1
|
Zhang D, Wu W, Zhang W, Feng Q, Zhang Q, Liang H. Nuclear deformation and cell division of single cell on elongated micropatterned substrates fabricated by DMD lithography. Biofabrication 2024; 16:035001. [PMID: 38471164 DOI: 10.1088/1758-5090/ad3319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Cells sense mechanical signals from the surrounding environment and transmit them to the nucleus through mechanotransduction to regulate cellular behavior. Microcontact printing, which utilizes elastomer stamps, is an effective method for simulating the cellular microenvironment and manipulating cell morphology. However, the conventional fabrication process of silicon masters and elastomer stamps requires complex procedures and specialized equipment, which restricts the widespread application of micropatterning in cell biology and hinders the investigation of the role of cell geometry in regulating cell behavior. In this study, we present an innovative method for convenient resin stamp microfabrication based on digital micromirror device planar lithography. Using this method, we generated a series of patterns ranging from millimeter to micrometer scales and validated their effectiveness in controlling adhesion at both collective and individual cell levels. Additionally, we investigated mechanotransduction and cell behavior on elongated micropatterned substrates. We then examined the effects of cell elongation on cytoskeleton organization, nuclear deformation, focal adhesion formation, traction force generation, nuclear mechanics, and the growth of HeLa cells. Our findings reveal a positive correlation between cell length and mechanotransduction. Interestingly, HeLa cells with moderate length exhibit the highest cell division and proliferation rates. These results highlight the regulatory role of cell elongation in mechanotransduction and its significant impact on cancer cell growth. Furthermore, our methodology for controlling cell adhesion holds the potential for addressing fundamental questions in both cell biology and biomedical engineering.
Collapse
Affiliation(s)
- Duo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Wanying Zhang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Qiyu Feng
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
- School of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, People's Republic of China
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Anhui Chungu 3D Printing Institute of Intelligent Equipment and Industrial Technology, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
2
|
Rima XY, Zhang J, Nguyen LTH, Rajasuriyar A, Yoon MJ, Chiang CL, Walters N, Kwak KJ, Lee LJ, Reátegui E. Microfluidic harvesting of breast cancer tumor spheroid-derived extracellular vesicles from immobilized microgels for single-vesicle analysis. LAB ON A CHIP 2022; 22:2502-2518. [PMID: 35579189 PMCID: PMC9383696 DOI: 10.1039/d1lc01053k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Investigating cellular and vesicular heterogeneity in breast cancer remains a challenge, which encourages the development of controllable in vitro systems that mimic the tumor microenvironment. Although three-dimensional cell culture better recapitulates the heterogeneity observed in tumor growth and extracellular vesicle (EV) biogenesis, the physiological relevance is often contrasted with the control offered by two-dimensional cell culture. Therefore, to challenge this misconception we developed a novel microfluidic system harboring highly tunable three-dimensional EV microbioreactors (EVμBRs) to model micrometastatic EV release in breast cancer while capitalizing on the convenient, low-volume, and sterile interface provided by microfluidics. The diameter and cellular occupancy of the EVμBRs could be precisely tailored to various configurations, supporting the formation of breast cancer tumor spheroids. To immobilize the EVμBRs within a microchannel and facilitate EV extraction, oxygen inhibition in free-radical polymerization was repurposed to rapidly generate two-layer hydrodynamic traps in situ using a digital-micromirror device (DMD)-based ultraviolet (UV) projection system. Breast cancer tumor spheroid-derived EVs were harvested with as little as 20 μL from the microfluidic system and quantified by single-EV immunofluorescence for CD63 and CD81. Despite the low-volume extraction, differences in biomarker expression and coexpression of the tetraspanins on single EVs were observed. Furthermore, the EVμBRs were capable of recapitulating heterogeneity at a cellular and vesicular degree, indicating the utility and robustness of the microfluidic system to investigate physiologically relevant EVs in breast cancer and other disease models.
Collapse
Affiliation(s)
- Xilal Y Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Luong T H Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Aaron Rajasuriyar
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Min Jin Yoon
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Chi-Ling Chiang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Nicole Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | | | - L James Lee
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Spot Biosystems Ltd., Palo Alto, CA 94301, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography. MICROMACHINES 2021; 13:mi13010049. [PMID: 35056214 PMCID: PMC8778126 DOI: 10.3390/mi13010049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 02/03/2023]
Abstract
Organ-on-a-chip (OoC) and microfluidic devices are conventionally produced using microfabrication procedures that require cleanrooms, silicon wafers, and photomasks. The prototyping stage often requires multiple iterations of design steps. A simplified prototyping process could therefore offer major advantages. Here, we describe a rapid and cleanroom-free microfabrication method using maskless photolithography. The approach utilizes a commercial digital micromirror device (DMD)-based setup using 375 nm UV light for backside exposure of an epoxy-based negative photoresist (SU-8) on glass coverslips. We show that microstructures of various geometries and dimensions, microgrooves, and microchannels of different heights can be fabricated. New SU-8 molds and soft lithography-based polydimethylsiloxane (PDMS) chips can thus be produced within hours. We further show that backside UV exposure and grayscale photolithography allow structures of different heights or structures with height gradients to be developed using a single-step fabrication process. Using this approach: (1) digital photomasks can be designed, projected, and quickly adjusted if needed; and (2) SU-8 molds can be fabricated without cleanroom availability, which in turn (3) reduces microfabrication time and costs and (4) expedites prototyping of new OoC devices.
Collapse
|
4
|
Carberry BJ, Hergert JE, Yavitt FM, Hernandez JJ, Speckl KF, Bowman CN, McLeod RR, Anseth KS. 3D printing of sacrificial thioester elastomers using digital light processing for templating 3D organoid structures in soft biomatrices. Biofabrication 2021; 13:10.1088/1758-5090/ac1c98. [PMID: 34380115 PMCID: PMC8860055 DOI: 10.1088/1758-5090/ac1c98] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023]
Abstract
Biofabrication allows for the templating of structural features in materials on cellularly-relevant size scales, enabling the generation of tissue-like structures with controlled form and function. This is particularly relevant for growing organoids, where the application of biochemical and biomechanical stimuli can be used to guide the assembly and differentiation of stem cells and form architectures similar to the parent tissue or organ. Recently, ablative laser-scanning techniques was used to create 3D overhang features in collagen hydrogels at size scales of 10-100µm and supported the crypt-villus architecture in intestinal organoids. As a complementary method, providing advantages for high-throughput patterning, we printed thioester functionalized poly(ethylene glycol) (PEG) elastomers using digital light processing (DLP) and created sacrificial, 3D shapes that could be molded into soft (G' < 1000 Pa) hydrogel substrates. Specifically, three-arm 1.3 kDa PEG thiol and three-arm 1.6 kDa PEG norbornene, containing internal thioester groups, were photopolymerized to yield degradable elastomers. When incubated in a solution of 300 mM 2-mercaptoethanol (pH 9.0), 1 mm thick 10 mm diameter elastomer discs degraded in <2 h. Using DLP, arrays of features with critical dimensions of 37 ± 4µm, resolutions of 22 ± 5µm, and overhang structures as small as 50µm, were printed on the order of minutes. These sacrificial thioester molds with physiologically relevant features were cast-molded into Matrigel and subsequently degraded to create patterned void spaces with high fidelity. Intestinal stem cells (ISCs) cultured on the patterned Matrigel matrices formed confluent monolayers that conformed to the underlying pattern. DLP printed sacrificial thioester elastomer constructs provide a robust and rapid method to fabricate arrays of 3D organoid-sized features in soft tissue culture substrates and should enable investigations into the effect of epithelial geometry and spacing on the growth and differentiation of ISCs.
Collapse
Affiliation(s)
- Benjamin J Carberry
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States of America
| | - John E Hergert
- Materials Science and Engineering, University of Colorado, Boulder, CO 80309, United States of America
| | - F Max Yavitt
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States of America
| | - Juan J Hernandez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States of America
| | - Kelly F Speckl
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States of America
- Materials Science and Engineering, University of Colorado, Boulder, CO 80309, United States of America
| | - Robert R McLeod
- Materials Science and Engineering, University of Colorado, Boulder, CO 80309, United States of America
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80309, United States of America
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States of America
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States of America
| |
Collapse
|
5
|
Cui L, Yao Y, Yim EKF. The effects of surface topography modification on hydrogel properties. APL Bioeng 2021; 5:031509. [PMID: 34368603 PMCID: PMC8318605 DOI: 10.1063/5.0046076] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Hydrogel has been an attractive biomaterial for tissue engineering, drug delivery, wound healing, and contact lens materials, due to its outstanding properties, including high water content, transparency, biocompatibility, tissue mechanical matching, and low toxicity. As hydrogel commonly possesses high surface hydrophilicity, chemical modifications have been applied to achieve the optimal surface properties to improve the performance of hydrogels for specific applications. Ideally, the effects of surface modifications would be stable, and the modification would not affect the inherent hydrogel properties. In recent years, a new type of surface modification has been discovered to be able to alter hydrogel properties by physically patterning the hydrogel surfaces with topographies. Such physical patterning methods can also affect hydrogel surface chemical properties, such as protein adsorption, microbial adhesion, and cell response. This review will first summarize the works on developing hydrogel surface patterning methods. The influence of surface topography on interfacial energy and the subsequent effects on protein adsorption, microbial, and cell interactions with patterned hydrogel, with specific examples in biomedical applications, will be discussed. Finally, current problems and future challenges on topographical modification of hydrogels will also be discussed.
Collapse
Affiliation(s)
- Linan Cui
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
6
|
Abstract
Micropatterning encompasses a set of methods aimed at precisely controlling the spatial distribution of molecules onto the surface of materials. Biologists have borrowed the idea and adapted these methods, originally developed for electronics, to impose physical constraints on biological systems with the aim of addressing fundamental questions across biological scales from molecules to multicellular systems. Here, I approach this topic from a developmental biologist's perspective focusing specifically on how and why micropatterning has gained in popularity within the developmental biology community in recent years. Overall, this Primer provides a concise overview of how micropatterns are used to study developmental processes and emphasises how micropatterns are a useful addition to the developmental biologist's toolbox.
Collapse
Affiliation(s)
- Guillaume Blin
- Institute for Regeneration and Repair, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| |
Collapse
|
7
|
Lenne PF, Munro E, Heemskerk I, Warmflash A, Bocanegra-Moreno L, Kishi K, Kicheva A, Long Y, Fruleux A, Boudaoud A, Saunders TE, Caldarelli P, Michaut A, Gros J, Maroudas-Sacks Y, Keren K, Hannezo E, Gartner ZJ, Stormo B, Gladfelter A, Rodrigues A, Shyer A, Minc N, Maître JL, Di Talia S, Khamaisi B, Sprinzak D, Tlili S. Roadmap for the multiscale coupling of biochemical and mechanical signals during development. Phys Biol 2021; 18. [PMID: 33276350 PMCID: PMC8380410 DOI: 10.1088/1478-3975/abd0db] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
The way in which interactions between mechanics and biochemistry lead to the emergence of complex cell and tissue organization is an old question that has recently attracted renewed interest from biologists, physicists, mathematicians and computer scientists. Rapid advances in optical physics, microscopy and computational image analysis have greatly enhanced our ability to observe and quantify spatiotemporal patterns of signalling, force generation, deformation, and flow in living cells and tissues. Powerful new tools for genetic, biophysical and optogenetic manipulation are allowing us to perturb the underlying machinery that generates these patterns in increasingly sophisticated ways. Rapid advances in theory and computing have made it possible to construct predictive models that describe how cell and tissue organization and dynamics emerge from the local coupling of biochemistry and mechanics. Together, these advances have opened up a wealth of new opportunities to explore how mechanochemical patterning shapes organismal development. In this roadmap, we present a series of forward-looking case studies on mechanochemical patterning in development, written by scientists working at the interface between the physical and biological sciences, and covering a wide range of spatial and temporal scales, organisms, and modes of development. Together, these contributions highlight the many ways in which the dynamic coupling of mechanics and biochemistry shapes biological dynamics: from mechanoenzymes that sense force to tune their activity and motor output, to collectives of cells in tissues that flow and redistribute biochemical signals during development.
Collapse
Affiliation(s)
- Pierre-François Lenne
- Aix-Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, United States of America
| | - Idse Heemskerk
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Aryeh Warmflash
- Department of Biosciences and Bioengineering, Rice University, Houston, TX, 77005, United States of America
| | | | - Kasumi Kishi
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Anna Kicheva
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Yuchen Long
- Reproduction et Dévelopement des Plantes, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, INRAe, CNRS, 69364 Lyon Cedex 07, France
| | - Antoine Fruleux
- Reproduction et Dévelopement des Plantes, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, INRAe, CNRS, 69364 Lyon Cedex 07, France.,LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Arezki Boudaoud
- Reproduction et Dévelopement des Plantes, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, INRAe, CNRS, 69364 Lyon Cedex 07, France.,LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Paolo Caldarelli
- Cellule Pasteur UPMC, Sorbonne Université, rue du Dr Roux, 75015 Paris, France.,Department of Developmental and Stem Cell Biology Institut Pasteur, 75724 Paris, Cedex 15, France.,CNRS UMR3738, 75015 Paris, France
| | - Arthur Michaut
- Department of Developmental and Stem Cell Biology Institut Pasteur, 75724 Paris, Cedex 15, France.,CNRS UMR3738, 75015 Paris, France
| | - Jerome Gros
- Department of Developmental and Stem Cell Biology Institut Pasteur, 75724 Paris, Cedex 15, France.,CNRS UMR3738, 75015 Paris, France
| | - Yonit Maroudas-Sacks
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Kinneret Keren
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Network Biology Research Laboratories and The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th St. Box 2280, San Francisco, CA 94158, United States of America
| | - Benjamin Stormo
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 United States of America
| | - Amy Gladfelter
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 United States of America
| | - Alan Rodrigues
- Laboratory of Morphogenesis, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Amy Shyer
- Laboratory of Morphogenesis, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Nicolas Minc
- Institut Jacques Monod, Université de Paris, CNRS UMR7592, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham NC 27710, United States of America
| | - Bassma Khamaisi
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sham Tlili
- Aix-Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
8
|
Luo X, Seveau de Noray V, Aoun L, Biarnes-Pelicot M, Strale PO, Studer V, Valignat MP, Theodoly O. Lymphocyte perform reverse adhesive haptotaxis mediated by integrins LFA-1. J Cell Sci 2020; 133:jcs.242883. [DOI: 10.1242/jcs.242883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/13/2020] [Indexed: 01/10/2023] Open
Abstract
Cell Guidance by anchored molecules, or haptotaxis, is crucial in development, immunology and cancer. Adhesive haptotaxis, or guidance by adhesion molecules, is well established for mesenchymal cells like fibroblasts, whereas its existence remains unreported for amoeboid cells that require less or no adhesion to migrate. We show here in vitro that amoeboid human T lymphocytes develop adhesive haptotaxis versus densities of integrin ligands expressed by high endothelial venules. Moreover, lymphocytes orient towards increasing adhesion with VLA-4 integrins, like all mesenchymal cells, but towards decreasing adhesion with LFA-1 integrins, which has never been observed. This counterintuitive ‘reverse haptotaxis’ cannot be explained with the existing mesenchymal mechanisms of competition between cells’ pulling edges or of lamellipodia growth activated by integrins, which favor orientation towards increasing adhesion. Mechanisms and functions of amoeboid adhesive haptotaxis remain unclear, however multidirectional integrin-mediated haptotaxis may operate around transmigration ports on endothelium, stromal cells in lymph nodes, and inflamed tissue where integrin ligands are spatially modulated.
Collapse
Affiliation(s)
- Xuan Luo
- LAI, Aix Marseille Univ, CNRS, INSERM, Marseille, France
| | | | - Laurene Aoun
- LAI, Aix Marseille Univ, CNRS, INSERM, Marseille, France
| | | | | | - Vincent Studer
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, Bordeaux, France
- CNRS UMR 5297, F-33000 Bordeaux, France
| | | | | |
Collapse
|