1
|
Li J, Huang Y, Wang Y, Han Q. A Poly-γ-Glutamic Acid/ε-Polylysine Hydrogel: Synthesis, Characterization, and Its Role in Accelerated Wound Healing. Gels 2025; 11:226. [PMID: 40277663 PMCID: PMC12027117 DOI: 10.3390/gels11040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Wound healing is a complex biological process involving inflammation, proliferation, and remodeling phases. Effective healing is essential for maintaining skin integrity, driving the need for advanced materials like hydrogels, known for their high water retention and tunable mechanical properties. In this study, we synthesized a biocompatible composite hydrogel composed of γ-polyglutamic acid (γ-PGA) and ε-polylysine (ε-PL) through a Schiff base reaction, forming a stable crosslinked network. Its physicochemical properties, including rheological behavior and swelling capacity, were systematically evaluated. Biocompatibility was assessed via in vitro hemolysis and cytotoxicity assays, and in vivo testing was performed using a full-thickness skin defect model in Sprague Dawley (SD) rats to evaluate wound-healing efficacy. The PGA-PL hydrogel demonstrated excellent physicochemical properties, with a maximum swelling ratio of 65.6%, and biocompatibility as evidenced by low hemolysis rates (<5%) and high cell viability (>80%). It promoted wound healing by inhibiting the inflammatory response, reducing levels of the inflammatory cytokine IL-6, enhancing angiogenesis, and accelerating collagen deposition. The hydrogel showed complete biodegradation within 21 days in vivo without inducing a significant inflammatory response and significantly accelerated wound healing, achieving an 86% healing rate within 7 days compared to 67% in the control group. The PGA-PL composite hydrogel exhibits excellent mechanical strength and biocompatibility, and its effective wound-healing capabilities lay the groundwork for future development and optimization in various tissue engineering applications.
Collapse
Affiliation(s)
- Jiaqi Li
- National Institutes for Food and Drug Control, Beijing 100050, China; (J.L.); (Y.H.); (Y.W.)
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanli Huang
- National Institutes for Food and Drug Control, Beijing 100050, China; (J.L.); (Y.H.); (Y.W.)
| | - Yalu Wang
- National Institutes for Food and Drug Control, Beijing 100050, China; (J.L.); (Y.H.); (Y.W.)
- School of Medical Devices, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Qianqian Han
- National Institutes for Food and Drug Control, Beijing 100050, China; (J.L.); (Y.H.); (Y.W.)
| |
Collapse
|
2
|
Wang WT, Xue YJ, Zhou JK, Zhang Z, Guo SY, Zhao CF, Bai Y, Zhu YT, Zhang LZ, Guo S, Ren GX. Exploring the antimicrobial activity of rare ginsenosides and the progress of their related pharmacological effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155904. [PMID: 39151265 DOI: 10.1016/j.phymed.2024.155904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/23/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Panax ginseng C. A. Mey is a precious medicinal resource that could be used to treat a variety of diseases. Saponins are the most important bioactive components of, and rare ginsenosides (Rg3, Rh2, Rk1 and Rg5, etc.) refer to the chemical structure changes of primary ginsenosides through dehydration and desugarization reactions, to obtain triterpenoids that are easier to be absorbed by the human body and have higher activity. PURPOSE At present, the research of P. ginseng. is widely focused on anticancer related aspects, and there are few studies on the antibacterial and skin protection effects of rare ginsenosides. This review summarizes the rare ginsenosides related to bacterial inhibition and skin protection and provides a new direction for P. ginseng research. METHODS PubMed and Web of Science were searched for English-language studies on P. ginseng published between January 2002 and March 2024. Selected manuscripts were evaluated manually for additional relevant references. This review includes basic scientific articles and related studies such as prospective and retrospective cohort studies. CONCLUSION This paper summarizes the latest research progress of several rare ginsenosides, discusses the antibacterial effect of rare ginsenosides, and finds that ginsenosides can effectively protect the skin and promote wound healing during use, so as to play an efficient antibacterial effect, and further explore the other medicinal value of ginseng. It is expected that this review will provide a wider understanding and new ideas for further research and development of P. ginseng drugs.
Collapse
Affiliation(s)
- Wen-Ting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Ya-Jie Xue
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jian-Kang Zhou
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Sheng-Yuan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chao-Fan Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu Bai
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu-Ting Zhu
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li-Zhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Shang Guo
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Shanxi University, Taiyuan 030006, China.
| | - Gui-Xing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
3
|
Xie Y, Ma Y, Xu L, Liu H, Ge W, Wu B, Duan H, Zhang H, Fu Y, Xu H, Sun Y, Han Z, Zhu Y. Inhibition of Angiogenesis and Effect on Inflammatory Bowel Disease of Ginsenoside Rg3-Loaded Thermosensitive Hydrogel. Pharmaceutics 2024; 16:1243. [PMID: 39458575 PMCID: PMC11509886 DOI: 10.3390/pharmaceutics16101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Inflammatory bowel disease (IBD), characterized by chronic inflammation of the digestive tract, involves angiogenesis as a key pathogenic mechanism. Ginsenoside Rg3, derived from the traditional Chinese herb ginseng, is recognized for its anti-angiogenic properties but is limited by low oral bioavailability. This necessitates the development of an alternative delivery system to improve its therapeutic effectiveness. Methods: Pluronic F-127 (F127) and Pluronic F-68 (F68) were used to construct Rg3-loaded thermosensitive hydrogel Gel-Rg3. Meanwhile, a series of physicochemical properties were determined. Then the safety and pharmacological activity of Gel-Rg3 were evaluated in vitro and in vivo using human umbilical vein endothelial cells (HUVECs) and colitis mouse model, in order to initially validate the potential of Gel-Rg3 for the treatment of IBD. Results: We engineered a rectally administrable, thermosensitive Gel-Rg3 hydrogel using F127 and F68, which forms at body temperature, enhancing Rg3's intestinal retention and slowly releasing the drug. In vitro, Gel-Rg3 demonstrated superior anti-angiogenic activity by inhibiting HUVEC proliferation, migration, and tube formation. It also proved safer and better suited for IBD's delicate intestinal environment than unformulated Rg3. In vivo assessments confirmed increased intestinal adhesion and anti-angiogenic efficacy. Conclusions: The Gel-Rg3 hydrogel shows promise for IBD therapy by effectively inhibiting angiogenesis via rectal delivery, overcoming Rg3's bioavailability limitations with improved safety and efficacy. This study provides new inspiration and data support for the design of treatment strategies for IBD.
Collapse
Affiliation(s)
- Yiqiong Xie
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; (Y.X.); (L.X.); (W.G.)
| | - Ying Ma
- Jiangsu Institute for Food and Drug Control, Nanjing 210008, China;
| | - Lu Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; (Y.X.); (L.X.); (W.G.)
| | - Hongwen Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China;
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; (Y.X.); (L.X.); (W.G.)
- Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, China;
| | - Baojuan Wu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China;
| | - Hongjue Duan
- Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, China;
| | - Hongmei Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; (H.Z.); (Y.F.)
| | - Yuping Fu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; (H.Z.); (Y.F.)
| | - Hang Xu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China;
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuxiang Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Zhou Han
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; (Y.X.); (L.X.); (W.G.)
- Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, China;
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; (Y.X.); (L.X.); (W.G.)
- Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, China;
| |
Collapse
|
4
|
Li X, Han W, Zhang Y, Tan D, Cui M, Wang S, Shi W. Multifunctional Hydrogels Based on γ-Polyglutamic Acid/Polyethyleneimine for Hemostasis and Wound Healing. Biomater Res 2024; 28:0063. [PMID: 39104745 PMCID: PMC11298251 DOI: 10.34133/bmr.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Current hemostatic materials have many shortcomings, such as biotoxicity or poor degradability, and do not effectively promote wound healing after hemostasis. To address these limitations, a hemostasis-promoting wound-healing hydrogel, polyglutamic acid/polyethyleneimine/montmorillonite (PPM), comprising polyglutamic acid, 3,4-dihydroxybenzaldehyde-modified polyethyleneimine, and amino-modified montmorillonite (montmorillonite-NH2) was constructed in this study. Due to the excellent water absorption abilities of γ-polyglutamic acid, the PPM and polyglutamic acid/polyethyleneimine hydrogels could rapidly absorb the blood and tissue fluid exuded from the wound to keep the wound clean and accelerate the blood coagulation. The homogeneous distribution of montmorillonite-NH2 enhanced not only the mechanical properties of the hydrogel but also its hemostatic properties. In addition, the modification of polyethylenimine with 3,4-dihydroxybenzaldehyde provided anti-inflammatory effects and endorsed the wound healing. Cellular and blood safety experiments demonstrated the biocompatibility of the PPM hydrogel, and animal studies demonstrated that the PPM hydrogel effectively stopped bleeding and promoted wound healing. The concept design of clay-based hydrogel may create diverse opportunities for constructing hemostasis and wound-healing dressings.
Collapse
Affiliation(s)
- Xiuyun Li
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, Shandong Province, P. R. China
| | - Wenli Han
- School of Materials and Chemistry,
University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
- Shandong Cancer Hospital and Institute,
Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, P. R. China
| | - Yilin Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, Shandong Province, P. R. China
| | - Dongmei Tan
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, Shandong Province, P. R. China
| | - Min Cui
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, Shandong Province, P. R. China
| | - Shige Wang
- School of Materials and Chemistry,
University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Wenna Shi
- Shandong Cancer Hospital and Institute,
Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, P. R. China
| |
Collapse
|
5
|
Teng L, Song Y, Hu Y, Lu J, Dong CM. Biomimetic and Wound Microenvironment-Modulating PEGylated Glycopolypeptide Hydrogels for Arterial Massive Hemorrhage and Wound Prohealing. Biomacromolecules 2024; 25:4317-4328. [PMID: 38829675 DOI: 10.1021/acs.biomac.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Despite great progress in the hydrogel hemostats and dressings, they generally lack resistant vascular bursting pressure and intrinsic bioactivity to meet arterial massive hemorrhage and proheal wounds. To address the problems, we design a kind of biomimetic and wound microenvironment-modulating PEGylated glycopolypeptide hydrogels that can be easily injected and gelled in ∼10 s. Those glycopolypeptide hydrogels have suitable tissue adhesion of ∼20 kPa, high resistant bursting pressure of ∼150 mmHg, large microporosity of ∼15 μm, and excellent biocompatibility with ∼1% hemolysis ratio and negligible inflammation. They performed better hemostasis in rat liver and rat and rabbit femoral artery bleeding models than Fibrin glue, Gauze, and other hydrogels, achieving fast arterial hemostasis of <20 s and lower blood loss of 5-13%. As confirmed by in vivo wound healing, immunofluorescent imaging, and immunohistochemical and histological analyses, the mannose-modified hydrogels could highly boost the polarization of anti-inflammatory M2 phenotype and downregulate pro-inflammatory tumor necrosis factor-α to relieve inflammation, achieving complete full-thickness healing with thick dermis, dense hair follicles, and 90% collagen deposition. Importantly, this study provides a versatile strategy to construct biomimetic glycopolypeptide hydrogels that can not only resist vascular bursting pressure for arterial massive hemorrhage but also modulate inflammatory microenvironment for wound prohealing.
Collapse
Affiliation(s)
- Lin Teng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yingying Song
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yinghan Hu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P. R. China
| | - Jiayu Lu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Chen C, Tang Q, Wu L, Gu G, Huang X, Chen K, Li Z, Wang J, Qu G, Jiang Y, Liu Y, Li S, Huang J, Jia X, Zhu T, Zhao Y, Zhang Q, Ren J, Wu X. Hybrid Double-Sided Tape with Asymmetrical Adhesion and Burst Pressure Tolerance for Abdominal Injury Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30430-30442. [PMID: 38814614 DOI: 10.1021/acsami.4c05400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Patients with open abdominal (OA) wounds have a mortality risk of up to 30%, and the resulting disabilities would have profound effects on patients. Here, we present a novel double-sided adhesive tape developed for the management of OA wounds. The tape features an asymmetrical structure and employs an acellular dermal matrix (ADM) with asymmetric wettability as a scaffold. It is constructed by integrating a tissue-adhesive hydrogel composed of polydopamine (pDA), quaternary ammonium chitosan (QCS), and acrylic acid cross-linking onto the bottom side of the ADM. Following surface modification with pDA, the ADM would exhibit characteristics resistant to bacterial adhesion. Furthermore, the presence of a developed hydrogel ensures that the tape not only possesses tissue adhesiveness and noninvasive peelability but also effectively mitigates damage caused by oxidative stress. Besides, the ADM inherits the strength of the skin, imparting high burst pressure tolerance to the tape. Based on these remarkable attributes, we demonstrate that this double-sided (D-S) tape facilitates the repair of OA wounds, mitigates damage to exposed intestinal tubes, and reduces the risk of intestinal fistulae and complications. Additionally, the D-S tape is equally applicable to treating other abdominal injuries, such as gastric perforations. It effectively seals the perforation, promotes injury repair, and prevents the formation of postoperative adhesions. These notable features indicate that the presented double-sided tape holds significant potential value in the biomedical field.
Collapse
Affiliation(s)
- Canwen Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Qinqing Tang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Lei Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China
| | - Guosheng Gu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
- Department of General Surgery, Anhui No.2 Provincial Peoples' Hospital, Anhui 230041, P. R. China
| | - Xinxin Huang
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Ze Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Jiajie Wang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Guiwen Qu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Yungang Jiang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Ye Liu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Sicheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Xudong Jia
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tangsong Zhu
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yun Zhao
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, P. R. China
| | - Qiuhong Zhang
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| |
Collapse
|
7
|
Wang X, Wei P, Hu C, Zeng H, Fan Z. 3D printing of Rg3-loaded hydrogel scaffolds: anti-inflammatory and scar-formation related collagen inhibitory effects for scar-free wound healing. J Mater Chem B 2024; 12:4673-4685. [PMID: 38647236 DOI: 10.1039/d3tb02941g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
During the process of wound healing, the stimulation of inflammatory factors often leads to abnormal proliferation of blood vessels and collagen, ultimately resulting in scar formation. To address this challenge, we fabricate a novel dermal extracellular matrix (DECM) hydrogel scaffold loaded with ginsenoside Rg3 (Rg3) using 3D printing technology. Mesoporous silica nanoparticles (MSNs) are introduced into the system to encase the Rg3 to control its release rate and enhance its bioavailability. We systematically evaluate the biological, physicochemical, and wound healing properties of this scaffold. In vitro studies demonstrate that the hydrogel exhibits excellent biocompatibility and solid-like rheological properties, ensuring its successful printing. In vivo studies reveal that the composite hydrogel scaffolds effectively accelerate wound healing and achieve scar-free wound healing within three weeks. Histological and immunohistochemical (IHC) analyses show that the composite hydrogel scaffolds reduce the inflammatory response and inhibit excessive collagen accumulation. These combined effects underscore the potential of our approach in effectively inhibiting scar formation.
Collapse
Affiliation(s)
- Xusen Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Pengyu Wei
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Cewen Hu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Huajing Zeng
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
8
|
Angolkar M, Paramshetti S, Gahtani RM, Al Shahrani M, Hani U, Talath S, Osmani RAM, Spandana A, Gangadharappa HV, Gundawar R. Pioneering a paradigm shift in tissue engineering and regeneration with polysaccharides and proteins-based scaffolds: A comprehensive review. Int J Biol Macromol 2024; 265:130643. [PMID: 38467225 DOI: 10.1016/j.ijbiomac.2024.130643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
In the realm of modern medicine, tissue engineering and regeneration stands as a beacon of hope, offering the promise of restoring form and function to damaged or diseased organs and tissues. Central to this revolutionary field are biological macromolecules-nature's own blueprints for regeneration. The growing interest in bio-derived macromolecules and their composites is driven by their environmentally friendly qualities, renewable nature, minimal carbon footprint, and widespread availability in our ecosystem. Capitalizing on these unique attributes, specific composites can be tailored and enhanced for potential utilization in the realm of tissue engineering (TE). This review predominantly concentrates on the present research trends involving TE scaffolds constructed from polysaccharides, proteins and glycosaminoglycans. It provides an overview of the prerequisites, production methods, and TE applications associated with a range of biological macromolecules. Furthermore, it tackles the challenges and opportunities arising from the adoption of these biomaterials in the field of TE. This review also presents a novel perspective on the development of functional biomaterials with broad applicability across various biomedical applications.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | | | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
9
|
Alavi SE, Alavi SZ, Nisa MU, Koohi M, Raza A, Ebrahimi Shahmabadi H. Revolutionizing Wound Healing: Exploring Scarless Solutions through Drug Delivery Innovations. Mol Pharm 2024; 21:1056-1076. [PMID: 38288723 DOI: 10.1021/acs.molpharmaceut.3c01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Human skin is the largest organ and outermost surface of the human body, and due to the continuous exposure to various challenges, it is prone to develop injuries, customarily known as wounds. Although various tissue engineering strategies and bioactive wound matrices have been employed to speed up wound healing, scarring remains a significant challenge. The wound environment is harsh due to the presence of degradative enzymes and elevated pH levels, and the physiological processes involved in tissue regeneration operate on distinct time scales. Therefore, there is a need for effective drug delivery systems (DDSs) to address these issues. The objective of this review is to provide a comprehensive exposition of the mechanisms underlying the skin healing process, the factors and materials used in engineering DDSs, and the different DDSs used in wound care. Furthermore, this investigation will delve into the examination of emergent technologies and potential avenues for enhancing the efficacy of wound care devices.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Mehr Un Nisa
- Nishtar Medical University and Hospital, Multan 60000, Pakistan
| | - Maedeh Koohi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 202013, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| |
Collapse
|
10
|
Cai M, Han Y, Zheng X, Xue B, Zhang X, Mahmut Z, Wang Y, Dong B, Zhang C, Gao D, Sun J. Synthesis of Poly-γ-Glutamic Acid and Its Application in Biomedical Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 17:15. [PMID: 38203869 PMCID: PMC10779536 DOI: 10.3390/ma17010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Poly-γ-glutamic acid (γ-PGA) is a natural polymer composed of glutamic acid monomer and it has garnered substantial attention in both the fields of material science and biomedicine. Its remarkable cell compatibility, degradability, and other advantageous characteristics have made it a vital component in the medical field. In this comprehensive review, we delve into the production methods, primary application forms, and medical applications of γ-PGA, drawing from numerous prior studies. Among the four production methods for PGA, microbial fermentation currently stands as the most widely employed. This method has seen various optimization strategies, which we summarize here. From drug delivery systems to tissue engineering and wound healing, γ-PGA's versatility and unique properties have facilitated its successful integration into diverse medical applications, underlining its potential to enhance healthcare outcomes. The objective of this review is to establish a foundational knowledge base for further research in this field.
Collapse
Affiliation(s)
- Minjian Cai
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Yumin Han
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xianhong Zheng
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Baigong Xue
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xinyao Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Zulpya Mahmut
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Yuda Wang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| | - Chunmei Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Donghui Gao
- Department of Anesthesiology and Operating Room, School and Hospital of Stomatology, Jilin University, Changchun 130012, China
| | - Jiao Sun
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| |
Collapse
|
11
|
Ma X, Ning W, Geng Y, Shao H, Liu Y, Liu F, Zhang D, Chi B, Hou Y, Fu X. An ECM-mimicking assembled gelatin/hyaluronic acid hydrogel with antibacterial and radical scavenging functions for accelerating open wound healing. Biomed Mater 2023; 19:015008. [PMID: 37972551 DOI: 10.1088/1748-605x/ad0d85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
A multifunctional hydrogel dressing with hemostatic, antibacterial, and reactive oxygen species (ROS)-removing properties is highly desirable for the clinical treatment of open wounds. Although many wound dressings have been prepared, the modification of polymers is often involved in the preparation process, and the uncertainty of biological safety and stability of modified polymers hinders the clinical application of products. In this study, inspired by the composition and crosslinking pattern of extracellular matrix (ECM), a deeply ECM-mimicking multifunctional hydrogel dressing is created. Tannic acid (TA) and poly-ϵ-lysine (EPL) are added into a gelatin/hyaluronic acid (Gel/HA) matrix, and a stable hydrogel is formed due to the formation of the triple helix bundles of gelatin and hydrogen bonds between polymers. The introduction of TA and EPL endows the ECM-mimicking hydrogel with stable rheological properties, as well as antibacterial and hemostatic functions. The as-produced hydrogels have suitable swelling ratio, enzyme degradability, and good biocompatibility. In addition, it also shows a significant ability to eliminate ROS, which is confirmed by the elimination of 2,2-diphenyl-1-picrylhydrazyl free radical. Full-thickness skin wound repair experiment and histological analysis of the healing site in mice demonstrate that the developed ECM-mimicking Gel/HA hydrogels have a prominent effect on ECM formation and promotion of wound closure. Taken together, these findings suggest that the multifunctional hydrogels deeply mimicking the ECM are promising candidates for the clinical treatment of open wounds.
Collapse
Affiliation(s)
- Xuebin Ma
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Wenli Ning
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250021, People's Republic of China
| | - Yiming Geng
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, People's Republic of China
| | - Huarong Shao
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Yang Liu
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Fei Liu
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Daizhou Zhang
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Yali Hou
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, People's Republic of China
| | - Xiao Fu
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250021, People's Republic of China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
12
|
Han H, Tang L, Li Y, Li Y, Bi M, Wang J, Wang F, Wang L, Mao J. A multifunctional surgical suture with electroactivity assisted by oligochitosan/gelatin-tannic acid for promoting skin wound healing and controlling scar proliferation. Carbohydr Polym 2023; 320:121236. [PMID: 37659821 DOI: 10.1016/j.carbpol.2023.121236] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 09/04/2023]
Abstract
Surgical wound closure is accomplished most frequently with sutures, optimally proceeding rapidly and without complication. However, surgical sutures can trigger foreign body reactions and incite abnormal collagen deposition. Sustained inflammation can result in abnormal wound healing with hypertrophic scar formation. Therefore, evolution of suture material to inhibit inflammation and scar formation is of great clinical significance. In the present study, commercial 3-0 PPDO [poly(p-dioxanone)] suture was used as the base material and modified by adding two layers: a drug-loaded layer and an electroactive layer. The former layer was curcumin (Cur) encapsulated by PLGA [poly (lactic-co-glycolic acid)] and the latter layer was composed of oligochitosan-gelatin/tannic acid/polypyrrole (OCS-GE/TA/PPy). The multifunctional sutures, named S@LC@CGTP, had desirable sustained-drug release properties in vitro where Cur could be released for 8 days due to the action of PLGA. The three-dimensional network structure of OCS-GE/TA ensured S@LC@CGTP against surface cracking and maintained electrical. Furthermore, using an in vivo experiment, S@LC@CGTP could attenuate inflammation and promote scar-free wound healing according to suppression of infiltrating inflammatory cells, down-regulation of TGF-β1 and collagen type I expression, and improved collagen arrangement. Cumulatively, we indicated that S@LC@CGTP suture material has great potential to facilitate optimal, nearly scarless healing of surgical incisions.
Collapse
Affiliation(s)
- Hui Han
- Thyroid Surgery Department, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Liqin Tang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yong Li
- Thyroid Surgery Department, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ming Bi
- General department, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China.
| | - Jun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China; Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China; Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China; Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
13
|
Cong L, Ma J, Zhang Y, Zhou Y, Cong X, Hao M. Effect of anti-skin disorders of ginsenosides- A Systematic Review. J Ginseng Res 2023; 47:605-614. [PMID: 37720567 PMCID: PMC10499590 DOI: 10.1016/j.jgr.2023.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 09/19/2023] Open
Abstract
Ginsenosides are bioactive components of Panax ginseng with many functions such as anti-aging, anti-oxidation, anti-inflammatory, anti-fatigue, and anti-tumor. Ginsenosides are categorized into dammarane, oleanene, and ocotillol type tricyclic triterpenoids based on the aglycon structure. Based on the sugar moiety linked to C-3, C-20, and C-6, C-20, dammarane type was divided into protopanaxadiol (PPD) and protopanaxatriol (PPT). The effects of ginsenosides on skin disorders are noteworthy. They play anti-aging roles by enhancing immune function, resisting melanin formation, inhibiting oxidation, and elevating the concentration of collagen and hyaluronic acid. Thus, ginsenosides have previously been widely used to resist skin diseases and aging. This review details the role of ginsenosides in the anti-skin aging process from mechanisms and experimental research.
Collapse
Affiliation(s)
- Lele Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jinli Ma
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yundong Zhang
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Xianling Cong
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Yang J, Zhang L, Peng X, Zhang S, Sun S, Ding Q, Ding C, Liu W. Polymer-Based Wound Dressings Loaded with Ginsenoside Rg3. Molecules 2023; 28:5066. [PMID: 37446725 DOI: 10.3390/molecules28135066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The skin, the largest organ in the human body, mainly plays a protective role. Once damaged, it can lead to acute or chronic wounds. Wound healing involves a series of complex physiological processes that require ideal wound dressings to promote it. The current wound dressings have characteristics such as high porosity and moderate water vapor permeability, but they are limited in antibacterial properties and cannot protect wounds from microbial infections, which can delay wound healing. In addition, several dressings contain antibiotics, which may have bad impacts on patients. Natural active substances have good biocompatibility; for example, ginsenoside Rg3 has anti-inflammatory, antibacterial, antioxidant, and other biological activities, which can effectively promote wound healing. Some researchers have developed various polymer wound dressings loaded with ginsenoside Rg3 that have good biocompatibility and can effectively promote wound healing and reduce scar formation. This article will focus on the application and mechanism of ginsenoside Rg3-loaded dressings in wounds.
Collapse
Affiliation(s)
- Jiali Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Lifeng Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaojuan Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China
| |
Collapse
|
15
|
Nun N, Joy A. Fabrication and Bioactivity of Peptide-Conjugated Biomaterial Tissue Engineering Constructs. Macromol Rapid Commun 2023; 44:e2200342. [PMID: 35822458 DOI: 10.1002/marc.202200342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/22/2022] [Indexed: 01/11/2023]
Abstract
Tissue engineering combines materials engineering, cells and biochemical factors to improve, restore or replace various types of biological tissues. A nearly limitless combination of these strategies can be combined, providing a means to augment the function of a number of biological tissues such as skin tissue, neural tissue, bones, and cartilage. Compounds such as small molecule therapeutics, proteins, and even living cells have been incorporated into tissue engineering constructs to influence biological processes at the site of implantation. Peptides have been conjugated to tissue engineering constructs to circumvent limitations associated with conjugation of proteins or incorporation of cells. This review highlights various contemporary examples in which peptide conjugation is used to overcome the disadvantages associated with the inclusion of other bioactive compounds. This review covers several peptides that are commonly used in the literature as well as those that do not appear as frequently to provide a broad scope of the utility of the peptide conjugation technique for designing constructs capable of influencing the repair and regeneration of various bodily tissues. Additionally, a brief description of the construct fabrication techniques encountered in the covered examples and their advantages in various tissue engineering applications is provided.
Collapse
Affiliation(s)
- Nicholas Nun
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44321, USA
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44321, USA
| |
Collapse
|
16
|
Lee JW, Song KH. Fibrous hydrogels by electrospinning: Novel platforms for biomedical applications. J Tissue Eng 2023; 14:20417314231191881. [PMID: 37581121 PMCID: PMC10423451 DOI: 10.1177/20417314231191881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/19/2023] [Indexed: 08/16/2023] Open
Abstract
Hydrogels, hydrophilic and biocompatible polymeric networks, have been used for numerous biomedical applications because they have exhibited abilities to mimic features of extracellular matrix (ECM). In particular, the hydrogels engineered with electrospinning techniques have shown great performances in biomedical applications. Electrospinning techniques are to generate polymeric micro/nanofibers that can mimic geometries of natural ECM by drawing micro/nanofibers from polymer precursors with electrical forces, followed by structural stabilization of them. By exploiting the electrospinning techniques, the fibrous hydrogels have been fabricated and utilized as 2D/3D cell culture platforms, implantable scaffolds, and wound dressings. In addition, some hydrogels that respond to external stimuli have been used to develop biosensors. For comprehensive understanding, this review covers electrospinning processes, hydrogel precursors used for electrospinning, characteristics of fibrous hydrogels and specific biomedical applications of electrospun fibrous hydrogels and highlight their potential to promote use in biomedical applications.
Collapse
Affiliation(s)
- Ji Woo Lee
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Kwang Hoon Song
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
- Research Center of Brain-Machine Interface, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
17
|
Hu J, Wang Z, Miszuk JM, Zeng E, Sun H. High Molecular Weight Poly(glutamic acid) to Improve BMP2-Induced Osteogenic Differentiation. Mol Pharm 2022; 19:4565-4575. [PMID: 35675584 PMCID: PMC9729371 DOI: 10.1021/acs.molpharmaceut.2c00141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
FDA-approved bone morphogenetic protein 2 (BMP2) has serious side effects due to the super high dose requirement. Heparin is one of the most well-studied sulfated polymers to stabilize BMP2 and improve its functionality. However, the clinical use of heparin is questionable because of its undesired anticoagulant activity. Recent studies suggest that poly(glutamic acid) (pGlu) has the potential to improve BMP2 bioactivity with less safety concerns; however, the knowledge on pGlu's contribution remains largely unknown. Therefore, we aimed to study the role of pGlu in BMP2-induced osteogenesis and its potential application in bone tissue engineering. Our data, for the first time, indicated that both low (L-pGlu) and high molecular weight pGlu (H-pGlu) were able to significantly improve the BMP2-induced early osteoblastic differentiation marker (ALP) in MC3T3-E1 preosteoblasts. Importantly, the matrix mineralization was more rapidly enhanced by H-pGlu compared to L-pGlu. Additionally, our data indicated that only α-H-pGlu could significantly improve BMP2's activity, whereas γ-H-pGlu failed to do so. Moreover, both gene expression and mineralization data demonstrated that α-H-pGlu enabled a single dose of BMP2 to induce a high level of osteoblastic differentiation without multiple doses of BMP2. To study the potential application of pGlu in tissue engineering, we incorporated the H-pGlu+BMP2 nanocomplexes into the collagen hydrogel with significantly elevated osteoblastic differentiation. Furthermore, H-pGlu-coated 3D porous gelatin and chitosan scaffolds significantly enhanced osteogenic differentiation through enabling sustained release of BMP2. Thus, our findings suggest that H-pGlu is a promising new alternative with great potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Jue Hu
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Zhuozhi Wang
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Jacob M. Miszuk
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Erliang Zeng
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Hongli Sun
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| |
Collapse
|
18
|
Ren S, Guo S, Yang L, Wang C. Effect of composite biodegradable biomaterials on wound healing in diabetes. Front Bioeng Biotechnol 2022; 10:1060026. [PMID: 36507270 PMCID: PMC9732485 DOI: 10.3389/fbioe.2022.1060026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
The repair of diabetic wounds has always been a job that doctors could not tackle quickly in plastic surgery. To solve this problem, it has become an important direction to use biocompatible biodegradable biomaterials as scaffolds or dressing loaded with a variety of active substances or cells, to construct a wound repair system integrating materials, cells, and growth factors. In terms of wound healing, composite biodegradable biomaterials show strong biocompatibility and the ability to promote wound healing. This review describes the multifaceted integration of biomaterials with drugs, stem cells, and active agents. In wounds, stem cells and their secreted exosomes regulate immune responses and inflammation. They promote angiogenesis, accelerate skin cell proliferation and re-epithelialization, and regulate collagen remodeling that inhibits scar hyperplasia. In the process of continuous combination with new materials, a series of materials that can be well matched with active ingredients such as cells or drugs are derived for precise delivery and controlled release of drugs. The ultimate goal of material development is clinical transformation. At present, the types of materials for clinical application are still relatively single, and the bottleneck is that the functions of emerging materials have not yet reached a stable and effective degree. The development of biomaterials that can be further translated into clinical practice will become the focus of research.
Collapse
Affiliation(s)
- Sihang Ren
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shuaichen Guo
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Tan G, Wang L, Pan W, Chen K. Polysaccharide Electrospun Nanofibers for Wound Healing Applications. Int J Nanomedicine 2022; 17:3913-3931. [PMID: 36097445 PMCID: PMC9464040 DOI: 10.2147/ijn.s371900] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/23/2022] [Indexed: 12/26/2022] Open
Abstract
As a type of biological macromolecule, natural polysaccharides have been widely used in wound healing due to their low toxicity, good biocompatibility, degradability and reproducibility. Electrospinning is a versatile and simple technique for producing continuous nanoscale fibers from a variety of natural and synthetic polymers. The application of electrospun nanofibers as wound dressings has made great progress and they are considered one of the most effective wound dressings. This paper reviews the preparation of polysaccharide nanofibers by electrospinning and their application prospects in the field of wound healing. A variety of polysaccharide nanofibers, including chitosan, starch, alginate, and hyaluronic acid are introduced. The preparation strategy of polysaccharide electrospun nanofibers and their functions in promoting wound healing are summarized. In addition, the future prospects and challenges for the preparation of polysaccharide nanofibers by electrospinning are also discussed.
Collapse
Affiliation(s)
- Guoxin Tan
- School of Pharmacy, Hainan University, Haikou, 570228, People's Republic of China
| | - Lijie Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Kai Chen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| |
Collapse
|
20
|
Ye H, Xian Y, Li S, Zhang C, Wu D. In situ forming injectable γ-poly(glutamic acid)/PEG adhesive hydrogels for hemorrhage control. Biomater Sci 2022; 10:4218-4227. [PMID: 35748430 DOI: 10.1039/d2bm00525e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rapidly in situ forming adhesive hydrogels are promising candidates for efficient hemostasis due to their easy administration and minimal invasion. However, development of biocompatible and high-performance hemostatic hydrogels without any additional toxic agents remains a challenge. Herein, a series of novel injectable adhesive hydrogels based on N-hydroxysuccinimide (NHS) modified γ-poly(glutamic acid) (γPGA-NHS) and tetra-armed poly(ethylene glycol) amine (Tetra-PEG-NH2) were developed. Among all samples, PGA10-PEG15 and PGA10-PEG20 hydrogels with higher PEG contents exhibited rapid gelation time (<20 s), strong mechanical strength (compression modulus up to ∼75 kPa), good adhesive properties (∼15 kPa), and satisfactory burst pressure (∼18-20 kPa). As a result, PGA10-PEG15 and PGA10-PEG20 hydrogels showed a remarkable reduction in hemostasis time and blood loss compared with gauze and fibrin glue. More importantly, the PGA10-PEG20 hydrogel was also successfully used to seal femoral arterial trauma. Subcutaneous implantation experiments indicated a good biocompatibility of the hydrogels in vivo. All these results strongly support that the developed PGA-PEG hydrogels could serve as promising hemostatic agents in emergency and clinical situations.
Collapse
Affiliation(s)
- Huijun Ye
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District 518055, Shenzhen, Guangdong Province, Peoples Republic of China.
| | - Yiwen Xian
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District 518055, Shenzhen, Guangdong Province, Peoples Republic of China.
| | - Shurong Li
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District 518055, Shenzhen, Guangdong Province, Peoples Republic of China.
| | - Chong Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District 518055, Shenzhen, Guangdong Province, Peoples Republic of China.
| | - Decheng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District 518055, Shenzhen, Guangdong Province, Peoples Republic of China.
| |
Collapse
|
21
|
Peng X, Ding C, Zhao Y, Hao M, Liu W, Yang M, Xiao F, Zheng Y. Poloxamer 407 and Hyaluronic Acid Thermosensitive Hydrogel-Encapsulated Ginsenoside Rg3 to Promote Skin Wound Healing. Front Bioeng Biotechnol 2022; 10:831007. [PMID: 35866029 PMCID: PMC9294355 DOI: 10.3389/fbioe.2022.831007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Ginsenoside Rg3 has shown beneficial effects in various skin diseases. The current interest in designing and developing hydrogels for biomedical applications continues to grow, inspiring the further development of drug-loaded hydrogels for tissue repair and localized drug delivery. The aim of the present study was to develop an effective and safe hydrogel (Rg3-Gel), using ginsenoside Rg3, and we evaluated the wound-healing potential and therapeutic mechanism of Rg3-Gel. The results indicated that the optimized Rg3-Gel underwent discontinuous phase transition at low and high temperatures. Rg3-Gel also exhibited good network structures, swelling water retention capacity, sustainable release performance, and excellent biocompatibility. Subsequently, the good antibacterial and antioxidant properties of Rg3-Gel were confirmed by in vitro tests. In full-thickness skin defect wounded models, Rg3-Gel significantly accelerated the wound contraction, promoted epithelial and tissue regeneration, and promoted collagen deposition and angiogenesis. In addition, Rg3-Gel increased the expression of autophagy proteins by inhibiting the MAPK and NF-KB pathways in vivo. It simultaneously regulated host immunity by increasing the abundance of beneficial bacteria and the diversity of the wound surface flora. From these preliminary evaluations, it is possible to conclude that Rg3-Gel has excellent application potential in wound-healing drug delivery systems.
Collapse
Affiliation(s)
- Xiaojuan Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Chuanbo Ding
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Mingqian Hao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- *Correspondence: Wencong Liu, ; Min Yang,
| | - Min Yang
- Jilin Agricultural Science and Technology University, Jilin, China
- *Correspondence: Wencong Liu, ; Min Yang,
| | - Fengyan Xiao
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Yinan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
22
|
Henckes NAC, Chuang L, Bosak I, Carazzai R, Garcez T, Kuhl CP, de Oliveira FDS, Loureiro Dos Santos LA, Visioli F, Cirne-Lima EO. Tissue engineering application combining epoxidized natural rubber blend and mesenchymal stem cells in in vivo response. J Biomater Appl 2022; 37:698-711. [PMID: 35733325 DOI: 10.1177/08853282221110476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate biocompatibility, integration, and tissue host response of the Poly (Lactic-co-Glycolic acid) (PLGA)/Poly (isoprene) (PI) epoxidized (PLGA/PIepox) innovative scaffold combined with adipose derived mesenchymal stem cells (ADSC). We implanted the scaffold subcutaneously on the back of 18 female rats and monitored them for up to 14 days. When compared to controls, PLGA/PIepox + ADSC demonstrated an earlier vascularization, a tendency of inflammation reduction, an adequate tissue integration, higher cell proliferation, and a tendency of expression of collagen decreasing. However, 14 days post-implantation we found similar levels of CD31, Ki67 and AE1/AE3 in PLGA/PIepox when compared to control groups. The interesting results, lead us to the assumption that PLGA/PIepox is able to provide an effective delivery system for ADSC on tissue host. This animal study assesses PLGA/PIepox + ADSC in in vivo tissue functionality and validation of use, serving as a proof of concept for future clinical translation as it presents an innovative and promising tissue engineering opportunity for the use in tissue reconstruction.
Collapse
Affiliation(s)
- Nicole Andréa Corbellini Henckes
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-graduação em Ciências da Saúde: Ginecologia e Obstetrícia, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Chuang
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Isadora Bosak
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Rafael Carazzai
- Laboratório de Biomateriais e Cerâmicas Avançadas, Departamento de Materiais, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tuane Garcez
- Unidade de Experimentação Animal - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Cristiana Palma Kuhl
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-graduação em Ciências da Saúde: Ginecologia e Obstetrícia, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Dos Santos de Oliveira
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luis Alberto Loureiro Dos Santos
- Laboratório de Biomateriais e Cerâmicas Avançadas, Departamento de Materiais, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Visioli
- Unidade de Patologia Experimental - Centro de Pesquisa Experimental, 37895Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-graduação em Odontologia, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Elizabeth Obino Cirne-Lima
- Laboratório de Embriologia e Diferenciação Celular - Centro de Pesquisa Experimental, 37895Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-graduação em Ciências da Saúde: Ginecologia e Obstetrícia, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, 28124Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
23
|
Wang P, Wang Y, Yi Y, Gong Y, Ji H, Gan Y, Xie F, Fan J, Wang X. MXenes-integrated microneedle combined with asiaticoside to penetrate the cuticle for treatment of diabetic foot ulcer. J Nanobiotechnology 2022; 20:259. [PMID: 35672708 PMCID: PMC9172054 DOI: 10.1186/s12951-022-01468-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractPatients with diabetic foot ulcers usually suffer from inefficient epithelisation and angiogenesis accompanied by chronic wound healing. Diabetic foot ulcers remain a major challenge in clinical medicine; however, traditional treatments are incapable of transdermal drug delivery, resulting in a low drug delivery rate. We report the development of Ti2C3 MXenes-integrated poly-γ-glutamic acid (γ-PGA) hydrogel microneedles to release asiaticoside (MN-MXenes-AS). Asiaticoside was loaded into PGA-MXenes hydrogel to facilitate cell proliferation while regulating angiogenesis. The characterisation and mechanical strength of the microneedles were investigated in vitro, and the wound-healing efficacy of the microneedles was confirmed in diabetic mice. MXenes significantly improved the mechanical strength of microneedles, while γ-PGA hydrogels provided a moist microenvironment for wound healing. Mice treated with MN-MXenes-AS demonstrated obvious improvements in wound healing process. We successfully fabricated an MXenes-integrated microneedle that possesses sufficient rigidity to penetrate the cuticle for subcutaneous drug delivery, thereby accelerating diabetic wound healing. We demonstrated that MN-MXenes-AS is effective in promoting growth both in vivo and in vitro. Collectively, our data show that MN-MXenes-AS accelerated the healing of diabetic foot ulcers, supporting the use of these microneedles in the treatment of chronic wounds.
Graphical Abstract
Collapse
|
24
|
Ji Y, Song W, Xu L, Yu DG, Annie Bligh SW. A Review on Electrospun Poly(amino acid) Nanofibers and Their Applications of Hemostasis and Wound Healing. Biomolecules 2022; 12:794. [PMID: 35740919 PMCID: PMC9221312 DOI: 10.3390/biom12060794] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023] Open
Abstract
The timely and effective control and repair of wound bleeding is a key research issue all over the world. From traditional compression hemostasis to a variety of new hemostatic methods, people have a more comprehensive understanding of the hemostatic mechanism and the structure and function of different types of wound dressings. Electrospun nanofibers stand out with nano size, high specific surface area, higher porosity, and a variety of complex structures. They are high-quality materials that can effectively promote wound hemostasis and wound healing because they can imitate the structural characteristics of the skin extracellular matrix (ECM) and support cell adhesion and angiogenesis. At the same time, combined with amino acid polymers with good biocompatibility not only has high compatibility with the human body but can also be combined with a variety of drugs to further improve the effect of wound hemostatic dressing. This paper summarizes the application of different amino acid electrospun wound dressings, analyzes the characteristics of different materials in preparation and application, and looks forward to the development of directions of poly(amino acid) electrospun dressings in hemostasis.
Collapse
Affiliation(s)
- Yuexin Ji
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Wenliang Song
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Lin Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|
25
|
Zhang CY, Fu CP, Li XY, Lu XC, Hu LG, Kankala RK, Wang SB, Chen AZ. Three-Dimensional Bioprinting of Decellularized Extracellular Matrix-Based Bioinks for Tissue Engineering. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113442. [PMID: 35684380 PMCID: PMC9182049 DOI: 10.3390/molecules27113442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 01/01/2023]
Abstract
Three-dimensional (3D) bioprinting is one of the most promising additive manufacturing technologies for fabricating various biomimetic architectures of tissues and organs. In this context, the bioink, a critical element for biofabrication, is a mixture of biomaterials and living cells used in 3D printing to create cell-laden structures. Recently, decellularized extracellular matrix (dECM)-based bioinks derived from natural tissues have garnered enormous attention from researchers due to their unique and complex biochemical properties. This review initially presents the details of the natural ECM and its role in cell growth and metabolism. Further, we briefly emphasize the commonly used decellularization treatment procedures and subsequent evaluations for the quality control of the dECM. In addition, we summarize some of the common bioink preparation strategies, the 3D bioprinting approaches, and the applicability of 3D-printed dECM bioinks to tissue engineering. Finally, we present some of the challenges in this field and the prospects for future development.
Collapse
Affiliation(s)
- Chun-Yang Zhang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Chao-Ping Fu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
- Correspondence: (C.-P.F.); (A.-Z.C.)
| | - Xiong-Ya Li
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Xiao-Chang Lu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Long-Ge Hu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
- Correspondence: (C.-P.F.); (A.-Z.C.)
| |
Collapse
|
26
|
Qian H, Shan Y, Gong R, Lin D, Zhang M, Wang C, Wang L. Fibroblasts in Scar Formation: Biology and Clinical Translation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4586569. [PMID: 35602101 PMCID: PMC9119755 DOI: 10.1155/2022/4586569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
Scarring, which develops due to fibroblast activation and excessive extracellular matrix deposition, can cause physical, psychological, and cosmetic problems. Fibroblasts are the main type of connective tissue cells and play important roles in wound healing. However, the underlying mechanisms of fibroblast in reaching scarless wound healing require more exploration. Herein, we systematically reviewed how fibroblasts behave in response to skin injuries, as well as their functions in regeneration and scar formation. Several biocompatible materials, including hydrogels and nanoparticles, were also suggested. Moreover, factors that concern transformation from fibroblasts into cancer-associated fibroblasts are mentioned due to a tight association between scar formation and primary skin cancers. These findings will help us better understand skin fibrotic pathogenesis, as well as provide potential targets for scarless wound healing therapies.
Collapse
Affiliation(s)
- Huan Qian
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Shan
- Wenzhou Medical University, Wenzhou, China
| | | | - Danfeng Lin
- Department of Breast Surgery, The First Affifiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengwen Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Wang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Wang
- Starbody plastic surgery Clinic, Hangzhou, China
| |
Collapse
|
27
|
Chen Y, Hao Y, Mensah A, Lv P, Wei Q. Bio-inspired hydrogels with fibrous structure: A review on design and biomedical applications. BIOMATERIALS ADVANCES 2022; 136:212799. [PMID: 35929334 DOI: 10.1016/j.bioadv.2022.212799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Numerous tissues in the human body have fibrous structures, including the extracellular matrix, muscles, and heart, which perform critical biological functions and have exceptional mechanical strength. Due to their high-water content, softness, biocompatibility and elastic nature, hydrogels resemble biological tissues. Traditional hydrogels, on the other hand, have weak mechanical properties and lack tissue-like fibrous structures, limiting their potential applications. Thus, bio-inspired hydrogels with fibrous architectures have piqued the curiosity of biomedical researchers. Here, we review fabrication strategies for fibrous hydrogels and their recent progress in the biomedical fields of wound dressings, drug delivery, tissue engineering scaffolds and bioadhesives. Challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Yajun Chen
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Yi Hao
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Alfred Mensah
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Pengfei Lv
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
28
|
Zhang Y, Song W, Lu Y, Xu Y, Wang C, Yu DG, Kim I. Recent Advances in Poly(α- L-glutamic acid)-Based Nanomaterials for Drug Delivery. Biomolecules 2022; 12:636. [PMID: 35625562 PMCID: PMC9138577 DOI: 10.3390/biom12050636] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023] Open
Abstract
Poly(α-L-glutamic acid) (PGA) is a class of synthetic polypeptides composed of the monomeric unit α-L-glutamic acid. Owing to their biocompatibility, biodegradability, and non-immunogenicity, PGA-based nanomaterials have been elaborately designed for drug delivery systems. Relevant studies including the latest research results on PGA-based nanomaterials for drug delivery have been discussed in this work. The following related topics are summarized as: (1) a brief description of the synthetic strategies of PGAs; (2) an elaborated presentation of the evolving applications of PGA in the areas of drug delivery, including the rational design, precise fabrication, and biological evaluation; (3) a profound discussion on the further development of PGA-based nanomaterials in drug delivery. In summary, the unique structures and superior properties enables PGA-based nanomaterials to represent as an enormous potential in biomaterials-related drug delivery areas.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (Y.Z.); (Y.L.); (Y.X.)
| | - Wenliang Song
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea;
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Yiming Lu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (Y.Z.); (Y.L.); (Y.X.)
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (Y.Z.); (Y.L.); (Y.X.)
| | - Changping Wang
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Il Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
29
|
Hao R, Cui Z, Zhang X, Tian M, Zhang L, Rao F, Xue J. Rational Design and Preparation of Functional Hydrogels for Skin Wound Healing. Front Chem 2022; 9:839055. [PMID: 35141209 PMCID: PMC8818740 DOI: 10.3389/fchem.2021.839055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 12/30/2021] [Indexed: 01/05/2023] Open
Abstract
Skin wound healing often contains a series of dynamic and complex physiological healing processes. It is a great clinical challenge to effectively treat the cutaneous wound and regenerate the damaged skin. Hydrogels have shown great promise for skin wound healing through the rational design and preparation to endow with specific functionalities. In the mini review, we firstly introduce the design and construction of various types of hydrogels based on their bonding chemistry during cross-linking. Then, we summarize the recent research progress on the functionalization of bioactive hydrogel dressings for skin wound healing, including anti-bacteria, anti-inflammatory, tissue proliferation and remodeling. In addition, we highlight the design strategies of responsive hydrogels to external physical stimuli. Ultimately, we provide perspectives on future directions and challenges of functional hydrogels for skin wound healing.
Collapse
Affiliation(s)
- Ruinan Hao
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zhuoyi Cui
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Xindan Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
| | - Liqun Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
| | - Feng Rao
- Trauma Center, Peking University People’s Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, National Trauma Medical Center, Peking University, Beijing, China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
30
|
Zhang L, Tai Y, Liu X, Liu Y, Dong Y, Liu Y, Yang C, Kong D, Qi C, Wang S, Midgley AC. Natural polymeric and peptide-loaded composite wound dressings for scar prevention. APPLIED MATERIALS TODAY 2021; 25:101186. [DOI: 10.1016/j.apmt.2021.101186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
|
31
|
Yang R, Huang J, Zhang W, Xue W, Jiang Y, Li S, Wu X, Xu H, Ren J, Chi B. Mechanoadaptive injectable hydrogel based on poly(γ-glutamic acid) and hyaluronic acid regulates fibroblast migration for wound healing. Carbohydr Polym 2021; 273:118607. [PMID: 34561006 DOI: 10.1016/j.carbpol.2021.118607] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Injectable hydrogels have shown therapeutic effects on wound repair, but most of them exhibit poor mechanical strength. The impacts of stiff injectable hydrogels on cell behavior and wound healing remain unclear. Herein, an injectable hydrogel was developed based on thiolated poly(γ-glutamic acid) (γ-PGA-SH) and glycidyl methacrylate-conjuated oxidized hyaluronic acid (OHA-GMA). Thiol-methacrylate Michael chemistry-mediated post-stabilization and increase of polymer concentration were found to improve the mechanical strength of γ-PGA-SH/OHA-GMA hydrogel. Moreover, in vitro studies confirmed its biodegradability, biocompatibility, and self-healing property. Using the mechanically-tunable hydrogel, it further showed that fibroblasts migrated faster on the surface of stiffer hydrogel, but infiltrated slowly inside it compared with softer hydrogel. In animal experiments, the injectable hydrogel could promote wound healing by increasing collagen deposition and vascularization. In summary, γ-PGA-SH/OHA-GMA hydrogel is able to regulate migration and infiltration of fibroblasts by altering stiffness and offers effective in situ forming scaffolds towards skin tissue regeneration.
Collapse
Affiliation(s)
- Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jinjian Huang
- PLA Key Laboratory of Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Wenliang Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yungang Jiang
- PLA Key Laboratory of Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Sicheng Li
- PLA Key Laboratory of Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiuwen Wu
- PLA Key Laboratory of Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jianan Ren
- PLA Key Laboratory of Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
32
|
Wu T, Liu W, Huang S, Chen J, He F, Wang H, Zheng X, Li Z, Zhang H, Zha Z, Lin Z, Chen Y. Bioactive strontium ions/ginsenoside Rg1-incorporated biodegradable silk fibroin-gelatin scaffold promoted challenging osteoporotic bone regeneration. Mater Today Bio 2021; 12:100141. [PMID: 34632364 PMCID: PMC8488313 DOI: 10.1016/j.mtbio.2021.100141] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Autogenous healing of osteoporotic fractures is challenging, as the regenerative capacity of bone tissues is impaired by estrogen reduction and existed pro-inflammatory cytokines. In this study, a biofunctional ginsenoside Rg1 and strontium-containing mineral (SrHPO4, SrP)-incorporated biodegradable silk fibroin-gelatin (SG) scaffold (Rg1/SrP/SG) was developed to stimulate the osteoporotic bone repair. The incorporation of 15 wt% SrP significantly enhanced the mechanical strength, stimulated the osteogenic differentiation of mouse bone marrow mesenchymal stem cells, and suppressed the osteoclastogenesis of RAW264.7 in a concentration-related manner. The loading of Rg1 in SG and 15SrP/SG scaffolds obviously promoted the angiogenesis of human umbilical vein endothelial cells via activating the expression of vascular endothelial growth factor and basic fibroblast growth factor genes and proteins. The bioactive strontium ions (Sr2+) and Rg1 released from the scaffolds together mediated lipopolysaccharide-treated macrophages polarizing into M2 type. They downregulated the expression of inflammatory-related genes (interleukin (IL)-1β, tumor necrosis factor α, and IL-6) and stimulated the expression of genes related to anti-inflammation (Arginase and IL-10) as well as bone repair (BMP-2 and PDGF-BB) in the macrophages. The in vivo results also displayed that SrP and Rg1 significantly promoted the bone repair effect of SG scaffolds in osteoporotic critical-sized calvarial defects. Besides, the degradation rate of the scaffolds was close to the bone regeneration rate. Therefore, the simultaneous addition of SrP and Rg1 is a promising way for facilitating the osteoporotic bone repair activity of SG scaffolds via promoting the osteogenesis and angiogenesis, as well as inhibiting the osteoclastogenesis and inflammation.
Collapse
Affiliation(s)
- Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Medicine and Health, Guangdong Academy of Sciences, Guangzhou, 510500, China.,Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Wenping Liu
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Shusen Huang
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Jiwen Chen
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Huajun Wang
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Xiaofei Zheng
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zhenyan Li
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Huantian Zhang
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zhengang Zha
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yuanfeng Chen
- Research Center of Medical Science, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.,Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
33
|
Wang P, Pu Y, Ren Y, Liu S, Yang R, Tan X, Zhang W, Shi T, Li S, Chi B. Bio-inspired hydrogel-based bandage with robust adhesive and antibacterial abilities for skin closure. SCIENCE CHINA MATERIALS 2021; 65:246-254. [PMID: 34413988 PMCID: PMC8362644 DOI: 10.1007/s40843-021-1724-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 05/30/2023]
Abstract
UNLABELLED Although conventional suturing techniques are commonly used in assisting wound closure, they do pose limited conduciveness and may lead to secondary injury to wound tissues. Inspired by marine organism mussels, we designed and manufactured a bio-inspired hydrogel-based bandage with tough wet tissue adhesion to substitute traditional surgical suture, accelerate wound healing and avoid infection. Poly(γ-glutamic acid) was modified with 3,4-dihydroxyphenylalanine and glycidyl methacylate, then introduced into the acrylic acid-co-acrylamide hydrogel matrix with robust mechanical properties. The hydrogel bandage showed strong chemical linkage adhesion (70 ± 2.1 kPa), which is 2.8 times that of commercial tissue adhesive fibrin glue (25 ± 2.2 kPa). The hydrogel bandage can not only maintain the self-stability, but is also capable of self-tuning adhesive strength in the range of 14-70 kPa to achieve different adhesion effects by tuning constituent ratio. The bandage has desirable compression properties (0.7 ± 0.11 MPa) and tensile elongation (about 25 times), which ensures its resistance to damages, especially in joint spaces. Secondly, the bandage was endowed with antioxidant and endogenous broad-spectrum antibacterial properties with its catechol structure. Results also demonstrated excellent cell compatibility and blood compatibility, certifying its eligible biological safety profile. In a rat full-thickness cutaneous deficiency model, we can clearly observe that the bandage possesses the ability to promote wound healing (only need 6 days). Above all, this research provides a new strategy for the emergency treatment of liver hemostasis and myocardial repair during disaster rescue. SUPPLEMENTARY INFORMATION Experimental details and supporting data are available in the online version of the paper10.1007/s40843-021-1724-8.
Collapse
Affiliation(s)
- Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
| | - Yajie Pu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064 USA
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816 China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
| | - Tianqi Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
| | - Shuang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
34
|
Liu L, Ding Z, Yang Y, Zhang Z, Lu Q, Kaplan DL. Asiaticoside-laden silk nanofiber hydrogels to regulate inflammation and angiogenesis for scarless skin regeneration. Biomater Sci 2021; 9:5227-5236. [PMID: 34190240 PMCID: PMC8319114 DOI: 10.1039/d1bm00904d] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Scarless skin regeneration remains a challenge due to the complicated microenvironment involved in wound healing. Here, the hydrophobic drug, asiaticoside (AC), was loaded inside silk nanofiber hydrogels to achieve bioactive and injectable matrices for skin regeneration. AC was dispersed in aqueous silk nanofiber hydrogels with retention of biological functions that regulated inflammatory reactions and vascularization in vitro. After implantation in full-thickness wound defects, these AC-laden hydrogel matrices achieved scarless wound repair. Inflammatory reactions and angiogenesis were regulated during inflammation and remodeling, which was responsible for wound regeneration similar to normal skin. Both in vitro and in vivo studies demonstrated promising applications of these AC-laden silk hydrogels towards scarless tissue regeneration.
Collapse
Affiliation(s)
- Lutong Liu
- National Engineering Laboratory for Modern Silk &Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215213, People's Republic of China.
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk &Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215213, People's Republic of China.
| | - Yan Yang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| | - Zhen Zhang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk &Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215213, People's Republic of China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
35
|
Liu X, Liu S, Yang R, Wang P, Zhang W, Tan X, Ren Y, Chi B. Gradient chondroitin sulfate/poly (γ-glutamic acid) hydrogels inducing differentiation of stem cells for cartilage tissue engineering. Carbohydr Polym 2021; 270:118330. [PMID: 34364592 DOI: 10.1016/j.carbpol.2021.118330] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Based on the gradient distribution of structure and composition in biological cartilage tissue, we designed a gradient hydrogel scaffold by the moving photomask, using chondroitin sulfate and poly (γ-glutamic acid) as crude materials. The hydrogel scaffold had a gradient distribution of cross-linking density, which can be verified from the results of SEM and swelling behavior. Besides, the hydrogel exhibited great viscoelastic, toughness (70% strain), and strength properties (600 kPa). Additionally, the gradient hydrogel's superior cell compatibility was proved through the MTT, live/dead staining assays, and 3D cell culture experiments. Remarkably, the results of in vitro stem cell differentiation experiments showed that the duration of light directly affected the differentiation extent of stem cells, demonstrating that the gradient hydrogel scaffold can better simulate the function of natural cartilage than the homogeneous one. Due to these outstanding characteristics, this gradient hydrogel is a potential scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
36
|
Yang R, Liu X, Ren Y, Xue W, Liu S, Wang P, Zhao M, Xu H, Chi B. Injectable adaptive self-healing hyaluronic acid/poly (γ-glutamic acid) hydrogel for cutaneous wound healing. Acta Biomater 2021; 127:102-115. [PMID: 33813093 DOI: 10.1016/j.actbio.2021.03.057] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
The most significant challenge in designing wound dressings is to mimic the tissue microenvironment because of the pro-regenerative structural and functional properties of skin. Herein, we developed a type of bionic extracellular matrix (ECM) hydrogels based on thiol-modified poly (γ-glutamic acid) (γ-PGA-SH) and oxidized hyaluronic acid (HA-CHO). The rapid and reversible thiol-aldehyde addition reaction of thiols in γ-PGA-SH and aldehyde groups in HA-CHO provided hydrogels with a dynamic covalent network and endowed them with properties of adaptability and self-healing capability, which are conducive for initial wound coverage and for prolonging the lifespan of the dressing. Interestingly, these hydrogels also showed typical viscoelastic characteristics similar to those of natural ECM, degradation property in vitro and in vivo, and free radical scavenging capability. In addition, the gelation time, rheological behavior, mechanical property, porous structure, and degradation process of the hydrogels could be tuned by adjusting polymer content. Furthermore, the ECM-inspired hydrogels significantly enhanced the wound healing process in vivo in a full-thickness skin defect model compared to those by commercial dressing (Tegaderm™) by facilitating angiogenesis and promoting collagen deposition. The successful application of the multifunctional hydrogel as an antioxidant wound dressing for wound treatment significantly exhibited its great application potential for biomedical areas. STATEMENT OF SIGNIFICANCE: The application of tissue engineering techniques to repair full-thickness skin wounds remains a great challenge in clinical trials. Among the recent approaches used for wound healing, in situ forming injectable hydrogels have gained much attention, and few of them have shown satisfactory overall performance, such as integration into the wound bed, biodegradability, immunocompatibility, vascularization, and recapitulation of the structure and function of skin. In the present study, we designed a simple and convenient in situ forming injectable adaptable self-healing hydrogels with biodegradability and antioxidative properties, which could substantially improve wound healing quality at an affordable cost. The hydrogel-based wound dressing is expected to solve the abovementioned problems and help in promoting cutaneous wound healing.
Collapse
|
37
|
Ma XB, Yang R, Sekhar KPC, Chi B. Injectable Hyaluronic Acid/Poly(γ-glutamic acid) Hydrogel with Step-by-step Tunable Properties for Soft Tissue Engineering. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [PMCID: PMC8093128 DOI: 10.1007/s10118-021-2558-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Injectable hydrogels as an important class of biomaterials have gained much attention in tissue engineering. However, their crosslinking degree is difficult to be controlled after being injected into body. As we all know, the crosslinking degree strongly influences the physicochemical properties of hydrogels. Therefore, developing an injectable hydrogel with tunable crosslinking degree in vivo is important for tissue engineering. Herein, we present a dual crosslinking strategy to prepare injectable hydrogels with step-by-step tunable crosslinking degree using Schiff base reaction and photopolymerization. The developed hyaluronic acid/poly(γ-glutamic acid) (HA/γ-PGA) hydrogels exhibit step-by-step tunable swelling behavior, enzymatic degradation behavior and mechanical properties. Mechanical performance tests show that the storage moduli of HA/γ-PGA hydrogels are all less than 2000 Pa and the compressive moduli are in kilopascal, which have a good match with soft tissue. In addition, NIH 3T3 cells encapsulated in HA/γ-PGA hydrogel exhibit a high cell viability, indicating a good cytocompatibility of HA/γ-PGA hydrogel. Therefore, the developed HA/γ-PGA hydrogel as an injectable biomaterial has a good potential in soft tissue engineering.
Collapse
Affiliation(s)
- Xue-Bin Ma
- School of Chemistry and Chemical Engineering, Shandong University, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Jinan, 250100 China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Kanaparedu P. C. Sekhar
- School of Chemistry and Chemical Engineering, Shandong University, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Jinan, 250100 China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
38
|
Zhao J, Duan Z, Ma X, Liu Y, Fan D. Recent advances in systemic and local delivery of ginsenosides using nanoparticles and nanofibers. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Park SB, Sung MH, Uyama H, Han DK. Poly(glutamic acid): Production, composites, and medical applications of the next-generation biopolymer. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2020.101341] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Wang P, Zhang W, Yang R, Liu S, Ren Y, Liu X, Tan X, Chi B. Biomimetic poly(γ-glutamic acid) hydrogels based on iron (III) ligand coordination for cartilage tissue engineering. Int J Biol Macromol 2020; 167:1508-1516. [PMID: 33212107 DOI: 10.1016/j.ijbiomac.2020.11.105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022]
Abstract
For the problems in the research on differentiation of mesenchymal stem cells (BMSCs), such as poor differentiation tendency and low differentiation efficiency, a novel photo-crosslinked extracellular matrix (ECM) inspired double network hydrogel that composed of poly(γ-glutamic acid) (γ-PGA) hydrogel and Fe3+ ligand coordination was designed and manufactured. Compared with those traditional γ-PGA based hydrogels, the introduction of Fe3+ significantly enhanced the mechanical properties of the hydrogel and accelerated the chondrogenesis efficiency of BMSCs chondrogenesis. The experimental results confirmed that the mechanical properties of hydrogel enhanced by the introduction of metal ions Fe3+ could promote BMSCs proliferation, induce cartilage-specific gene expression, and increase secretion of hydroxyproline (HYP) and glycosaminoglycan (GAG). As a result, this method could promote chondrogenic differentiation of BMSCs, accelerate the regeneration of cartilage, and was prospective to be conducive to the research work of cartilage defect repair. Thus, the mechanically enhanced γ-PGA hydrogel scaffold by Fe3+ could mediate BMSCs differentiation and provide a scientific and theoretical basis for research and development of biomedical materials on cartilage tissue engineering field.
Collapse
Affiliation(s)
- Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
41
|
Xiao W, Qu X, Tan Y, Xiao J, Le Y, Li Y, Liu X, Li B, Liao X. Synthesis of photocrosslinkable hydrogels for engineering three-dimensional vascular-like constructs by surface tension-driven assembly. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111143. [PMID: 32806229 DOI: 10.1016/j.msec.2020.111143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/13/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023]
Abstract
Surface tension-driven assembly is a simple routine used in modular tissue engineering to create three-dimensional (3D) biomimetic tissues with desired structural and biological characteristics. A major bottleneck for this technology is the lack of suitable hydrogel materials to meet the requirements of the assembly process and tissue regeneration. Identifying specific requirements and synthesizing novel hydrogels will provide a versatile platform for generating additional biomimetic functional tissues using this approach. In this paper, we present a novel composite hydrogel system based on methacrylated gelatin and γ-polyglutamic acid by UV copolymerization as the building block for fabricating vascular-like tissue via surface tension-driven assembly. The resulting composite hydrogels exhibited the improved mechanical properties and hydrophilicity, which greatly facilitate the assembly process. Subsequent cell encapsulation experiment proved that the hydrogel could provide 3D support for cellular spreading and migration. Furthermore, based on the composite microgel building blocks, cylindrical vascular-like construct with a perfusable microchannel was generated by the needle-assisted sequential assembly. In order to construct a biomimetic vascular tissue, the endothelial cells and smooth muscle cells were encapsulated in the microgels assembly with a spatial arrangement to build a heterogeneous double-layer tubular structure and the cells could readily elongate and migrate in the hollow concentric construct over 3 days. These data suggest that this composite hydrogel is an attractive candidate for surface tension-driven assembly purposes, making the hydrogel potentially applicable in the fabrication of biomimetic vascularized tissues.
Collapse
Affiliation(s)
- Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Xiaohang Qu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Yunfei Tan
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Jing Xiao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Yinpeng Le
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Yongxiang Li
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Xue Liu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China.
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China.
| |
Collapse
|
42
|
Johnson KA, Muzzin N, Toufanian S, Slick RA, Lawlor MW, Seifried B, Moquin P, Latulippe D, Hoare T. Drug-impregnated, pressurized gas expanded liquid-processed alginate hydrogel scaffolds for accelerated burn wound healing. Acta Biomater 2020; 112:101-111. [PMID: 32522716 DOI: 10.1016/j.actbio.2020.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022]
Abstract
While the benefits of both hydrogels and drug delivery to enhance wound healing have been demonstrated, the highly hydrophilic nature of hydrogels creates challenges with respect to the effective loading and delivery of hydrophobic drugs beneficial to wound healing. Herein, we utilize pressurized gas expanded liquid (PGX) technology to produce very high surface area (~200 m2/g) alginate scaffolds and describe a method for loading the scaffolds with ibuprofen (via adsorptive precipitation) and crosslinking them (via calcium chelation) to create a hydrogel suitable for wound treatment and hydrophobic drug delivery. The high surface area of the PGX-processed alginate scaffold facilitates >8 wt% loading of ibuprofen into the scaffold and controlled in vitro ibuprofen release over 12-24 h. In vivo burn wound healing assays demonstrate significantly accelerated healing with ibuprofen-loaded PGX-alginate/calcium scaffolds relative to both hydrogel-only and untreated controls, demonstrating the combined benefits of ibuprofen delivery to suppress inflammation as well as the capacity of the PGX-alginate/calcium hydrogel to maintain wound hydration and facilitate continuous calcium release to the wound. The use of PGX technology to produce highly porous scaffolds with increased surface areas, followed by adsorptive precipitation of a hydrophobic drug onto the scaffolds, offers a highly scalable method of creating medicated wound dressings with high drug loadings. STATEMENT OF SIGNIFICANCE: While medicated hydrogel-based wound dressings offer clear advantages in accelerating wound healing, the inherent incompatibility between conventional hydrogels and many poorly water-soluble drugs of relevance in wound healing remains a challenge. Herein, we leveraged supercritical fluids-based strategies to both process and subsequently impregnate alginate, followed by post-crosslinking to form a hydrogel, to create a very high surface area alginate hydrogel scaffold loaded with high hydrophobic drug contents (here, >8 wt% ibuprofen) without the need for any pore-forming additives. The impregnated scaffolds significantly accelerated burn wound healing while also promoting regeneration of the native skin morphology. We anticipate this approach can be leveraged to load clinically-relevant and highly bioavailable dosages of hydrophobic drugs in hydrogels for a broad range of potential applications.
Collapse
Affiliation(s)
- Kelli-Anne Johnson
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Nicola Muzzin
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Samaneh Toufanian
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Rebecca A Slick
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Paul Moquin
- Ceapro, Inc., 7824-51 Avenue NW, Edmonton, AB, Canada
| | - David Latulippe
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada.
| |
Collapse
|
43
|
Wang Z, Cui W. Two Sides of Electrospun Fiber in Promoting and Inhibiting Biomedical Processes. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhen Wang
- Shanghai Institute of Traumatology and Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
44
|
Liu S, Liu X, Ren Y, Wang P, Pu Y, Yang R, Wang X, Tan X, Ye Z, Maurizot V, Chi B. Mussel-Inspired Dual-Cross-linking Hyaluronic Acid/ε-Polylysine Hydrogel with Self-Healing and Antibacterial Properties for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27876-27888. [PMID: 32478498 DOI: 10.1021/acsami.0c00782] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Physicians have long been calling for an inherent antimicrobial wound dressing, which will be a great progress for treating complicated infections. Here, we report a novel bioadhesive hydrogel with inherent antibacterial properties prepared by mixing modified hyaluronic acid (HA) and ε-polylysine (EPL). This hydrogel can effectively kill Gram (+) and (-) bacteria for its high positive charge density on the surface. The sol-gel transition occurs within seconds via horseradish peroxidase enzymatic cross-linking and Schiff base reaction, which also allows the hydrogel to recover completely from destruction quickly within 5 min. In an infected rat wound model, histological studies indicated that the hydrogels effectively killed bacteria on the surface of wounds and accelerated wound healing. Histological analysis indicated that the thickness of the newborn skin, the density of the newborn microvascular, granulation tissue, and the collagen of rats treated with hydrogel dressings were twice as high as those treated by commercial fibrin glue. These results indicate that the HA/EPL hydrogel has great potential as an antibacterial wound dressing for future clinical applications.
Collapse
Affiliation(s)
- Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University, Nanjing 211816, China
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, United States
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yajie Pu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhiwen Ye
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Victor Maurizot
- Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600 Pessac, France
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
45
|
Ma X, Liu X, Wang P, Wang X, Yang R, Liu S, Ye Z, Chi B. Covalently Adaptable Hydrogel Based on Hyaluronic Acid and Poly(γ-glutamic acid) for Potential Load-Bearing Tissue Engineering. ACS APPLIED BIO MATERIALS 2020; 3:4036-4043. [DOI: 10.1021/acsabm.0c00112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xuebin Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhiwen Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
46
|
Sun L, Song L, Zhang X, Zhou R, Yin J, Luan S. Poly(γ-glutamic acid)-based electrospun nanofibrous mats with photodynamic therapy for effectively combating wound infection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110936. [PMID: 32487377 DOI: 10.1016/j.msec.2020.110936] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/14/2020] [Accepted: 04/05/2020] [Indexed: 01/31/2023]
Abstract
Pathogenic bacterial infections associated with wound healing progress usually result in serious complications. Herein, biocompatible and antimicrobial electrospun nanofibrous mats with photodynamic therapy (PDT) effect were fabricated to accelerate the infected wound healing. The nanofibrous mats were fabricated by co-electrospining of polyanionic poly(γ-glutamic acid) (γ-PGA) and cationic photosensitizer 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetra (p-toluenesulfonate) (TMPyP) in aqueous solution and stabilized by the chemical crosslinking. The as-prepared nanofibrous mats can not only confer the moist microenvironment to the wound bed, but also provide potent bactericidal activity upon visible light irradiation by releasing the cytotoxic reactive oxygen species (ROS). The antibacterial assay in vitro showed that they can effectively eradicate the board-spectrum bacteria at a relatively low loading dose of TMPyP (e.g., 0.1 wt%). Meanwhile, those nanofibrous mats showed good biocompatibility with no obvious adverse effects on mammalian cells and red blood cells (RBCs). The animal test in vivo suggested that the restrained inflammatory reaction and better wound healing could be achieved upon timely and effective antibacterial treatment with negligible local toxicities. This biocompatible and antibacterial γ-PGA-TMPyP nanofibrous mat may show great potential in practical infection-resistant applications, particularly for wound dressing applications.
Collapse
Affiliation(s)
- Liwei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Rongtao Zhou
- National Engineering Laboratory for Medical Implantable Devices, WEGO Co. Ltd, Weihai 264210, PR China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; National Engineering Laboratory for Medical Implantable Devices, WEGO Co. Ltd, Weihai 264210, PR China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China; National Engineering Laboratory for Medical Implantable Devices, WEGO Co. Ltd, Weihai 264210, PR China.
| |
Collapse
|
47
|
Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol 2020; 8:83. [PMID: 32266221 PMCID: PMC7105900 DOI: 10.3389/fbioe.2020.00083] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Exploring innovative solutions to improve the healthcare of the aging and diseased population continues to be a global challenge. Among a number of strategies toward this goal, tissue engineering and regenerative medicine (TERM) has gradually evolved into a promising approach to meet future needs of patients. TERM has recently received increasing attention in Asia, as evidenced by the markedly increased number of researchers, publications, clinical trials, and translational products. This review aims to give a brief overview of TERM development in Asia over the last decade by highlighting some of the important advances in this field and featuring major achievements of representative research groups. The development of novel biomaterials and enabling technologies, identification of new cell sources, and applications of TERM in various tissues are briefly introduced. Finally, the achievement of TERM in Asia, including important publications, representative discoveries, clinical trials, and examples of commercial products will be introduced. Discussion on current limitations and future directions in this hot topic will also be provided.
Collapse
Affiliation(s)
- Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiayuan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luguang Ding
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yuanbin Hu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenquan Li
- Department of Otolaryngology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Li Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Huan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Zhongliang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luanluan Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yingkang Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
48
|
Wu T, Chen Y, Liu W, Tong KL, Suen CWW, Huang S, Hou H, She G, Zhang H, Zheng X, Li J, Zha Z. Ginsenoside Rb1/TGF-β1 loaded biodegradable silk fibroin-gelatin porous scaffolds for inflammation inhibition and cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110757. [PMID: 32279738 DOI: 10.1016/j.msec.2020.110757] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/15/2020] [Indexed: 01/06/2023]
Abstract
Creating a microenvironment with low inflammation and favorable for the chondrogenic differentiation of endogenous stem cells plays an essential role in cartilage repairing. In the present study, we design a novel ginsenoside Rb1/TGF-β1 loaded silk fibroin-gelatin porous scaffold (GSTR) with the function of attenuating inflammation and promoting chondrogenesis. The scaffold has porous microstructure, proper mechanical strength, degradation rate and sustained release of Rb1 and TGF-β1. Rat bone marrow-derived mesenchymal stem cells (rBMSCs) seeded into GSTR scaffolds are homogeneously distributed and display a higher proliferation rate than non-loaded scaffolds (GS). GSTR scaffolds promote the chondrogenic differentiation of rBMSCs and suppress the expression of inflammation genes. Under the stimulation of IL-1β, the inflammation level of the chondrocytes seeded in GSTR scaffolds is also significantly down-regulated. Moreover, GSTR scaffolds implanted into the osteochondral defects in rats effectively promote the regeneration of hyaline cartilage 12 weeks after surgery when compared with other groups. It is demonstrated that this scaffold loaded with Rb1 and TGF-β1 can synergistically create a microenvironment favorable for cartilage regeneration by promoting the chondrogenesis and suppressing the inflammation levels in vivo. These results prove it has a great potential to develop this Rb1/TGF-β1 releasing scaffold into a novel and promising therapeutic for cartilage repair.
Collapse
Affiliation(s)
- Tingting Wu
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - Yuanfeng Chen
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China.
| | - Wenping Liu
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - Kui Leung Tong
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - Chun-Wai Wade Suen
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Shusen Huang
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - Huige Hou
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - Guorong She
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - Huantian Zhang
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - Xiaofei Zheng
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China
| | - Jieruo Li
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China.
| | - Zhengang Zha
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, PR China.
| |
Collapse
|
49
|
Yang R, Wang X, Liu S, Zhang W, Wang P, Liu X, Ren Y, Tan X, Chi B. Bioinspired poly (γ-glutamic acid) hydrogels for enhanced chondrogenesis of bone marrow-derived mesenchymal stem cells. Int J Biol Macromol 2020; 142:332-344. [DOI: 10.1016/j.ijbiomac.2019.09.104] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 11/30/2022]
|
50
|
Zheng T, Huang J, Jiang Y, Tang Q, Liu Y, Xu Z, Wu X, Ren J. Sandwich-structure hydrogels implement on-demand release of multiple therapeutic drugs for infected wounds. RSC Adv 2019; 9:42489-42497. [PMID: 35542841 PMCID: PMC9076599 DOI: 10.1039/c9ra09412a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Wound infections bring huge challenges to clinical practice. A series of approaches are involved in the management of infected wounds including use of antibacterial agents, granulation tissue regeneration and scar prevention. In this study, we fabricated a sandwich-structure hydrogel dressing through layer-by-layer assembly of films and hydrogels. By pre-loading silver nanoparticles (AgNPs), vascular endothelial growth factors (VEGF) and ginsenoside Rg3 (Rg3) into each layer of the sandwich compound, this hydrogel could realize the sequential release of these drugs onto infected wound beds as demanded. Moreover, altering the thickness of middle layer could further change the drug delivery patterns characterized by delay at the initial releasing timepoint. When applying this dressing on infected wounds of rabbit ears, we found it could alleviate infection-induced inflammation, promote granulation tissue regeneration and inhibit scar formation. Collectively, the design of sandwich-structure hydrogels was facilitated to deliver specific drugs sequentially during their therapeutic time window for complicated diseases and has shown potential applications in infected wounds. Wound infections bring huge challenges to clinical practice.![]()
Collapse
Affiliation(s)
- Tao Zheng
- Laboratory for Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital 305 East Zhongshan Road Nanjing 210002 China
| | - Jinjian Huang
- Laboratory for Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital 305 East Zhongshan Road Nanjing 210002 China .,School of Medicine, Southeast University Nanjing 210009 China
| | - Yungang Jiang
- Laboratory for Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital 305 East Zhongshan Road Nanjing 210002 China .,School of Medicine, Southeast University Nanjing 210009 China
| | - Qinqing Tang
- Laboratory for Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital 305 East Zhongshan Road Nanjing 210002 China
| | - Ye Liu
- Laboratory for Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital 305 East Zhongshan Road Nanjing 210002 China .,School of Medicine, Southeast University Nanjing 210009 China
| | - Ziyan Xu
- School of Medicine, Nanjing University Nanjing 210093 China
| | - Xiuwen Wu
- Laboratory for Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital 305 East Zhongshan Road Nanjing 210002 China
| | - Jianan Ren
- Laboratory for Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital 305 East Zhongshan Road Nanjing 210002 China
| |
Collapse
|