1
|
Liu X, Zhou Z, Zhang Y, Zhong H, Cai X, Guan R. Recent progress on the organoids: Techniques, advantages and applications. Biomed Pharmacother 2025; 185:117942. [PMID: 40043462 DOI: 10.1016/j.biopha.2025.117942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/30/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025] Open
Abstract
Organoids are a cutting-edge technology in the life sciences field, with applications in precision medicine, bionic organs, and toxicological evaluations of chemicals. Their 3D structure closely resembles that of real organs, allowing more accurate functional mimicry. The 3D organoid culture system can simulate the growth state of cells in vivo and establish a suspension culture system for organoid 3D culture by using scaffold-less or scaffold technology to avoid direct contact between cells and plastic culture vessels. Furthermore, organoids can simulate the pathophysiological state of tissues and organs in vitro. This paper primarily discusses the construction methodologies, as well as the advantages and disadvantages of 3D culture systems for both scaffold-free organoids and scaffolded organoids. This review also summarizes the application of organoid models in chemical toxicology evaluation, drug screening and functional evaluation, establishment of in vitro disease models, and research on disease occurrence and potential mechanisms. The aim is to provide a reference for the research and practical applications of organoid-related scientific fields.
Collapse
Affiliation(s)
- Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhiyuan Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yao Zhang
- Zhejiang Provincial Key Lab for Chem and Bio Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiulei Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Moganshan Institute ZJUT, Kangqian District, Deqing 313200, China.
| |
Collapse
|
2
|
Chalard AE, Porritt H, Lam Po Tang EJ, Taberner AJ, Winbo A, Ahmad AM, Fitremann J, Malmström J. Dynamic composite hydrogels of gelatin methacryloyl (GelMA) with supramolecular fibers for tissue engineering applications. BIOMATERIALS ADVANCES 2024; 163:213957. [PMID: 39024864 DOI: 10.1016/j.bioadv.2024.213957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
In the field of tissue engineering, there is a growing need for biomaterials with structural properties that replicate the native characteristics of the extracellular matrix (ECM). It is important to include fibrous structures into ECM mimics, especially when constructing scar models. Additionally, including a dynamic aspect to cell-laden biomaterials is particularly interesting, since native ECM is constantly reshaped by cells. Composite hydrogels are developed to bring different combinations of structures and properties to a scaffold by using different types and sources of materials. In this work, we aimed to combine gelatin methacryloyl (GelMA) with biocompatible supramolecular fibers made of a small self-assembling sugar-derived molecule (N-heptyl-D-galactonamide, GalC7). The GalC7 fibers were directly grown in the GelMA through a thermal process, and it was shown that the presence of the fibrous network increased the Young's modulus of GelMA. Due to the non-covalent interactions that govern the self-assembly, these fibers were observed to dissolve over time, leading to a dynamic softening of the composite gels. Cardiac fibroblast cells were successfully encapsulated into composite gels for 7 days, showing excellent biocompatibility and fibroblasts extending in an elongated morphology, most likely in the channels left by the fibers after their degradation. These novel composite hydrogels present unique properties and could be used as tools to study biological processes such as fibrosis, vascularization and invasion.
Collapse
Affiliation(s)
- Anaïs E Chalard
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Harrison Porritt
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Emily J Lam Po Tang
- The Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, New Zealand
| | - Andrew J Taberner
- The Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, New Zealand; Department of Engineering Science and Biomedical Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| | - Annika Winbo
- Department of Physiology, The University of Auckland, Auckland, New Zealand; Manaaki Manawa Centre for Heart Research, The University of Auckland, Auckland, New Zealand
| | - Amatul M Ahmad
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Juliette Fitremann
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| |
Collapse
|
3
|
Bosmans C, Ginés Rodriguez N, Karperien M, Malda J, Moreira Teixeira L, Levato R, Leijten J. Towards single-cell bioprinting: micropatterning tools for organ-on-chip development. Trends Biotechnol 2024; 42:739-759. [PMID: 38310021 DOI: 10.1016/j.tibtech.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 02/05/2024]
Abstract
Organs-on-chips (OoCs) hold promise to engineer progressively more human-relevant in vitro models for pharmaceutical purposes. Recent developments have delivered increasingly sophisticated designs, yet OoCs still lack in reproducing the inner tissue physiology required to fully resemble the native human body. This review emphasizes the need to include microarchitectural and microstructural features, and discusses promising avenues to incorporate well-defined microarchitectures down to the single-cell level. We highlight how their integration will significantly contribute to the advancement of the field towards highly organized structural and hierarchical tissues-on-chip. We discuss the combination of state-of-the-art micropatterning technologies to achieve OoCs resembling human-intrinsic complexity. It is anticipated that these innovations will yield significant advances in realization of the next generation of OoC models.
Collapse
Affiliation(s)
- Cécile Bosmans
- Department of Developmental BioEngineering, University of Twente, Enschede, The Netherlands
| | - Núria Ginés Rodriguez
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, University of Twente, Enschede, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Liliana Moreira Teixeira
- Department of Advanced Organ bioengineering and Therapeutics, University of Twente, Enschede, The Netherlands.
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Jeroen Leijten
- Department of Developmental BioEngineering, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
4
|
Fan Y, Hong R, Sun X, Luo Q, Wei H, Chen Y, Zhang Z, Zhou X, Wan J. Gastric acid-responsive deformable sodium alginate/Bletilla striata polysaccharide in situ gel for the protection and treatment of alcohol-induced peptic ulcers. Int J Biol Macromol 2024; 258:128815. [PMID: 38114010 DOI: 10.1016/j.ijbiomac.2023.128815] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
First-line drugs for peptic ulcer (PU) treatment are typically limited by poor targeting and adverse effects associated with long-term use. Despite recent advancements in novel therapeutic approaches for PU, the development of sustained-release delivery systems tailored to specific pathological characteristics remains challenging. Persistent inflammation, particularly gastric inflammatory microenvironment imbalance, characterizes the PU. In this study, we prepared an in situ gel composed of sodium alginate, deacetylated gellan gum, calcium citrate, and Bletilla striata polysaccharide (BSP) to achieve sustained release of BSP. The BSP in situ gel demonstrated favorable fluidity in vitro and completed self-assembly in vivo in response to the acidic milieu at a pH of 1.5. Furthermore, the shear, extrusion, and deformation properties increased by 26.4 %, 103.7 %, and 46.3 %, respectively, with long-term gastric retention (4 h) and mucosal adaptation. Animal experiments confirmed that the BSP in situ gel could attenuate necrotic injury and inflammatory cell infiltration, maintain mucosal barrier integrity, regulate cytokine imbalance and inflammation-associated hyperapoptosis, thus effectively alleviate the inflammatory microenvironmental imbalance in PU without significant side effects. Overall, our findings demonstrated that the BSP in situ gel is a promising therapeutic strategy for PU and opens avenues for developing self-assembled formulations targeting the pathological features of PUs.
Collapse
Affiliation(s)
- Yilin Fan
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, China
| | - Ran Hong
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, China
| | - Xiaoli Sun
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, China
| | - Qiaomei Luo
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, China
| | - Huilin Wei
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, China
| | - Yajuan Chen
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, China
| | - Zengni Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, China
| | - Xia Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, China
| | - Jun Wan
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, China.
| |
Collapse
|