1
|
Wen S, He X, Wang J, Wen Z, Ai H, Cai M, Yang Y, Li H, Li S, Shi G, Xu A, Xiao Z, Shuai X, Chen Y. Endothelia-targeting eye drops deliver a STING inhibitor to effectively reduce retinal neovascularization in ischemic retinopathy. Biomaterials 2025; 323:123424. [PMID: 40408973 DOI: 10.1016/j.biomaterials.2025.123424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/02/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
Retinal neovascularization is the main pathologic feature of ischemic retinopathy, which eventually leads to vision loss and even blindness. Current treatments like laser photocoagulation and intravitreal injection of anti-vascular endothelial growth factor A drugs are invasive, expensive, and incompetent. Therefore, it is urgent to explore optimized therapies, particularly eye drops, to improve treatment effects. Our recent study reported that abnormal up-regulation of stimulator of interferon genes (STING) is closely associated with retinal vascular diseases, and it is highly enriched in retinal endothelial cells with retinopathy. Thus, we evaluated whether endothelial STING affects retinal neovascularization. In addition, we constructed iRGD- and TAT-decorated nanoparticles (NPs) loaded with C-176 (I/T-C-NP), capable of penetrating the cornea and targeting retinal endothelial cells. The I/T-C-NP eye drops were applied to the eyes of oxygen-induced retinopathy mice, resulting in attenuated activation of the STING pathway. Consequently, retinal neovascularization and vascular tortuosity were effectively reduced, astrocyte activation was prohibited, and pericyte coverage was improved. These observations suggest that I/T-C-NP eye drops can be a potential solution for the treatment of retinal neovascularization.
Collapse
Affiliation(s)
- Siying Wen
- Department of Endocrinology and Metabolic Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China; Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Xuemin He
- Department of Endocrinology and Metabolic Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China; Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Jiachen Wang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Zheyao Wen
- Department of Endocrinology and Metabolic Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China; Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Heying Ai
- Department of Endocrinology and Metabolic Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China; Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Mengyin Cai
- Department of Endocrinology and Metabolic Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China; Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Yi Yang
- Department of Endocrinology and Metabolic Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China; Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Hejun Li
- Department of Endocrinology and Metabolic Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China; Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Shasha Li
- Department of Endocrinology and Metabolic Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China; Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Guojun Shi
- Department of Endocrinology and Metabolic Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China; Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 999077, Hong Kong Special Administrative Region of China; Department of Medicine, The University of Hong Kong, 999077, Hong Kong Special Administrative Region of China
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China.
| | - Yanming Chen
- Department of Endocrinology and Metabolic Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China; Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China; Department of Endocrinology and Metabolic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518033, China.
| |
Collapse
|
2
|
Shi Q, Zhou J, Cheng J, Yin T. Time-performance relationship and the associated mechanism of tumor drug-efflux pump P-glycoprotein reversal induced by mild photothermal therapy. Int J Biol Macromol 2025; 307:141759. [PMID: 40049495 DOI: 10.1016/j.ijbiomac.2025.141759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Acquired multidrug resistance (MDR) has been the main cause leading to cancer therapy failure. Even though mild photothermal therapy (PTT) strategy has shown promise in overcoming tumor MDR, the detailed changing patterns of drug-resistant protein P-glycoprotein (P-gp) following photothermal treatment remains poorly understood. Herein, we utilized the iRGD-modified graphene oxide nanosheet (IPHG), a nanocarrier capable of tumor-targeted infiltration and photothermal conversion, to investigate the time-performance relationship and the associated mechanism of mild PTT-mediated P-gp regulation. For the first time we found that mild PTT could induce rapid reduction in P-gp levels within 3 h via ubiquitin-proteasome degradation. Doxorubicin (DOX)-loaded nanodrug (IPHG/DOX) was then fabricated to unveil the significance of P-gp reversal-synchronized drug release. The results exhibited that NIR-irradiated IPHG/DOX remarkably augmented intracellular DOX accumulation, increased DOX infiltration in tumor spheroids, and potentiated cytotoxicity against MCF-7/ADR cells. These novetherapys offer valuable insights into mild PTT-assisted MDR tumor therapies.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Medical College, Yancheng 224005, China.
| | - Jiyuan Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jiejie Cheng
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
3
|
Frigerio G, Motta S, Siani P, Donadoni E, Di Valentin C. Unveiling the drug delivery mechanism of graphene oxide dots at the atomic scale. J Control Release 2025; 379:344-362. [PMID: 39798704 DOI: 10.1016/j.jconrel.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Graphene oxide (GO) is an amphiphilic and versatile graphene-based nanomaterial that is extremely promising for targeted drug delivery, which aims to administer drugs in a spatially and temporally controlled manner. A typical GO nanocarrier features a polyethylene glycol coating and conjugation to an active targeting ligand. However, it is challenging to accurately model GO dots, because of their intrinsically complex and not unique structure. Here, realistic atomistic GO models are designed as homogeneously/inhomogeneously oxidized flakes and then coated with stealth polymeric chains conjugated to an active targeting ligand (PEG-cRGD). Doxorubicin (DOX) adsorption is investigated by metadynamics simulations for accelerated loading/release events. The presence of PEG and cRGD are found not to affect the DOX adsorption, whereas the homogeneity of oxidation plays a crucial role. We also proved that a change in pH towards acidic conditions causes a reduction in the GO/DOX affinity in line with a pH-triggered release mechanism. Based on this study, the ideal graphene-based DOX carrier is identified as a homogeneously highly oxidized GO where graphitic regions with strong DOX π-π stacking are limited. Such interactions excessively stabilize DOX and are not weakened by a pH-change. On the contrary, DOX interactions with surface oxidized groups are H-bonding and electrostatic, which can effectively be modified by a pH reduction. Our findings are useful to the experimental community to further develop successful drug delivery systems.
Collapse
Affiliation(s)
- Giulia Frigerio
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125, Milano, Italy
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, I-20126, Milano, Italy
| | - Paulo Siani
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125, Milano, Italy; BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy
| | - Edoardo Donadoni
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125, Milano, Italy
| | - Cristiana Di Valentin
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125, Milano, Italy; BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy.
| |
Collapse
|
4
|
Jia W, Wu Y, Xie Y, Yu M, Chen Y. Advanced Polymeric Nanoparticles for Cancer Immunotherapy: Materials Engineering, Immunotherapeutic Mechanism and Clinical Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413603. [PMID: 39797474 DOI: 10.1002/adma.202413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies. PNPs provide an optimal platform to amplify the potency and minimize systematic toxicity in a broad spectrum of immunotherapeutic modalities. In this comprehensive review, the basics of polymer chemistry, and state-of-the-art designs of PNPs from a physicochemical standpoint for cancer immunotherapy, encompassing therapeutic cancer vaccines, in situ vaccination, adoptive T-cell therapies, tumor-infiltrating immune cell-targeted therapies, therapeutic antibodies, and cytokine therapies are delineated. Each immunotherapy necessitates distinctively tailored design strategies in polymeric nanoplatforms. The extensive applications of PNPs, and investigation of their mechanisms of action for enhanced efficacy are particularly focused on. The safety profiles of PNPs and clinical research progress are discussed. Additionally, forthcoming developments and emergent trends of polymeric nano-immunotherapeutics poised to transform cancer treatment paradigms into clinics are explored.
Collapse
Affiliation(s)
- Wencong Jia
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Ye Wu
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Shanghai Institute of Materdicine, Shanghai, 200051, China
| |
Collapse
|
5
|
Li R, Wan C, Li Y, Jiao X, Liu T, Gu Y, Gao R, Liu J, Li B. Nanocarrier-based drug delivery system with dual targeting and NIR/pH response for synergistic treatment of oral squamous cell carcinoma. Colloids Surf B Biointerfaces 2024; 244:114179. [PMID: 39217727 DOI: 10.1016/j.colsurfb.2024.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is highly heterogeneous and aggressive, but therapies based on single-targeted nanoparticles frequently address these tumors as a single illness. To achieve more efficient drug transport, it is crucial to develop nanodrug-carrying systems that simultaneously target two or more cancer biomarkers. In addition, combining chemotherapy with near-infrared (NIR) light-mediated thermotherapy allows the thermal ablation of local malignancies via photothermal therapy (PTT), and triggers drug release to improve chemosensitivity. Thus, a novel dual-targeted nano-loading system, DOX@GO-HA-HN-1 (GHHD), was created for synergistic chemotherapy and PTT by the co-modification of carboxylated graphene oxide (GO) with hyaluronic acid (HA) and HN-1 peptide and loading with the anticancer drug doxorubicin (DOX). Targeted delivery using GHHD was shown to be superior to single-targeted nanoparticle delivery. NIR radiation will encourage the absorption of GHHD by tumor cells and cause the site-specific release of DOX in conjunction with the acidic microenvironment of the tumor. In addition, chemo-photothermal combination therapy for cancer treatment was realized by causing cell apoptosis under the irradiation of 808-nm laser. In summary, the application of GHHD to chemotherapy combined with photothermal therapy for OSCC is shown to have important potential as a means of combatting the low accumulation of single chemotherapeutic agents in tumors and drug resistance generated by single therapeutic means, enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China.
| | - Chaoqiong Wan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Yanwei Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Xiaofeng Jiao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Tiantian Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Yixuan Gu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Ruifang Gao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Jun Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China.
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China.
| |
Collapse
|
6
|
Luo Y, Chen M, Zhang T, Peng Q. 2D nanomaterials-based delivery systems and their potentials in anticancer synergistic photo-immunotherapy. Colloids Surf B Biointerfaces 2024; 242:114074. [PMID: 38972257 DOI: 10.1016/j.colsurfb.2024.114074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
As the field of cancer therapeutics evolves, integrating two-dimensional (2D) nanomaterials with photo-immunotherapy has emerged as a promising approach with significant potential to augment cancer treatment efficacy. These 2D nanomaterials include graphene-based 2D nanomaterials, 2D MXenes, 2D layered double hydroxides, black phosphorus nanosheets, 2D metal-organic frameworks, and 2D transition metal dichalcogenides. They exhibit high load capacities, multiple functionalization pathways, optimal biocompatibility, and physiological stability. Predominantly, they function as anti-tumor delivery systems, amalgamating diverse therapeutic modalities, most notably phototherapy and immunotherapy, and the former is a recognized non-invasive treatment modality, and the latter represents the most promising anti-cancer strategy presently accessible. Thus, integrating phototherapy and immunotherapy founded on 2D nanomaterials unveils a novel paradigm in the war against cancer. This review delineates the latest developments in 2D nanomaterials as delivery systems for synergistic photo-immunotherapy in cancer treatment. We elaborate on the burgeoning realm of photo-immunotherapy, exploring the interplay between phototherapy and enhanced immune cells, immune response modulation, or immunosuppressive tumor microenvironments. Notably, the strategies to augment photo-immunotherapy have also been discussed. Finally, we discuss the challenges and future perspectives of these 2D nanomaterials in photo-immunotherapy.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ming Chen
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Tang H, Zhang X, Bao Y, Shen H, Fan M, Wang Y, Xiang S, Ran X. Nucleic acid-functionalized gold nanoparticles as intelligent photothermal therapy agents for precise cancer treatment. NANOTECHNOLOGY 2024; 35:465101. [PMID: 39146957 DOI: 10.1088/1361-6528/ad6fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
We present an intelligent photothermal therapy agents by functionalizing gold nanoparticles with specific nucleic acid sequences. Hairpin nucleic acids are modified to the nanoparticles, forming AuNPs-1 and AuNPs-2. Upon infiltrating cancer cells, these nanoparticles undergo catalytic hairpin assembly in the presence of target miRNA, leading to aggregation and subsequent photothermal conversion. Under near-infrared laser irradiation, aggregated gold nanoparticles exhibit efficient photothermal conversion, selectively damaging cancer cells. This approach offers heightened selectivity, as nanoparticles only aggregate in environments with cancer biomarkers present, sparing normal cells. Cytotoxicity assays confirm minimal toxicity to normal cells. In vivo studies on mice bearing solid tumors validate the system's efficacy in tumor regression. Overall, this study highlights the potential of nucleic acid-functionalized gold nanoparticles in intelligent and selective cancer photothermal therapy, offering insights for targeted diagnosis and treatment development.
Collapse
Affiliation(s)
- Hongmei Tang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Xuetao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Yuyan Bao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Huazhen Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Minglan Fan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Yangchen Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Siyun Xiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Xiang Ran
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
8
|
Zhang S, Liu Y, Xie Y, Ding C, Zuo R, Guo Z, Qi S, Fu T, Chen W. Fe 3O 4@R837 Nanoplatform Enhances Chemical Dynamic Therapy and Immunotherapy: Integrated Transcriptomic Analysis Reveals Key Genes in Breast Cancer Prognosis. ACS Biomater Sci Eng 2024; 10:5274-5289. [PMID: 39056174 DOI: 10.1021/acsbiomaterials.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Breast cancer represents a substantial contributor to mortality rates among women with cancer. Chemical dynamic therapy is a promising anticancer strategy that utilizes the Fenton reaction to transform naturally occurring hydrogen peroxide (H2O2) into hydroxyl radicals (•OH). Additionally, cancer immunotherapy using immune drugs, such as imiquimod (R837), has shown promise in activating T cells to kill tumor cells. In this study, we proposed a Fe3O4@R837 smart nanoplatform that can trigger the Fenton reaction and induce immune responses in breast cancer treatment. Furthermore, we performed transcriptome sequencing on breast cancer samples and used the R package (limma) to analyze differential expression profiles and select differentially expressed genes (DEGs). We obtained clinical information and RNA expression matrix data from The Cancer Genome Atlas database to perform survival analysis and identify prognostic-related genes (PRGs) and molecular subtypes with distinct prognoses. We used the TIMER 2.0 web and other methods to determine the tumor immune microenvironment and immune status of different prognostic subtypes. We identified DPGs by taking the intersection of DEGs and PRGs and performed functional analyses, including gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, to elucidate potential mechanisms. Subsequently, we constructed a protein-protein interaction network using the STRING database to visualize the interactions between the DPGs. We screened hub genes from the DPGs using the Cytoscape plugin and identified six hub genes: CD3E, GZMK, CD27, SH2D1A, ZAP70, and TIGIT. Our results indicate that these six key genes regulate immune cell recruitment to increase T-cell cytotoxicity and kill tumors. Targeting these key genes can enhance immunotherapy and improve the breast cancer prognosis.
Collapse
Affiliation(s)
- Shichao Zhang
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, P. R. China
- The Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Yijiang Liu
- First Affiliate Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, P. R. China
| | - Yuhan Xie
- The Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Chenchun Ding
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, P. R. China
| | - Renjie Zuo
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, P. R. China
| | - Zhenzhen Guo
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, P. R. China
| | - Shiyong Qi
- The Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Tingting Fu
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Weibin Chen
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, P. R. China
| |
Collapse
|
9
|
Wang C, Pan J, Chen S, Qiu L, Hu H, Ji L, Wang J, Liu W, Ni X. Polyvinylpyrrolidone Assisted One-Pot Synthesis of Size-Tunable Cocktail Nanodrug for Multifunctional Combat of Cancer. Int J Nanomedicine 2024; 19:4339-4356. [PMID: 38774026 PMCID: PMC11107942 DOI: 10.2147/ijn.s459428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
Background The in vivo barriers and multidrug resistance (MDR) are well recognized as great challenges for the fulfillment of antitumor effects of current drugs, which calls for the development of novel therapeutic agents and innovative drug delivery strategies. Nanodrug (ND) combining multiple drugs with distinct modes of action holes the potential to circumvent these challenges, while the introduction of photothermal therapy (PTT) can give further significantly enhanced efficacy in cancer therapy. However, facile preparation of ND which contains dual drugs and photothermal capability with effective cancer treatment ability has rarely been reported. Methods In this study, we selected curcumin (Cur) and doxorubicin (Dox) as two model drugs for the creation of a cocktail ND (Cur-Dox ND). We utilized polyvinylpyrrolidone (PVP) as a stabilizer and regulator to prepare Cur-Dox ND in a straightforward one-pot method. Results The size of the resulting Cur-Dox ND can be easily adjusted by tuning the charged ratios. It was noted that both loaded drugs in Cur-Dox ND can realize their functions in the same target cell. Especially, the P-glycoprotein inhibition effect of Cur can synergistically cooperate with Dox, leading to enhanced inhibition of 4T1 cancer cells. Furthermore, Cur-Dox ND exhibited pH-responsive dissociation of loaded drugs and a robust photothermal translation capacity to realize multifunctional combat of cancer for photothermal enhanced anticancer performance. We further demonstrated that this effect can also be realized in 3D multicellular model, which possibly attributed to its superior drug penetration as well as photothermal-enhanced cellular uptake and drug release. Conclusion In summary, Cur-Dox ND might be a promising ND for better cancer therapy.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Jiaoyang Pan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Shaoqing Chen
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Li Ji
- Department of Otorhinolaryngology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Wenjia Liu
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Xinye Ni
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
10
|
Yuan S, Zhou J, Wang J, Ma X, Liu F, Chen S, Fan JX, Yan GP. Advances of Photothermal Agents with Fluorescence Imaging/Enhancement Ability in the Field of Photothermal Therapy and Diagnosis. Mol Pharm 2024; 21:467-480. [PMID: 38266250 DOI: 10.1021/acs.molpharmaceut.3c01073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Photothermal therapy (PTT) is an effective cancer treatment method. Due to its easy focusing and tunability of the irradiation light, direct and accurate local treatment can be performed in a noninvasive manner by PTT. This treatment strategy requires the use of photothermal agents to convert light energy into heat energy, thereby achieving local heating and triggering biochemical processes to kill tumor cells. As a key factor in PTT, the photothermal conversion ability of photothermal agents directly determines the efficacy of PTT. In addition, photothermal agents generally have photothermal imaging (PTI) and photoacoustic imaging (PAI) functions, which can not only guide the optimization of irradiation conditions but also achieve the integration of disease diagnosis. If the photothermal agents have function of fluorescence imaging (FLI) or fluorescence enhancement, they can not only further improve the accuracy in disease diagnosis but also accurately determine the tumor location through multimodal imaging for corresponding treatment. In this paper, we summarize recent advances in photothermal agents with FLI or fluorescence enhancement functions for PTT and tumor diagnosis. According to the different recognition sites, the application of specific targeting photothermal agents is introduced. Finally, limitations and challenges of photothermal agents with fluorescence imaging/enhancement in the field of PTT and tumor diagnosis are prospected.
Collapse
Affiliation(s)
- Siyi Yuan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jun Zhou
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Juntong Wang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - XiaoYu Ma
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fan Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Si Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Green Chemical Process Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jin-Xuan Fan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guo-Ping Yan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
11
|
Yang M, Zhang Y, Hu Z, Xie H, Tian W, Liu Z. Application of hyaluronic acid-based nanoparticles for cancer combination therapy. Int J Pharm 2023; 646:123459. [PMID: 37778513 DOI: 10.1016/j.ijpharm.2023.123459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Cancer is a significant public health problem in the world. The treatment methods include surgery, chemotherapy, phototherapy, and immunotherapy. Due to their respective limitations, the treatment effect is often unsatisfactory, laying hidden dangers for metastasis and recurrence. Since their exceptional biocompatibility and excellent targeting capabilities, hyaluronic acid-based biomaterials have generated great interest as drug delivery methods for tumor therapy. Moreover, modified HA can self-assemble into hydrogels or nanoparticles (NPs) for precise drug administration. This article summarizes the application of HA-based NPs in combination therapy. Ultimately, it is anticipated that this research will offer guidance for creating various HA-based NPs utilized in numerous cancer therapies.
Collapse
Affiliation(s)
- Mengru Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ying Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zheming Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Haonan Xie
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Wenli Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
12
|
Naderi N, Lalebeigi F, Sadat Z, Eivazzadeh-Keihan R, Maleki A, Mahdavi M. Recent advances on hyperthermia therapy applications of carbon-based nanocomposites. Colloids Surf B Biointerfaces 2023; 228:113430. [PMID: 37418814 DOI: 10.1016/j.colsurfb.2023.113430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/10/2023] [Accepted: 06/25/2023] [Indexed: 07/09/2023]
Abstract
Generally, hyperthermia is referred to the composites capability to increase local temperature in such a way that the generated heat would lead to cancerous or bacteria cells destruction, with minimum damage to normal tissue cells. Many different materials have been utilized for hyperthermia application via different heat generating methods. Carbon-based nanomaterials consisting of graphene oxide (GO), carbon nanotube (CNT), carbon dot (CD) and carbon quantum dot (CQD), nanodiamond (ND), fullerene and carbon fiber (CF), have been studied significantly for different applications including hyperthermia due to their biocompatibility, biodegradability, chemical and physical stability, thermal and electrical conductivity and in some cases photothermal conversion. Therefore, in this comprehensive review, a structure-based view on carbon nanomaterials application in hyperthermia therapy of cancer and bacteria via various methods such as optical, magnetic, ultrasonic and radiofrequency-induced hyperthermia is presented.
Collapse
Affiliation(s)
- Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Sun Z, Huang J, Fishelson Z, Wang C, Zhang S. Cell-Penetrating Peptide-Based Delivery of Macromolecular Drugs: Development, Strategies, and Progress. Biomedicines 2023; 11:1971. [PMID: 37509610 PMCID: PMC10377493 DOI: 10.3390/biomedicines11071971] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cell-penetrating peptides (CPPs), developed for more than 30 years, are still being extensively studied due to their excellent delivery performance. Compared with other delivery vehicles, CPPs hold promise for delivering different types of drugs. Here, we review the development process of CPPs and summarize the composition and classification of the CPP-based delivery systems, cellular uptake mechanisms, influencing factors, and biological barriers. We also summarize the optimization routes of CPP-based macromolecular drug delivery from stability and targeting perspectives. Strategies for enhanced endosomal escape, which prolong its half-life in blood, improved targeting efficiency and stimuli-responsive design are comprehensively summarized for CPP-based macromolecule delivery. Finally, after concluding the clinical trials of CPP-based drug delivery systems, we extracted the necessary conditions for a successful CPP-based delivery system. This review provides the latest framework for the CPP-based delivery of macromolecular drugs and summarizes the optimized strategies to improve delivery efficiency.
Collapse
Affiliation(s)
- Zhe Sun
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zvi Fishelson
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chenhui Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Gao Z, Qin S, Ménard-Moyon C, Bianco A. Applications of graphene-based nanomaterials in drug design: The good, the bad and the ugly. Expert Opin Drug Discov 2023; 18:1321-1332. [PMID: 37661858 DOI: 10.1080/17460441.2023.2251879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION Graphene-based materials (GBMs) have unique physicochemical properties that make them extremely attractive as platforms for the design of new drugs. Indeed, their bidimensional (2D) morphology, high surface area, mechanical and optical properties, associated to different possibilities for functionalization of their surface, provides opportunities for their use as nanomedicines for drug delivery and/or phototherapies. AREAS COVERED This opinion paper provides an overview of the current status of GBMs in drug design, with a focus on their therapeutic applications, potential environmental and health risks, and some controversial results. The authors discuss the chemical modifications of GBMs for the treatment of various diseases. The potential toxicity associated with some GBMs is also presented, along with a safe-by-design approach to minimize the risks. Finally, the authors address some issues associated to the use of GBMs in the biomedical field, such as contradictory antibacterial effects, fluorescence quenching and imprecise chemical functionalization. EXPERT OPINION GBMs are a promising and exciting area of research in drug delivery. It is however important that responsible and safe use of these materials is ensured to fully exploit their advantages and overcome their drawbacks.
Collapse
Affiliation(s)
- Zhengfeng Gao
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Siyao Qin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| |
Collapse
|
15
|
Li R, Liu C, Wan C, Liu T, Zhang R, Du J, Wang X, Jiao X, Gao R, Li B. A Targeted and pH-Responsive Nano-Graphene Oxide Nanoparticle Loaded with Doxorubicin for Synergetic Chemo-Photothermal Therapy of Oral Squamous Cell Carcinoma. Int J Nanomedicine 2023; 18:3309-3324. [PMID: 37351329 PMCID: PMC10284161 DOI: 10.2147/ijn.s402249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Purpose Oral squamous cell carcinoma (OSCC) is a malignant disease with serious impacts on human health and quality of life worldwide. This disease is traditionally treated through a combination of surgery, radiotherapy, and chemotherapy. However, the efficacy of traditional treatments is hindered by systemic toxicity, limited therapeutic effects, and drug resistance. Fibroblast activation protein (FAP) is a membrane-bound protease. Although FAP has limited expression in normal adult tissues, it is highly expressed in the tumor microenvironment of many solid cancers - a characteristic that makes it an ideal target for anticancer therapy. In this study, we constructed a nano-drug delivery system (NPF@DOX) targeting FAP to increase the therapeutic efficiency of synergistic chemo-photothermal therapy against OSCC. Methods We utilized PEGylated nano-graphene oxide (NGO) to link doxorubicin (DOX) and fluorescently-labeled, FAP-targeted peptide chains via hydrogen bonding and π-π bonding to enhance the targeting capability of NPF@DOX. The synthesis of NPF@DOX was analyzed using UV-Vis and FT-IR spectroscopy and its morphology using transmission electron microscopy (TEM). Additionally, the drug uptake efficiency in vitro, photo-thermal properties, release performance, and anti-tumor effects of NPF@DOX were evaluated and further demonstrated in vivo. Results Data derived from FT-IR, UV-Vis, and TEM implied successful construction of the NPF@DOX nano-drug delivery system. Confocal laser scanning microscopy images and in vivo experiments demonstrated the targeting effects of FAP on OSCC. Furthermore, NPF@DOX exhibited a high photothermal conversion efficiency (52.48%) under near-infrared radiation. The thermogenic effect of NPF@DOX simultaneously promoted local release of DOX and apoptosis based on a pH-stimulated effect. Importantly, FAP-targeted NPF@DOX in combination with PTT showed better tumor suppression performance in vivo and in vitro than did either therapy individually. Conclusion NPF@DOX can precisely target OSCC, and combined treatment with chemical and photothermal therapy can improve the therapeutic outcomes of OSCC. This method serves as an efficient therapeutic strategy for the development of synergistic anti-tumor research.
Collapse
Affiliation(s)
- Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Chen Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Chaoqiong Wan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Tiantian Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Rongrong Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Xiangyu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Xiaofeng Jiao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Ruifang Gao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
16
|
Duan S, Hu Y, Zhao Y, Tang K, Zhang Z, Liu Z, Wang Y, Guo H, Miao Y, Du H, Yang D, Li S, Zhang J. Nanomaterials for photothermal cancer therapy. RSC Adv 2023; 13:14443-14460. [PMID: 37180014 PMCID: PMC10172882 DOI: 10.1039/d3ra02620e] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer has emerged as a pressing global public health issue, and improving the effectiveness of cancer treatment remains one of the foremost challenges of modern medicine. The primary clinical methods of treating cancer, including surgery, chemotherapy and radiotherapy, inevitably result in some adverse effects on the body. However, the advent of photothermal therapy offers an alternative route for cancer treatment. Photothermal therapy relies on photothermal agents with photothermal conversion capability to eliminate tumors at high temperatures, which offers advantages of high precision and low toxicity. As nanomaterials increasingly play a pivotal role in tumor prevention and treatment, nanomaterial-based photothermal therapy has gained significant attention owing to its superior photothermal properties and tumor-killing abilities. In this review, we briefly summarize and introduce the applications of common organic photothermal conversion materials (e.g., cyanine-based nanomaterials, porphyrin-based nanomaterials, polymer-based nanomaterials, etc.) and inorganic photothermal conversion materials (e.g., noble metal nanomaterials, carbon-based nanomaterials, etc.) in tumor photothermal therapy in recent years. Finally, the problems of photothermal nanomaterials in antitumour therapy applications are discussed. It is believed that nanomaterial-based photothermal therapy will have good application prospects in tumor treatment in the future.
Collapse
Affiliation(s)
- Shufan Duan
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Yanling Hu
- Nanjing Polytechnic Institute Nanjing 210048 China
| | - Ying Zhao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 China
| | - Kaiyuan Tang
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Zhijing Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Zilu Liu
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Ying Wang
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Haiyang Guo
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Yuchen Miao
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Hengda Du
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau SAR China
| | - Junjie Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| |
Collapse
|
17
|
Wang WS, Ma XY, Zheng SY, Chen S, Fan JX, Liu F, Yan GP. Nucleus-Targeting Nanoplatform Based on Dendritic Peptide for Precise Photothermal Therapy. Polymers (Basel) 2023; 15:polym15071753. [PMID: 37050365 PMCID: PMC10096676 DOI: 10.3390/polym15071753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Photothermal therapy directly acting on the nucleus is a potential anti-tumor treatment with higher killing efficiency. However, in practical applications, it is often difficult to achieve precise nuclear photothermal therapy because agents are difficult to accurately anchor to the nucleus. Therefore, it is urgent to develop a nanoheater that can accurately locate the nucleus. Here, we designed an amphiphilic arginine-rich dendritic peptide (RDP) with the sequence CRRK(RRCG(Fmoc))2, and prepared a nucleus-targeting nanoplatform RDP/I by encapsulating the photothermal agent IR780 in RDP for precise photothermal therapy of the tumor nucleus. The hydrophobic group Fmoc of the dendritic peptide provides strong hydrophobic force to firmly encapsulate IR780, which improves the solubility and stability of IR780. Moreover, the arginine-rich structure facilitates cellular uptake of RDP/I and endows it with the ability to quickly anchor to the nucleus. The nucleus-targeting nanoplatform RDP/I showed efficient nuclear enrichment ability and a significant tumor inhibition effect.
Collapse
|
18
|
Zhang M, Ma H, Wang X, Yu B, Cong H, Shen Y. Polysaccharide-based nanocarriers for efficient transvascular drug delivery. J Control Release 2023; 354:167-187. [PMID: 36581260 DOI: 10.1016/j.jconrel.2022.12.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Polysaccharide-based nanocarriers (PBNs) are the focus of extensive investigation because of their biocompatibility, low cost, wide availability, and chemical versatility, which allow a wide range of anticancer agents to be loaded within the nanocarriers. Similar to other nanocarriers, most PBNs are designed to extravasate out of tumor vessels, depending on the enhanced permeability and retention (EPR) effect. However, the EPR effect is compromised in some tumors due to the heterogeneity of tumor structures. Transvascular transport efficacy is decreased by complex blood vessels and condensed tumor stroma. The limited extravasation impedes efficient drug delivery into tumor parenchyma, and thus affects the subsequent tumor accumulation, which hinders the therapeutic effect of PBNs. Therefore, overcoming the biological barriers that restrict extravasation from tumor vessels is of great importance in PBN design. Many strategies have been developed to enhance the EPR effect that involve nanocarrier property regulation and tumor structure remodeling. Moreover, some researchers have proposed active transcytosis pathways that are complementary to the paracellular EPR effect to increase the transvascular extravasation efficiency of PBNs. In this review, we summarize the recent advances in the design of PBNs with enhanced transvascular transport to enable optimization of PBNs in the extravasation of the drug delivery process. We also discuss the obstacles and challenges that need to be addressed to clarify the transendothemial mechanism of PBNs and the potential interactions between extravasation and other drug delivery steps.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - He Ma
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xijie Wang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
19
|
Zhu J, He G, Chen PH, Zhang Y, Zhang Y, Lei S, Zhang Y, Li M, Huang P, Lin J. Terpyridine-Grafted Nitrogen-Terminal Endowing Cyanine with Metal-Ion-Regulated Photophysical Properties for Cancer Theranostics. RESEARCH (WASHINGTON, D.C.) 2023; 6:0061. [PMID: 36930757 PMCID: PMC10013959 DOI: 10.34133/research.0061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Heptamethine cyanines (Cy7) are one of the most important dyes in bioimaging and phototherapy, but they often suffer from poor photostability or limited photothermal conversion efficiency. Here, a facile molecular engineering approach to regulating the photophysical properties of Cy7 by metal ions is demonstrated. By innovatively modifying the nitrogen with functional groups, a novel terpyridine-grafted nitrogen-terminated Cy7 scaffold (denoted as CydtPy) was synthesized and exhibited tunable photophysical properties when chelating with various metal ions (Mn2+, Fe2+, etc.). In comparison with metal-ion-free PEGylated CydtPy (LET-11), Mn2+-chelated LET-11 (namely, LET-11-Mn) exhibited the increased fluorescence emission intensity, and Fe2+-chelated LET-11 (namely, LET-11-Fe) showed the enhanced photostability with ~2-fold increase in photothermal conversion efficiency. By simply switching the chelated metal ion species, LET-11-Mn or LET-11-Fe could be used for near-infrared fluorescence imaging, magnetic resonance imaging, or photoacoustic imaging. Furthermore, LET-11-Fe displayed superior synergistic efficacy of photothermal therapy and chemodynamic therapy both in vitro and in vivo. This work not only provides a new strategy for regulating the photophysical properties of cyanine dyes but also establishes a versatile nanoplatform for cancer theranostics.
Collapse
Affiliation(s)
- Junfei Zhu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Gang He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Peng-Hang Chen
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yajie Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yafei Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yu Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Meng Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
20
|
Li D, Li J, Wang S, Teng W, Wang Q. Combined Self-Assembled iRGD Polymersomes for Effective Targeted siRNA Anti-Tumor Therapy. Int J Nanomedicine 2022; 17:5679-5696. [PMID: 36457549 PMCID: PMC9707323 DOI: 10.2147/ijn.s383862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/15/2022] [Indexed: 04/11/2024] Open
Abstract
INTRODUCTION iRGD is usually used as a motif to modify siRNA-nanodelivery vectors to improve tumor-targeting and penetration. However, most of the modifications are realized by covalent conjugation, which normally requires complex preparation processes possibly with low conjugation efficiency and yield, and might lower its bioactivity. To avoid this, here, we presented an alternative physical method to decorate iRGD on nanopolymersomes via facile self-assembly in water. METHODS siVEGF was chosen as a siRNA model, and lipopolysaccharide-amine nanopolymersomes (NPs), an efficient cytosolic delivery vector developed by our group, was used as an original vector. By successively incubating siVEGF with NPs, followed by adding iRGD, a siVEGF-loaded NPs functionalized with iRGD (siRNA/iRGD-NPs) was obtained. The properties of iRGD-NPs or siRNA/iRGD-NPs were evaluated in vitro and in vivo. RESULTS iRGD is efficiently introduced onto NPs with different amounts, which can be precisely controlled by the feeding ratio. The introduced iRGD keeps tumor-targeting and -penetrating bioactivity, which endows iRGD-NPs with ~100% of tumor-cell uptake and excellent tumor spheroid-penetration, and thus iRGD-NPs can efficiently deliver siVEGF to significantly inhibit angiogenesis in zebrafish and tumor growth in nude mice bearing breast cancer without obvious toxicity. CONCLUSION This study provides a facile physical method to decorate nanodelivery vectors with iRGD for effective targeted siRNA anti-tumor therapy.
Collapse
Affiliation(s)
- Dongying Li
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jiarun Li
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Siwei Wang
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wei Teng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qinmei Wang
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
21
|
Wang C, Cheng X, Peng H, Zhang Y. NIR-Triggered and ROS-Boosted Nanoplatform for Enhanced Chemo/PDT/PTT Synergistic Therapy of Sorafenib in Hepatocellular Carcinoma. NANOSCALE RESEARCH LETTERS 2022; 17:92. [PMID: 36125619 PMCID: PMC9489827 DOI: 10.1186/s11671-022-03729-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 05/27/2023]
Abstract
Although being the first-line treatment of advanced hepatocellular carcinoma (HCC), sorafenib (SOR) outcome is limited due to drug resistance and low tumor accumulation. Herein, with MnO2 as photothermal agent and chlorine6 (Ce6) as photosensitizer, a tumor-targeting and NIR-triggered multifunctional nanoplatform loading sorafenib (MnO2-SOR-Ce6@PDA-PEG-FA, MSCPF) was constructed. Owing to oxygen generator MnO2, MSCPF could generate excessive ROS, thus can alleviate tumor hypoxia and improve sorafenib accumulation in cancer cells. Besides, ROS production further strengthens Ce6-mediated PDT and PDA-mediated PTT. By exploiting these features, MSCPF exhibited excellent antitumor effects on HCC in the in vitro and in vivo studies, compared to solo sorafenib or PDT/PTT treatment. Further mechanism experiments suggested that MSCPF could inhibit P-gp expression and induce ferroptosis via deactivation of GPX4 and SLC7A11, which ultimately enhanced the antitumor efficacy of SOR. In summary, our work highlights a promising NIR-triggered and ROS-boosted nanoplatform for enhanced chemo/PDT/PTT synergistic therapy of SOR in HCC treatment.
Collapse
Affiliation(s)
- Chonggao Wang
- Medical School, Southeast University, Nanjing, 210009, China
- Nanjing Hospital of Chinese Medicine, Nanjing, 210000, China
| | - Xiaolan Cheng
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Yewei Zhang
- Medical School, Southeast University, Nanjing, 210009, China.
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
22
|
Itoo AM, Vemula SL, Gupta MT, Giram MV, Kumar SA, Ghosh B, Biswas S. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J Control Release 2022; 350:26-59. [PMID: 35964787 DOI: 10.1016/j.jconrel.2022.08.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 02/07/2023]
Abstract
Recent advancements in nanotechnology have enabled us to develop sophisticated multifunctional nanoparticles or nanosystems for targeted diagnosis and treatment of several illnesses, including cancers. To effectively treat any solid tumor, the therapy should preferably target just the malignant cells/tissue with minor damage to normal cells/tissues. Graphene oxide (GO) nanoparticles have gained considerable interest owing to their two-dimensional planar structure, chemical/mechanical stability, excellent photosensitivity, superb conductivity, high surface area, and good biocompatibility in cancer therapy. Many compounds have been functionalized on the surface of GO to increase their biological applications and minimize cytotoxicity. The review presents an overview of the physicochemical characteristics, strategies for various modifications, toxicity and biocompatibility of graphene and graphene oxide, current trends in developing GO-based nano constructs as a drug delivery cargo and other biological applications, including chemo-photothermal therapy, chemo-photodynamic therapy, bioimaging, and theragnosis in cancer. Further, the review discusses the challenges and opportunities of GO, GO-based nanomaterials for the said applications. Overall, the review focuses on the therapeutic potential of strategically developed GO nanomedicines and comprehensively discusses their opportunities and challenges in cancer therapy.
Collapse
Affiliation(s)
- Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sree Lakshmi Vemula
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Mahima Tejasvni Gupta
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Mahesh Vilasrao Giram
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sangishetty Akhil Kumar
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India.
| |
Collapse
|
23
|
Xu C, Yao S, Jiang P, Wang C, Hu J, Wan J, Hu Z, Wang B. Nanoarchitectured Graphene Organic Framework for Drug Delivery and Chemo-photothermal Synergistic Therapy. J Biomater Appl 2022; 37:751-763. [PMID: 35699979 DOI: 10.1177/08853282221108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The combination of phototherapy and chemotherapy has received extensive attention in the field of cancer therapy. Hence, graphene organic framework (GOF) with a large d-spacing was prepared by solvothermal method, and a novel nanocomposite based on bovine serum albumin (BSA) and the anticancer drug doxorubicin (DOX) was developed, which effectively achieved a photothermal-chemotherapy synergistic treatment. When the feeding ratio was 1:1.6, the DOX loading capacity was 18.51%, and the GOF-BSA/DOX nanocomposite possessed unobvious pH response characteristic, as well as the cumulative release of DOX reached 54.17% at 42°C in the acidic environment (pH = 5.0). The nanocarriers also showed excellent photothermal property and photothermal stability in vitro. In addition, under 808 nm near-infrared laser (NIR) irradiation, the GOF-BSA/DOX nanocomposites generated a large amount of heat, which significantly enhanced the synergistic antitumor effect of in vitro photothermal-chemotherapy. Furthermore, the GOF-BSA/DOX nanocomposites exhibited significantly increased cytotoxicity in the NIR compared with chemotherapy or photothermal therapy alone, suggesting that the combination of chemotherapy and photothermal therapy has excellent antitumor capacity. Therefore, porous GOF nanocarriers may have great potential in combined anti-tumour therapy.
Collapse
Affiliation(s)
- Chengfeng Xu
- 12646Zhejiang Sci-Tech University, Hangzhou, China
| | - Shuting Yao
- 12646Zhejiang Sci-Tech University, Hangzhou, China
| | - Peng Jiang
- 12646Zhejiang Sci-Tech University, Hangzhou, China
| | - Cui Wang
- 12646Zhejiang Sci-Tech University, Hangzhou, China
| | - Jinhua Hu
- 12646Zhejiang Sci-Tech University, Hangzhou, China
| | - Junmin Wan
- 12646Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhiwen Hu
- 12646Zhejiang Sci-Tech University, Hangzhou, China
| | - Bing Wang
- 12646Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
24
|
Ouyang J, Rao S, Liu R, Wang L, Chen W, Tao W, Kong N. 2D materials-based nanomedicine: From discovery to applications. Adv Drug Deliv Rev 2022; 185:114268. [PMID: 35398466 DOI: 10.1016/j.addr.2022.114268] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/11/2022] [Accepted: 04/02/2022] [Indexed: 01/14/2023]
Abstract
Due to their unique physicochemical characteristics, 2D materials have attracted more and more attention in the biomedicine field. Currently, 2D materials-based nanomedicines have been extensively applied in various diseases including cancer, bacterial infection, tissue engineering, biological protection, neurodegenerative diseases, and cardiovascular disease. Depending on their various characteristics, these 2D nanomedicines exert their therapeutic effect in different ways, showing great clinical application prospects. Herein, we focus on the various biomedical applications of 2D materials-based nanomedicine. The structures and characteristics of several typical 2D nanomaterials with different configurations and their corresponding biomedical applications are first introduced. Then, the potential of 2D nanomedicines on therapeutic and imaging and their biological functionalization are discussed. Furthermore, the therapeutic potentials of 2D nanomedicines in various diseases are also comprehensively summarized. At last, the challenges and perspectives for the advancement of 2D nanomedicines in clinical transformation are outlooks.
Collapse
Affiliation(s)
- Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Siyuan Rao
- Guangzhou University of Chinese Medicine, Guangzhou, China & Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Runcong Liu
- Zhuhai Hospital Affiliated, Jinan University, Zhuhai, Guangdong 519000, China
| | - Liqiang Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China; Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
The Microstructure, Antibacterial and Antitumor Activities of Chitosan Oligosaccharides and Derivatives. Mar Drugs 2022; 20:md20010069. [PMID: 35049924 PMCID: PMC8781119 DOI: 10.3390/md20010069] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan obtained from abundant marine resources has been proven to have a variety of biological activities. However, due to its poor water solubility, chitosan application is limited, and the degradation products of chitosan oligosaccharides are better than chitosan regarding performance. Chitosan oligosaccharides have two kinds of active groups, amino and hydroxyl groups, which can form a variety of derivatives, and the properties of these derivatives can be further improved. In this review, the key structures of chitosan oligosaccharides and recent studies on chitosan oligosaccharide derivatives, including their synthesis methods, are described. Finally, the antimicrobial and antitumor applications of chitosan oligosaccharides and their derivatives are discussed.
Collapse
|
26
|
Chen S, Li J, Ma X, Liu F, Yan G. Cationic Peptide-Modified Gold Nanostars as Efficient Delivery Platform for RNA Interference Antitumor Therapy. Polymers (Basel) 2021; 13:polym13213764. [PMID: 34771323 PMCID: PMC8587007 DOI: 10.3390/polym13213764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
siRNA interference therapy can silence tumor cell target genes and specifically regulate tumor cell behavior and function, which is an effective antitumor therapy. However, in somatic circulation, naked siRNAs are not only susceptible to degrade, but it is also difficult to realize the tumor cells' internalization. Therefore, novel siRNA delivery vectors that could promote efficacy need to be developed urgently. Here, we designed high-surface gold nanostars (GNS-P) which are decorated with cationic tumor-targeting peptide as an efficient and functional siRNA delivery nanoplatform for tumor therapy. The positively charged amino acid sequence and huge surface area enabled the vector to load a large amount of siRNA, while the tumor-targeting peptide sequence and nano size enabled it to rapidly and precisely target the tumor regions for fast and effective siRNA delivery. This tumor-targeting nanoplatform, GNS-P, displayed good biocompatibility, low toxicity and an extraordinary tumor accumulation capability.
Collapse
Affiliation(s)
- Si Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.L.); (X.M.); (F.L.)
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Correspondence: (S.C.); (G.Y.)
| | - Jiguang Li
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.L.); (X.M.); (F.L.)
| | - Xiaoyu Ma
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.L.); (X.M.); (F.L.)
| | - Fan Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.L.); (X.M.); (F.L.)
| | - Guoping Yan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (J.L.); (X.M.); (F.L.)
- Correspondence: (S.C.); (G.Y.)
| |
Collapse
|