1
|
Zhang X, Li C, Li S, Tang X, Zhao J, Xu W, Han X. High-Throughput Programmable Tumor Spheroid Generation Using the Magneto-Archimedes Effect. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15009-15018. [PMID: 40022287 DOI: 10.1021/acsami.4c21198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Three-dimensional (3D) tumor spheroids in vitro have great potential in drug discovery and tissue engineering due to their similarity to real tissues. Herein, we develop a simple strategy, with time and cost-effective, noninvasive characters to produce high-throughput 3D tissue spheroids using the magneto-Archimedes effect. This method is versatile in producing various morphologies of tumor spheroids by using different templates, as well as spatially coded tumor spheroids by adding different cells in the defined orders. The prepared tumor spheroids are similar to the mouse homograft tumors, as confirmed by immunofluorescence experimental results. We demonstrate that the prepared tumor spheroids can be used for anticancer drug screening, tumor inoculations, and the study of chemical signal transduction between artificial cell aggregates and tumor tissues. Temozolomide (TMZ) is found to be more effective than 5-FU toward gliomas. Further, C6 tumor spheroids are successfully inoculated into mice to grow tumors with a rapid growth rate than free cells. In the hybrid structure containing artificial cell aggregates and tumor spheroids, reactive oxygen species (H2O2) are generated in the artificial cell aggregates, which diffuse into tumor spheroids to cause the redistribution of intracellular Ca2+ in tumor cells, consequently inducing cell apoptosis. This method is easy to scale up by using large magnets. It provides great potential in complicated tissue structure construction, antitumor drug screening, and tissue engineering.
Collapse
Affiliation(s)
- Xiangxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Shubin Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Xuefeng Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Jingjing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Weili Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| |
Collapse
|
2
|
Jang Y, Oh J. Controlled Au-coated PDMS microwell array for surface-enhanced DNA biochips. LAB ON A CHIP 2024; 25:79-89. [PMID: 39629547 DOI: 10.1039/d4lc00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Microwell technology is crucial in biological applications due to its ability to handle small sample sizes and perform numerous assays efficiently. This study aimed to develop a novel technique for microwell fabrication using pressure-assisted steam technology, offering lower cost, simplicity, and high reproducibility. Mechanical properties of microwell surfaces were successfully controlled and characterized, making them suitable for DNA capture. The application of gold coating generated an electric field within designed microwells, facilitating stable DNA detection. These microwells exhibited effective DNA sensing capabilities, validated using fluorescently stained lambda DNA at various concentrations (86, 8.6, and 0.86 ng μL-1). In particular, the 2.8 mm microwell showed a greater change in fluorescence intensity depending on DNA concentration than other microwells. At a concentration of 0.86 ng μL-1, to assess producibility using relative standard deviation (RSD) values as a DNA sensor, they were measured as 5.29, 2.76, and 1.85% for 1, 1.7, and 2.8 mm microwells, respectively. These results indicated that our proposed microwell exhibited efficient performance and good reproducibility. We believe that the developed method could be potentially used for high-throughput analysis as a biosensor for DNA applications.
Collapse
Affiliation(s)
- Yeongseok Jang
- Department of Mechanical Design Engineering, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, Republic of Korea
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139 USA
| | - Jonghyun Oh
- Department of Nano-Bio Mechanical System Engineering, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
3
|
Wang J, Wu X, Zhao J, Ren H, Zhao Y. Developing Liver Microphysiological Systems for Biomedical Applications. Adv Healthc Mater 2024; 13:e2302217. [PMID: 37983733 DOI: 10.1002/adhm.202302217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Microphysiological systems (MPSs), also known as organ chips, are micro-units that integrate cells with diverse physical and biochemical environmental cues. In the field of liver MPSs, cellular components have advanced from simple planar cell cultures to more sophisticated 3D formations such as spheroids and organoids. Additionally, progress in microfluidic devices, bioprinting, engineering of matrix materials, and interdisciplinary technologies have significant promise for producing MPSs with biomimetic structures and functions. This review provides a comprehensive summary of biomimetic liver MPSs including their clinical applications and future developmental potential. First, the key components of liver MPSs, including the principal cell types and engineered structures utilized for cell cultivation, are briefly introduced. Subsequently, the biomedical applications of liver MPSs, including the creation of disease models, drug absorption, distribution, metabolism, excretion, and toxicity, are discussed. Finally, the challenges encountered by MPSs are summarized, and future research directions for their development are proposed.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiangyi Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Junqi Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518071, China
| |
Collapse
|
4
|
Xu X, Liu Y, Liu Y, Yu Y, Yang M, Lu L, Chan L, Liu B. Functional hydrogels for hepatocellular carcinoma: therapy, imaging, and in vitro model. J Nanobiotechnology 2024; 22:381. [PMID: 38951911 PMCID: PMC11218144 DOI: 10.1186/s12951-024-02547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common malignancies worldwide and is characterized by high rates of morbidity and mortality, posing a serious threat to human health. Interventional embolization therapy is the main treatment against middle- and late-stage liver cancer, but its efficacy is limited by the performance of embolism, hence the new embolic materials have provided hope to the inoperable patients. Especially, hydrogel materials with high embolization strength, appropriate viscosity, reliable security and multifunctionality are widely used as embolic materials, and can improve the efficacy of interventional therapy. In this review, we have described the status of research on hydrogels and challenges in the field of HCC therapy. First, various preparation methods of hydrogels through different cross-linking methods are introduced, then the functions of hydrogels related to HCC are summarized, including different HCC therapies, various imaging techniques, in vitro 3D models, and the shortcomings and prospects of the proposed applications are discussed in relation to HCC. We hope that this review is informative for readers interested in multifunctional hydrogels and will help researchers develop more novel embolic materials for interventional therapy of HCC.
Collapse
Affiliation(s)
- Xiaoying Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yu Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yahan Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
| | - Leung Chan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510006, Guangzhou, China.
| |
Collapse
|
5
|
Mai S, Inkielewicz-Stepniak I. Graphene Oxide Nanoparticles and Organoids: A Prospective Advanced Model for Pancreatic Cancer Research. Int J Mol Sci 2024; 25:1066. [PMID: 38256139 PMCID: PMC10817028 DOI: 10.3390/ijms25021066] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pancreatic cancer, notorious for its grim 10% five-year survival rate, poses significant clinical challenges, largely due to late-stage diagnosis and limited therapeutic options. This review delves into the generation of organoids, including those derived from resected tissues, biopsies, pluripotent stem cells, and adult stem cells, as well as the advancements in 3D printing. It explores the complexities of the tumor microenvironment, emphasizing culture media, the integration of non-neoplastic cells, and angiogenesis. Additionally, the review examines the multifaceted properties of graphene oxide (GO), such as its mechanical, thermal, electrical, chemical, and optical attributes, and their implications in cancer diagnostics and therapeutics. GO's unique properties facilitate its interaction with tumors, allowing targeted drug delivery and enhanced imaging for early detection and treatment. The integration of GO with 3D cultured organoid systems, particularly in pancreatic cancer research, is critically analyzed, highlighting current limitations and future potential. This innovative approach has the promise to transform personalized medicine, improve drug screening efficiency, and aid biomarker discovery in this aggressive disease. Through this review, we offer a balanced perspective on the advancements and future prospects in pancreatic cancer research, harnessing the potential of organoids and GO.
Collapse
Affiliation(s)
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| |
Collapse
|
6
|
Senrung A, Lalwani S, Janjua D, Tripathi T, Kaur J, Ghuratia N, Aggarwal N, Chhokar A, Yadav J, Chaudhary A, Joshi U, Bharti AC. 3D tumor spheroids: morphological alterations a yardstick to anti-cancer drug response. IN VITRO MODELS 2023; 2:219-248. [PMID: 39872501 PMCID: PMC11756486 DOI: 10.1007/s44164-023-00059-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 01/30/2025]
Abstract
Tumor spheroids are one of the well-characterized 3D culture systems bearing close resemblance to the physiological tissue organization and complexity of avascular solid tumor stage with hypoxic core. They hold a wide-spread application in the field of pharmaceutical science and anti-cancer drug research. However, the difficulty in determining optimal technique for the generation of spheroids with uniform size and shape, evaluation of experimental outputs, or mass production often limits their usage in anti-cancer research and in high-throughput drug screening. In recent times, several studies have demonstrated various simple techniques for generating uniform-size 3D spheroids, including the hanging drop (HD), liquid overlay technique (LOT), and microfluidic approaches. Morphological alterations apart from biochemical assays, and staining techniques are suitably employed for the evaluation of experimental outcomes within 3D spheroid models. Morphological alterations in response to effective anti-cancer drug treatment in 3D tumor spheroids such as reduced spheroid size, loss of spheroid compactness and integrity or smooth surface, are highly reliable. These alterations can significantly reduce the need for biochemical assays and staining techniques, resulting in both time and cost savings. The present article specifically covers a variety of available procedures in spheroid generation. For practical applicability, we have supplemented our review study with the generation of glioblastoma U87 spheroids using HD and LOT methods. Additionally, we have also incorporated the outcome of U87 spheroid treatment with doxorubicin on spheroid morphology.
Collapse
Affiliation(s)
- Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007 India
| | - Sakshi Lalwani
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007 India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Jasleen Kaur
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007 India
| | - Netra Ghuratia
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007 India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| |
Collapse
|
7
|
Lin W, Xu Y, Hong X, Pang SW. PEGylated Paclitaxel Nanomedicine Meets 3D Confinement: Cytotoxicity and Cell Behaviors. J Funct Biomater 2023; 14:322. [PMID: 37367286 DOI: 10.3390/jfb14060322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Investigating the effect of nanomedicines on cancer cell behavior in three-dimensional (3D) platforms is beneficial for evaluating and developing novel antitumor nanomedicines in vitro. While the cytotoxicity of nanomedicines on cancer cells has been widely studied on two-dimensional flat surfaces, there is little work using 3D confinement to assess their effects. This study aims to address this gap by applying PEGylated paclitaxel nanoparticles (PEG-PTX NPs) for the first time to treat nasopharyngeal carcinoma (NPC43) cells in 3D confinement consisting of microwells with different sizes and a glass cover. The cytotoxicity of the small molecule drug paclitaxel (PTX) and PEG-PTX NPs was studied in microwells with sizes of 50 × 50, 100 × 100, and 150 × 150 μm2 both with and without a concealed top cover. The impact of microwell confinement with varying sizes and concealment on the cytotoxicity of PTX and PEG-PTX NPs was analyzed by assessing NPC43 cell viability, migration speed, and cell morphology following treatment. Overall, microwell isolation was found to suppress drug cytotoxicity, and differences were observed in the time-dependent effects of PTX and PEG-PTX NPs on NPC43 cells in isolated and concealed microenvironments. These results not only demonstrate the effect of 3D confinement on nanomedicine cytotoxicity and cell behaviors but also provide a novel method to screen anticancer drugs and evaluate cell behaviors in vitro.
Collapse
Affiliation(s)
- Wenhai Lin
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| | - Yuanhao Xu
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| | - Xiao Hong
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| | - Stella W Pang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Kolesnik K, Segeritz P, Scott DJ, Rajagopal V, Collins DJ. Sub-wavelength acoustic stencil for tailored micropatterning. LAB ON A CHIP 2023; 23:2447-2457. [PMID: 37042175 DOI: 10.1039/d3lc00043e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Acoustofluidic devices are ideal for biomedical micromanipulation applications, with high biocompatibility and the ability to generate force gradients down to the scale of cells. However, complex and designed patterning at the microscale remains challenging. In this work we report an acoustofluidic approach to direct particles and cells within a structured surface in arbitrary configurations. Wells, trenches and cavities are embedded in this surface. Combined with a half-wavelength acoustic field, together these form an 'acoustic stencil' where arbitrary cell and particle arrangements can be reversibly generated. Here a bulk-wavemode lithium niobate resonator generates multiplexed parallel patterning via a multilayer resonant geometry, where cell-scale resolution is accomplished via structured sub-wavelength microfeatures. Uniquely, this permits simultaneous manipulation in a unidirectional, device-spanning single-node field across scalable ∼cm2 areas in a microfluidic device. This approach is demonstrated via patterning of 5, 10 and 15 μm particles and 293-F cells in a variety of arrangements, where these activities are enabling for a range of cell studies and tissue engineering applications via the generation of highly complex and designed acoustic patterns at the microscale.
Collapse
Affiliation(s)
- Kirill Kolesnik
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Victoria, Australia.
| | - Philipp Segeritz
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Victoria, Australia.
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Vijay Rajagopal
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Victoria, Australia.
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Victoria, Australia.
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
9
|
Kong M, Li Y, Wang K, Zhang S, Ji Y. Infantile hemangioma models: is the needle in a haystack? J Transl Med 2023; 21:308. [PMID: 37149592 PMCID: PMC10163722 DOI: 10.1186/s12967-023-04144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023] Open
Abstract
Infantile hemangioma (IH) is the most prevalent benign vascular tumor in infants, with distinct disease stages and durations. Despite the fact that the majority of IHs can regress spontaneously, a small percentage can cause disfigurement or even be fatal. The mechanisms underlying the development of IH have not been fully elucidated. Establishing stable and reliable IH models provides a standardized experimental platform for elucidating its pathogenesis, thereby facilitating the development of new drugs and the identification of effective treatments. Common IH models include the cell suspension implantation model, the viral gene transfer model, the tissue block transplantation model, and the most recent three-dimensional (3D) microtumor model. This article summarizes the research progress and clinical utility of various IH models, as well as the benefits and drawbacks of each. Researchers should select distinct IH models based on their individual research objectives to achieve their anticipated experimental objectives, thereby increasing the clinical relevance of their findings.
Collapse
Affiliation(s)
- Meng Kong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, #37# Guo-Xue-Xiang, Chengdu, 610041 China
| | - Yanan Li
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, #37# Guo-Xue-Xiang, Chengdu, 610041 China
| | - Kai Wang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, #37# Guo-Xue-Xiang, Chengdu, 610041 China
| | - Shisong Zhang
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, #23976# Jingshi Road, Jinan, 250022 China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, #37# Guo-Xue-Xiang, Chengdu, 610041 China
| |
Collapse
|
10
|
Li Y, Zhu X, Kong M, Chen S, Bao J, Ji Y. Three-Dimensional Microtumor Formation of Infantile Hemangioma-Derived Endothelial Cells for Mechanistic Exploration and Drug Screening. Pharmaceuticals (Basel) 2022; 15:1393. [PMID: 36422523 PMCID: PMC9692769 DOI: 10.3390/ph15111393] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 11/07/2023] Open
Abstract
Infantile hemangioma (IH) is the most prevalent type of vascular tumor in infants. The pathophysiology of IH is unknown. The tissue structure and physiology of two-dimensional cell cultures differ greatly from those in vivo, and spontaneous regression often occurs during tumor formation in nude mice and has severely limited research into the pathogenesis and development of IH. By decellularizing porcine aorta, we attempted to obtain vascular-specific extracellular matrix as the bioink for fabricating micropattern arrays of varying diameters via microcontact printing. We then constructed IH-derived CD31+ hemangioma endothelial cell three-dimensional microtumor models. The vascular-specific and decellularized extracellular matrix was suitable for the growth of infantile hemangioma-derived endothelial cells. The KEGG signaling pathway analysis revealed enrichment primarily in stem cell pluripotency, RAS, and PI3KAkt compared to the two-dimensional cell model according to RNA sequencing. Propranolol, the first-line medication for IH, was also used to test the model's applicability. We also found that metformin had some impact on the condition. The three-dimensional microtumor models of CD31+ hemangioma endothelial cells were more robust and efficient experimental models for IH mechanistic exploration and drug screening.
Collapse
Affiliation(s)
- Yanan Li
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - Xinglong Zhu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Kong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - Siyuan Chen
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Shao C, Zhang Q, Kuang G, Fan Q, Ye F. Construction and application of liver cancer models in vitro. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
12
|
Jeong JE, Han SS, Shim HE, Kim W, Lee BS, Kim YJ, Kang SW. Hyaluronic microparticle-based biomimetic artificial neighbors of cells for three-dimensional cell culture. Carbohydr Polym 2022; 294:119770. [DOI: 10.1016/j.carbpol.2022.119770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 11/02/2022]
|
13
|
Self-Assembled Peptide Habitats to Model Tumor Metastasis. Gels 2022; 8:gels8060332. [PMID: 35735676 PMCID: PMC9223161 DOI: 10.3390/gels8060332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
Metastatic tumours are complex ecosystems; a community of multiple cell types, including cancerous cells, fibroblasts, and immune cells that exist within a supportive and specific microenvironment. The interplay of these cells, together with tissue specific chemical, structural and temporal signals within a three-dimensional (3D) habitat, direct tumour cell behavior, a subtlety that can be easily lost in 2D tissue culture. Here, we investigate a significantly improved tool, consisting of a novel matrix of functionally programmed peptide sequences, self-assembled into a scaffold to enable the growth and the migration of multicellular lung tumour spheroids, as proof-of-concept. This 3D functional model aims to mimic the biological, chemical, and contextual cues of an in vivo tumor more closely than a typically used, unstructured hydrogel, allowing spatial and temporal activity modelling. This approach shows promise as a cancer model, enhancing current understandings of how tumours progress and spread over time within their microenvironment.
Collapse
|
14
|
Shaik FA, Lewuillon C, Guillemette A, Ahmadian B, Brinster C, Quesnel B, Collard D, Touil Y, Lemonnier L, Tarhan MC. Pairing cells of different sizes in a microfluidic device for immunological synapse monitoring. LAB ON A CHIP 2022; 22:908-920. [PMID: 35098952 DOI: 10.1039/d1lc01156a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Analyzing cell-cell interaction is essential to investigate how immune cells function. Elegant designs have been demonstrated to study lymphocytes and their interaction partners. However, these devices have been targeting cells of similar dimensions. T lymphocytes are smaller, more deformable, and more sensitive to pressure than many cells. This work aims to fill the gap of a method for pairing cells with different dimensions. The developed method uses hydrodynamic flow focusing in the z-direction for on-site modulation of effective channel height to capture smaller cells as single cells. Due to immune cells' sensitivity to pressure, the proposed method provides a stable system without any change in flow conditions at the analysis area throughout experiments. Paired live cells have their activities analyzed with calcium imaging at the immunological synapse formed under a controlled environment. The method is demonstrated with primary human T lymphocytes, acute myeloid leukemia (AML) cell lines, and primary AML blasts.
Collapse
Affiliation(s)
- Faruk Azam Shaik
- University of Lille, Lille, France
- CNRS, IIS, COL, Univ. Lille SMMiL-E project, Lille, France
| | - Clara Lewuillon
- University of Lille, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France.
| | - Aurélie Guillemette
- University of Lille, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France.
| | - Bahram Ahmadian
- CNRS, IIS, COL, Univ. Lille SMMiL-E project, Lille, France
- Univ. Lille, CNRS, Centrale Lille, Junia, Univ. Polytechnique Hauts-de-France, UMR 8520 -IEMN -Institut d'Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France.
| | - Carine Brinster
- University of Lille, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France.
| | - Bruno Quesnel
- University of Lille, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France.
| | - Dominique Collard
- CNRS, IIS, COL, Univ. Lille SMMiL-E project, Lille, France
- LIMMS/CNRS-IIS IRL2820, The University of Tokyo, Tokyo, Japan
| | - Yasmine Touil
- University of Lille, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France.
| | - Loïc Lemonnier
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, France.
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Mehmet Cagatay Tarhan
- CNRS, IIS, COL, Univ. Lille SMMiL-E project, Lille, France
- Univ. Lille, CNRS, Centrale Lille, Junia, Univ. Polytechnique Hauts-de-France, UMR 8520 -IEMN -Institut d'Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France.
- LIMMS/CNRS-IIS IRL2820, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Zhu X, Wu Q, He Y, Gao M, Li Y, Peng W, Li S, Liu Y, Zhang R, Bao J. Fabrication of Size-Controllable and Arrangement-Orderly HepG2 Spheroids for Drug Screening via Decellularized Liver Matrix-Derived Micropattern Array Chips. ACS OMEGA 2022; 7:2364-2376. [PMID: 35071924 PMCID: PMC8772313 DOI: 10.1021/acsomega.1c06302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
![]()
Three-dimensional
(3D) culture via micropattern arrays to generate
cellular spheroids seems a promising in vitro biomimetic
system for liver tissue engineering applications, such as drug screening.
Recently, organ-derived decellularized extracellular matrix emerges
as arguably the most biomimetic bioink. Herein, decellularized liver
matrix (DLM)-derived micropattern array chips were developed to fabricate
size-controllable and arrangement-orderly HepG2 spheroids for drug
screening. The porcine DLM was obtained by the removal of cellular
components and then ground into powder, followed by enzymolysis. DLM
as a coating substrate was compared with collagen type I (Col I) and
Matrigel in terms of biological performance for enhancing cell adhesion,
proliferation, and functions. Subsequently, we used poly(dimethylsiloxane)
(PDMS) to adsorb DLM as the bioink to fabricate micropattern array
chips. The optimal shape and size of micropattern were determined
by evaluating the morphology, viability, and functions of HepG2 3D
cellular aggregates. In addition, drug-susceptibility testing (paclitaxel,
doxorubicin HCl, and disulfiram) was performed on this novel platform.
The DLM provided the tissue-specific microenvironment that provided
suitable supports for HepG2 cells, compared to Col I and Matrigel.
A circular micropattern with a diameter of 100 μm was the optimal
processing parameter to rapidly fabricate large-scale, size-controllable,
and arrangement-orderly HepG2 cellular aggregates with 3D spheroid’s
shape and high cell viability. Drug screening testing showed that
the effect of a drug could be directly demonstrated on-chip by confocal
microscopy measuring the viability of spheroids. We provide a novel
platform for the large-scale generation of HepG2 spheroids with uniform
size and arrangement, thus bringing convenience, reducing error, and
increasing reproducibility for a rapid drug discovery by fluorescence
quantitative analysis. This methodology may be possible to apply in
advancing personalized medicine and drug discovery.
Collapse
Affiliation(s)
- Xinglong Zhu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiong Wu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.,Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yuting He
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mengyu Gao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi Li
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.,Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanliu Peng
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Shengfu Li
- Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yong Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Rundong Zhang
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
16
|
Choi HK, Kim CH, Lee SN, Kim TH, Oh BK. Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation. NANO CONVERGENCE 2021; 8:40. [PMID: 34862954 PMCID: PMC8643291 DOI: 10.1186/s40580-021-00291-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 05/04/2023]
Abstract
The degeneration or loss of skeletal muscles, which can be caused by traumatic injury or disease, impacts most aspects of human activity. Among various techniques reported to regenerate skeletal muscle tissue, controlling the external cellular environment has been proven effective in guiding muscle differentiation. In this study, we report a nano-sized graphene oxide (sGO)-modified nanopillars on microgroove hybrid polymer array (NMPA) that effectively controls skeletal muscle cell differentiation. sGO-coated NMPA (sG-NMPA) were first fabricated by sequential laser interference lithography and microcontact printing methods. To compensate for the low adhesion property of polydimethylsiloxane (PDMS) used in this study, graphene oxide (GO), a proven cytophilic nanomaterial, was further modified. Among various sizes of GO, sGO (< 10 nm) was found to be the most effective not only for coating the surface of the NM structure but also for enhancing the cell adhesion and spreading on the fabricated substrates. Remarkably, owing to the micro-sized line patterns that guide cellular morphology to an elongated shape and because of the presence of sGO-modified nanostructures, mouse myoblast cells (C2C12) were efficiently differentiated into skeletal muscle cells on the hybrid patterns, based on the myosin heavy chain expression levels. Therefore, the developed sGO coated polymeric hybrid pattern arrays can serve as a potential platform for rapid and highly efficient in vitro muscle cell generation.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04170, South Korea
| | - Cheol-Hwi Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Korea
| | | | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Korea.
| | - Byung-Keun Oh
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04170, South Korea.
| |
Collapse
|
17
|
Lee KH, Kim TH. Recent Advances in Multicellular Tumor Spheroid Generation for Drug Screening. BIOSENSORS 2021; 11:445. [PMID: 34821661 PMCID: PMC8615712 DOI: 10.3390/bios11110445] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 05/12/2023]
Abstract
Multicellular tumor spheroids (MCTs) have been employed in biomedical fields owing to their advantage in designing a three-dimensional (3D) solid tumor model. For controlling multicellular cancer spheroids, mimicking the tumor extracellular matrix (ECM) microenvironment is important to understand cell-cell and cell-matrix interactions. In drug cytotoxicity assessments, MCTs provide better mimicry of conventional solid tumors that can precisely represent anticancer drug candidates' effects. To generate incubate multicellular spheroids, researchers have developed several 3D multicellular spheroid culture technologies to establish a research background and a platform using tumor modelingvia advanced materials science, and biosensing techniques for drug-screening. In application, drug screening was performed in both invasive and non-invasive manners, according to their impact on the spheroids. Here, we review the trend of 3D spheroid culture technology and culture platforms, and their combination with various biosensing techniques for drug screening in the biomedical field.
Collapse
Affiliation(s)
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Korea;
| |
Collapse
|
18
|
Kim CH, Han Y, Choi Y, Kwon M, Son H, Luo Z, Kim TH. Extremely Uniform Graphene Oxide Thin Film as a Universal Platform for One-Step Biomaterial Patterning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103596. [PMID: 34510750 DOI: 10.1002/smll.202103596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Indexed: 05/19/2023]
Abstract
Graphene oxide (GO) has proven to be a highly promising material across various biomedical research avenues, including cancer therapy and stem cell-based regenerative medicine. However, creating a uniform GO coating as a thin layer on desired substrates has been considered challenging owing to the intrinsic variability of the size and shape of GO. Herein, a new method is introduced that enables highly uniform GO thin film (UGTF) fabrication on various biocompatible substrates. By optimizing the composition of the GO suspension and preheating process to the substrates, the "coffee-ring effect" is significantly suppressed. After applying a special postsmoothing process referred to as the low-oxygen concentration and low electrical energy plasma (LOLP) treatment, GO is converted to small fragments with a film thickness of up to several nanometers (≈5.1 nm) and a height variation of only 0.6 nm, based on atomic force microscopy images. The uniform GO thin film can also be generated as periodic micropatterns on glass and polymer substrates, which are effective in one-step micropatterning of both antibodies and mouse melanoma cells (B16-F10). Therefore, it can be concluded that the developed UGTF is useful for various graphene-based biological applications.
Collapse
Affiliation(s)
- Cheol-Hwi Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoojoong Han
- R&D division, Nanobase, Inc., Seoul, 08502, Republic of Korea
| | - Yoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minkyeong Kwon
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyungbin Son
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
19
|
Hong G, Kim J, Oh H, Yun S, Kim CM, Jeong Y, Yun W, Shim J, Jang I, Kim C, Jin S. Production of Multiple Cell-Laden Microtissue Spheroids with a Biomimetic Hepatic-Lobule-Like Structure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102624. [PMID: 34286875 PMCID: PMC11469225 DOI: 10.1002/adma.202102624] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/07/2021] [Indexed: 05/11/2023]
Abstract
The construction of an in vitro 3D cellular model to mimic the human liver is highly desired for drug discovery and clinical applications, such as patient-specific treatment and cell-based therapy in regenerative medicine. However, current bioprinting strategies are limited in their ability to generate multiple cell-laden microtissues with biomimetic structures. This study presents a method for producing hepatic-lobule-like microtissue spheroids using a bioprinting system incorporating a precursor cartridge and microfluidic emulsification system. The multiple cell-laden microtissue spheroids can be successfully generated at a speed of approximately 45 spheroids min-1 and with a uniform diameter. Hepatic and endothelial cells are patterned in a microtissue spheroid with the biomimetic structure of a liver lobule. The spheroids allow long-term culture with high cell viability, and the structural integrity is maintained longer than that of non-structured spheroids. Furthermore, structured spheroids show high MRP2, albumin, and CD31 expression levels. In addition, the in vivo study reveals that structured microtissue spheroids are stably engrafted. These results demonstrate that the method provides a valuable 3D structured microtissue spheroid model with lobule-like constructs and liver functions.
Collapse
Affiliation(s)
- Gyusik Hong
- Department of Mechanical EngineeringKorea Polytechnic University237 Sangidaehak‐roSiheung‐si15073Republic of Korea
| | - Jin Kim
- Laboratory Animal MedicineCollege of Veterinary MedicineSeoul National University1, Gwanak‐roGwanak‐guSeoul08826Republic of Korea
- College of Veterinary MedicineKonkuk University120, Neungdong‐ro, Gwangjin‐guSeoul05029Republic of Korea
| | - Hyeongkwon Oh
- Department of Mechanical EngineeringKorea Polytechnic University237 Sangidaehak‐roSiheung‐si15073Republic of Korea
| | - Seokhwan Yun
- Department of Mechanical EngineeringKorea Polytechnic University237 Sangidaehak‐roSiheung‐si15073Republic of Korea
| | - Chul Min Kim
- Department of MechatronicsGyeongsang National University33, Dongjin‐roJinju52725Republic of Korea
| | - Yun‐Mi Jeong
- Department of Mechanical EngineeringKorea Polytechnic University237 Sangidaehak‐roSiheung‐si15073Republic of Korea
| | - Won‐Soo Yun
- Department of Mechanical EngineeringKorea Polytechnic University237 Sangidaehak‐roSiheung‐si15073Republic of Korea
- Research InstituteT&R Biofab. Co. Ltd242 Pangyo‐roSeongnamGyeonggi13487Republic of Korea
| | - Jin‐Hyung Shim
- Department of Mechanical EngineeringKorea Polytechnic University237 Sangidaehak‐roSiheung‐si15073Republic of Korea
- Research InstituteT&R Biofab. Co. Ltd242 Pangyo‐roSeongnamGyeonggi13487Republic of Korea
| | - Ilho Jang
- Research InstituteT&R Biofab. Co. Ltd242 Pangyo‐roSeongnamGyeonggi13487Republic of Korea
| | - C‐Yoon Kim
- College of Veterinary MedicineKonkuk University120, Neungdong‐ro, Gwangjin‐guSeoul05029Republic of Korea
| | - Songwan Jin
- Department of Mechanical EngineeringKorea Polytechnic University237 Sangidaehak‐roSiheung‐si15073Republic of Korea
- Research InstituteT&R Biofab. Co. Ltd242 Pangyo‐roSeongnamGyeonggi13487Republic of Korea
| |
Collapse
|
20
|
Abstract
Cell spheroids have been studied as a biomimic medicine for tissue healing using cell sources. Rapid cell spheroid production increases cell survival and activity as well as the efficiency of mass production by reducing processing time. In this study, two-dimensional MXene (Ti3C2) particles were used to form mesenchymal stem cell spheroids, and the optimal MXene concentration, spheroid-production times, and bioactivity levels of spheroid cells during this process were assessed. A MXene concentration range of 1 to 10 μg/mL induced spheroid formation within 6 h. The MXene-induced spheroids exhibited osteogenic-differentiation behavior, with the highest activity levels at a concentration of 5 μg/mL. We report a novel and effective method for the rapid formation of stem cell spheroids using MXene.
Collapse
|
21
|
Kim CH, Kim TH. Graphene Hybrid Materials for Controlling Cellular Microenvironments. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4008. [PMID: 32927729 PMCID: PMC7559936 DOI: 10.3390/ma13184008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Cellular microenvironments are known as key factors controlling various cell functions, including adhesion, growth, migration, differentiation, and apoptosis. Many materials, including proteins, polymers, and metal hybrid composites, are reportedly effective in regulating cellular microenvironments, mostly via reshaping and manipulating cell morphologies, which ultimately affect cytoskeletal dynamics and related genetic behaviors. Recently, graphene and its derivatives have emerged as promising materials in biomedical research owing to their biocompatible properties as well as unique physicochemical characteristics. In this review, we will highlight and discuss recent studies reporting the regulation of the cellular microenvironment, with particular focus on the use of graphene derivatives or graphene hybrid materials to effectively control stem cell differentiation and cancer cell functions and behaviors. We hope that this review will accelerate research on the use of graphene derivatives to regulate various cellular microenvironments, which will ultimately be useful for both cancer therapy and stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Cheol-Hwi Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea;
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea;
- Integrative Research Centre for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|