1
|
Wang R, Qiu T, Zhang Y, Rein M, Stolyarov A, Zhang J, Seidel GD, Johnson BN, Wang A, Jia X. Fiber-based Miniature Strain Sensor with Fast Response and Low Hysteresis. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2403918. [PMID: 39712653 PMCID: PMC11661685 DOI: 10.1002/adfm.202403918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Indexed: 12/24/2024]
Abstract
Flexible and stretchable strain sensors are in high demand in sports performance monitoring, structural health monitoring, and biomedical applications. However, existing stretchable soft sensors, primarily based on soft polymer materials, often suffer from drawbacks, including high hysteresis, low durability, and delayed response. To overcome these limitations, we introduced a stretchable miniature fiber sensor comprised of a stretchable core tightly coiled with parallel conductive wires. This fiber sensor is flexible and stretchable while exhibiting low hysteresis, a remarkable theoretical resolution of 0.015%, a response time of less than 30 milliseconds, and excellent stability after extensive cycling tests of over 16,000 cycles. To understand and predict the capacitive sensor response of the proposed sensor, an analytical expression was derived and proved to have good agreements with both experimental results and numerical simulation. The potential of the strain sensor as a wearable device is demonstrated by embedding it into belts, gloves, and knee protectors. Additionally, the sensor could extend its applications beyond wearable devices, as demonstrated by its integration into bladder and life safety rope monitoring systems. We envision our sensor can find applications in the field of sports performance evaluations, health care monitoring, and structural safety assessments.
Collapse
Affiliation(s)
- Ruixuan Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Tong Qiu
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Yujing Zhang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michael Rein
- Advanced Functional Fabrics of America, Cambridge, MA, 02139, USA
| | | | - Junru Zhang
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Gary D Seidel
- Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Blake N Johnson
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Anbo Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
2
|
Mancini V, Damaser MS, Chermansky C, Ochoa CD, Hashim H, Przydacz M, Hervé F, Martino L, Abrams P. Can we improve techniques and patients' selection for nerve stimulation suitable for lower urinary tract dysfunctions? ICI-RS 2023. Neurourol Urodyn 2024; 43:1420-1430. [PMID: 38048061 PMCID: PMC11610276 DOI: 10.1002/nau.25346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
AIMS Lower urinary tract dysfunctions (LUTD) are very common and, importantly, affect patients' quality of life (QoL). LUTD can range from urinary retention to urgency incontinence and includes a variety of symptoms. Nerve stimulation (NS) is an accepted widespread treatment with documented success for LUTD and is used widely. The aim of this review is to report the results of the discussion about how to improve the outcomes of NS for LUTD treatment. METHODS During its 2023 meeting in Bristol, the International Consultation on Incontinence Research Society discussed a literature review, and there was an expert consensus discussion focused on the emerging awareness of NS suitable for LUTD. RESULTS The consensus discussed how to improve techniques and patients' selection in NS, and high-priority research questions were identified. CONCLUSIONS Technique improvement, device programming, and patient selection are the goals of the current approach to NS. The conditional nerve stimulation with minimally invasive wireless systems and tailored algorithms hold promise for improving NS for LUTD, particularly for patients with neurogenic bladder who represent the new extended population to be treated.
Collapse
Affiliation(s)
- Vito Mancini
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | - Margot S. Damaser
- Department of Biomedical Engineering, Lerner Research Institute and Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, and Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | | | - Carolina D. Ochoa
- Bristol Urological Institute, North Bristol Trust, University of Bristol, Bristol, UK
| | - Hashim Hashim
- Bristol Urological Institute, North Bristol Trust, University of Bristol, Bristol, UK
| | - Mikolaj Przydacz
- Department of Urology, Jagiellonian University Medical College, Krakow, Poland
| | - François Hervé
- Department of Urology, ERN Accredited Centrum, Ghent University Hospital, Ghent, Belgium
| | - Leonardo Martino
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | - Paul Abrams
- Bristol Urological Institute, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Lienemann S, Boda U, Mohammadi M, Zhou T, Petsagkourakis I, Kim N, Tybrandt K. Exploring the Elastomer Influence on the Electromechanical Performance of Stretchable Conductors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38365-38376. [PMID: 38981059 DOI: 10.1021/acsami.4c03080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Stretchable electronics has received major attention in recent years due to the prospects of integrating electronics onto and into the human body. While many studies investigate how different conductive fillers perform in stretchable composites, the effect of different elastomers on composite performance, and the related fundamental understanding of what is causing the performance differences, is poorly understood. Here, we perform a systematic investigation of the elastomer influence on the electromechanical performance of gold nanowire-based stretchable conductors based on five chemically different elastomers of similar Young's modulus. The choice of elastomer has a huge impact on the electromechanical performance of the conductors under cyclic strain, as some composites perform well, while others fail rapidly at 100% strain cycling. The lack of macroscopic crack formation in the failing composites indicates that the key aspect for good electromechanical performance is not homogeneous films on the macroscale but rather beneficial interactions on the nanoscale. Based on the comprehensive characterization, we propose a failure mechanism related to the mechanical properties of the elastomers. By improving our understanding of elastomer influence on the mechanisms of electrical failure, we can move toward rational material design, which could greatly benefit the field of stretchable electronics.
Collapse
Affiliation(s)
- Samuel Lienemann
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Ulrika Boda
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
- Bio- and Organic Electronics Unit, RISE, Research Institutes of Sweden, 602 33 Norrköping, Sweden
| | - Mohsen Mohammadi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Tunhe Zhou
- Stockholm University Brain Imaging Centre (SUBIC), Stockholm University, 106 91 Stockholm, Sweden
| | - Ioannis Petsagkourakis
- Bio- and Organic Electronics Unit, RISE, Research Institutes of Sweden, 602 33 Norrköping, Sweden
| | - Nara Kim
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| |
Collapse
|
4
|
Lee JH, Jang TM, Shin JW, Lim BH, Rajaram K, Han WB, Ko GJ, Yang SM, Han S, Kim DJ, Kang H, Lim JH, Lee KS, Park E, Hwang SW. Wireless, Fully Implantable and Expandable Electronic System for Bidirectional Electrical Neuromodulation of the Urinary Bladder. ACS NANO 2023; 17:8511-8520. [PMID: 37070621 DOI: 10.1021/acsnano.3c00755] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Current standard clinical options for patients with detrusor underactivity (DUA) or underactive bladder─the inability to release urine naturally─include the use of medications, voiding techniques, and intermittent catheterization, for which the patient inserts a tube directly into the urethra to eliminate urine. Although those are life-saving techniques, there are still unfavorable side effects, including urinary tract infection (UTI), urethritis, irritation, and discomfort. Here, we report a wireless, fully implantable, and expandable electronic complex that enables elaborate management of abnormal bladder function via seamless integrations with the urinary bladder. Such electronics can not only record multiple physiological parameters simultaneously but also provide direct electrical stimulation based on a feedback control system. Uniform distribution of multiple stimulation electrodes via mesh-type geometry realizes low-impedance characteristics, which improves voiding/urination efficiency at the desired times. In vivo evaluations using live, free-moving animal models demonstrate system-level functionality.
Collapse
Affiliation(s)
- Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Bong Hee Lim
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyu-Sung Lee
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Eunkyoung Park
- Department of Biomedical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Zhou M, Young BK, Valle ED, Koo B, Kim J, Weiland JD. Full-field, conformal epiretinal electrode array using hydrogel and polymer hybrid technology. Sci Rep 2023; 13:6973. [PMID: 37117214 PMCID: PMC10147691 DOI: 10.1038/s41598-023-32976-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 04/30/2023] Open
Abstract
Shape-morphable electrode arrays can form 3D surfaces to conform to complex neural anatomy and provide consistent positioning needed for next-generation neural interfaces. Retinal prostheses need a curved interface to match the spherical eye and a coverage of several cm to restore peripheral vision. We fabricated a full-field array that can (1) cover a visual field of 57° based on electrode position and of 113° based on the substrate size; (2) fold to form a compact shape for implantation; (3) self-deploy into a curvature fitting the eye after implantation. The full-field array consists of multiple polymer layers, specifically, a sandwich structure of elastomer/polyimide-based-electrode/elastomer, coated on one side with hydrogel. Electrodeposition of high-surface-area platinum/iridium alloy significantly improved the electrical properties of the electrodes. Hydrogel over-coating reduced electrode performance, but the electrodes retained better properties than those without platinum/iridium. The full-field array was rolled into a compact shape and, once implanted into ex vivo pig eyes, restored to a 3D curved surface. The full-field retinal array provides significant coverage of the retina while allowing surgical implantation through an incision 33% of the final device diameter. The shape-changing material platform can be used with other neural interfaces that require conformability to complex neuroanatomy.
Collapse
Affiliation(s)
- Muru Zhou
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, 48105, USA
| | - Benjamin K Young
- Department of Ophthalmology, Oregon Health and Sciences University, Portland, OR, 97239, USA
| | - Elena Della Valle
- Biomedical Engineering, University of Michigan, Ann Arbor, 48105, USA
| | - Beomseo Koo
- Biomedical Engineering, University of Michigan, Ann Arbor, 48105, USA
| | - Jinsang Kim
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, 48105, USA
- Biomedical Engineering, University of Michigan, Ann Arbor, 48105, USA
- Chemical Engineering, University of Michigan, Ann Arbor, 48105, USA
- Materials Science and Engineering, University of Michigan, Ann Arbor, 48105, USA
- Chemistry, University of Michigan, Ann Arbor, 48105, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, 48105, USA
| | - James D Weiland
- Biomedical Engineering, University of Michigan, Ann Arbor, 48105, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, 48105, USA.
- Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, 48105, USA.
| |
Collapse
|
6
|
Holmes-Martin K, Zhu M, Xiao S, Arab Hassani F. Advances in Assistive Electronic Device Solutions for Urology. MICROMACHINES 2022; 13:mi13040551. [PMID: 35457855 PMCID: PMC9028141 DOI: 10.3390/mi13040551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022]
Abstract
Recent technology advances have led urology to become one of the leading specialities to utilise novel electronic systems to manage urological ailments. Contemporary bladder management strategies such as urinary catheters can provide a solution but leave the user mentally and physically debilitated. The unique properties of modern electronic devices, i.e., flexibility, stretchability, and biocompatibility, have allowed a plethora of new technologies to emerge. Many novel electronic device solutions in urology have been developed for treating impaired bladder disorders. These disorders include overactive bladder (OAB), underactive bladder (UAB) and other-urinary-affecting disorders (OUAD). This paper reviews common causes and conservative treatment strategies for OAB, UAB and OUAD, discussing the challenges and drawbacks of such treatments. Subsequently, this paper gives insight into clinically approved and research-based electronic advances in urology. Advances in this area cover bladder-stimulation and -monitoring devices, robot-assistive surgery, and bladder and sphincter prosthesis. This study aims to introduce the latest advances in electronic solutions for urology, comparing their advantages and disadvantages, and concluding with open problems for future urological device solutions.
Collapse
|
7
|
Kang K, Park J, Kim K, Yu KJ. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. NANO RESEARCH 2021; 14:3096-3111. [DOI: 10.1007/s12274-021-3490-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/06/2025]
|
8
|
Gao H, Xu J, Liu S, Song Z, Zhou M, Liu S, Li F, Li F, Wang X, Wang Z, Zhang Q. Stretchable, self-healable integrated conductor based on mechanical reinforced graphene/polyurethane composites. J Colloid Interface Sci 2021; 597:393-400. [PMID: 33892422 DOI: 10.1016/j.jcis.2021.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/17/2023]
Abstract
Stretchable conductors are susceptible to wear through repeated deformation over time. Stretchable conductors with self-healing properties can increase longevity and reduce safety hazards. However, most current self-healing conductors can only repair either the conductive layer or the insulating layer. Meantime, high mechanical robustness and self-healing efficiency are exclusive especially at ambient conditions. Realizing a stretchable conductor with integral self-healing and ultra-high mechanical strength is challenging, because this requires good interfacial compatibility and adaptability of the conductive and insulating layers. We adapt a biphasic dynamic network strategy to add toughness to self-healing materials. The DOU (dimethylglyoxime-urethane polyurethane) dynamic bonds and hydrogen bonds in the soft phase enable high self-healing efficiency, while the graphene as a hard phase supports the material's superior mechanical properties. We have prepared an overall self-healing stretchable conductor through the soft phase as a self-encapsulating insulating layer. This all-solid (Tg = -49.5 °C) graphene/dimethylglyoxime-urethane polyurethane (Gr/DOU-PU) composites characteristic of both high mechanical strength (~6 MPa, ~1000%, ~48 MJ m-3), self-healing conductivity (~90%, 10 min, 25 °C) and conductivity (R□=47.8 Ω □-1, d = 0.4 mm). The conductor has excellent stability for flexible electronics and for building stress sensors.
Collapse
Affiliation(s)
- Han Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jianan Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Shen Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Zhongqian Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Min Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Shiwei Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Fei Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Fenghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiaodan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Qixian Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China; School of Materials Science and Engineering, Shanghai University, Shanghai 200436, PR China.
| |
Collapse
|
9
|
Llerena Zambrano B, Renz AF, Ruff T, Lienemann S, Tybrandt K, Vörös J, Lee J. Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Adv Healthc Mater 2021; 10:e2001397. [PMID: 33205564 DOI: 10.1002/adhm.202001397] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Research on the field of implantable electronic devices that can be directly applied in the body with various functionalities is increasingly intensifying due to its great potential for various therapeutic applications. While conventional implantable electronics generally include rigid and hard conductive materials, their surrounding biological objects are soft and dynamic. The mechanical mismatch between implanted devices and biological environments induces damages in the body especially for long-term applications. Stretchable electronics with outstanding mechanical compliance with biological objects effectively improve such limitations of existing rigid implantable electronics. In this article, the recent progress of implantable soft electronics based on various conductive nanocomposites is systematically described. In particular, representative fabrication approaches of conductive and stretchable nanocomposites for implantable soft electronics and various in vivo applications of implantable soft electronics are focused on. To conclude, challenges and perspectives of current implantable soft electronics that should be considered for further advances are discussed.
Collapse
Affiliation(s)
- Byron Llerena Zambrano
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Aline F. Renz
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Samuel Lienemann
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Jaehong Lee
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno jungan‐dareo Daegu 42988 South Korea
| |
Collapse
|
10
|
Jiang H, Carter NM, Zareei A, Nejati S, Waimin JF, Chittiboyina S, Niedert EE, Soleimani T, Lelièvre SA, Goergen CJ, Rahimi R. A Wireless Implantable Strain Sensing Scheme Using Ultrasound Imaging of Highly Stretchable Zinc Oxide/Poly Dimethylacrylamide Nanocomposite Hydrogel. ACS APPLIED BIO MATERIALS 2020; 3:4012-4024. [PMID: 35025476 DOI: 10.1021/acsabm.9b01032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hongjie Jiang
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907-2057, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907-2035, United States
- Shenzhen MSU-BIT University, Shenzhen, Guangdong 518172, China
| | - Natalie M. Carter
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2045, United States
| | - Amin Zareei
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907-2057, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2045, United States
| | - Sina Nejati
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907-2057, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2045, United States
| | - Jose F. Waimin
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907-2057, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2045, United States
| | - Shirisha Chittiboyina
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907-2057, United States
- Department of Basic Medical Sciences, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Elizabeth E. Niedert
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907-2032, United States
| | - Tahereh Soleimani
- College of Human Medicine, Michigan State University, East Lansing, Michigan 48824, United States
| | - Sophie A. Lelièvre
- Department of Basic Medical Sciences, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907-2032, United States
- Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907-2032, United States
| | - Rahim Rahimi
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907-2057, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907-2035, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2045, United States
| |
Collapse
|
11
|
Arab Hassani F, Jin H, Yokota T, Someya T, Thakor NV. Soft sensors for a sensing-actuation system with high bladder voiding efficiency. SCIENCE ADVANCES 2020; 6:eaba0412. [PMID: 32494686 PMCID: PMC7195140 DOI: 10.1126/sciadv.aba0412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/10/2020] [Indexed: 05/08/2023]
Abstract
Sensing-actuation systems can assist a bladder with lost sensation and weak muscle control. Here, we advance the relevant technology by integrating a soft and thin capacitive sensor with a shape memory alloy-based actuator to achieve a high-performance closed-loop configuration. In our design, sensors capable of continuous bladder volume detection and actuators with strong emptying force have been used. This integration has previously hindered performance due to large bladder volume changes. Our solution integrates sensing-actuation elements that are bladder compatible but do not interfere with one another, achieving real-time bladder management. The system attains a highly desirable voiding target of 71 to 100% of a rat's bladder with a volume sensitivity of 0.7 μF/liter. Our system represents an efficient voiding solution that avoids overfilling and represents a technological solution to bladder impairment treatment, serving as a model for similar soft sensor-actuator integration with other organs.
Collapse
Affiliation(s)
- F. Arab Hassani
- Department of Biomedical Engineering, National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - H. Jin
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - T. Yokota
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - T. Someya
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
- Department of Electrical and Computer Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, #05-45, Singapore 117583, Singapore
- Thin-Film Device Laboratory, RIKEN, Saitama 351-0198, Japan
| | - N. V. Thakor
- Department of Biomedical Engineering, National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- Department of Electrical and Computer Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, #05-45, Singapore 117583, Singapore
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|