1
|
Fan L, Cai Z, Zhao J, Mahmoudi N, Wang Y, Cheeseman S, Aguilar LC, Reis RL, Kundu SC, Kaplan DL, Nisbet DR, Li JL. Gelation Dynamics, Formation Mechanism, Functionalization, and 3D Bioprinting of Silk Fibroin Hydrogel Materials for Biomedical Applications. ACS NANO 2025; 19:17979-18002. [PMID: 40340314 DOI: 10.1021/acsnano.4c18568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Silk fibroin (SF), derived from silk cocoon fibers (Bombyx mori), is a natural protein polymer known for its biocompatibility, biodegradability, and sustainability. The protein can be processed into various material formats suitable for a range of applications. Among these, SF hydrogels are useful in the biomedical field, such as tissue engineering, due to the tailorable structures and properties achievable through tuning the gelation process. Therefore, the focus of this contribution is to comprehensively review and understand the formation, gelation mechanism, dynamic control, and functionalization of SF hydrogels. Unlike previous reviews, this work delves into understanding the strategies and mechanisms for tuning the gelation dynamics of SF from molecular assembly and crystallization points of view. Further, this review presents functionalization pathways and practical examples, such as for the 3D printing of SF hydrogels, to illustrate how these strategies, mechanisms, and pathways can be implemented in a specific application scenario. With these insights, researchers can gain a deeper understanding of how to manipulate or control the gelation process and the types of functionalization to achieve specific properties and features. This knowledge would further facilitate the development and application of SF hydrogel materials in various fields.
Collapse
Affiliation(s)
- Linpeng Fan
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Zengxiao Cai
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Jian Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Negar Mahmoudi
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yi Wang
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Samuel Cheeseman
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lilith Caballero Aguilar
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Rui Luís Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Rua Ave 1, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Rua Ave 1, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David R Nisbet
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jing-Liang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
2
|
Sundarakrishnan A. Extremely Rapid Gelling Curcumin Silk-Tyrosine Crosslinked Hydrogels. Gels 2025; 11:288. [PMID: 40277724 PMCID: PMC12027036 DOI: 10.3390/gels11040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Systemic chemotherapy is still the first-line treatment for cancer, and it's associated with toxic side effects, chemoresistance, and ultimately cancer recurrence. Rapid gelling hydrogels can overcome this limitation by providing localized delivery of anti-cancer agents to solid tumors. Silk hydrogels are extremely biocompatible and suitable for anti-cancer drug delivery, but faster gelling formulations are needed. In this study, we introduce a rapid gelling hydrogel formulation (<3 min gelling time) due to chemical crosslinking between silk fibroin and curcumin, initiated by the addition of minute quantities of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). The novel observation in this study is that curcumin, while being a free-radical scavenger, also participates in accelerating silk di-tyrosine crosslinking in the presence of HRP and H2O2. Using UV-Vis, rheology, and time-lapse videos, we convincingly show that curcumin accelerates silk di-tyrosine crosslinking reaction in a concentration-dependent manner, and curcumin remains entrapped in the hydrogel post-crosslinking. FTIR results show an increase in secondary beta-sheet structures within hydrogels, with increasing concentrations of curcumin. Furthermore, we show that curcumin-silk di-tyrosine hydrogels are toxic to U2OS osteosarcoma cells, and most cancer cells are dead within short time scales of 4 h post-encapsulation.
Collapse
Affiliation(s)
- Aswin Sundarakrishnan
- Department of Materials Science & Biomedical Engineering, University of Wisconsin Eau Claire, Eau Claire, WI 54701, USA
| |
Collapse
|
3
|
Liu C, Sun M, Lin L, Luo Y, Peng L, Zhang J, Qiu T, Liu Z, Yin J, Yu M. Potentially commercializable nerve guidance conduits for peripheral nerve injury: Past, present, and future. Mater Today Bio 2025; 31:101503. [PMID: 40018056 PMCID: PMC11867546 DOI: 10.1016/j.mtbio.2025.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 03/01/2025] Open
Abstract
Peripheral nerve injuries are a prevalent global issue that has garnered great concern. Although autografts remain the preferred clinical approach to repair, their efficacy is hampered by factors like donor scarcity. The emergence of nerve guidance conduits as novel tissue engineering tools offers a promising alternative strategy. This review aims to interpret nerve guidance conduits and their commercialization from both clinical and laboratory perspectives. To enhance comprehension of clinical situations, this article provides a comprehensive analysis of the clinical efficacy of nerve conduits approved by the United States Food and Drug Administration. It proposes that the initial six months post-transplantation is a critical window period for evaluating their efficacy. Additionally, this study conducts a systematic discussion on the research progress of laboratory conduits, focusing on biomaterials and add-on strategies as pivotal factors for nerve regeneration, as supported by the literature analysis. The clinical conduit materials and prospective optimal materials are thoroughly discussed. The add-on strategies, together with their distinct obstacles and potentials are deeply analyzed. Based on the above evaluations, the development path and manufacturing strategy for the commercialization of nerve guidance conduits are envisioned. The critical conclusion promoting commercialization is summarized as follows: 1) The optimization of biomaterials is the fundamental means; 2) The phased application of additional strategies is the emphasized direction; 3) The additive manufacturing techniques are the necessary tools. As a result, the findings of this research provide academic and clinical practitioners with valuable insights that may facilitate future commercialization endeavors of nerve guidance conduits.
Collapse
Affiliation(s)
- Chundi Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Mouyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lining Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yaxian Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lianjie Peng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jingyu Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Tao Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhichao Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
4
|
Wang Y, Feng X, Chen X. Autonomous Bioelectronic Devices Based on Silk Fibroin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500073. [PMID: 40123251 DOI: 10.1002/adma.202500073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/01/2025] [Indexed: 03/25/2025]
Abstract
The development of autonomous bioelectronic devices capable of dynamically adapting to changing biological environments represents a significant advancement in healthcare and wearable technologies. Such systems draw inspiration from the precision, adaptability, and self-regulation of biological processes, requiring materials with intrinsic versatility and seamless bio-integration to ensure biocompatibility and functionality over time. Silk fibroin (SF) derived from Bombyx mori cocoons, has emerged as an ideal biomaterial with a unique combination of biocompatibility, mechanical flexibility, and tunable biodegradability. Adding autonomous features into SF, including self-healing, shape-morphing, and controllable degradation, enables dynamic interactions with living tissues while minimizing immune responses and mechanical mismatches. Additionally, structural tunability and environmental sustainability of SF further reinforce its potential as a platform for adaptive implants, epidermal electronics, and intelligent textiles. This review explores recent progress in understanding the structure-property relationships of SF, its modification strategies, and its great potential for integration into advanced autonomous bioelectronic systems while addressing challenges related to scalability, reproducibility, and multifunctionality. Future opportunities, such as AI-assisted material design, scalable fabrication techniques, and the incorporation of wireless and personalized technologies, are also discussed, positioning SF as a key material in bridging the gap between biological systems and artificial technologies.
Collapse
Affiliation(s)
- Yanling Wang
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
- Innovative Centre for Flexible Devices (iFLEX), Max Plank-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xue Feng
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Plank-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
5
|
Han B, Liu Y, Zhou Q, Yu Y, Liu X, Guo Y, Zheng X, Zhou M, Yu H, Wang W. The advance of ultrasound-enabled diagnostics and therapeutics. J Control Release 2024; 375:1-19. [PMID: 39208935 DOI: 10.1016/j.jconrel.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Point-of-care ultrasound demonstrates significant potential in biomedical research due to its noninvasive, real-time visualization, cost-effectiveness, and other biological benefits. Ultrasound irradiation can precisely control the mechanical and physicochemical effects on pathogenic lesions, enabling real-time visualization, tunable tissue penetration depth, and therapeutic applications. This review summarizes recent advancements in ultrasound-enabled diagnostics and therapeutics, focusing on mechanochemical effects that can be directly integrated into biomedical applications. Additionally, the structure-functionality relationships of sonotheranostic nanoplatforms are systematically discussed, providing insights into the underlying biological effects. Finally, the limitations of current ultrasonic medicine are discussed, along with potential expansions to facilitate patient-centered translations.
Collapse
Affiliation(s)
- Biying Han
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qianqian Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xingxing Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu Guo
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Haijun Yu
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
6
|
Shuai Y, Zheng M, Kundu SC, Mao C, Yang M. Bioengineered Silk Protein-Based 3D In Vitro Models for Tissue Engineering and Drug Development: From Silk Matrix Properties to Biomedical Applications. Adv Healthc Mater 2024; 13:e2401458. [PMID: 39009465 DOI: 10.1002/adhm.202401458] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Indexed: 07/17/2024]
Abstract
3D in vitro model has emerged as a valuable tool for studying tissue development, drug screening, and disease modeling. 3D systems can accurately replicate tissue microstructures and physiological features, mirroring the in vivo microenvironment departing from conventional 2D cell cultures. Various 3D in vitro models utilizing biomacromolecules like collagen and synthetic polymers have been developed to meet diverse research needs and address the complex challenges of contemporary research. Silk proteins, bearing structural and functional similarities to collagen, have been increasingly employed to construct advanced 3D in vitro systems, surpassing the limitations of 2D cultures. This review examines silk proteins' composition, structure, properties, and functions, elucidating their role in 3D in vitro models. Furthermore, recent advances in biomedical applications involving silk-based organoid models are discussed. In particular, the unique physiological attributes of silk matrix constituents in in vitro tissue constructs are highlighted, providing a meticulous evaluation of their importance. Additionally, it outlines the current research hurdles and complexities while contemplating future avenues, thereby paving the way for developing complex and biomimetic silk protein-based microtissues.
Collapse
Affiliation(s)
- Yajun Shuai
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Meidan Zheng
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, P. R. China
| | - Mingying Yang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
7
|
Bordett R, Danazumi KB, Wijekoon S, Garcia CJ, Abdulmalik S, Kumbar SG. Advancements in stimulation therapies for peripheral nerve regeneration. Biomed Mater 2024; 19:052008. [PMID: 39025114 PMCID: PMC11425301 DOI: 10.1088/1748-605x/ad651d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Soft-tissue injuries affecting muscles, nerves, vasculature, tendons, and ligaments often diminish the quality of life due to pain, loss of function, and financial burdens. Both natural healing and surgical interventions can result in scarring, which potentially may impede functional recovery and lead to persistent pain. Scar tissue, characterized by a highly disorganized fibrotic extracellular matrix, may serve as a physical barrier to regeneration and drug delivery. While approaches such as drugs, biomaterials, cells, external stimulation, and other physical forces show promise in mitigating scarring and promoting regenerative healing, their implementation remains limited and challenging. Ultrasound, laser, electrical, and magnetic forms of external stimulation have been utilized to promote soft tissue as well as neural tissue regeneration. After stimulation, neural tissues experience increased proliferation of Schwann cells, secretion of neurotropic factors, production of myelin, and growth of vasculature, all aimed at supporting axon regeneration and innervation. Yet, the outcomes of healing vary depending on the pathophysiology of the damaged nerve, the timing of stimulation following injury, and the specific parameters of stimulation employed. Increased treatment intensity and duration have been noted to hinder the healing process by inducing tissue damage. These stimulation modalities, either alone or in combination with nerve guidance conduits and scaffolds, have been demonstrated to promote healing. However, the literature currently lacks a detailed understanding of the stimulation parameters used for nerve healing applications. In this article, we aim to address this gap by summarizing existing reports and providing an overview of stimulation parameters alongside their associated healing outcomes.
Collapse
Affiliation(s)
- Rosalie Bordett
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Khadija B Danazumi
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Suranji Wijekoon
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Christopher J Garcia
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Sangamesh G Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
8
|
Gou S, Geng W, Zou Y, Chen F, He T, Duan Q, Qin Z, Li L, Xia J, Yu Y, Feng Q, Cai K. Glutathione-Responsive and Hydrogen Sulfide Self-Generating Nanocages Based on Self-Weaving Technology To Optimize Cancer Immunotherapy. ACS NANO 2024; 18:9871-9885. [PMID: 38545939 DOI: 10.1021/acsnano.3c08939] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
As an ideal drug carrier, it should possess high drug loading and encapsulation efficiency and precise drug targeting release. Herein, we utilized a template-guided self-weaving technology of phase-separated silk fibroin (SF) in reverse microemulsion (RME) to fabricate a kind of hyaluronic acid (HA) coated SF nanocage (HA-gNCs) for drug delivery of cancer immunotherapy. Due to the hollow structure, HA-gNCs were capable of simultaneous encapsulation of the anti-inflammatory drug betamethasone phosphate (BetP) and the immune checkpoint blockade (ICB) agent PD-L1 antibody (αPD-L1) efficiently. Another point worth noting was that the thiocarbonate cross-linkers used to strengthen the SF shell of HA-gNCs could be quickly broken by overexpressed glutathione (GSH) to reach responsive drug release inside tumor tissues accompanied by hydrogen sulfide (H2S) production in one step. The synergistic effect of released BetP and generated H2S guaranteed chronological modulation of the immunosuppressive tumor microenvironment (ITME) to amplify the therapeutic effect of αPD-L1 for the growth, metastasis, and recurrence of tumors. This study highlighted the exceptional prospect of HA-gNCs as a self-assistance platform for cancer drug delivery.
Collapse
Affiliation(s)
- Shuangquan Gou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Wenbo Geng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Yanan Zou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Fangye Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Tingting He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Qiaojian Duan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Zizhen Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Liangsheng Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yongsheng Yu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| |
Collapse
|
9
|
Zhu Y, Chen J, Liu H, Zhang W. Photo-cross-linked Hydrogels for Cartilage and Osteochondral Repair. ACS Biomater Sci Eng 2023; 9:6567-6585. [PMID: 37956022 DOI: 10.1021/acsbiomaterials.3c01132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Photo-cross-linked hydrogels, which respond to light and induce structural or morphological transitions, form a microenvironment that mimics the extracellular matrix of native tissue. In the last decades, photo-cross-linked hydrogels have been widely used in cartilage and osteochondral tissue engineering due to their good biocompatibility, ease of fabrication, rapid in situ gel-forming ability, and tunable mechanical and degradable properties. In this review, we systemically summarize the different types and physicochemical properties of photo-cross-linked hydrogels (including the materials and photoinitiators) and explore the biological properties modulated through the incorporation of additives, including cells, biomolecules, genes, and nanomaterials, into photo-cross-linked hydrogels. Subsequently, we compile the applications of photo-cross-linked hydrogels with a specific focus on cartilage and osteochondral repair. Finally, current limitations and future perspectives of photo-cross-linked hydrogels are also discussed.
Collapse
Affiliation(s)
- Yue Zhu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
10
|
Lin X, Cai L, Cao X, Zhao Y. Stimuli-responsive silk fibroin for on-demand drug delivery. SMART MEDICINE 2023; 2:e20220019. [PMID: 39188280 PMCID: PMC11235688 DOI: 10.1002/smmd.20220019] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 08/28/2024]
Abstract
Stimuli-responsive "smart" hydrogel biomaterials have attracted great attention in the biomedical field, especially in designing novel on-demand drug delivery systems. As a handful natural biomaterial approved by US Food and Drug Administration, silk fibroin (SF) has unique high temperature resistance as well as tunable structural composition. These properties make it one of the most ideal candidates for on-demand drug delivery. Meanwhile, recent advances in polymer modification and nanomaterials have fostered the development of various stimuli-responsive delivery systems. Here, we first review the recent advance in designing responsive SF-based delivery systems in different stimulus sources. These systems are able to release mediators in a desired manner in response to specific stimuli in active or passive manners. We then describe applications of these specially designed responsive delivery systems in wound healing, tumor therapy, as well as immunomodulation. We also discuss the future challenges and prospects of stimuli-responsive SF-based delivery systems.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Lijun Cai
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Xinyue Cao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| |
Collapse
|
11
|
Roblin NV, DeBari MK, Shefter SL, Iizuka E, Abbott RD. Development of a More Environmentally Friendly Silk Fibroin Scaffold for Soft Tissue Applications. J Funct Biomater 2023; 14:jfb14040230. [PMID: 37103320 PMCID: PMC10143335 DOI: 10.3390/jfb14040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
A push for environmentally friendly approaches to biomaterials fabrication has emerged from growing conservational concerns in recent years. Different stages in silk fibroin scaffold production, including sodium carbonate (Na2CO3)-based degumming and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-based fabrication, have drawn attention for their associated environmental concerns. Environmentally friendly alternatives have been proposed for each processing stage; however, an integrated green fibroin scaffold approach has not been characterized or used for soft tissue applications. Here, we show that the combination of sodium hydroxide (NaOH) as a substitute degumming agent with the popular "aqueous-based" alternative silk fibroin gelation method yields fibroin scaffolds with comparable properties to traditional Na2CO3-degummed aqueous-based scaffolds. The more environmentally friendly scaffolds were found to have comparable protein structure, morphology, compressive modulus, and degradation kinetics, with increased porosity and cell seeding density relative to traditional scaffolds. Human adipose-derived stem cells showed high viability after three days of culture while seeded in each scaffold type, with uniform cell attachment to pore walls. Adipocytes from human whole adipose tissue seeded into scaffolds were found to have similar levels of lipolytic and metabolic function between conditions, in addition to a healthy unilocular morphology. Results indicate that our more environmentally friendly methodology for silk scaffold production is a viable alternative and well suited to soft tissue applications.
Collapse
Affiliation(s)
- Nathan V Roblin
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Megan K DeBari
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sandra L Shefter
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Erica Iizuka
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rosalyn D Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing. LAB ON A CHIP 2023; 23:1300-1338. [PMID: 36806847 DOI: 10.1039/d2lc00439a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For more than 70 years, acoustic waves have been used to screen, diagnose, and treat patients in hundreds of medical devices. The biocompatible nature of acoustic waves, their non-invasive and contactless operation, and their compatibility with wide visualization techniques are just a few of the many features that lead to the clinical success of sound-powered devices. The development of microelectromechanical systems and fabrication technologies in the past two decades reignited the spark of acoustics in the discovery of unique microscale bio applications. Acoustofluidics, the combination of acoustic waves and fluid mechanics in the nano and micro-realm, allowed researchers to access high-resolution and controllable manipulation and sensing tools for particle separation, isolation and enrichment, patterning of cells and bioparticles, fluid handling, and point of care biosensing strategies. This versatility and attractiveness of acoustofluidics have led to the rapid expansion of platforms and methods, making it also challenging for users to select the best acoustic technology. Depending on the setup, acoustic devices can offer a diverse level of biocompatibility, throughput, versatility, and sensitivity, where each of these considerations can become the design priority based on the application. In this paper, we aim to overview the recent advancements of acoustofluidics in the multifaceted fields of regenerative medicine, therapeutic development, and diagnosis and provide researchers with the necessary information needed to choose the best-suited acoustic technology for their application. Moreover, the effect of acoustofluidic systems on phenotypic behavior of living organisms are investigated. The review starts with a brief explanation of acoustofluidic principles, the different working mechanisms, and the advantages or challenges of commonly used platforms based on the state-of-the-art design features of acoustofluidic technologies. Finally, we present an outlook of potential trends, the areas to be explored, and the challenges that need to be overcome in developing acoustofluidic platforms that can echo the clinical success of conventional ultrasound-based devices.
Collapse
Affiliation(s)
- Reza Rasouli
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Karina Martinez Villegas
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Chen K, Li Y, Li Y, Pan W, Tan G. Silk Fibroin Combined with Electrospinning as a Promising Strategy for Tissue Regeneration. Macromol Biosci 2023; 23:e2200380. [PMID: 36409150 DOI: 10.1002/mabi.202200380] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Indexed: 11/23/2022]
Abstract
The development of tissue engineering scaffolds is of great significance for the repair and regeneration of damaged tissues and organs. Silk fibroin (SF) is a natural protein polymer with good biocompatibility, biodegradability, excellent physical and mechanical properties and processability, making it an ideal universal tissue engineering scaffold material. Nanofibers prepared by electrospinning have attracted extensive attention in the field of tissue engineering due to their excellent mechanical properties, high specific surface area, and similar morphology as to extracellular matrix (ECM). The combination of silk fibroin and electrospinning is a promising strategy for the preparation of tissue engineering scaffolds. In this review, the research progress of electrospun silk fibroin nanofibers in the regeneration of skin, vascular, bone, neural, tendons, cardiac, periodontal, ocular and other tissues is discussed in detail.
Collapse
Affiliation(s)
- Kai Chen
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yonghui Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Youbin Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Guoxin Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmacy, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
14
|
Jaya Prakash N, Wang X, Kandasubramanian B. Regenerated silk fibroin loaded with natural additives: a sustainable approach towards health care. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-38. [PMID: 36648394 DOI: 10.1080/09205063.2023.2170137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
According to World Health Organization (WHO), on average, 0.5 Kg of hazardous waste is generated per bed every day in high-income countries. The adverse effects imposed by synthetic materials and chemicals on the environment and humankind have urged researchers to explore greener technologies and materials. Amidst of all the natural fibers, silk fibroin (SF), by virtue of its superior toughness (6 × 104∼16 × 104 J/kg), tensile strength (47.2-67.7 MPa), tunable biodegradability, excellent Young's modulus (1.9-3.9 GPa), presence of functional groups, ease of processing, and biocompatibility has garnered an enormous amount of scientific interests. The use of silk fibroin conjoint with purely natural materials can be an excellent solution for the adverse effects of chemical-based treatment techniques. Considering this noteworthiness, vigorous research is going on in silk-based biomaterials, and it is opening up new vistas of opportunities. This review enswathes the structural aspects of silk fibroin along with its potency to form composites with other natural materials, such as curcumin, keratin, alginate, hydroxyapatite, hyaluronic acid, and cellulose, that can replace the conventionally used synthetic materials, providing a sustainable pathway to biomedical engineering. It was observed that a large amount of polar functional moieties present on the silk fibroin surface enables them to compatibilize easily with the natural additives. The conjunction of silk with natural additives initiates synergistic interactions that mitigate the limitations offered by individual units as well as enhance the applicability of materials. Further the current status and challenges in the commercialization of silk-based biomedical devices are discussed.
Collapse
Affiliation(s)
- Niranjana Jaya Prakash
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Structural Composites Laboratory, Girinagar, Pune, Maharashtra, India
| | - Xungai Wang
- Fiber Science and Technology, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Structural Composites Laboratory, Girinagar, Pune, Maharashtra, India
| |
Collapse
|
15
|
Zhang H, Zhang W, Qiu H, Zhang G, Li X, Qi H, Guo J, Qian J, Shi X, Gao X, Shi D, Zhang D, Gao R, Ding J. A Biodegradable Metal-Polymer Composite Stent Safe and Effective on Physiological and Serum-Containing Biomimetic Conditions. Adv Healthc Mater 2022; 11:e2201740. [PMID: 36057108 DOI: 10.1002/adhm.202201740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/28/2023]
Abstract
The new-generation coronary stents are expected to be biodegradable, and then the biocompatibility along with biodegradation becomes more challenging. It is a critical issue to choose appropriate biomimetic conditions to evaluate biocompatibility. Compared with other candidates for biodegradable stents, iron-based materials are of high mechanical strength, yet have raised more concerns about biodegradability and biocompatibility. Herein, a metal-polymer composite strategy is applied to accelerate the degradation of iron-based stents in vitro and in a porcine model. Furthermore, it is found that serum, the main environment of vascular stents, ensured the safety of iron corrosion through its antioxidants. This work highlights the importance of serum, particularly albumin, for an in vitro condition mimicking blood-related physiological condition, when reactive oxygen species, inflammatory response, and neointimal hyperplasia are concerned. The resultant metal-polymer composite stent is implanted into a patient in clinical research via interventional treatment, and the follow-up confirms its safety, efficacy, and appropriate biodegradability.
Collapse
Affiliation(s)
- Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.,National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Hong Qiu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Gui Zhang
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Haiping Qi
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Jingzhen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Jie Qian
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Xiaoli Shi
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Xian Gao
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Daokun Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Deyuan Zhang
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Runlin Gao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
16
|
Wu J, Shaidani S, Theodossiou SK, Hartzell EJ, Kaplan DL. Localized, on-demand, sustained drug delivery from biopolymer-based materials. Expert Opin Drug Deliv 2022; 19:1317-1335. [PMID: 35930000 PMCID: PMC9617770 DOI: 10.1080/17425247.2022.2110582] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Local drug delivery facilitiates higher concentrations of drug molecules at or near the treatment site to enhance treatment efficiency and reduce drug toxicity and other systemic side effects. However, local drug delivery systems face challenges in terms of encapsulation, delivery, and controlled release of therapeutics. AREAS COVERED We provide an overview of naturally derived biopolymer-based drug delivery systems for localized, sustained, and on-demand treatment. We introduce the advantages and limitations of these systems for drug encapsulation, delivery, and local release, as well as recent applications. EXPERT OPINION Naturally derived biopolymers like cellulose, silk fibroin, chitosan, alginate, hyaluronic acid, and gelatin are good candidates for localized drug delivery because they are readily chemically modified, biocompatible, biodegradable (with the generation of metabolically compatible degradation products), and can be processed in aqueous and ambient environments to maintain the bioactivity of various therapeutics. The tradeoff between the effective treatment dosage and the response by local healthy tissue should be balanced during the design of these delivery systems. Future directions will be focused on strategies to design tunable and controlled biodegradation rates, as well as to explore commercial utility in substituting biopolymer-based systems for currently utilized synthetic polymers for implants for drug delivery.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - Sawnaz Shaidani
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - Sophia K. Theodossiou
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - Emily J. Hartzell
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| |
Collapse
|
17
|
Johari N, Khodaei A, Samadikuchaksaraei A, Reis RL, Kundu SC, Moroni L. Ancient fibrous biomaterials from silkworm protein fibroin and spider silk blends: Biomechanical patterns. Acta Biomater 2022; 153:38-67. [PMID: 36126911 DOI: 10.1016/j.actbio.2022.09.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
Silkworm silk protein fibroin and spider silk spidroin are known biocompatible and natural biodegradable polymers in biomedical applications. The presence of β-sheets in silk fibroin and spider spidroin conformation improves their mechanical properties. The strength and toughness of pure recombinant silkworm fibroin and spidroin are relatively low due to reduced molecular weight. Hence, blending is the foremost approach of recent studies to optimize silk fibroin and spidroin's mechanical properties. As summarised in the present review, numerous research investigations evaluate the blending of natural and synthetic polymers. The effects of blending silk fibroin and spidroin with natural and synthetic polymers on the mechanical properties are discussed in this review article. Indeed, combining natural and synthetic polymers with silk fibroin and spidroin changes their conformation and structure, fine-tuning the blends' mechanical properties. STATEMENT OF SIGNIFICANCE: Silkworm and spider silk proteins (silk fibroin and spidroin) are biocompatible and biodegradable natural polymers having different types of biomedical applications. Their mechanical and biological properties may be tuned through various strategies such as blending, conjugating and cross-linking. Blending is the most common method to modify fibroin and spidroin properties on demand, this review article aims to categorize and evaluate the effects of blending fibroin and spidroin with different natural and synthetic polymers. Increased polarity and hydrophilicity end to hydrogen bonding triggered conformational change in fibroin and spidroin blends. The effect of polarity and hydrophilicity of the blending compound is discussed and categorized to a combinatorial, synergistic and indirect impacts. This outlook guides us to choose the blending compounds mindfully as this mixing affects the biochemical and biophysical characteristics of the biomaterials.
Collapse
Affiliation(s)
- Narges Johari
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran.
| | - Azin Khodaei
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, The Netherlands.
| |
Collapse
|
18
|
Ghalei S, Douglass M, Handa H. Nitric Oxide-Releasing Gelatin Methacryloyl/Silk Fibroin Interpenetrating Polymer Network Hydrogels for Tissue Engineering Applications. ACS Biomater Sci Eng 2021; 8:273-283. [PMID: 34890206 DOI: 10.1021/acsbiomaterials.1c01121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial infection is one of the principal reasons for the failure of tissue engineering scaffolds. Therefore, the development of multifunctional scaffolds that not only are able to guide tissue regeneration but also can inhibit bacterial colonization is of great importance for tissue engineering applications. In this study, a highly antibacterial, biocompatible, and biodegradable scaffold based on silk fibroin (SF) and gelatin methacryloyl (GelMA) was prepared. Sequential cross-linking of GelMA and SF under UV irradiation and methanol treatment, respectively, resulted in the formation of interpenetrating network (IPN) hydrogels with a porous structure. In addition, impregnation of the hydrogels with a nitric oxide (NO) donor molecule, S-nitroso-N-acetylpenicillamine (SNAP), led to the development of NO-releasing scaffolds with strong antibacterial properties. According to the obtained results, the addition of SF to GelMA hydrogels caused an enhancement in the mechanical properties and NO release kinetics and prevented their rapid enzymatic degradation in aqueous media. Furthermore, swelling the GelMA-SF scaffolds with SNAP resulted in a bacteria reduction efficiency of >99.9% against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The scaffolds also showed great cytocompatibility in vitro by increasing the proliferation and supporting the adhesion of 3T3 mouse fibroblast cells. Overall, GelMA-SF-SNAP showed great promise to be used as a scaffold for tissue engineering and wound healing applications.
Collapse
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States.,Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
19
|
Meng Z, Wang L, Shen L, Li Z, Zhao Z, Wang X. Supercritical carbon dioxide assisted fabrication of biomimetic sodium alginate/silk fibroin nanofibrous scaffolds. J Appl Polym Sci 2021. [DOI: 10.1002/app.51421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhi‐Yuan Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Li Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Lin‐Yi Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Ze‐Hao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- Biomedical Materials and Engineering Research Center of Hubei Province Wuhan University of Technology Wuhan China
| | - Xin‐Yu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- Biomedical Materials and Engineering Research Center of Hubei Province Wuhan University of Technology Wuhan China
| |
Collapse
|