, have been used in the clinical setting for obesity treatment; however, these conventional options remain ineffective and carry risks of adverse effects. Therefore, treatments with higher efficacy and specificity are urgently required. Emerging drug delivery systems use polymeric materials and chemical strategies to improve therapeutic efficacy and specificity through stabilization and spatiotemporally controlled release of antiobesity agents. In this review, we provide insights into current treatments for obesity with a focus on recent developments of polymeric carriers for enhanced antiobesity drug delivery.
Collapse
Affiliation(s)
- Di Huang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Meng Deng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA; School of Materials Engineering, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|