1
|
Su W, Wang H, Pan J, Zhou Q. Advances in Sonodynamic Therapy: Focus on Ferroptosis. J Med Chem 2025; 68:5976-5992. [PMID: 40063557 DOI: 10.1021/acs.jmedchem.4c02603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Ferroptosis is a nonapoptotic form of cell death discovered in 2012. Noninvasive treatments regulating ferroptosis are important for a wide range of diseases. Among the noninvasive treatments, sonodynamic therapy (SDT) has become promising due to its strong tissue penetration and few side effects. In recent years, targeted drug delivery platforms constructed on the basis of SDT have provided an efficient delivery mode for the regulation of ferroptosis. Based on the latest research reports, this Perspective introduces the basic mechanism of SDT and the influencing factors of therapeutic effects, elucidates the significance of ferroptosis-targeted SDT, and summarizes the recent studies on ferroptosis-targeted SDT through different pathways. We also present innovative studies of composite ultrasound-responsive drug delivery platforms. Finally, a brief summary and outlook based on current ferroptosis-targeted SDT are presented.
Collapse
Affiliation(s)
- Wendi Su
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Wang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Juhong Pan
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Zhou
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
2
|
Guo D, Lin Q, Liu N, Jin Q, Liu C, Wang Y, Zhu X, Zong L. Copper-based metal-organic framework co-loaded doxorubicin and curcumin for anti-cancer with synergistic apoptosis and ferroptosis therapy. Int J Pharm 2024; 666:124744. [PMID: 39317244 DOI: 10.1016/j.ijpharm.2024.124744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
The combination of chemotherapy and ferroptosis therapy can greatly improve the efficiency of tumor treatment. However, ferroptosis-based therapy is limited by the unsatisfactory Fenton activity and insufficient H2O2 supply in tumor cells. In this work, a nano-drug delivery system Cur@DOX@MOF-199 NPs was constructed to combine ferroptosis and apoptosis by loading curcumin (Cur) and doxorubicin (DOX) based on the copper-based organic framework MOF-199. Cur@DOX@MOF-199 NPs decompose quickly by glutathione (GSH), releasing Cu2+, DOX and Cur. Cu2+ can deplete GSH while also being reduced to Cu+; DOX can induce apoptosis and simultaneously boost H2O2 production. Moreover, Cur enhanced the expression of intracellular heme oxygenase-1 (HO-1), for decomposing heme and releasing Fe2+, which further combined with Cu+ to catalyze H2O2 for hydroxyl radical (OH) generation, leading to the accumulation of lipid peroxide and ferroptosis. As a result, Cur@DOX@MOF-199 NPs exhibited significantly enhanced antitumor efficacy in MCF-7 tumor-bearing mouse model, suggesting this nano formulation is an excellent synergetic pathway for apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Ding Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Qian Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Nian Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Quanyi Jin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Yubo Wang
- Medical College, Guangxi University, Nanning 530004, PR China
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China.
| | - Lili Zong
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
3
|
Wang T, Liu T, Li Z, Wu D, Zhao X, Zeng L. Ultrasmall gold-encapsulated mesoporous platinum to promote photodynamic/catalytic therapy through cascade enzyme-like reactions. J Colloid Interface Sci 2024; 680:117-128. [PMID: 39504742 DOI: 10.1016/j.jcis.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Mesoporous platinum (mPt) nanozyme possessed enzyme-like property of catalase (CAT) and peroxidase (POD), but the insufficient hydrogen peroxide (H2O2) concentration severely restricted its application in photodynamic therapy (PDT) and catalytic therapy. Herein, by depositing ultrasmall gold nanoparticles (AuNPs) and modifying photosensitizer IR808, a multifunctional nanozyme (mPt@Au-IR808) was designed to promote PDT/catalytic therapy through cascade enzyme-like reactions of glucose oxidase (GOx) and CAT/POD. In tumor microenvironment, the CAT-like oxygen (O2) generation improved the PDT efficacy, and the POD-like hydroxyl radical (·OH) generation achieved endogenous catalytic therapy. Using the GOx/CAT-like activities and endogenous H2O2, the yields of singlet oxygen and ·OH were significantly promoted. Furthermore, mPt@Au-IR808 showed higher photothermal conversion efficiency (41.2%) than mPt (36.1%). By combining the photothermal therapy and enhanced PDT/catalytic therapy, the developed mPt@Au-IR808 nanozyme showed excellent anti-tumor efficacy, which will be promising as cascade nanozyme to promote photo/catalytic therapy.
Collapse
Affiliation(s)
- Tianyou Wang
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Tao Liu
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Zekai Li
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Di Wu
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Xiaolong Zhao
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China.
| | - Leyong Zeng
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding 071002, PR China.
| |
Collapse
|
4
|
Li J, Yi H, Fu Y, Zhuang J, Zhan Z, Guo L, Zheng J, Yu X, Zhang DY. Biodegradable iridium coordinated nanodrugs potentiate photodynamic therapy and immunotherapy of lung cancer. J Colloid Interface Sci 2024; 680:9-24. [PMID: 39488900 DOI: 10.1016/j.jcis.2024.10.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Hypoxia, which is a common characteristic of most solid tumors, not only contributes to the immunosuppressive nature of the tumor microenvironment (TME) but also reduces the efficacy of many oxygen-depleting therapies, including photodynamic therapy (PDT). In this study, we developed acidity-responsive biodegradable iridium-coordinated (IPC) nanodrugs consisting of iridium ions, the photosensitizer chlorin e6 (Ce6), and polyvinylpyrrolidone to potentiate the effects of PDT and immunotherapy by modulating the TME. IPC nanodrugs that accumulate at high levels in tumors catalyze excess hydrogen peroxide to produce oxygen while depleting glutathione levels within cancer cells; thus, the released Ce6 is more efficient at producing reactive oxygen species (ROS) in response to laser irradiation. In addition, IPC nanodrugs alleviate tumor hypoxia, induce more immunogenic cell death by amplifying PDT responses, and synergistically inhibit tumor growth by initiating robust antitumor immunity and reversing the immunosuppressive nature of the TME. As a result, IPC nanodrugs exert pronounced combined therapeutic effects in vitro and in vivo, without obvious toxic effects due to acidity-responsive degradation. These iridium-coordinated nanodrugs have the potential to modulate the TME, amplify the effects of PDT, and substantially inhibit tumors, and they are expected to provide novel ideas for combination therapy of hypoxic cancer.
Collapse
Affiliation(s)
- Jingyao Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Huixi Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuanyuan Fu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiani Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhixiong Zhan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Liyou Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400042, China.
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Dong-Yang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
5
|
Chu X, Hou HY, Duan MD, Zhang YJ, Zhu YY, Liu Y, Li SL. Tumor Microenvironment Specific Regulation Ca-Fe-Nanospheres for Ferroptosis-Promoted Domino Synergistic Therapy and Tumor Immune Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312141. [PMID: 38801318 DOI: 10.1002/smll.202312141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Reactive oxygen species (ROS)-mediated emerging treatments exhibit unique advantages in cancer therapy in recent years. While the efficacy of ROS-involved tumor therapy is greatly restricted by complex tumor microenvironment (TME). Herein, a dual-metal CaO2@CDs-Fe (CCF) nanosphere, with TME response and regulation capabilities, are proposed to improve ROS lethal power by a multiple cascade synergistic therapeutic strategy with domino effect. In response to weak acidic TME, CCF will decompose, accompanied with intracellular Ca2+ upregulated and abundant H2O2 and O2 produced to reverse antitherapeutic TME. Then the exposed CF cores can act as both Fenton agent and sonosensitizer to generate excessive ROS in the regulated TME for enhanced synergistic CDT/SDT. In combination with calcium overloading, the augmented ROS induced oxidative stress will cause more severe mitochondrial damage and cellular apoptosis. Furthermore, CCF can also reduce GPX4 expression and enlarge the lipid peroxidation, causing ferroptosis and apoptosis in parallel. These signals of damage will finally initiate damage-associated molecular patterns to activate immune response and to realize excellent antitumor effect. This outstanding domino ROS/calcium loading synergistic effect endows CCF with excellent anticancer effect to efficiently eliminate tumor by apoptosis/ferroptosis/ICD both in vitro and in vivo.
Collapse
Affiliation(s)
- Xu Chu
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE), School of Material Science and Engineering & School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Hua-Ying Hou
- School of Electronic and Information Engineering & School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Meng-Die Duan
- School of Electronic and Information Engineering & School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Yu-Juan Zhang
- School of Electronic and Information Engineering & School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Yu-Ying Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE), School of Material Science and Engineering & School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Yi Liu
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE), School of Material Science and Engineering & School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Shu-Lan Li
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE), School of Material Science and Engineering & School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
6
|
Li Y, Chang P, Xu L, Zhu Z, Hu M, Cen J, Li S, Zhao YE. TiO2-Nanoparticle-Enhanced Sonodynamic Therapy for Prevention of Posterior Capsular Opacification and Ferroptosis Exploration of Its Mechanism. Invest Ophthalmol Vis Sci 2024; 65:24. [PMID: 39417751 PMCID: PMC11500051 DOI: 10.1167/iovs.65.12.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose To explore the application and potential ferroptosis mechanisms of sonodynamic therapy (SDT) using titanium dioxide nanoparticles (TiO2-NPs) as sonosensitizers for the prevention of posterior capsule opacification (PCO). Methods We fabricated TiO2-NP-coated intraocular lenses (TiO2-IOLs) using the spin-coating method, followed by ultrasound activation of the photosensitizer TiO2. In vitro experiments were performed with human lens epithelial cells (HLECs) to explore the appropriate concentration of TiO2 and ultrasonic parameters. Investigations included reactive oxygen species (ROS) generation, glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4) western blot analysis, lipid peroxidation assays, and transcriptomics analysis. Finally, TiO2-IOLs were implanted in rabbit eyes to explore the in vivo performance of SDT. Results Through both in vitro and in vivo experiments, the study determined that the ultrasound parameters of 5-minute duration, 1-MHz frequency, 50% duty cycle, and 1.2-W/cm2 intensity were reliable and valid for killing HLECs without damaging other ocular structures. In vitro experiments demonstrated that SDT generated excess ROS, which disrupted the mitochondrial membrane potential and significantly reduced the GSH content. Additionally, the downregulation of GPX4, accumulation of lipid peroxides, and alteration of mitochondrial morphology were observed, suggesting that ferroptosis may be the underlying mechanism. The RNA-sequencing analysis results also showed an increase in the expression of multiple pro-ferroptosis genes and the ferroptosis marker gene PTGS2. Animal experiments preliminarily demonstrated the safety and effectiveness of SDT in treating PCO in vivo. Conclusions TiO2-IOLs combined with SDT effectively prevented PCO by generating ROS and intracellular ferroptosis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou, China
| | - Pingjun Chang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou, China
| | - Liming Xu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou, China
| | - Zehui Zhu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou, China
| | - Man Hu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou, China
| | - Jiaying Cen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou, China
| | - Siyan Li
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou, China
| | - Yun-e Zhao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou, China
| |
Collapse
|
7
|
Dong S, Huang Y, Yan H, Tan H, Fan L, Chao M, Ren Y, Guan M, Zhang J, Liu Z, Gao F. Ternary heterostructure-driven photoinduced electron-hole separation enhanced oxidative stress for triple-negative breast cancer therapy. J Nanobiotechnology 2024; 22:240. [PMID: 38735931 PMCID: PMC11089806 DOI: 10.1186/s12951-024-02530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) stand as among the most significant metal oxide nanoparticles in trigger the formation of reactive oxygen species (ROS) and induce apoptosis. Nevertheless, the utilization of ZnO NPs has been limited by the shallowness of short-wavelength light and the constrained production of ROS. To overcome these limitations, a strategy involves achieving a red shift towards the near-infrared (NIR) light spectrum, promoting the separation and restraining the recombination of electron-hole (e--h+) pairs. Herein, the hybrid plasmonic system Au@ZnO (AZ) with graphene quantum dots (GQDs) doping (AZG) nano heterostructures is rationally designed for optimal NIR-driven cancer treatment. Significantly, a multifold increase in ROS generation can be achieved through the following creative initiatives: (i) plasmonic Au nanorods expands the photocatalytic capabilities of AZG into the NIR domain, offering a foundation for NIR-induced ROS generation for clinical utilization; (ii) elaborate design of mesoporous core-shell AZ structures facilitates the redistribution of electron-hole pairs; (iii) the incorporation GQDs in mesoporous structure could efficiently restrain the recombination of the e--h+ pairs; (iv) Modification of hyaluronic acid (HA) can enhance CD44 receptor mediated targeted triple-negative breast cancer (TNBC). In addition, the introduced Au NRs present as catalysts for enhancing photothermal therapy (PTT), effectively inducing apoptosis in tumor cells. The resulting HA-modified AZG (AZGH) exhibits efficient hot electron injection and e--h+ separation, affording unparalleled convenience for ROS production and enabling NIR-induced PDT for the cancer treanment. As a result, our well-designed mesoporous core-shell AZGH hybrid as photosensitizers can exhibit excellent PDT efficacy.
Collapse
Affiliation(s)
- Shuqing Dong
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Yuqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Huarong Tan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Liying Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Minghao Chao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ming Guan
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jiaxin Zhang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| | - Fenglei Gao
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
8
|
Zhu XY, Wang TY, Jia HR, Wu SY, Gao CZ, Li YH, Zhang X, Shan BH, Wu FG. A ferroptosis-reinforced nanocatalyst enhances chemodynamic therapy through dual H 2O 2 production and oxidative stress amplification. J Control Release 2024; 367:892-904. [PMID: 38278369 DOI: 10.1016/j.jconrel.2024.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
The existence of a delicate redox balance in tumors usually leads to cancer treatment failure. Breaking redox homeostasis by amplifying oxidative stress and reducing glutathione (GSH) can accelerate cancer cell death. Herein, we construct a ferroptosis-reinforced nanocatalyst (denoted as HBGL) to amplify intracellular oxidative stress via dual H2O2 production-assisted chemodynamic therapy (CDT). Specifically, a long-circulating liposome is employed to deliver hemin (a natural iron-containing substrate for Fenton reaction and ferroptosis), β-lapachone (a DNA topoisomerase inhibitor with H2O2 generation capacity for chemotherapy), and glucose oxidase (which can consume glucose for starvation therapy and generate H2O2). HBGL can achieve rapid, continuous, and massive H2O2 and •OH production and GSH depletion in cancer cells, resulting in increased intracellular oxidative stress. Additionally, hemin can reinforce the ferroptosis-inducing ability of HBGL, which is reflected in the downregulation of glutathione peroxidase-4 and the accumulation of lipid peroxide. Notably, HBGL can disrupt endo/lysosomes and impair mitochondrial function in cancer cells. HBGL exhibits effective tumor-killing ability without eliciting obvious side effects, indicating its clinical translation potential for synergistic starvation therapy, chemotherapy, ferroptosis therapy, and CDT. Overall, this nanocatalytic liposome may be a promising candidate for achieving potentiated cancer treatment.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Tian-Yu Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Hao-Ran Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Shun-Yu Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Cheng-Zhe Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Yan-Hong Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Xinping Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China.
| |
Collapse
|
9
|
Zhou YC, Zhao TK, Tao SM, Wang P, Guan YC, Yang KP, Chen SQ, Pu XY. Recent Progress in Ferroptosis Induced Tumor Cell Death by Anti-tumor Metallic complexes. Chem Asian J 2024; 19:e202301020. [PMID: 38149729 DOI: 10.1002/asia.202301020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 12/28/2023]
Abstract
Metal complexes represented by platinum complexes play a very important role in cancer treatment due to their diverse chemical structures and anti-tumor activities. Recently, ferroptosis has emerged as a newly occurring cell death form in the anti-tumor process. It has been reported that metal complexes could inhibit the proliferation and metastasis of tumors and combat chemotherapy resistance by targeting ferroptosis. In this review, we briefly describe ferroptosis as a fundamental process for tumor suppression and triggering anti-tumor immune responses. We summarize recent developments on metal complexes that induce ferroptosis. Finally, we outline the prospects for the application of metal complexes to the treatment of tumors based on ferroptosis and the associated problems that need to be solved, and discussed other potential research directions of metal complexes.
Collapse
Affiliation(s)
- Yong-Chang Zhou
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Tian-Kun Zhao
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Si-Man Tao
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Peng Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yi-Chen Guan
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Ke-Pei Yang
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Sheng-Qiang Chen
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Xiu-Ying Pu
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| |
Collapse
|
10
|
Zhang X, Li X, Xia R, Zhang HS. Ferroptosis resistance in cancer: recent advances and future perspectives. Biochem Pharmacol 2024; 219:115933. [PMID: 37995980 DOI: 10.1016/j.bcp.2023.115933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Ferroptosis is an iron-dependent, non-apoptotic form of regulated cell death and has been implicated in the occurrence and development of various diseases, including heart disease, nervous system diseases and cancer. Ferroptosis induction recently emerged as an attractive strategy for cancer therapy. Ferroptosis has become a potential target for intervention in these diseases or injuries in relevant preclinical models. This review summarizes recent progress on the mechanisms of ferroptosis resistance in cancer, highlights redox status and metabolism's role in it. Combination therapy for ferroptosis has great potential in cancer treatment, especially malignant tumors that are resistant to conventional therapies. This review will lead us to have a comprehensive understanding of the future exploration of ferroptosis and cancer therapy. A deeper understanding of the relationship between ferroptosis resistance and metabolism reprogramming may provide new strategies for tumor treatment and drug development based on ferroptosis.
Collapse
Affiliation(s)
- Xing Zhang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Xiang Li
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Ran Xia
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hong-Sheng Zhang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China.
| |
Collapse
|