1
|
Hu J, Huang Y, Hao H, Tian P, Yin Y, He Y, Hao F, Jiang W, Zhang Y, Wan Y, Luo Q. Bioinspired programmed antibiofilm strategies for accelerated wound healing via spatiotemporally controlled enzyme nanoreactors. J Control Release 2025; 381:113582. [PMID: 40032010 DOI: 10.1016/j.jconrel.2025.113582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Biofilms, protected by their dense, self-produced matrix, pose a significant clinical challenge due to their antibiotic resistance, leading to persistent infections and delayed wound healing, particularly in diabetic patients. Tailored to the biofilm life cycle, a double-layered nanoreactor was developed for rapid and complete antibiofilm therapy. The inner layer, cross-linked with poly(allylamine hydrochloride) (PAH)/phosphate, dimeric indocyanine green (dICG), and bromothymol blue (BTB), shields glucose oxidase (GOx) and β-glucanase (β-DEX) from unfavorable environment. The outer layer is coated with bacteria-targeted gold nanozymes (AuNEs). The healing of biofilm-infected diabetic wounds progresses three spatiotemporal stages activated by light irradiation and pH changes. Initially, the photothermal effect of dICG triggers nitric oxide (NO)-mediated biofilm dispersion and lowers the wound pH via a GOx/AuNEs cascade reaction. The resulting acidic environment then induces nanoreactor disassembly, releasing β-DEX to degrade the biofilm matrix and facilitate deeper penetration. Finally, AuNEs specifically recognize and eliminate planktonic bacteria, further disrupting the biofilms and accelerating wound healing by generating reactive oxygen species (ROS) and more toxic reactive nitrogen species (RNS). The wound status can be monitored in real-time using BTB's colorimetric pH analysis for visual feedback on treatment progress. This multifunctional design offers a programmed antibiofilm strategy for dynamic wound management.
Collapse
Affiliation(s)
- Juntao Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hao Hao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Pujing Tian
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yinuo Yin
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuting He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fengjie Hao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wantong Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yanping Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China.
| | - Quan Luo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
He M, Yang X, Xiang D, Chan YK, Yin G, Yang W, Deng Y. Jahn-Teller-Driven Electronic Modulation of Bio-Heterojunction for Wound Regeneration after Postoperative Tumor Resection. NANO LETTERS 2025; 25:6828-6838. [PMID: 40219956 DOI: 10.1021/acs.nanolett.5c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Abundant ·OH, 1O2, and ·O2- provide an efficient methodology for rapid tumor and bacteria killing, whereas a limitation focuses on the catalytic efficiency. Thus, Jahn-Teller-driven electronic modulation of a bioheterojunction (bioHJ) platform is developed for the remedy in diabetic infectious wound regeneration after postoperative tumor resection. The bioHJ is composed of MoTe2/MnO2 and glucose oxidase (GOx). GOx depletes glucose to H2O2, which intercepts their glucose metabolism. The H2O2 can be further converted into highly lethal ·OH owing to peroxidase-mimetic activity via the Jahn-Teller effect, while GSH can be consumed due to its GPx-mimetic activity. Both of which can be further amplified upon NIR irradiation as NIR-activatable enzyme-mimetic activities. In vivo studies in a subcutaneous tumor model and infectious model authenticate the ability to kill tumor, defeat bacterial infection, and accelerate wound regeneration. This work enlightens a powerful platform for postoperative infectious wound regeneration of tumor resection using an engineered bioHJ.
Collapse
Affiliation(s)
- Miaomiao He
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Xuyang Yang
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
- Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, P.R. China
| | - Danni Xiang
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Guangfu Yin
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Weizhong Yang
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
3
|
Yew PYM, Lin Q, Owh C, Chee PL, Loh XJ. Current research and future potential of thermogels for sustained drug delivery. Expert Opin Drug Deliv 2025:1-18. [PMID: 40156586 DOI: 10.1080/17425247.2025.2486350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION Drug administration is ubiquitous in the healthcare field, and it is crucial to optimize drug delivery methods to improve drug efficacy, reduce systemic toxicity, and enhance patient compliance Thermogels have shown immense potential in drug delivery due to their injectability, biocompatibility, and ability to provide localized and sustained drug release. AREA COVERED This paper discusses the unique properties of thermogel in relation to drug kinetics and their suitability as a carrier. Different considerations and applications of thermogel drug delivery systems (DDS) were highlighted and their challenges to enter the market discussed. A comprehensive literature search was conducted using major databases such as PubMed, Scopus, and Web of Science. The search employed relevant keywords to identify studies on thermogel DDS. Clinicaltrials.gov was also utilized to determine the current state of clinical studies. EXPERT OPINION Nonetheless, thermogel holds great promise for the future in DDS with research achieving greater heights in terms of complexity and clinical pursuits. Their flexibility in fabrication and modularity manner makes it a great material to tailor to different drug delivery applications and to be integrated into various biomedical disciplinaries.
Collapse
Affiliation(s)
- Pek Yin Michelle Yew
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
4
|
Mao K, Yue M, Ma H, Li Z, Liu Y. Electro- and Magneto-Active Biomaterials for Diabetic Tissue Repair: Advantages and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501817. [PMID: 40159915 DOI: 10.1002/adma.202501817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Indexed: 04/02/2025]
Abstract
The diabetic tissue repair process is frequently hindered by persistent inflammation, infection risks, and a compromised tissue microenvironment, which lead to delayed wound healing and significantly impact the quality of life for diabetic patients. Electromagnetic biomaterials offer a promising solution by enabling the intelligent detection of diabetic wounds through electric and magnetic effects, while simultaneously improving the pathological microenvironment by reducing oxidative stress, modulating immune responses, and exhibiting antibacterial action. Additionally, these materials inherently promote tissue regeneration by regulating cellular behavior and facilitating vascular and neural repair. Compared to traditional biomaterials, electromagnetic biomaterials provide advantages such as noninvasiveness, deep tissue penetration, intelligent responsiveness, and multi-stimuli synergy, demonstrating significant potential to overcome the challenges of diabetic tissue repair. This review comprehensively examines the superiority of electromagnetic biomaterials in diabetic tissue repair, elucidates the underlying biological mechanisms, and discusses specific design strategies and applications tailored to the pathological characteristics of diabetic wounds, with a focus on skin wound healing and bone defect repair. By addressing current limitations and pursuing multi-faceted strategies, electromagnetic biomaterials hold significant potential to improve clinical outcomes and enhance the quality of life for diabetic patients.
Collapse
Affiliation(s)
- Kai Mao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Huiping Ma
- Department of Stomatology, Zhengzhou Shuqing Medical College, 6 Gongming Road, Erqi District, Zhengzhou, 450064, P. R. China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| |
Collapse
|
5
|
Li Y, Song S, Song J, Gong R, Abbas G. Electrochemical pH Sensor Incorporated Wearables for State-of-the-Art Wound Care. ACS Sens 2025; 10:1690-1708. [PMID: 40036348 DOI: 10.1021/acssensors.4c03408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Nonhealing chronic wounds pose severe physiological and psychological distress to patients, making them a significant concern for global public health. Effective wound management strategies assisted by smart wearable pH monitoring have the potential to substantially alleviate both social and economic burdens. The pH of the wound exudate serves as a valuable indicator for predicting infections and assessing the healing status of wounds. This review comprehensively summarizes fundamental aspects related to wound pH, with a particular emphasis on the relationships between pH and healing status, infections, and other biochemical parameters that are crucial for wound health. It systematically discusses advancements in electrochemical pH sensors specifically designed for wearable devices, emphasizing their core performance in the care of chronic wounds. Additionally, the review outlines the challenges faced by this field and suggests future directions for research and development.
Collapse
Affiliation(s)
- Yiwei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Shibo Song
- Endoscopy Center, Peking University First Hospital, Beijing 100034, China
| | - Jin Song
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Rui Gong
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Ghulam Abbas
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
6
|
Yuan Y, Beilharz S, Everson HR, Nupnar N, Debnath MK, Vinella D, Urueña JM, Örge FH, Hore MJA, Mathur D, Karayilan M. Injectable Fluorescent Bottlebrush Polymers for Interventional Procedures and Biomedical Imaging. Biomacromolecules 2025; 26:1234-1250. [PMID: 39849929 DOI: 10.1021/acs.biomac.4c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Injectable biomaterials play a vital role in modern medicine, offering tailored functionalities for diverse therapeutic and diagnostic applications. In ophthalmology, for instance, viscoelastic materials are crucial for procedures such as cataract surgery but often leave residues, increasing postoperative risks. This study introduces injectable fluorescent viscoelastics (FluoVs) synthesized via one-step controlled radical copolymerization of oligo(ethylene glycol) acrylate and fluorescein acrylate. These bottlebrush-shaped polymers exhibit enhanced fluorescence intensity for improved traceability and facile removal postsurgery. To prevent aggregation, charged terpolymers were synthesized, ensuring intra- and intermolecular electrostatic repulsion. Dynamic light scattering and energy-conserved dissipative particle dynamics simulations revealed how the fluorescein content and monomer sequence affect the hydrodynamic size of these copolymers. Biocompatibility assessments showed that FluoVs maintained cell viability comparable to commercial hydroxypropyl methylcellulose and nonfluorescent poly(oligo(ethylene glycol) acrylate) controls. The FluoVs combine high fluorescence intensity, low viscosity, and excellent biocompatibility, offering intraoperative traceability and significant advancements for ocular and bioimaging applications.
Collapse
Affiliation(s)
- Yichun Yuan
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Sophia Beilharz
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Heather R Everson
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nehal Nupnar
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Mithun Kumar Debnath
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Daniele Vinella
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Juan Manuel Urueña
- NSF BioPACIFIC MIP, University of California Santa Barbara, Elings Hall, Mesa Road, Santa Barbara, California 93106, United States
| | - Faruk H Örge
- Center for Pediatric Ophthalmology and Adult Strabismus Rainbow Babies and Children's Hospital, University Hospitals Eye Institute, and Department of Ophthalmology and Pediatrics, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Michael J A Hore
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Metin Karayilan
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
7
|
Hao ZW, Zhang ZY, Wang ZP, Wang Y, Chen JY, Chen TH, Shi G, Li HK, Wang JW, Dong MC, Hong L, Li JF. Bioactive peptides and proteins for tissue repair: microenvironment modulation, rational delivery, and clinical potential. Mil Med Res 2024; 11:75. [PMID: 39639374 PMCID: PMC11619216 DOI: 10.1186/s40779-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
Bioactive peptides and proteins (BAPPs) are promising therapeutic agents for tissue repair with considerable advantages, including multifunctionality, specificity, biocompatibility, and biodegradability. However, the high complexity of tissue microenvironments and their inherent deficiencies such as short half-live and susceptibility to enzymatic degradation, adversely affect their therapeutic efficacy and clinical applications. Investigating the fundamental mechanisms by which BAPPs modulate the microenvironment and developing rational delivery strategies are essential for optimizing their administration in distinct tissue repairs and facilitating clinical translation. This review initially focuses on the mechanisms through which BAPPs influence the microenvironment for tissue repair via reactive oxygen species, blood and lymphatic vessels, immune cells, and repair cells. Then, a variety of delivery platforms, including scaffolds and hydrogels, electrospun fibers, surface coatings, assisted particles, nanotubes, two-dimensional nanomaterials, and nanoparticles engineered cells, are summarized to incorporate BAPPs for effective tissue repair, modification strategies aimed at enhancing loading efficiencies and release kinetics are also reviewed. Additionally, the delivery of BAPPs can be precisely regulated by endogenous stimuli (glucose, reactive oxygen species, enzymes, pH) or exogenous stimuli (ultrasound, heat, light, magnetic field, and electric field) to achieve on-demand release tailored for specific tissue repair needs. Furthermore, this review focuses on the clinical potential of BAPPs in facilitating tissue repair across various types, including bone, cartilage, intervertebral discs, muscle, tendons, periodontal tissues, skin, myocardium, nervous system (encompassing brain, spinal cord, and peripheral nerve), endometrium, as well as ear and ocular tissue. Finally, current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Zhuo-Wen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe-Yuan Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ze-Pu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jia-Yao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tian-Hong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Han-Ke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun-Wu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Min-Chao Dong
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing-Feng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
8
|
Xu J, Chang L, Xiong Y, Peng Q. Chitosan-Based Hydrogels as Antibacterial/Antioxidant/Anti-Inflammation Multifunctional Dressings for Chronic Wound Healing. Adv Healthc Mater 2024; 13:e2401490. [PMID: 39036852 DOI: 10.1002/adhm.202401490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Due to repeated microbial infection, persistent inflammation, excessive oxidative stress, and cell dysfunction, chronic wounds are difficult to heal, posing a serious threat to public health. Therefore, developing multifunctional wound dressings that can regulate the complex microenvironment of chronic wounds and enhance cellular function holds great significance. Recently, chitosan has emerged as a promising biopolymer for wound healing due to its excellent biocompatibility, biodegradability, and versatile bioactivity. The aim of this review is to provide a comprehensive understanding of the mechanisms of delayed chronic wound healing and discuss the healing-promoting properties of chitosan and its derivatives, such as good biocompatibility, antibacterial activity, hemostatic capacity, and the ability to promote tissue regeneration. On this basis, the potential applications of chitosan-based hydrogels are summarized in chronic wound healing, including providing a suitable microenvironment, eliminating bacterial infections, promoting hemostasis, inhibiting chronic inflammation, alleviating oxidative stress, and promoting tissue regeneration. In addition, the concerns and perspectives for the clinical application of chitosan-based hydrogels are also discussed.
Collapse
Affiliation(s)
- Jingchen Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuhuan Xiong
- Department of Stomatology, The First People's Hospital of Longquanyi District, Chengdu, Sichuan, 610100, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Zhou Z, Li C, Zeng Y, Huang T, Jiang X, Yu DG, Wang K. Natural polymer nanofiber dressings for effective management of chronic diabetic wounds: A comprehensive review. Int J Biol Macromol 2024; 282:136688. [PMID: 39447788 DOI: 10.1016/j.ijbiomac.2024.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Diabetic wounds present a chronic challenge in effective treatment. Natural polymer nanofiber dressings have emerged as a promising solution due to their impressive biocompatibility, biodegradability, safety, high specific surface area, and resemblance to the extracellular matrix. These qualities make them ideal materials with excellent biological properties and cost-effectiveness. Additionally, they can effectively deliver therapeutic agents, enabling diverse treatment effects. This review offers a comprehensive overview of natural polymer-based nanofibers in diabetic wound dressings. It examines the characteristics and challenges associated with diabetic wounds and the role of natural polymers in facilitating wound healing. The review highlights the preparation, mechanism, and applications of various functional dressings composed of natural polymer nanofibers. Furthermore, it addresses the main challenges and future directions in utilizing natural polymer nanofibers for diabetic wound treatment, providing valuable insights into effective wound management for diabetic patients.
Collapse
Affiliation(s)
- Zhengqing Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Zeng
- Department of Neurology, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xuewen Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
10
|
Zhou X, Yu X, You T, Zhao B, Dong L, Huang C, Zhou X, Xing M, Qian W, Luo G. 3D Printing-Based Hydrogel Dressings for Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404580. [PMID: 39552255 DOI: 10.1002/advs.202404580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/21/2024] [Indexed: 11/19/2024]
Abstract
Skin wounds have become an important issue that affects human health and burdens global medical care. Hydrogel materials similar to the natural extracellular matrix (ECM) are one of the best candidates for ideal wound dressings and the most feasible choices for printing inks. Distinct from hydrogels made by traditional technologies, which lack bionic and mechanical properties, 3D printing can promptly and accurately create hydrogels with complex bioactive structures and the potential to promote tissue regeneration and wound healing. Herein, a comprehensive review of multi-functional 3D printing-based hydrogel dressings for wound healing is presented. The review first summarizes the 3D printing techniques for wound hydrogel dressings, including photo-curing, extrusion, inkjet, and laser-assisted 3D printing. Then, the properties and design approaches of a series of bioinks composed of natural, synthetic, and composite polymers for 3D printing wound hydrogel dressings are described. Thereafter, the application of multi-functional 3D printing-based hydrogel dressings in a variety of wound environments is discussed in depth, including hemostasis, anti-inflammation, antibacterial, skin appendage regeneration, intelligent monitoring, and machine learning-assisted therapy. Finally, the challenges and prospects of 3D printing-based hydrogel dressings for wound healing are presented.
Collapse
Affiliation(s)
- Xuan Zhou
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Xunzhou Yu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Tingting You
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Baohua Zhao
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Lanlan Dong
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Can Huang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Xiaoqing Zhou
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Wei Qian
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| |
Collapse
|
11
|
Yang Y, He S, Wang W, Lu Y, Ren B, Dan C, Ji Y, Yu R, Ju X, Qiao X, Xiao Y, Cai J, Hong X. NIR-II Image-Guided Wound Healing in Hypoxic Diabetic Foot Ulcers: The Potential of Ergothioneine-Luteolin-Chitin Hydrogels. Macromol Rapid Commun 2024; 45:e2400528. [PMID: 39422630 DOI: 10.1002/marc.202400528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/18/2024] [Indexed: 10/19/2024]
Abstract
Hypoxic diabetic foot ulcers (HDFUs) pose a challenging chronic condition characterized by oxidative stress damage, bacterial infection, and persistent inflammation. This study introduces a novel therapeutic approach combining ergothioneine (EGT), luteolin (LUT), and quaternized chitosan oxidized dextran (QCOD) to address these challenges and facilitate wound healing in hypoxic DFUs. In vitro, assessments have validated the biosafety, antioxidant, and antimicrobial properties of the ergothioneine-luteolin-chitin (QCOD@EGT-LUT) hydrogel. Furthermore, near-infrared II (NIR-II) fluorescence image-guided the application of QCOD@EGT-LUT hydrogel in simulated HDFUs. Mechanistically, QCOD@EGT-LUT hydrogel modulates the diabetic wound microenvironment by reducing reactive oxygen species (ROS). In vivo studies demonstrated increased expression of angiogenic factors mannose receptor (CD206) and latelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), coupled with decreased inflammatory factors tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6), thereby promoting diabetic wound healing through up-regulation of transforming growth factor β-1 (TGF-β1).
Collapse
Affiliation(s)
- Yao Yang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Shengnan He
- Key Laboratory of Virology and Biosafety (CAS), Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Wumei Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Yiwen Lu
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Bingtao Ren
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Ci Dan
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Yang Ji
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Rui Yu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Xinpeng Ju
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Xue Qiao
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
- Key Laboratory of Virology and Biosafety (CAS), Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Yuling Xiao
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Jie Cai
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuechuan Hong
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| |
Collapse
|
12
|
Zhang L, Hu C, Zhao Y, Li S, Huang Q, Zhang L, Qu X, Lei B. Bioenergetic-active photoluminescent bioactive Nanodressing for proangiogenic MRSA infected wound repair and microenviroment monitoring. CHEMICAL ENGINEERING JOURNAL 2024; 499:156557. [DOI: 10.1016/j.cej.2024.156557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
13
|
Das IJ, Bal T. pH factors in chronic wound and pH-responsive polysaccharide-based hydrogel dressings. Int J Biol Macromol 2024; 279:135118. [PMID: 39208902 DOI: 10.1016/j.ijbiomac.2024.135118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Chronic wounds present a significant healthcare challenge marked by complexities such as persistent bleeding, inhibited cell proliferation, dysregulated inflammation, vulnerability to infection, and compromised tissue remodeling. Conventional wound dressings often prove inadequate in addressing the intricate requirements of chronic wound healing, leading to slow healing and heightened susceptibility to infections in patients with prolonged medical conditions. Bacterial biofilms in chronic wounds pose an additional challenge due to drug resistance. Advanced wound dressings have emerged as promising tools in expediting the healing process. Among these, pH-responsive polysaccharide-based hydrogels exhibit immense prospect by adapting their functions to dynamic wound conditions. Despite their potential, the current literature lacks a thorough review of these wound dressings. This review bridges this gap by meticulously examining factors related to chronic wounds, current strategies for healing, and the mechanisms and potential applications of pH-responsive hydrogel wound dressings as an emerging therapeutic solution. Special focus is given to their remarkable antibacterial properties and significant self-healing abilities. It further explores the pH-monitoring functions of these dressings, elucidating the associated pH indicators. This synthesis of knowledge aims to guide future research and development in the field of pH-responsive wound dressings, providing valuable insights into their potential applications in wound care.
Collapse
Affiliation(s)
- Itishree Jogamaya Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
14
|
Lin B, Dong K, Zhou S, Li X, Gao B. Hybrid biological macromolecules spider-silk fibroin optical patches for efficient wound healing. Int J Biol Macromol 2024; 280:135965. [PMID: 39322126 DOI: 10.1016/j.ijbiomac.2024.135965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Efforts toward developing wound dressings that effectively monitor healing have become at the forefront of the field of wound healing. However, monofunctionality, biotoxicity, and passive therapy constrain wound patches. Herein, a hypoallergenic wound patch integrating moisture monitoring, motion sensing and electrical stimulation for wound healing is presented. Microstructured patches composed of silk proteins and spider silk proteins (MIS) fused together were structurally transformed and crosslinked by spin-coating a mixture of silk proteins (SFs) and spider silk proteins (SPs) with water-soluble polyurethane (PU), creating MIS patches with microstructures by hot embossing. This is attributed to stable SF-SP hydrogen bonding, which provides an extremely rapid response to humidity and endows the patch with superior motion sensing tensile properties. Notably, β-folding and α-helical structures confer SP toughness and strength, producing electrical charges under electrical stimulation occurring with motor stretching, thereby enabling electrical stimulation for quicker wound healing. Specifically, The MIS is sensitive to changes in humidity, which is reflected in changes in the colour of its surface patches. Also it enhances the strength of the electrical stimulation signal more effectively as the thickness of the film layer increases. These characteristics indicate the high potential of the MIS for wound management.
Collapse
Affiliation(s)
- Baoyang Lin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Kaiyi Dong
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Shu Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xin Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
15
|
Yang X, Chai L, Huang Z, Zhu B, Liu H, Shi Z, Wu Y, Guo L, Xue L, Lei Y. Smart photonic crystal hydrogels for visual glucose monitoring in diabetic wound healing. J Nanobiotechnology 2024; 22:618. [PMID: 39395993 PMCID: PMC11470632 DOI: 10.1186/s12951-024-02905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024] Open
Abstract
Diabetes is a global chronic disease that seriously endangers human health and characterized by abnormally high blood glucose levels in the body. Diabetic wounds are common complications which associate with impaired healing process. Biomarkers monitoring of diabetic wounds is of great importance in the diabetes management. However, actual monitoring of biomarkers still largely relies on the complex process and additional sophisticated analytical instruments. In this work, we prepared hydrogels composed of different modules, which were designed to monitor different physiological indicators in diabetic wounds, including glucose levels, pH, and temperature. Glucose monitoring was achieved based on the combination of photonic crystal (PC) structure and glucose-responsive hydrogels. The obtained photonic crystal hydrogels (PCHs) allowed visual monitoring of glucose levels in physiological ranges by readout of intuitive structural color changes of PCHs during glucose-induced swelling and shrinkage. Interestingly, the glucose response of double network PCHs was completed in 15 min, which was twice as fast as single network PCHs, due to the higher volume fraction of glucose-responsive motifs. Moreover, pH sensing was achieved by incorporation of acid-base indicator dyes into hydrogels; and temperature monitoring was obtained by integration of thermochromic powders in hydrogels. These hydrogel modules effectively monitored the physiological levels and dynamic changes of three physiological biomarkers, both in vitro and in vivo during diabetic wound healing process. The multifunctional hydrogels with visual monitoring of biomarkers have great potential in wound-related monitoring and treatment.
Collapse
Affiliation(s)
- Xuxia Yang
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Langjie Chai
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhuo Huang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Bo Zhu
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Haiyang Liu
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Zhantian Shi
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - You Wu
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Longjian Xue
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Yifeng Lei
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan, 430072, China.
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
16
|
Abdollahi M, Baharian A, Mohamadhoseini M, Hassanpour M, Makvandi P, Habibizadeh M, Jafari B, Nouri R, Mohamadnia Z, Nikfarjam N. Advances in ionic liquid-based antimicrobial wound healing platforms. J Mater Chem B 2024; 12:9478-9507. [PMID: 39206539 DOI: 10.1039/d4tb00841c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Wound infections, marked by the proliferation of microorganisms at surgical sites, necessitate the development of innovative wound dressings with potent bactericidal properties to curb microbial growth and prevent bacterial infiltration. This study explores the recent strides in utilizing ionic liquid-based polymers as highly promising antimicrobial agents for advanced wound healing applications. Specifically, cationic polymers containing quaternary ammonium, imidazolium, guanidinium, pyridinium, triazolium, or phosphonium groups have emerged as exceptionally effective antimicrobial compounds. Their mechanism of action involves disrupting bacterial membranes, thereby preventing the development of resistance and minimizing toxicity to mammalian cells. This comprehensive review not only elucidates the intricate dynamics of the skin's immune response and the various stages of wound healing but also delves into the synthesis methodologies of ionic liquid-based polymers. By spotlighting the practical applications of antimicrobial wound dressings, particularly those incorporating ionic liquid-based materials, this review aims to lay the groundwork for future research endeavors in this burgeoning field. Through a nuanced examination of these advancements, this article seeks to contribute to the ongoing progress in developing cutting-edge wound healing platforms that can effectively address the challenges posed by microbial infections in surgical wounds.
Collapse
Affiliation(s)
- Mahin Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Aysan Baharian
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Masoumeh Mohamadhoseini
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Mina Habibizadeh
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Bahman Jafari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Roya Nouri
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 451951159, Iran.
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia 29208, SC, USA
| |
Collapse
|
17
|
Dacrory S, D'Amora U, Longo A, Hasanin MS, Soriente A, Fasolino I, Kamel S, Al-Shemy MT, Ambrosio L, Scialla S. Chitosan/cellulose nanocrystals/graphene oxide scaffolds as a potential pH-responsive wound dressing: Tuning physico-chemical, pro-regenerative and antimicrobial properties. Int J Biol Macromol 2024; 278:134643. [PMID: 39128733 DOI: 10.1016/j.ijbiomac.2024.134643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Chronic wounds (CWs) treatment still represents a demanding medical challenge. Several intrinsic physiological signals (i.e., pH) help to stimulate and support wound healing. CWs, in fact, are characterized by a predominantly alkaline pH of the exudate, which acidifies as the wound heals. Therefore, pH-responsive wound dressings hold great potential owing to their capability of tuning their functions according to the wound conditions. Herein, porous chitosan (CS)-based scaffolds loaded with cellulose nanocrystals (CNCs) and graphene oxide (GO) were successfully fabricated using a freeze-drying method. CNCs were extracted from bagasse pulps fibers through acid hydrolysis. GO was synthesised by Hummer's method. The scaffolds were then ionically cross-linked using the amino acid L-Arginine (Arg), as a bioactive agent, and tested as potential pH-responsive wound dressing. Notably, the effect of CNCs and GO singly and simultaneously loaded within the CS-Arg scaffolds was investigated. The modulation of CNCs and GO content within CS-Arg scaffolds facilitated the development of scaffolds with an optimal pH-dependent swelling ratio capability and extended degradation time. Furthermore, CS/CNC/GO-Arg scaffolds exhibited tuned biological features, in terms of antimicrobial activity, cellular proliferation/migration ability, and the expression of extracellular matrix specific markers (i.e., elastin and collagen I) related to wound healing in human dermal fibroblasts.
Collapse
Affiliation(s)
- Sawsan Dacrory
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Cairo 12622, Egypt
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy
| | - Angela Longo
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy
| | - Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Cairo 12622, Egypt
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Cairo 12622, Egypt
| | - Mona T Al-Shemy
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Cairo 12622, Egypt
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy
| | - Stefania Scialla
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Mostra d'Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy.
| |
Collapse
|
18
|
Liu P, Chen X, Lei Z, Chen K, Jin W, Wang W, Liang S, Yu J, Ao M, Yu L. Non-releasing poly (ionic liquid) based hydrogel accelerates diabetic wound healing. Colloids Surf B Biointerfaces 2024; 245:114218. [PMID: 39276758 DOI: 10.1016/j.colsurfb.2024.114218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Persistent bacterial colonization, abnormal inflammatory responses, and impaired angiogenesis pose significant challenges to effective wound repair, particularly in diabetic wounds. Employing exogenous bioactive substances in wound dressings is a recognized approach to dynamically respond to the wound microenvironment and accelerate the repair process. However, this strategy can lead to the development of drug resistance and induce further tissue damage. To address these challenges, we are synthesizing a novel hydrogel for diabetic wound treatment using functional poly (ionic liquid) and modified dextran. The hydrogel is characterized by its excellent tissue adhesion, exceptional self-healing capacity, and substantial compressive deformation. It exhibits broad antibacterial activity, reduces the expression of pro-inflammatory cytokines and enhances the healing in diabetic wounds. Its efficacy is superior to that of the positive control group. This innovative non-releasing hydrogel presents as a promising alternative to conventional antibiotics, offering significant potential for the treatment and healing of diabetic chronic wounds.
Collapse
Affiliation(s)
- Pan Liu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojuan Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhiyong Lei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kezhuo Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenwen Jin
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Wenboxin Wang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siyuan Liang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaxin Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingzhang Ao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China.
| |
Collapse
|
19
|
Jin S, Mia R, Newton MAA, Cheng H, Gao W, Zheng Y, Dai Z, Zhu J. Nanofiber-reinforced self-healing polysaccharide-based hydrogel dressings for pH discoloration monitoring and treatment of infected wounds. Carbohydr Polym 2024; 339:122209. [PMID: 38823899 DOI: 10.1016/j.carbpol.2024.122209] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
The escalating global health concern arises from chronic wounds induced by bacterial infections, posing a significant threat to individuals. Consequently, an imperative exist for the development of hydrogel dressings to facilitate prompt wound monitoring and efficacious wound management. To this end, pH-sensitive bromothymol blue (BTB) and pH-responsive drug tetracycline hydrochloride (TH) were introduced into the polysaccharide-based hydrogel to realize the integration of wound monitoring and controlled treatment. Polysaccharide-based hydrogels were formed via a Schiff base reaction by cross-linking carboxymethyl chitosan (CMCS) on an oxidized sodium alginate (OSA) skeleton. BTB was used as a pH indicator to monitor wound infection through visual color changes visually. TH could be dynamically released through the pH response of the Schiff base bond to provide effective treatment and long-term antibacterial activity for chronically infected wounds. In addition, introducing polylactic acid nanofibers (PLA) enhanced the mechanical properties of hydrogels. The multifunctional hydrogel has excellent mechanical, self-healing, injectable, antibacterial properties and biocompatibility. Furthermore, the multifaceted hydrogel dressing under consideration exhibits noteworthy capabilities in fostering the healing process of chronically infected wounds. Consequently, the research contributes novel perspectives towards the advancement of intelligent and expeditious bacterial infection monitoring and dynamic treatment platforms.
Collapse
Affiliation(s)
- Shanshan Jin
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Rajib Mia
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Md All Amin Newton
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hongju Cheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Weihong Gao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yuansheng Zheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zijian Dai
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
20
|
Li X, Xue X, Xie P. Smart Dressings and Their Applications in Chronic Wound Management. Cell Biochem Biophys 2024; 82:1965-1977. [PMID: 38969950 DOI: 10.1007/s12013-024-01402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
During chronic wound healing, the inflammatory phase can endure for extended periods, heavily impeding or halting the process. Regular inspections and dressing changes are crucial. Modern dressings like hydrogels, hydrocolloids, and foam provide protection and an optimal healing environment. However, they have limitations in offering real-time wound bed status and healing rate. Evaluation relies heavily on direct observation, and passive dressings fail to identify subtle healing differences, preventing adaptive adjustments in biological factors and drug concentrations. In recent years, the clinical field recognizes the value of integrating intelligent diagnostic tools into wound dressings. By monitoring biomarkers linked to chronic wounds' inflammatory state, real-time data can be captured, reducing medical interventions and enabling more effective treatment plans. This fosters innovation in chronic wound care. Researchers have developed smart dressings with sensing, active drug delivery, and self-adjustment capabilities. These dressings detect inflammatory markers like temperature, pH, and oxygen content, enhancing drug bioavailability on the wound surface. As wound healing technology evolves, these smart dressings hold immense potential in chronic wound care and treatment. This comprehensive review updates our understanding on the role and mechanism of action of the smart dressings in chronic refractory wounds by summarizing and discussing the latest research progresses, including the intelligent monitoring of wound oxygen content, temperature, humidity, pH, infection, and enzyme kinetics; intelligent drug delivery triggered by temperature, pH, near-infrared, and electricity; as well as the intelligent self-adjustment of pressure and shape. The review also delves into the constraints and future perspectives of smart dressings in clinical settings, thereby advancing the development of smart wound dressings for chronic wound healing and their practical application in clinical practice.
Collapse
Affiliation(s)
- Xiaodong Li
- Center for Cosmetic Surgery, General Hospital of Lanzhou Petrochemical Company (The Fourth Affiliated Hospital of Gansu University of Chinese Medicine), Lanzhou, 730060, Gansu, China
| | - Xiaodong Xue
- Department of Plastic Surgery, People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Peilin Xie
- Department of Plastic Surgery, People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
21
|
Yew PYM, Chee PL, Lin Q, Owh C, Li J, Dou QQ, Loh XJ, Kai D, Zhang Y. Hydrogel for light delivery in biomedical applications. Bioact Mater 2024; 37:407-423. [PMID: 38689660 PMCID: PMC11059474 DOI: 10.1016/j.bioactmat.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Traditional optical waveguides or mediums are often silica-based materials, but their applications in biomedicine and healthcare are limited due to the poor biocompatibility and unsuitable mechanical properties. In term of the applications in human body, a biocompatible hydrogel system with excellent optical transparency and mechanical flexibility could be beneficial. In this review, we explore the different designs of hydrogel-based optical waveguides derived from natural and synthetic sources. We highlighted key developments such as light emitting contact lenses, implantable optical fibres, biosensing systems, luminating and fluorescent materials. Finally, we expand further on the challenges and perspectives for hydrogel waveguides to achieve clinical applications.
Collapse
Affiliation(s)
- Pek Yin Michelle Yew
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Pei Lin Chee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Jiayi Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Qing Qing Dou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Dan Kai
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
22
|
He S, Lin M, Zheng Q, Liang B, He X, Zhang Y, Xu Q, Deng H, Fan K, Chen W. Glucose Oxidase Energized Osmium with Dual-Active Centers and Triple Enzyme Activities for Infected Diabetic Wound Management. Adv Healthc Mater 2024; 13:e2303548. [PMID: 38507709 DOI: 10.1002/adhm.202303548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Diabetic wounds are susceptible to bacterial infections, largely linked to high blood glucose levels (hyperglycemia). To treat such wounds, enzymes like glucose oxidase (GOx) can be combined with nanozymes (nanomaterials mimic enzymes) to use glucose effectively for purposes. However, there is still room for improvement in these systems, particularly in terms of process simplification, enzyme activity regulation, and treatment effects. Herein, the approach utilizes GOx to directly facilitate the biomineralized growth of osmium (Os) nanozyme (GOx-OsNCs), leading to dual-active centers and remarkable triple enzyme activities. Initially, GOx-OsNCs use vicinal dual-active centers, enabling a self-cascaded mechanism that significantly enhances glucose sensing performance compared to step-by-step reactions, surpassing the capabilities of other metal sources such as gold and platinum. In addition, GOx-OsNCs are integrated into a glucose-sensing gel, enabling instantaneous visual feedback. In the treatment of infected diabetic wounds, GOx-OsNCs exhibit multifaceted benefits by lowering blood glucose levels and exhibiting antibacterial properties through the generation of hydroxyl free radicals, thereby expediting healing by fostering a favorable microenvironment. Furthermore, the catalase-like activity of GOx-OsNCs aids in reducing oxidative stress, inflammation, and hypoxia, culminating in improved healing outcomes. Overall, this synergistic enzyme-nanozyme blend is user-friendly and holds considerable promise for diverse applications.
Collapse
Affiliation(s)
- Shaobin He
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Mengting Lin
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Qionghua Zheng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Bo Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xinjie He
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350004, China
| | - Yin Zhang
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Qiuxia Xu
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Haohua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| |
Collapse
|
23
|
Zhang Q, Zhang Y, Qi C, Chen J, Hu H, Tan G, Tu J. Epigallocatechin-3-gallate derived polymer coated Prussian blue for synergistic ROS elimination and antibacterial therapy. Int J Pharm 2024; 656:124095. [PMID: 38588757 DOI: 10.1016/j.ijpharm.2024.124095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Reactive oxygen species (ROS) play a vital role in wound healing process by fighting against invaded bacteria. However, excess ROS at the wound sites lead to oxidative stress that can trigger deleterious effects, causing cell death, tissue damage and chronic inflammation. Therefore, we fabricated a core-shell structured nanomedicine with antibacterial and antioxidant properties via a facile and green strategy. Specifically, Prussian blue (PB) nanozyme was fabricated and followed by coating a layer of epigallocatechin-3-gallate (EGCG)-derived polymer via polyphenolic condensation reaction and self-assembly process, resulting in PB@EGCG. The introduction of PB core endowed EGCG-based polyphenol nanoparticles with excellent NIR-triggered photothermal properties. Besides, owing to multiple enzyme-mimic activity of PB and potent antioxidant capacity of EGCG-derived polymer, PB@EGCG exhibited a remarkable ROS-scavenging ability, mitigated intracellular ROS level and protected cells from oxidative damage. Under NIR irradiation (808 nm, 1.5 W/cm2), PB@EGCG (50 µg/mL) exerted synergistic EGCG-derived polymer-photothermal antibacterial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). In vivo therapeutic effect was evaluated using a S. aureus-infected rat model indicated PB@EGCG with a prominent bactericidal ability could modulate the inflammatory microenvironment and accelerate wound healing. Overall, this dual-functional nanomedicine provides a promising strategy for efficient antibacterial therapy.
Collapse
Affiliation(s)
- Qinqin Zhang
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yipin Zhang
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Chenyang Qi
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Haonan Hu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Guitao Tan
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Tu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
24
|
Hao Z, Li X, Zhang R, Zhang L. Stimuli‐Responsive Hydrogels for Antibacterial Applications. Adv Healthc Mater 2024:e2400513. [PMID: 38723248 DOI: 10.1002/adhm.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Hydrogels have emerged as promising candidates for biomedical applications, especially in the field of antibacterial therapeutics, due to their unique structural properties, highly tunable physicochemical properties, and excellent biocompatibility. The integration of stimuli-responsive functions into antibacterial hydrogels holds the potential to enhance their antibacterial properties and therapeutic efficacy, dynamically responding to different external or internal stimuli, such as pH, temperature, enzymes, and light. Therefore, this review describes the applications of hydrogel dressings responsive to different stimuli in antibacterial therapy. The collaborative interaction between stimuli-responsive hydrogels and antibacterial materials is discussed. This synergistic approach, in contrast to conventional antibacterial materials, not only amplifies the antibacterial effect but also alleviates adverse side effects and diminishes the incidence of multiple infections and drug resistance. The review provides a comprehensive overview of the current challenges and outlines future research directions for stimuli-responsive antibacterial hydrogels. It underscores the imperative for ongoing interdisciplinary research aimed at unraveling the mechanisms of wound healing. This understanding is crucial for optimizing the design and implementation of stimuli-responsive antibacterial hydrogels. Ultimately, this review aims to offer scientific guidance for the development and practical clinical application of stimuli-responsive antibacterial hydrogel dressings.
Collapse
Affiliation(s)
- Zhe Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
25
|
Youn S, Ki MR, Abdelhamid MAA, Pack SP. Biomimetic Materials for Skin Tissue Regeneration and Electronic Skin. Biomimetics (Basel) 2024; 9:278. [PMID: 38786488 PMCID: PMC11117890 DOI: 10.3390/biomimetics9050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Biomimetic materials have become a promising alternative in the field of tissue engineering and regenerative medicine to address critical challenges in wound healing and skin regeneration. Skin-mimetic materials have enormous potential to improve wound healing outcomes and enable innovative diagnostic and sensor applications. Human skin, with its complex structure and diverse functions, serves as an excellent model for designing biomaterials. Creating effective wound coverings requires mimicking the unique extracellular matrix composition, mechanical properties, and biochemical cues. Additionally, integrating electronic functionality into these materials presents exciting possibilities for real-time monitoring, diagnostics, and personalized healthcare. This review examines biomimetic skin materials and their role in regenerative wound healing, as well as their integration with electronic skin technologies. It discusses recent advances, challenges, and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Seung-Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
| |
Collapse
|
26
|
Xia Y, Ma Z, Wu X, Wei H, Zhang H, Li G, Qian Y, Shahriari-Khalaji M, Hou K, Cao R, Zhu M. Advances in Stimuli-Responsive Chitosan Hydrogels for Drug Delivery Systems. Macromol Biosci 2024; 24:e2300399. [PMID: 38011585 DOI: 10.1002/mabi.202300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/29/2023] [Indexed: 11/29/2023]
Abstract
Sustainable and controllable drug transport is one of the most efficient ways of disease treatment. Due to high biocompatibility, good biodegradability, and low costs, chitosan and its derivatives are widely used in biomedical fields. Specifically, chitosan hydrogel enables drugs to pass through biological barriers because of their abundant amino and hydroxyl groups that can interact with human tissues. Moreover, the multi-responsive nature (pH, temperature, ions strength, and magnetic field, etc.) of chitosan hydrogels makes precise drug release a possibility. Here, the synthesis methods, modification strategies, stimuli-responsive mechanisms of chitosan-based hydrogels, and their recent progress in drug delivery are summarized. Chitosan hydrogels that carry and release drugs through subcutaneous (dealing with wound dressing), oral (dealing with gastrointestinal tract), and facial (dealing with ophthalmic, ear, and brain) are reviewed. Finally, challenges toward clinic application and the future prospects of stimuli-responsive chitosan-based hydrogels are indicated.
Collapse
Affiliation(s)
- Yuhan Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xuechen Wu
- Shanghai Starriver Bilingual School, Shanghai, 201108, China
| | - Huidan Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Han Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Guang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuqi Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Kai Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ran Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
27
|
He Y, Yang W, Zhang C, Yang M, Yu Y, Zhao H, Guan F, Yao M. ROS/pH dual responsive PRP-loaded multifunctional chitosan hydrogels with controlled release of growth factors for skin wound healing. Int J Biol Macromol 2024; 258:128962. [PMID: 38145691 DOI: 10.1016/j.ijbiomac.2023.128962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Platelet-rich plasma (PRP) contains a variety of growth factors (GFs) and has been used in the treatment of a variety of diseases, including skin lesions. In particular, PRP with low immunogenicity will be more widely used. However, the explosive release of GFs limits its further application. In order to achieve controlled release of GFs, a multifunctional and reactive oxygen species (ROS)/pH dual responsive hydrogel was developed to load PRP derived from human cord blood for the treatment of skin wound healing. Based on the hydrogen bond and Schiff base interaction, carboxymethyl chitosan (CMCS), oxidized dextran (Odex) and oligomeric procyanidins (OPC) were crosslinked to form CMCS/Odex/OPC/PRP hydrogel with good injectability, self-healing, adhesion, ROS scavenging, antibacterial activity, controlled and sustained release of GFs. In vitro cell experiments suggested that this hydrogel possessed excellent biocompatibility and could promote the proliferation and migration of L929. In vivo healing of full-layer skin wounds further indicated that the prepared hydrogel could regulate inflammation and promote epithelialization, collagen deposition, and angiogenesis. In summary, this present study demonstrates that CMCS/Odex/OPC/PRP hydrogel may serve as a promising multifunctional dressing for skin wound healing.
Collapse
Affiliation(s)
- Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Weijuan Yang
- Shandong Qilu Stem Cell Engineering Co. LTD, Jinan 250102, PR China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Mengyu Yang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yachao Yu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
28
|
Wang X, Yang Y, Zhao W, Zhu Z, Pei X. Recent advances of hydrogels as smart dressings for diabetic wounds. J Mater Chem B 2024; 12:1126-1148. [PMID: 38205636 DOI: 10.1039/d3tb02355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Chronic diabetic wounds have been an urgent clinical problem, and wound dressings play an important role in their management. Due to the design of traditional dressings, it is difficult to achieve adaptive adhesion and on-demand removal of complex diabetic wounds, real-time monitoring of wound status, and dynamic adjustment of drug release behavior according to the wound microenvironment. Smart hydrogels, as smart dressings, can respond to environmental stimuli and achieve more precise local treatment. Here, we review the latest progress of smart hydrogels in wound bandaging, dynamic monitoring, and drug delivery for treatment of diabetic wounds. It is worth noting that we have summarized the most important properties of smart hydrogels for diabetic wound healing. In addition, we discuss the unresolved challenges and future prospects in this field. We hope that this review will contribute to furthering progress on smart hydrogels as improved dressing for diabetic wound healing and practical clinical application.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, The State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
29
|
Wang Q, Liang X, Shen L, Xu H, Wang Z, Redshaw C, Zhang Q. Double Cross-Linked Hydrogel Dressings Based on Triblock Copolymers Bearing Antifreezing, Antidrying, and Inherent Antibacterial Properties. Biomacromolecules 2024; 25:388-399. [PMID: 38149581 DOI: 10.1021/acs.biomac.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Bacterial infections typically invade the living tissue of wounds, thereby aggravating the inflammatory response, delaying wound healing, or causing further complications. In this paper, the antibacterial hydrogel (PNVBA) with antifreezing and antidrying properties was prepared by a two-step method using N-isopropylacrylamide (NIPAM), 1-butyl-3-vinylimidazolium bromide (VBIMBr), and 3-acrylamidophenylboronic acid (AAPBA). PNVBA hydrogels exhibited a high adsorption capacity of 280 mg·g-1 for bovine serum albumin (BSA) and can adhere to the surface of different materials through ion-dipole or hydrogen-bonding interactions. Meanwhile, the PNVBA hydrogels exhibited high viscoelasticity and good adhesion after freezing at -20 °C or heating at 70 °C for 24 h with a sterilizing rate of up to 98% against multidrug-resistant (MDR) Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). Moreover, a survival rate of up to 90% after incubation with L929 cells over 24 h was observed. Therefore, this inherent antibacterial hydrogel can be used as an excellent alternative material for wound dressings.
Collapse
Affiliation(s)
- Qian Wang
- Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Xi Liang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Lingyi Shen
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Hong Xu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Zhiyong Wang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Carl Redshaw
- Department of Chemistry, School of Natural Sciences, University of Hull, Hull Hu6 7RX, U.K
| | - Qilong Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P. R. China
| |
Collapse
|