1
|
Liu S, Han F, Chen P, Zhang R, Tao Y. Injectable and drug-loaded gelatin methacrylate and carboxymethylated-sulfated xanthan gum hydrogels as biomimetic mineralization constructs. Carbohydr Polym 2025; 355:123354. [PMID: 40037732 DOI: 10.1016/j.carbpol.2025.123354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/06/2025]
Abstract
Injectable and drug-loaded hydrogels based on gelatin and xanthan gum derivatives were biomineralized to form organic-inorganic hybrid composites with osteoconductivity and controllable release of antibiotic drug for inducing bone generation. Gelatin was amidated to get gelatin methacrylate (GM) for supporting cell adhesion and photo-crosslinkability. Xanthan gum was chemically modified to obtain carboxymethalated and sulfated derivatives (CMXG and SXG) with high negative charges for mimicking chondroitin sulfate in bone. GM was co-dissolved with CMXG/SXG and ciprofloxacin hydrochloride (CPFXH), and photo-crosslinked with lithium phenyl-2,4,6-tri methylbenzoylphosphinate (LAP) to fabricate drug-loaded CMXG/SXG-GM-CPFXH-LAP hydrogels, which possessed swelling ratio of 1.30 ± 0.03 and controlled release of CPFXH in PBS for 24 h. The 7d-mineralized CMXG/SXG3-GM12-CPFXH-LAP hydrogel showed dense mineral layers with Ca/P atomic ratio of 1.79, degree of crystalline of 77.3 %, mineral content of 50.8 %, and 2.6 times higher shear modulus than original one. The CMXG/SXG3-GM12-CPFXH-LAP solution was acted as "inks" to "write" word (BONE) and Chinese character ("Gu") manually, and was transferred into moulds to obtain hydrogel constructs with good fidelity of patterns, suggesting injectability and printability. The injectable, mineralizable, biocompatible and drug-loaded CMXG/SXG-GM-CPFXH-LAP hydrogels possess promising applications in bone tissue engineering due to facilitating osteoconductivity, recruiting cells, and reducing inflammation.
Collapse
Affiliation(s)
- Shiyao Liu
- School of Material Science and Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Fan Han
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei 430071, China
| | - Pu Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei 430071, China
| | - Ruquan Zhang
- School of Mathematical and Physical Sciences, Wuhan Textile University, 430200 Wuhan, China.
| | - Yongzhen Tao
- School of Material Science and Engineering, Wuhan Textile University, Wuhan 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|
2
|
Sarvaiya BB, Kumar S, Pathan MSH, Patel S, Gupta V, Haque M. The Impact of Implant Surface Modifications on the Osseointegration Process: An Overview. Cureus 2025; 17:e81576. [PMID: 40177230 PMCID: PMC11961139 DOI: 10.7759/cureus.81576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025] Open
Abstract
Osseointegration is critical to the long-term success of endosseous dental implants. Surface factors such as roughness, topography, energy, and composition considerably impact this process. Several ways have been used to optimize surface roughness, increase surface area, and improve osseointegration. Subtractive processes such as alumina and titanium dioxide blasting, acid treatment, anodization, and laser peeling are widely utilized. Many additive techniques change implant surfaces, including plasma-sprayed hydroxyapatite, vacuum deposition, sol-gel, dip coating, electrolytic procedures, and nano-hydroxyapatite coating. Recently, biomimetic implant surfaces with calcium phosphate coatings have been created under physiological settings. These coatings can transport osteogenic agents such as bone morphogenetic proteins, growth differentiation factors, and bioactive medications, including bisphosphonates, gentamicin, and tetracycline. Advances in technology have considerably broadened the methods for surface modification of endosseous dental implants. This article provides a comprehensive overview of various surface modification techniques and current trends in oral implantology.
Collapse
Affiliation(s)
- Bansi B Sarvaiya
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mohd Shabankhan H Pathan
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Shirishkumar Patel
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Vineeta Gupta
- Department of Periodontology and Implantology, Government Dental College, Chhattisgarh, Raipur, IND
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
- Department of Research, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
3
|
Wang Z, Lin Z, Mei X, Cai L, Lin KC, Rodríguez JF, Ye Z, Parraguez XS, Guajardo EM, García Luna PC, Zhang JYJ, Zhang YS. Engineered Living Systems Based on Gelatin: Design, Manufacturing, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416260. [PMID: 39910847 DOI: 10.1002/adma.202416260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/26/2024] [Indexed: 02/07/2025]
Abstract
Engineered living systems (ELSs) represent purpose-driven assemblies of living components, encompassing cells, biomaterials, and active agents, intricately designed to fulfill diverse biomedical applications. Gelatin and its derivatives have been used extensively in ELSs owing to their mature translational pathways, favorable biological properties, and adjustable physicochemical characteristics. This review explores the intersection of gelatin and its derivatives with fabrication techniques, offering a comprehensive examination of their synergistic potential in creating ELSs for various applications in biomedicine. It offers a deep dive into gelatin, including its structures and production, sources, processing, and properties. Additionally, the review explores various fabrication techniques employing gelatin and its derivatives, including generic fabrication techniques, microfluidics, and various 3D printing methods. Furthermore, it discusses the applications of ELSs based on gelatin in regenerative engineering as well as in cell therapies, bioadhesives, biorobots, and biosensors. Future directions and challenges in gelatin fabrication are also examined, highlighting emerging trends and potential areas for improvements and innovations. In summary, this comprehensive review underscores the significance of gelatin-based ELSs in advancing biomedical engineering and lays the groundwork for guiding future research and developments within the field.
Collapse
Affiliation(s)
- Zhenwu Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zeng Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ko-Chih Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jimena Flores Rodríguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zixin Ye
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ximena Salazar Parraguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Emilio Mireles Guajardo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Pedro Cortés García Luna
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jun Yi Joey Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
4
|
Yang G, Deng R, Chang Y, Li H. Polydopamine-based surface coating fabrication on titanium implant by combining a photothermal agent and TiO 2 nanosheets for efficient photothermal antibacterial therapy and promoted osteogenic activity. Int J Biol Macromol 2024; 281:136481. [PMID: 39393735 DOI: 10.1016/j.ijbiomac.2024.136481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Developing titanium-based dental implants with both excellent antibacterial properties and good osseointegration is crucial for the success of the implant operation and the long-term durability of the implant. In this study, a polydopamine-based coating was created by attaching TiO2 nanosheets-cyanine composites onto the titanium surface, enabling the integration of effective photothermal antibacterial therapy with osseointegration. The exceptional dual-photothermal conversion abilities of polydopamine and cyanine in the coating resulted in outstanding photothermal antibacterial and antibiofilm therapy against four types of bacteria. Furthermore, TiO2 nanosheets promoted the adhesion, proliferation and early osteogenic differentiation of osteoblasts. In an infected dental implant model in rats, the developed coating exhibited potent antibacterial activity and remarkable osteogenic differentiation in the bone, leading to increased bone formation around the implants. This innovative approach, combining photothermal therapy with osteogenic two-dimensional nanomaterials, presents a novel method for surface functionalization of implants to achieve effective antibacterial and osseointegration capabilities.
Collapse
Affiliation(s)
- Gang Yang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, China
| | - Rongrong Deng
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yincheng Chang
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongbo Li
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
5
|
Yuan P, Chen M, Lu X, Yang H, Wang L, Bai T, Zhou W, Liu T, Yu S. Application of advanced surface modification techniques in titanium-based implants: latest strategies for enhanced antibacterial properties and osseointegration. J Mater Chem B 2024; 12:10516-10549. [PMID: 39311411 DOI: 10.1039/d4tb01714e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Titanium-based implants, renowned for their excellent mechanical properties, corrosion resistance, and biocompatibility, have found widespread application as premier implant materials in the medical field. However, as bioinert materials, they often face challenges such as implant failure caused by bacterial infections and inadequate osseointegration post-implantation. Thus, to address these issues, researchers have developed various surface modification techniques to enhance the surface properties and bioactivity of titanium-based implants. This review aims to outline several key surface modification methods for titanium-based implants, including acid etching, sol-gel method, chemical vapor deposition, electrochemical techniques, layer-by-layer self-assembly, and chemical grafting. It briefly summarizes the advantages, limitations, and potential applications of these technologies, presenting readers with a comprehensive perspective on the latest advances and trends in the surface modification of titanium-based implants.
Collapse
Affiliation(s)
- Pingyun Yuan
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Mi Chen
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Xiaotong Lu
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Hui Yang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Lan Wang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Tian Bai
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Wenhao Zhou
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Tao Liu
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Sen Yu
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| |
Collapse
|
6
|
Kim SH, Ki MR, Han Y, Pack SP. Biomineral-Based Composite Materials in Regenerative Medicine. Int J Mol Sci 2024; 25:6147. [PMID: 38892335 PMCID: PMC11173312 DOI: 10.3390/ijms25116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Regenerative medicine aims to address substantial defects by amplifying the body's natural regenerative abilities and preserving the health of tissues and organs. To achieve these goals, materials that can provide the spatial and biological support for cell proliferation and differentiation, as well as the micro-environment essential for the intended tissue, are needed. Scaffolds such as polymers and metallic materials provide three-dimensional structures for cells to attach to and grow in defects. These materials have limitations in terms of mechanical properties or biocompatibility. In contrast, biominerals are formed by living organisms through biomineralization, which also includes minerals created by replicating this process. Incorporating biominerals into conventional materials allows for enhanced strength, durability, and biocompatibility. Specifically, biominerals can improve the bond between the implant and tissue by mimicking the micro-environment. This enhances cell differentiation and tissue regeneration. Furthermore, biomineral composites have wound healing and antimicrobial properties, which can aid in wound repair. Additionally, biominerals can be engineered as drug carriers, which can efficiently deliver drugs to their intended targets, minimizing side effects and increasing therapeutic efficacy. This article examines the role of biominerals and their composite materials in regenerative medicine applications and discusses their properties, synthesis methods, and potential uses.
Collapse
Affiliation(s)
- Sung Ho Kim
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Youngji Han
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea;
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
| |
Collapse
|
7
|
Han Z, Xiong J, Jin X, Dai Q, Han M, Wu H, Yang J, Tang H, He L. Advances in reparative materials for infectious bone defects and their applications in maxillofacial regions. J Mater Chem B 2024; 12:842-871. [PMID: 38173410 DOI: 10.1039/d3tb02069j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Infectious bone defects are characterized by the partial loss or destruction of bone tissue resulting from bacterial contaminations subsequent to diseases or external injuries. Traditional bone transplantation and clinical methods are insufficient in meeting the treatment demands for such diseases. As a result, researchers have increasingly focused on the development of more sophisticated biomaterials for improved therapeutic outcomes in recent years. This review endeavors to investigate specific reparative materials utilized for the treatment of infectious bone defects, particularly those present in the maxillofacial region, with a focus on biomaterials capable of releasing therapeutic substances, functional contact biomaterials, and novel physical therapy materials. These biomaterials operate via heightened antibacterial or osteogenic properties in order to eliminate bacteria and/or stimulate bone cells regeneration in the defect, ultimately fostering the reconstitution of maxillofacial bone tissue. Based upon some successful applications of new concept materials in bone repair of other parts, we also explore their future prospects and potential uses in maxillofacial bone repair later in this review. We highlight that the exploration of advanced biomaterials holds promise in establishing a solid foundation for the development of more biocompatible, effective, and personalized treatments for reconstructing infectious maxillofacial defects.
Collapse
Affiliation(s)
- Ziyi Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jingdi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xiaohan Jin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qinyue Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Haiqin Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Chen S, Liu D, Fu L, Ni B, Chen Z, Knaus J, Sturm EV, Wang B, Haugen HJ, Yan H, Cölfen H, Li B. Formation of Amorphous Iron-Calcium Phosphate with High Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301422. [PMID: 37232047 DOI: 10.1002/adma.202301422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Amorphous iron-calcium phosphate (Fe-ACP) plays a vital role in the mechanical properties of teeth of some rodents, which are very hard, but its formation process and synthetic route remain unknown. Here, the synthesis and characterization of an iron-bearing amorphous calcium phosphate in the presence of ammonium iron citrate (AIC) are reported. The iron is distributed homogeneously on the nanometer scale in the resulting particles. The prepared Fe-ACP particles can be highly stable in aqueous media, including water, simulated body fluid, and acetate buffer solution (pH 4). In vitro study demonstrates that these particles have good biocompatibility and osteogenic properties. Subsequently, Spark Plasma Sintering (SPS) is utilized to consolidate the initial Fe-ACP powders. The results show that the hardness of the ceramics increases with the increase of iron content, but an excess of iron leads to a rapid decline in hardness. Calcium iron phosphate ceramics with a hardness of 4 GPa can be achieved, which is higher than that of human enamel. Furthermore, the ceramics composed of iron-calcium phosphates show enhanced acid resistance. This study provides a novel route to prepare Fe-ACP, and presents the potential role of Fe-ACP in biomineralization and as starting material to fabricate acid-resistant high-performance bioceramics.
Collapse
Affiliation(s)
- Song Chen
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Dachuan Liu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Le Fu
- School of Materials Science and Engineering, Central South University, Changsha, 410017, P. R. China
| | - Bing Ni
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Zongkun Chen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Jennifer Knaus
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Elena V Sturm
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Section Crystallography, Department of Geo- and Environmental Sciences, Ludwigs-Maximilians-University Munich, Theresienstr. 41, 80333, Munich, Germany
| | - Bohan Wang
- School of Materials Science and Engineering, Central South University, Changsha, 410017, P. R. China
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, Oslo, 0376, Norway
| | - Hongji Yan
- Department of Medical Cell Biology, Uppsala University, Uppsala, 752 36, Sweden
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, 171 77, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Bin Li
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215006, P.R.China
- Department of Orthopaedic Surgery, The Affiliated Haian Hospital of Nantong University, Haian,Nantong, Jiangsu, 226600, P.R.China
| |
Collapse
|