1
|
Fu S, Dong S, Shen H, Chen Z, Ma G, Cai M, Huang C, Peng Q, Bai C, Dong Y, Liu H, Yang T, Xu T. Multifunctional Magnetic Catheter Robot with Triaxial Force Sensing Capability for Minimally Invasive Surgery. RESEARCH (WASHINGTON, D.C.) 2025; 8:0681. [PMID: 40276100 PMCID: PMC12018763 DOI: 10.34133/research.0681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/09/2025] [Accepted: 03/30/2025] [Indexed: 04/26/2025]
Abstract
Magnetic continuum robots offer flexibility and controllability, making them promising for minimally invasive surgery (MIS). However, the clinical application of these robots is relatively limited due to the difficulty of integrating miniaturized triaxial force sensors and their single functionality. This paper proposes a multifunctional magnetic catheter robot with magnetic actuation steering and triaxial force-sensing capabilities. The robot features 3 channels at its tip that integrate multi-segmented magnets, a novel triaxial force sensor, and various functional instruments. The sensor is calibrated, demonstrating high sensitivity and accuracy. The steering characterization of the robot confirms that the catheter tip exhibits effective flexibility and force sensing. Palpation experiments involving various hard lumps are performed on porcine kidney, with results verifying that the robot can reliably detect abnormal hard lumps within tissues. Additionally, palpation experiments in bronchial phantom demonstrate the robot's imaging and palpation capabilities for lung nodules with an integrated endoscope. Further, the robot, equipped with biopsy forceps, successfully performs palpation and biopsy functions on simulated stomach polyps, demonstrating its capability for effective tissue manipulation. By leveraging force-sensing capabilities and integrating multifunctional instruments, the robot shows potential for expanded applications in MIS, paving the way for important advancements in clinical procedures.
Collapse
Affiliation(s)
- Shixiong Fu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiyuan Dong
- School of Physics and Electronic Engineering,
Chongqing Normal University, Chongqing, China
| | - Haolan Shen
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiqiang Chen
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoyao Ma
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingxue Cai
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
| | - Chenyang Huang
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
| | - Qianbi Peng
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenyao Bai
- The Academy for Engineering and Technology,
Fudan University, Shanghai, China
| | - Yuming Dong
- The Research Centre for Opto-Electronic Engineering and Technology, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
| | - Huanhuan Liu
- The Research Centre for Opto-Electronic Engineering and Technology, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
| | - Tianyu Yang
- The Research Centre for Opto-Electronic Engineering and Technology, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
- The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
2
|
Jalandhra GK, Srethbhakdi L, Davies J, Nguyen CC, Phan PT, Och Z, Ashok A, Lim KS, Phan HP, Do TN, Lovell NH, Rnjak-Kovacina J. Materials Advances in Devices for Heart Disease Interventions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420114. [PMID: 40244561 DOI: 10.1002/adma.202420114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/07/2025] [Indexed: 04/18/2025]
Abstract
Heart disease encompasses a range of conditions that affect the heart, including coronary artery disease, arrhythmias, congenital heart defects, heart valve disease, and conditions that affect the heart muscle. Intervention strategies can be categorized according to when they are administered and include: 1) Monitoring cardiac function using sensor technology to inform diagnosis and treatment, 2) Managing symptoms by restoring cardiac output, electrophysiology, and hemodynamics, and often serving as bridge-to-recovery or bridge-to-transplantation strategies, and 3) Repairing damaged tissue, including myocardium and heart valves, when management strategies are insufficient. Each intervention approach and technology require specific material properties to function optimally, relying on materials that support their action and interface with the body, with new technologies increasingly depending on advances in materials science and engineering. This review explores material properties and requirements driving innovation in advanced intervention strategies for heart disease and highlights key examples of recent progress in the field driven by advances in materials research.
Collapse
Affiliation(s)
- Gagan K Jalandhra
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lauryn Srethbhakdi
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - James Davies
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Phuoc Thien Phan
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zachary Och
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Aditya Ashok
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Tyree Institute of Health Engineering (IHealthE), University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Tyree Institute of Health Engineering (IHealthE), University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Hwang J, Kim B, Jin C, Lee G, Jeong H, Lee H, Noh J, Lim SJ, Kim JY, Choi H. Shortwave Infrared Imaging of a Quantum Dot-Based Magnetic Guidewire Toward Non-Fluoroscopic Peripheral Vascular Interventions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404251. [PMID: 39175372 DOI: 10.1002/smll.202404251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Peripheral vascular interventions (PVIs) offer several benefits to patients with lower extremity arterial diseases, including reduced pain, simpler anesthesia, and shorter recovery time, compared to open surgery. However, to monitor the endovascular tools inside the body, PVIs are conducted under X-ray fluoroscopy, which poses serious long-term health risks to physicians and patients. Shortwave infrared (SWIR) imaging of quantum dots (QDs) has shown great potential in bioimaging due to the non-ionizing penetration of SWIR light through tissues. In this paper, a QD-based magnetic guidewire and its system is introduced that allows X-ray-free detection under SWIR imaging and precise steering via magnetic manipulation. The QD magnetic guidewire contains a flexible silicone tube encapsulating a QD polydimethylsiloxane (PDMS) composite, where HgCdSe/HgS/CdS/CdZnS/ZnS/SiO2 core/multi-shell QDs are dispersed in the PDMS matrix for SWIR imaging upon near-infrared excitation, as well as a permanent magnet for magnetic steering. The SWIR penetration of the QD magnetic guidewire is investigated within an artificial tissue model (1% Intralipid) and explore the potential for non-fluoroscopic PVIs within a vascular phantom model. The QD magnetic guidewire is biocompatible in its entirety, with excellent resistance to photobleaching and chemical alteration, which is a promising sign for its future clinical implementation.
Collapse
Affiliation(s)
- Junsun Hwang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
- Robotics and Mechatronics Engineering Research Center, DGIST, Daegu, 42988, Republic of Korea
- Institute of Mechanical Engineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Beomjoo Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Chaewon Jin
- Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea
| | - Gyudong Lee
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
- Division of Nanotechnology, DGIST, Daegu, 42988, Republic of Korea
| | - Hwajun Jeong
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
- Division of Nanotechnology, DGIST, Daegu, 42988, Republic of Korea
| | - Hyunki Lee
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
- Division of Intelligent Robotics, DGIST, Daegu, 42988, Republic of Korea
| | - Jonggu Noh
- Division of Intelligent Robotics, DGIST, Daegu, 42988, Republic of Korea
| | - Sung Jun Lim
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
- Division of Nanotechnology, DGIST, Daegu, 42988, Republic of Korea
| | - Jin-Young Kim
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
- Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea
- Department of Interdisciplinary Engineering, DGIST, Daegu, 42988, Republic of Korea
| | - Hongsoo Choi
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
- Robotics and Mechatronics Engineering Research Center, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
4
|
Li Z, Xu Q. Multi-Section Magnetic Soft Robot with Multirobot Navigation System for Vasculature Intervention. CYBORG AND BIONIC SYSTEMS 2024; 5:0188. [PMID: 39610760 PMCID: PMC11602701 DOI: 10.34133/cbsystems.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 11/30/2024] Open
Abstract
Magnetic soft robots have recently become a promising technology that has been applied to minimally invasive cardiovascular surgery. This paper presents the analytical modeling of a novel multi-section magnetic soft robot (MS-MSR) with multi-curvature bending, which is maneuvered by an associated collaborative multirobot navigation system (CMNS) with magnetic actuation and ultrasound guidance targeted for intravascular intervention. The kinematic and dynamic analysis of the MS-MSR's telescopic motion is performed using the optimized Cosserat rod model by considering the effect of an external heterogeneous magnetic field, which is generated by a mobile magnetic actuation manipulator to adapt to complex steering scenarios. Meanwhile, an extracorporeal mobile ultrasound navigation manipulator is exploited to track the magnetic soft robot's distal tip motion to realize a closed-loop control. We also conduct a quadratic programming-based optimization scheme to synchronize the multi-objective task-space motion of CMNS with null-space projection. It allows the formulation of a comprehensive controller with motion priority for multirobot collaboration. Experimental results demonstrate that the proposed magnetic soft robot can be successfully navigated within the multi-bifurcation intravascular environment with a shape modeling error 3.62 ± 1.28 ∘ and a tip error of 1.08 ± 0.45 mm under the actuation of a CMNS through in vitro ultrasound-guided vasculature interventional tests.
Collapse
Affiliation(s)
- Zhengyang Li
- Department of Electromechanical Engineering, Faculty of Science and Technology,
University of Macau, Macau, China
| | - Qingsong Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology,
University of Macau, Macau, China
| |
Collapse
|
5
|
Iacovacci V, Diller E, Ahmed D, Menciassi A. Medical Microrobots. Annu Rev Biomed Eng 2024; 26:561-591. [PMID: 38594937 DOI: 10.1146/annurev-bioeng-081523-033131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Scientists around the world have long aimed to produce miniature robots that can be controlled inside the human body to aid doctors in identifying and treating diseases. Such microrobots hold the potential to access hard-to-reach areas of the body through the natural lumina. Wireless access has the potential to overcome drawbacks of systemic therapy, as well as to enable completely new minimally invasive procedures. The aim of this review is fourfold: first, to provide a collection of valuable anatomical and physiological information on the target working environments together with engineering tools for the design of medical microrobots; second, to provide a comprehensive updated survey of the technological state of the art in relevant classes of medical microrobots; third, to analyze currently available tracking and closed-loop control strategies compatible with the in-body environment; and fourth, to explore the challenges still in place, to steer and inspire future research.
Collapse
Affiliation(s)
- Veronica Iacovacci
- Department of Excellence Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; ,
| | - Eric Diller
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Robotics Institute, University of Toronto, Toronto, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Daniel Ahmed
- Acoustic Robotics Systems Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Rüschlikon, Switzerland
| | - Arianna Menciassi
- Department of Excellence Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; ,
| |
Collapse
|
6
|
Hu X, Kim K, Ali A, Kim H, Kang Y, Yoon J, Torati SR, Reddy V, Im MY, Lim B, Kim C. Magnetically Selective Versatile Transport of Microrobotic Carriers. SMALL METHODS 2024; 8:e2301495. [PMID: 38308323 DOI: 10.1002/smtd.202301495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Indexed: 02/04/2024]
Abstract
Field-driven transport systems offer great promise for use as biofunctionalized carriers in microrobotics, biomedicine, and cell delivery applications. Despite the construction of artificial microtubules using several micromagnets, which provide a promising transport pathway for the synchronous delivery of microrobotic carriers to the targeted location inside microvascular networks, the selective transport of different microrobotic carriers remains an unexplored challenge. This study demonstrated the selective manipulation and transport of microrobotics along a patterned micromagnet using applied magnetic fields. Owing to varied field strengths, the magnetic beads used as the microrobotic carriers with different sizes revealed varied locomotion, including all of them moving along the same direction, selective rotation, bidirectional locomotion, and all of them moving in a reversed direction. Furthermore, cells immobilized with magnetic beads and nanoparticles also revealed varied locomotion. It is expected that such steering strategies of microrobotic carriers can be used in microvascular channels for the targeted delivery of drugs or cells in an organized manner.
Collapse
Affiliation(s)
- Xinghao Hu
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Keonmok Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Abbas Ali
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Hyeonseol Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Yumin Kang
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Jonghwan Yoon
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Sri Ramulu Torati
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Venu Reddy
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Mi-Young Im
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- Center for X-ray Optics, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, 94720, USA
| | - Byeonghwa Lim
- Department of Smart Sensor Engineering, Andong National University, Andong, 36729, Republic of Korea
| | - CheolGi Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
7
|
Lu K, Zhou C, Li Z, Liu Y, Wang F, Xuan L, Wang X. Multi-level magnetic microrobot delivery strategy within a hierarchical vascularized organ-on-a-chip. LAB ON A CHIP 2024; 24:446-459. [PMID: 38095230 DOI: 10.1039/d3lc00770g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Targeted microrobotic delivery within the circulatory system holds significant potential for medical theranostic applications. Existing delivery strategies of microrobots encounter challenges such as slow speed, limited navigation control, and dispersal under dynamic flow conditions. Furthermore, within the realm of microrobots, in vitro testing platforms often lack essential biological microenvironments, while in vivo studies conducted on animal models are constrained by limited detection resolution. In this study, we propose a multi-level magnetic delivery strategy that integrates a tethered microrobotic guidewire and untethered swimming microrobots. The amalgamation compensates for their inherent constraints, ensuring a robust and highly efficient delivery of microrobots under complex physiological conditions over extensive distances. Concurrently, a hierarchical vascular network encompassing engineered arteries/veins and capillary networks was constructed by integrating vasculogenesis and endothelial cell (EC) lining strategies, thereby providing an in vivo-like testing platform for microrobots. Experimental evidence demonstrates that the flexible microrobotic guidewire can be precisely directed to any entrance of the second-tier branches, with its inner lumen providing an "express lane" for rapid passage of microrobots through complex fluidic environments without direct contact. After release, dynamically assembled swarms could effectively locomote on the micro-topography of the EC-lined channel surface without becoming trapped and congregate within specified regions inside capillary lumens when guided collectively by a biologically safe magnetic field. Additionally, the superparamagnetic capabilities of microrobotic swarms ensure their dissolution into monodispersed entities upon withdrawal of the magnetic field, mitigating the risk of intravascular thrombosis. The hierarchical vascularized organ-on-a-chip platform establishes a comprehensive testing platform that integrates imaging, control, and a functional 3D microvascular environment, thereby enhancing its suitability for microrobotic applications encompassing targeted drug delivery, thrombus ablation, sensing and diagnosis, etc.
Collapse
Affiliation(s)
- Kangyi Lu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chenyang Zhou
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhangjie Li
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yijun Liu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Feifan Wang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lian Xuan
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolin Wang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
8
|
Bo Y, Wang H, Niu H, He X, Xue Q, Li Z, Yang H, Niu F. Advancements in materials, manufacturing, propulsion and localization: propelling soft robotics for medical applications. Front Bioeng Biotechnol 2024; 11:1327441. [PMID: 38260727 PMCID: PMC10800571 DOI: 10.3389/fbioe.2023.1327441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Soft robotics is an emerging field showing immense potential for biomedical applications. This review summarizes recent advancements in soft robotics for in vitro and in vivo medical contexts. Their inherent flexibility, adaptability, and biocompatibility enable diverse capabilities from surgical assistance to minimally invasive diagnosis and therapy. Intelligent stimuli-responsive materials and bioinspired designs are enhancing functionality while improving biocompatibility. Additive manufacturing techniques facilitate rapid prototyping and customization. Untethered chemical, biological, and wireless propulsion methods are overcoming previous constraints to access new sites. Meanwhile, advances in tracking modalities like computed tomography, fluorescence and ultrasound imaging enable precision localization and control enable in vivo applications. While still maturing, soft robotics promises more intelligent, less invasive technologies to improve patient care. Continuing research into biocompatibility, power supplies, biomimetics, and seamless localization will help translate soft robots into widespread clinical practice.
Collapse
Affiliation(s)
- Yunwen Bo
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Haochen Wang
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hui Niu
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyang He
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Quhao Xue
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zexi Li
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hao Yang
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Fuzhou Niu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
9
|
Yan Y, Wang T, Zhang R, Liu Y, Hu W, Sitti M. Magnetically assisted soft milli-tools for occluded lumen morphology detection. SCIENCE ADVANCES 2023; 9:eadi3979. [PMID: 37585531 PMCID: PMC10431716 DOI: 10.1126/sciadv.adi3979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Methodologies based on intravascular imaging have revolutionized the diagnosis and treatment of endovascular diseases. However, current methods are limited in detecting, i.e., visualizing and crossing, complicated occluded vessels. Therefore, we propose a miniature soft tool comprising a magnet-assisted active deformation segment (ADS) and a fluid drag-driven segment (FDS) to visualize and cross the occlusions with various morphologies. First, via soft-bodied deformation and interaction, the ADS could visualize the structure details of partial occlusions with features as small as 0.5 millimeters. Then, by leveraging the fluidic drag from the pulsatile flow, the FDS could automatically detect an entry point selectively from severe occlusions with complicated microchannels whose diameters are down to 0.2 millimeters. The functions have been validated in both biologically relevant phantoms and organs ex vivo. This soft tool could help enhance the efficacy of minimally invasive medicine for the diagnosis and treatment of occlusions in various circulatory systems.
Collapse
Affiliation(s)
- Yingbo Yan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China
| | - Tianlu Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Rongjing Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Yilun Liu
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
10
|
Lee JG, Raj RR, Day NB, Shields CW. Microrobots for Biomedicine: Unsolved Challenges and Opportunities for Translation. ACS NANO 2023; 17:14196-14204. [PMID: 37494584 PMCID: PMC10928690 DOI: 10.1021/acsnano.3c03723] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Microrobots are being explored for biomedical applications, such as drug delivery, biological cargo transport, and minimally invasive surgery. However, current efforts largely focus on proof-of-concept studies with nontranslatable materials through a "design-and-apply" approach, limiting the potential for clinical adaptation. While these proof-of-concept studies have been key to advancing microrobot technologies, we believe that the distinguishing capabilities of microrobots will be most readily brought to patient bedsides through a "design-by-problem" approach, which involves focusing on unsolved problems to inform the design of microrobots with practical capabilities. As outlined below, we propose that the clinical translation of microrobots will be accelerated by a judicious choice of target applications, improved delivery considerations, and the rational selection of translation-ready biomaterials, ultimately reducing patient burden and enhancing the efficacy of therapeutic drugs for difficult-to-treat diseases.
Collapse
Affiliation(s)
| | | | | | - C. Wyatt Shields
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, 80303, USA
| |
Collapse
|
11
|
Zhang Y, Wu X, Vadlamani RA, Lim Y, Kim J, David K, Gilbert E, Li Y, Wang R, Jiang S, Wang A, Sontheimer H, English D, Emori S, Davalos RV, Poelzing S, Jia X. Multifunctional ferromagnetic fiber robots for navigation, sensing, and treatment in minimally invasive surgery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525973. [PMID: 36778450 PMCID: PMC9915472 DOI: 10.1101/2023.01.27.525973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Small-scale robots capable of remote active steering and navigation offer great potential for biomedical applications. However, the current design and manufacturing procedure impede their miniaturization and integration of various diagnostic and therapeutic functionalities. Here, we present a robotic fiber platform for integrating navigation, sensing, and therapeutic functions at a submillimeter scale. These fiber robots consist of ferromagnetic, electrical, optical, and microfluidic components, fabricated with a thermal drawing process. Under magnetic actuation, they can navigate through complex and constrained environments, such as artificial vessels and brain phantoms. Moreover, we utilize Langendorff mouse hearts model, glioblastoma microplatforms, and in vivo mouse models to demonstrate the capabilities of sensing electrophysiology signals and performing localized treatment. Additionally, we demonstrate that the fiber robots can serve as endoscopes with embedded waveguides. These fiber robots provide a versatile platform for targeted multimodal detection and treatment at hard-to-reach locations in a minimally invasive and remotely controllable manner.
Collapse
Affiliation(s)
- Yujing Zhang
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
| | - Xiaobo Wu
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA
| | - Ram Anand Vadlamani
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA
| | - Youngmin Lim
- Department of Physics, Virginia Tech, Blacksburg, VA
| | - Jongwoon Kim
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
| | - Kailee David
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA
| | - Earl Gilbert
- School of Neuroscience, Virginia Tech, Blacksburg, VA
| | - You Li
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
| | - Ruixuan Wang
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
| | - Shan Jiang
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
| | - Anbo Wang
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
| | - Harald Sontheimer
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA
| | | | - Satoru Emori
- Department of Physics, Virginia Tech, Blacksburg, VA
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA
| | - Xiaoting Jia
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
- School of Neuroscience, Virginia Tech, Blacksburg, VA
| |
Collapse
|
12
|
Richter M, Kaya M, Sikorski J, Abelmann L, Kalpathy Venkiteswaran V, Misra S. Magnetic Soft Helical Manipulators with Local Dipole Interactions for Flexibility and Forces. Soft Robot 2023. [PMID: 36662545 DOI: 10.1089/soro.2022.0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Magnetic continuum manipulators (MCMs) are a class of continuum robots that can be actuated without direct contact by an external magnetic field. MCMs operating in confined workspaces, such as those targeting medical applications, require flexible magnetic structures that contain combinations of magnetic components and polymers to navigate long and tortuous paths. In cylindrical MCM designs, a significant trade-off exists between magnetic moment and bending flexibility as the ratio between length and diameter decreases. In this study, we propose a new MCM design framework that enables increasing diameter without compromising on flexibility and magnetic moment. Magnetic soft composite helices constitute bending regions of the MCM and are separated by permanent ring magnets. Local dipole interactions between the permanent magnets can reduce bending stiffness, depending on their size and spacing. For the particular segment geometry presented herein, the local dipole interactions result in a 31% increase in angular deflection of composite helices inside an external magnetic field, compared to helices without local interactions. In addition, we demonstrate fabrication, maneuverability, and example applications of a multisegment MCM in a phantom of the abdominal aorta, such as passing contrast dye and guidewires.
Collapse
Affiliation(s)
- Michiel Richter
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Mert Kaya
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands.,Surgical Robotics Laboratory, Department of Biomedical Engineering, University of Groningen, and University Medical Centre Groningen, The Netherlands
| | - Jakub Sikorski
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Leon Abelmann
- KIST Europe Forschugsgesellschaft mbH, Saarbrücken, Germany.,MESA+ Research Institute, University of Twente, Enschede, The Netherlands
| | | | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands.,Surgical Robotics Laboratory, Department of Biomedical Engineering, University of Groningen, and University Medical Centre Groningen, The Netherlands
| |
Collapse
|
13
|
Zhang T, Nie M, Li Y. Current Advances and Future Perspectives of Advanced Polymer Processing for Bone and Tissue Engineering: Morphological Control and Applications. Front Bioeng Biotechnol 2022; 10:895766. [PMID: 35694231 PMCID: PMC9178098 DOI: 10.3389/fbioe.2022.895766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/11/2022] [Indexed: 01/13/2023] Open
Abstract
Advanced polymer processing has received extensive attention due to its unique control of complex force fields and customizability, and has been widely applied in various fields, especially in preparation of functional devices for bioengineering and biotechnology. This review aims to provide an overview of various advanced polymer processing techniques including rotation extrusion, electrospinning, micro injection molding, 3D printing and their recent progresses in the field of cell proliferation, bone repair, and artificial blood vessels. This review dose not only attempts to provide a comprehensive understanding of advanced polymer processing, but also aims to guide for design and fabrication of next-generation device for biomedical engineering.
Collapse
|
14
|
Pozhitkova AV, Kladko DV, Vinnik DA, Taskaev SV, Vinogradov VV. Reprogrammable Soft Swimmers for Minimally Invasive Thrombus Extraction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23896-23908. [PMID: 35537068 DOI: 10.1021/acsami.2c04745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thrombosis-related diseases are the primary cause of death in the world. Despite recent advances in thrombosis treatment methods, their invasive nature remains a crucial factor, which leads to considerable deadly consequences. Soft magnetic robots are attracting widespread interest due to their fast response, remote actuation, and shape reprogrammability and can potentially avoid the side effects of conventional approaches. This paper outlines a new approach to the thrombosis treatment via reprogrammable magnetic soft robots that penetrate, hook, and extract the plasma clots in a vein-mimicking system under applied rotating magnetic fields. We present shape-switching bioinspired soft swimmers, capable of locomotion by different mechanisms in vein-mimicking flow conditions and whose swimming efficiency is similar to animals. Further, we demonstrate the potential of a developed robot for minimally invasive thromboextraction with and without fibrinolytic usage, including hooking the plasma clot for 3.1 ± 1.1 min and extracting it from the vein-mimicking system under the applied magnetic fields. We consider an interesting solution for thrombosis treatment to avoid substantial drawbacks of the existing methods.
Collapse
Affiliation(s)
- Anna V Pozhitkova
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg 197101, Russia
| | - Daniil V Kladko
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg 197101, Russia
| | - Denis A Vinnik
- National Research South Ural State University, Chelyabinsk 454080, Russia
| | - Sergey V Taskaev
- National Research South Ural State University, Chelyabinsk 454080, Russia
- Chelyabinsk State University, Chelyabinsk 454001, Russia
| | - Vladimir V Vinogradov
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|