1
|
Yan W, Liu Y, Wang Y, Yi J, Yang J, Wang Z, Sun Q, Zhou P, Zheng M, Huo J, Wang Y. Conformal, Substrate-Free Liquid Metal Electrode for Continuous Health Monitoring. ACS Sens 2025; 10:3450-3460. [PMID: 40355370 DOI: 10.1021/acssensors.4c03449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Thin, skin-conformal soft electronics are ideal for seamless integration with the skin, enabling high-fidelity health monitoring and advanced human-machine interactions. However, achieving imperceptible and seamless adhesion with traditional materials and design approaches remains challenging as it is difficult to simultaneously meet the requirements of gas permeability, high conductivity, and conformability. In this work, we present a straightforward and efficient design for ultrathin, substrate-free, highly gas-permeable, and conductive liquid metal electrodes. These electrodes can be directly laminated onto human skin using water mist dissolution, facilitated by electrospun nanomeshes made from a poly(vinyl alcohol) and sodium dodecyl sulfate substrate. The electrodes have a thickness of 8.3 μm, a conductivity of 4.2 × 106 S m-1, and a gas permeability of 1283.8 ± 27.7 g m-2 day-1. A 24 h skin patch test demonstrated that the epidermal electrodes did not cause any skin irritation. Additionally, the electrodes exhibit excellent customizable patterning capabilities and recyclability. The electrodes successfully measure high-fidelity electrophysiological signals wirelessly, even during various daily activities such as sleep, work on the computer, and walking.
Collapse
Affiliation(s)
- Wenqing Yan
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yuli Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Junhong Yi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Zonglei Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Qingyuan Sun
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Meiqiong Zheng
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Jing Huo
- Department of Dermatology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253003, China
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Guangdong Provincial Key Laboratory of Science and Engineering for Health and Medicine, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| |
Collapse
|
2
|
Jeong C, Kwon KY, Wu D, Fu Y, Ye YS, Lee SG, Kang B, Yao L, Kim TI, Majidi C. Reconfigurable double-sided smart textile circuit with liquid metal. MATERIALS HORIZONS 2025. [PMID: 40370052 DOI: 10.1039/d5mh00462d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Smart textiles have emerged as a promising alternative to printed circuit boards (PCBs) for electronics that are flexible, lightweight, and stretchable. However, many existing solutions fall short of providing sufficient electrical properties or are limited to single-sided circuit designs, significantly reducing their utility. In this study, we present a smart textile based on liquid metal and silver flakes that allows for double-sided circuit configurations without the need for via holes, offering advantages beyond conventional PCB technologies. This approach allows users to insulate or connect top and bottom circuits as needed, even when the circuits overlap or intersect. The inherent properties of liquid metal facilitate pressure-induced sintering, working in synergy with textiles to provide users with the ability to dynamically alter circuits. This unique feature enables real-time customization, allowing for the addition, removal, or replacement of circuits through straightforward cutting and stitching processes. Demonstrating these characteristics, we showcase diverse applications, including a wristband with a replaceable LED indicator circuit, a reversible teddy bear cloth with two distinct functions, and a customizable DIY heating glove. This double-sided textile circuit that is patterned with pressure-controlled drawing offers new possibilities for multifunctional wearable electronics, bridging the gap between traditional PCBs and flexible smart textiles.
Collapse
Affiliation(s)
- Chanho Jeong
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Ki Yoon Kwon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Di Wu
- Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yibo Fu
- Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yeong-Sinn Ye
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Sang Gil Lee
- Department of Semiconductor and Display Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Beomchan Kang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Lining Yao
- Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
3
|
Han Y, Tetik H, Malakooti MH. 3D Soft Architectures for Stretchable Thermoelectric Wearables with Electrical Self-Healing and Damage Tolerance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407073. [PMID: 39212649 DOI: 10.1002/adma.202407073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Indexed: 09/04/2024]
Abstract
Flexible thermoelectric devices (TEDs) exhibit adaptability to curved surfaces, holding significant potential for small-scale power generation and thermal management. However, they often compromise stretchability, energy conversion, or robustness, thus limiting their applications. Here, the implementation of 3D soft architectures, multifunctional composites, self-healing liquid metal conductors, and rigid semiconductors is introduced to overcome these challenges. These TEDs are extremely stretchable, functioning at strain levels as high as 230%. Their unique design, verified through multiphysics simulations, results in a considerably high power density of 115.4 µW cm⁻2 at a low-temperature gradient of 10 °C. This is achieved through 3D printing multifunctional elastomers and examining the effects of three distinct thermal insulation infill ratios (0%, 12%, and 100%) on thermoelectric energy conversion and structural integrity. The engineered structure is lighter and effectively maintains the temperature gradient across the thermoelectric semiconductors, thereby resulting in higher output voltage and improved heating and cooling performance. Furthermore, these thermoelectric generators show remarkable damage tolerance, remaining fully functional even after multiple punctures and 2000 stretching cycles at 50% strain. When integrated with a 3D-printed heatsink, they can power wearable sensors, charge batteries, and illuminate LEDs by scavenging body heat at room temperature, demonstrating their application as self-sustainable electronics.
Collapse
Affiliation(s)
- Youngshang Han
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Nano-Engineered Systems, University of Washington, Seattle, WA, 98195, USA
| | - Halil Tetik
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Mohammad H Malakooti
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Nano-Engineered Systems, University of Washington, Seattle, WA, 98195, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
4
|
Wang D, Hou Y, Tang J, Liu J, Rao W. Liquid Metal as Energy Conversion Sensitizers: Materials and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304777. [PMID: 38468447 PMCID: PMC11462305 DOI: 10.1002/advs.202304777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/22/2023] [Indexed: 03/13/2024]
Abstract
Energy can exist in nature in a wide range of forms. Energy conversion refers to the process in which energy is converted from one form to another, and this process will be greatly enhanced by energy conversion sensitizers. Recently, an emerging class of new materials, namely liquid metals (LMs), shows excellent prospects as highly versatile materials. Notably, in terms of energy delivery and conversion, LMs functional materials are chemical responsive, heat-responsive, photo-responsive, magnetic-responsive, microwave-responsive, and medical imaging responsive. All these intrinsic virtues enabled promising applications in energy conversion, which means LMs can act as energy sensitizers for enhancing energy conversion and transport. Herein, first the unique properties of the light, heat, magnetic and microwave converting capacity of gallium-based LMs materials are summarized. Then platforms and applications of LM-based energy conversion sensitizers are highlighted. Finally, some of the potential applications and opportunities of LMs are prospected as energy conversion sensitizers in the future, as well as unresolved challenges. Collectively, it is believed that this review provides a clear perspective for LMs mediated energy conversion, and this topic will help deepen knowledge of the physical chemistry properties of LMs functional materials.
Collapse
Affiliation(s)
- Dawei Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)School of Pharmaceutical SciencesGuizhou UniversityGuiyangGuizhou Province550025China
| | - Yi Hou
- Key Laboratory of Cryogenic Science and TechnologyBeijing Key Lab of CryoBiomedical Engineering and Key Lab of CryogenicsTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jianbo Tang
- School of Chemical EngineeringUniversity of New South Wales (UNSW)KensingtonNSW2052Australia
| | - Jing Liu
- Liquid Metal and Cryogenic Biomedical Research CenterBeijing Key Lab of CryoBiomedical Engineering and Key Lab of CryogenicsTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
- Department of Biomedical EngineeringSchool of MedicineTsinghua UniversityBeijing100084China
| | - Wei Rao
- Key Laboratory of Cryogenic Science and TechnologyBeijing Key Lab of CryoBiomedical Engineering and Key Lab of CryogenicsTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
5
|
Lee JH, Hyun JE, Kim J, Yang J, Zhang H, Ahn H, Lee S, Kim JH, Lim T. A highly conductive, robust, self-healable, and thermally responsive liquid metal-based hydrogel for reversible electrical switches. J Mater Chem B 2024; 12:5238-5247. [PMID: 38699788 DOI: 10.1039/d4tb00209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
This study introduces a thermally responsive smart hydrogel with enhanced electrical properties achieved through volume switching. This advancement was realized by incorporating multiscale liquid metal particles (LMPs) into the PNIPAM hydrogel during polymerization, using their inherent elasticity and conductivity when deswelled. Unlike traditional conductive additives, LMPs endow the PNIPAM hydrogel with a remarkably consistent volume switching ratio, significantly enhancing electrical switching. This is attributed to the minimal nucleation effect of LMPs during polymerization and their liquid-like behavior, like vacancies in the polymeric hydrogel under compression. The PNIPAM/LMP hydrogel exhibits the highest electrical switching, with an unprecedented switch of 6.1 orders of magnitude. Even after repeated swelling/deswelling cycles that merge some LMPs and increase the conductivity when swelled, the hydrogel consistently maintains an electrical switch exceeding 4.5 orders of magnitude, which is still the highest record to date. Comprehensive measurements reveal that the hydrogel possesses robust mechanical properties, a tissue-like compression modulus, biocompatibility, and self-healing capabilities. These features make the PNIPAM/LMP hydrogel an ideal candidate for long-term implantable bioelectronics, offering a solution to the mechanical mismatch with dynamic human tissues.
Collapse
Affiliation(s)
- Joo Hyung Lee
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, South Korea
| | - Ji Eun Hyun
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jongbeom Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Jungin Yang
- Division of Chemical Engineering and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea.
| | - Huanan Zhang
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Hyunchul Ahn
- Department of Fiber System Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, South Korea.
| | - Sohee Lee
- Department of Clothing and Textiles, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, South Korea.
| | - Jung Han Kim
- Department of Materials Science and Engineering, Dong-A University, Busan 49315, South Korea.
| | - Taehwan Lim
- Division of Chemical Engineering and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea.
| |
Collapse
|
6
|
Hu C, Wang L, Liu S, Sheng X, Yin L. Recent Development of Implantable Chemical Sensors Utilizing Flexible and Biodegradable Materials for Biomedical Applications. ACS NANO 2024; 18:3969-3995. [PMID: 38271679 DOI: 10.1021/acsnano.3c11832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.
Collapse
Affiliation(s)
- Chen Hu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
7
|
Chen J, Tian G, Liang C, Yang D, Zhao Q, Liu Y, Qi D. Liquid metal-hydrogel composites for flexible electronics. Chem Commun (Camb) 2023; 59:14353-14369. [PMID: 37916888 DOI: 10.1039/d3cc04198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
As an emerging functional material, liquid metal-hydrogel composites exhibit excellent biosafety, high electrical conductivity, tunable mechanical properties and good adhesion, thus providing a unique platform for a wide range of flexible electronics applications such as wearable devices, medical devices, actuators, and energy conversion devices. Through different composite methods, liquid metals can be integrated into hydrogel matrices to form multifunctional composite material systems, which further expands the application range of hydrogels. In this paper, we provide a brief overview of the two materials: hydrogels and liquid metals, and discuss the synthesis method of liquid metal-hydrogel composites, focusing on the improvement of the performance of hydrogel materials by liquid metals. In addition, we summarize the research progress of liquid metal-hydrogel composites in the field of flexible electronics, pointing out the current challenges and future prospects of this material.
Collapse
Affiliation(s)
- Jianhui Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Gongwei Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Cuiyuan Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Dan Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Qinyi Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Yan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| |
Collapse
|
8
|
Liu Y, Zhang C, Chen Y, Yin R, He P, Zhao W. Rational Design of Conductive Pathways in Flexible Tactile Sensors via Indirect 3D-Printing of Liquid Metal for High-Precision Monitoring and Recognition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38572-38580. [PMID: 37526636 DOI: 10.1021/acsami.3c07237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Highly sensitive and conformal sensors are essential for the implementation of human-machine interfaces, health monitoring, and rehabilitation prostheses. The proper adjustment of conductive pathways in the sensing materials is essential for their sensitive transduction of mechanical stimuli into electrical signals. However, the rational, precise, and wide-range control of electrical networks within traditional conductive composites is difficult due to the randomly distributed fillers. Herein, we adopt an indirect 3D-printing method to fabricate pressure sensors with various microchannels for liquid metal (LM) to form consistent and tunable conductive pathways. LM is highly conductive, fluidic, and incompressible at ambient conditions, which guarantees the reliable regulation and function of our pressure sensor. Additive manufacturing provides a facile way to construct complicated microchannels with different lengths, different orientations, cross-sectional sizes, depth-width ratios, and shapes, which can effectively modulate the sensitivity and the sensing range. Under the optimized structural configurations, our sensor achieves a high sensitivity of 1.139 kPa-1, a detection range of 0-68 kPa (loading process), and stability of over 5000 cycles, whose sensing performance is better than most microchannel-filled LM sensors. It can achieve high-accuracy monitoring of pulse, speaking and gestures, and exhibit a full recognition of objects under the assistance of machine learning. This work can provide new ideas on the design of conductive pathways in flexible electronics and expand the application of recyclable LM in human-machine interfaces.
Collapse
Affiliation(s)
- Yaming Liu
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Chen Zhang
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Youyou Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Rui Yin
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Peng He
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Weiwei Zhao
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
9
|
Won P, Coyle S, Ko SH, Quinn D, Hsia KJ, LeDuc P, Majidi C. Controlling C2C12 Cytotoxicity on Liquid Metal Embedded Elastomer (LMEE). Adv Healthc Mater 2023; 12:e2202430. [PMID: 36706458 PMCID: PMC11468040 DOI: 10.1002/adhm.202202430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/17/2023] [Indexed: 01/28/2023]
Abstract
Liquid metal embedded elastomers (LMEEs) are highly stretchable composites comprising microscopic droplets of eutectic gallium-indium (EGaIn) liquid metal embedded in a soft rubber matrix. They have a unique combination of mechanical, electrical, and thermal properties that make them attractive for potential applications in flexible electronics, thermal management, wearable computing, and soft robotics. However, the use of LMEEs in direct contact with human tissue or organs requires an understanding of their biocompatibility and cell cytotoxicity. In this study, the cytotoxicity of C2C12 cells in contact with LMEE composites composed of EGaIn droplets embedded with a polydimethylsiloxane (PDMS) matrix is investigated. In particular, the influence of EGaIn volume ratio and shear mixing time during synthesis on cell proliferation and viability is examined. The special case of electrically-conductive LMEE composites in which a percolating network of EGaIn droplets is created through "mechanical sintering" is also examined. This study in C2C12 cytotoxicity represents a first step in determining whether LMEE is safe for use in implantable biomedical devices and biohybrid systems.
Collapse
Affiliation(s)
- Phillip Won
- Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Stephen Coyle
- Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Seung Hwan Ko
- Mechanical EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - David Quinn
- Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - K. Jimmy Hsia
- Chemical & Biomedical EngineeringNanyang Technical UniversitySingapore639798Singapore
- Mechanical & Aerospace EngineeringNanyang Technical UniversitySingapore639798Singapore
| | - Philip LeDuc
- Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Carmel Majidi
- Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| |
Collapse
|