1
|
Bai L, Su J. Converging technologies in biomaterial translational research. BIOMATERIALS TRANSLATIONAL 2023; 4:197-198. [PMID: 38282705 PMCID: PMC10817800 DOI: 10.12336/biomatertransl.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Affiliation(s)
- Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
2
|
Grilli F, Albanesi E, Pelacho B, Prosper F, Decuzzi P, Di Mascolo D. Microstructured Polymeric Fabrics Modulating the Paracrine Activity of Adipose-Derived Stem Cells. Int J Mol Sci 2023; 24:10123. [PMID: 37373273 DOI: 10.3390/ijms241210123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The deposition of stem cells at sites of injury is a clinically relevant approach to facilitate tissue repair and angiogenesis. However, insufficient cell engraftment and survival require the engineering of novel scaffolds. Here, a regular network of microscopic poly(lactic-co-glycolic acid) (PLGA) filaments was investigated as a promising biodegradable scaffold for human Adipose-Derived Stem Cell (hADSC) tissue integration. Via soft lithography, three different microstructured fabrics were realized where 5 × 5 and 5 × 3 μm PLGA 'warp' and 'weft' filaments crossed perpendicularly with pitch distances of 5, 10 and 20 μm. After hADSC seeding, cell viability, actin cytoskeleton, spatial organization and the secretome were characterized and compared to conventional substrates, including collagen layers. On the PLGA fabric, hADSC re-assembled to form spheroidal-like structures, preserving cell viability and favoring a nonlinear actin organization. Moreover, the secretion of specific factors involved in angiogenesis, the remodeling of the extracellular matrix and stem cell homing was favored on the PLGA fabric as compared to that which occurred on conventional substrates. The paracrine activity of hADSC was microstructure-dependent, with 5 μm PLGA fabric enhancing the expression of factors involved in all three processes. Although more studies are needed, the proposed PLGA fabric would represent a promising alternative to conventional collagen substrates for stem cell implantation and angiogenesis induction.
Collapse
Affiliation(s)
- Federica Grilli
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Ennio Albanesi
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Beatriz Pelacho
- Laboratory of Regenerative Medicine, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Felipe Prosper
- Laboratory of Regenerative Medicine, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department of Electrical and Information Engineering, Politecnico di Bari, 70126 Bari, Italy
| |
Collapse
|
3
|
Atia GAN, Shalaby HK, Ali NG, Morsy SM, Ghobashy MM, Attia HAN, Barai P, Nady N, Kodous AS, Barai HR. New Challenges and Prospective Applications of Three-Dimensional Bioactive Polymeric Hydrogels in Oral and Craniofacial Tissue Engineering: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:702. [PMID: 37242485 PMCID: PMC10224377 DOI: 10.3390/ph16050702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Regenerative medicine, and dentistry offers enormous potential for enhancing treatment results and has been fueled by bioengineering breakthroughs over the previous few decades. Bioengineered tissues and constructing functional structures capable of healing, maintaining, and regenerating damaged tissues and organs have had a broad influence on medicine and dentistry. Approaches for combining bioinspired materials, cells, and therapeutic chemicals are critical in stimulating tissue regeneration or as medicinal systems. Because of its capacity to maintain an unique 3D form, offer physical stability for the cells in produced tissues, and replicate the native tissues, hydrogels have been utilized as one of the most frequent tissue engineering scaffolds during the last twenty years. Hydrogels' high water content can provide an excellent conditions for cell viability as well as an architecture that mimics real tissues, bone, and cartilage. Hydrogels have been used to enable cell immobilization and growth factor application. This paper summarizes the features, structure, synthesis and production methods, uses, new challenges, and future prospects of bioactive polymeric hydrogels in dental and osseous tissue engineering of clinical, exploring, systematical and scientific applications.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
| | - Naema Goda Ali
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Shaimaa Mohammed Morsy
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo P.O. Box 13759, Egypt
| | - Hager Abdel Nasser Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21526, Egypt
| | - Paritosh Barai
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka 1213, Bangladesh
| | - Norhan Nady
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Elarab, Alexandria P.O. Box 21934, Egypt
| | - Ahmad S. Kodous
- Department of Radiation Biology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo P.O. Box 13759, Egypt
| | - Hasi Rani Barai
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Mu X, Gerhard-Herman MD, Zhang YS. Building Blood Vessel Chips with Enhanced Physiological Relevance. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201778. [PMID: 37693798 PMCID: PMC10489284 DOI: 10.1002/admt.202201778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 09/12/2023]
Abstract
Blood vessel chips are bioengineered microdevices, consisting of biomaterials, human cells, and microstructures, which recapitulate essential vascular structure and physiology and allow a well-controlled microenvironment and spatial-temporal readouts. Blood vessel chips afford promising opportunities to understand molecular and cellular mechanisms underlying a range of vascular diseases. The physiological relevance is key to these blood vessel chips that rely on bioinspired strategies and bioengineering approaches to translate vascular physiology into artificial units. Here, we discuss several critical aspects of vascular physiology, including morphology, material composition, mechanical properties, flow dynamics, and mass transport, which provide essential guidelines and a valuable source of bioinspiration for the rational design of blood vessel chips. We also review state-of-art blood vessel chips that exhibit important physiological features of the vessel and reveal crucial insights into the biological processes and disease pathogenesis, including rare diseases, with notable implications for drug screening and clinical trials. We envision that the advances in biomaterials, biofabrication, and stem cells improve the physiological relevance of blood vessel chips, which, along with the close collaborations between clinicians and bioengineers, enable their widespread utility.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Marie Denise Gerhard-Herman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Casanova EA, Rodriguez-Palomo A, Stähli L, Arnke K, Gröninger O, Generali M, Neldner Y, Tiziani S, Dominguez AP, Guizar-Sicairos M, Gao Z, Appel C, Nielsen LC, Georgiadis M, Weber FE, Stark W, Pape HC, Cinelli P, Liebi M. SAXS imaging reveals optimized osseointegration properties of bioengineered oriented 3D-PLGA/aCaP scaffolds in a critical size bone defect model. Biomaterials 2023; 294:121989. [PMID: 36628888 DOI: 10.1016/j.biomaterials.2022.121989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/01/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023]
Abstract
Healing large bone defects remains challenging in orthopedic surgery and is often associated with poor outcomes and complications. A major issue with bioengineered constructs is achieving a continuous interface between host bone and graft to enhance biological processes and mechanical stability. In this study, we have developed a new bioengineering strategy to produce oriented biocompatible 3D PLGA/aCaP nanocomposites with enhanced osseointegration. Decellularized scaffolds -containing only extracellular matrix- or scaffolds seeded with adipose-derived mesenchymal stromal cells were tested in a mouse model for critical size bone defects. In parallel to micro-CT analysis, SAXS tensor tomography and 2D scanning SAXS were employed to determine the 3D arrangement and nanostructure within the critical-sized bone. Both newly developed scaffold types, seeded with cells or decellularized, showed high osseointegration, higher bone quality, increased alignment of collagen fibers and optimal alignment and size of hydroxyapatite minerals.
Collapse
Affiliation(s)
- Elisa A Casanova
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | | | - Lisa Stähli
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Kevin Arnke
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Olivier Gröninger
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
| | - Yvonne Neldner
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Simon Tiziani
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Ana Perez Dominguez
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | | | - Zirui Gao
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Christian Appel
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Leonard C Nielsen
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Marios Georgiadis
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | - Franz E Weber
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Wendelin Stark
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Hans-Christoph Pape
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Paolo Cinelli
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland.
| | - Marianne Liebi
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden; Centre for X-ray Analytics, Swiss Federal Laboratories for Materials Science and Technology (EMPA), St. Gallen, Switzerland
| |
Collapse
|
6
|
Ivanov AA, Kuznetsova AV, Popova OP, Danilova TI, Yanushevich OO. Modern Approaches to Acellular Therapy in Bone and Dental Regeneration. Int J Mol Sci 2021; 22:13454. [PMID: 34948251 PMCID: PMC8708083 DOI: 10.3390/ijms222413454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
An approach called cell-free therapy has rapidly developed in regenerative medicine over the past decade. Understanding the molecular mechanisms and signaling pathways involved in the internal potential of tissue repair inspires the development of new strategies aimed at controlling and enhancing these processes during regeneration. The use of stem cell mobilization, or homing for regeneration based on endogenous healing mechanisms, prompted a new concept in regenerative medicine: endogenous regenerative medicine. The application of cell-free therapeutic agents leading to the recruitment/homing of endogenous stem cells has advantages in overcoming the limitations and risks associated with cell therapy. In this review, we discuss the potential of cell-free products such as the decellularized extracellular matrix, growth factors, extracellular vesicles and miRNAs in endogenous bone and dental regeneration.
Collapse
Affiliation(s)
- Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.)
| | - Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Str., 119334 Moscow, Russia
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.)
| | - Tamara I. Danilova
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.)
| | - Oleg O. Yanushevich
- Department of Paradontology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia;
| |
Collapse
|
7
|
Li Z, Zhang X, Ouyang J, Chu D, Han F, Shi L, Liu R, Guo Z, Gu GX, Tao W, Jin L, Li J. Ca 2+-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis. Bioact Mater 2021; 6:4053-4064. [PMID: 33997492 PMCID: PMC8089774 DOI: 10.1016/j.bioactmat.2021.04.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Effective osteogenesis remains a challenge in the treatment of bone defects. The emergence of artificial bone scaffolds provides an attractive solution. In this work, a new biomineralization strategy is proposed to facilitate osteogenesis through sustaining supply of nutrients including phosphorus (P), calcium (Ca), and silicon (Si). We developed black phosphorus (BP)-based, three-dimensional nanocomposite fibrous scaffolds via microfluidic technology to provide a wealth of essential ions for bone defect treatment. The fibrous scaffolds were fabricated from 3D poly (l-lactic acid) (PLLA) nanofibers (3D NFs), BP nanosheets, and hydroxyapatite (HA)-porous SiO2 nanoparticles. The 3D BP@HA NFs possess three advantages: i) stably connected pores allow the easy entrance of bone marrow-derived mesenchymal stem cells (BMSCs) into the interior of the 3D fibrous scaffolds for bone repair and osteogenesis; ii) plentiful nutrients in the NFs strongly improve osteogenic differentiation in the bone repair area; iii) the photothermal effect of fibrous scaffolds promotes the release of elements necessary for bone formation, thus achieving accelerated osteogenesis. Both in vitro and in vivo results demonstrated that the 3D BP@HA NFs, with the assistance of NIR laser, exhibited good performance in promoting bone regeneration. Furthermore, microfluidic technology makes it possible to obtain high-quality 3D BP@HA NFs with low costs, rapid processing, high throughput and mass production, greatly improving the prospects for clinical application. This is also the first BP-based bone scaffold platform that can self-supply Ca2+, which may be the blessedness for older patients with bone defects or patients with damaged bones as a result of calcium loss.
Collapse
Affiliation(s)
- Zhanrong Li
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Jiang Ouyang
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Dandan Chu
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Fengqi Han
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Liuqi Shi
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Ruixing Liu
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Zhihua Guo
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Grace X. Gu
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720‐1740, United States
| | - Wei Tao
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Lin Jin
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Jingguo Li
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| |
Collapse
|
8
|
Lin W, Klein J. Recent Progress in Cartilage Lubrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005513. [PMID: 33759245 DOI: 10.1002/adma.202005513] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/23/2020] [Indexed: 05/18/2023]
Abstract
Healthy articular cartilage, covering the ends of bones in major joints such as hips and knees, presents the most efficiently-lubricated surface known in nature, with friction coefficients as low as 0.001 up to physiologically high pressures. Such low friction is indeed essential for its well-being. It minimizes wear-and-tear and hence the cartilage degradation associated with osteoarthritis, the most common joint disease, and, by reducing shear stress on the mechanotransductive, cartilage-embedded chondrocytes (the only cell type in the cartilage), it regulates their function to maintain homeostasis. Understanding the origins of such low friction of the articular cartilage, therefore, is of major importance in order to alleviate disease symptoms, and slow or even reverse its breakdown. This progress report considers the relation between frictional behavior and the cellular mechanical environment in the cartilage, then reviews the mechanism of lubrication in the joints, in particular focusing on boundary lubrication. Following recent advances based on hydration lubrication, a proposed synergy between different molecular components of the synovial joints, acting together in enabling the low friction, has been proposed. Additionally, recent development of natural and bio-inspired lubricants is reviewed.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jacob Klein
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
9
|
Zheng C, Li M, Ding J. Challenges and Opportunities of Nanomedicines in Clinical Translation. BIO INTEGRATION 2021; 2. [DOI: 10.15212/bioi-2021-0016] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
|
10
|
Karfarma M, Esnaashary MH, Rezaie HR, Javadpour J, Naimi-Jamal MR. Enhancing degradability, bioactivity, and osteocompatibility of poly (propylene fumarate) bone filler by incorporation of Mg-Ca-P nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111038. [DOI: 10.1016/j.msec.2020.111038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/25/2020] [Accepted: 04/28/2020] [Indexed: 01/01/2023]
|
11
|
Tatara AM. Role of Tissue Engineering in COVID-19 and Future Viral Outbreaks. Tissue Eng Part A 2020; 26:468-474. [PMID: 32272857 PMCID: PMC7249458 DOI: 10.1089/ten.tea.2020.0094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
In light of the current novel coronavirus (COVID-19) pandemic, as well as other viral outbreaks in the 21st century, there is a dire need for new diagnostic and therapeutic strategies to combat infectious diseases worldwide. As a convergence science, tissue engineering has traditionally focused on the application of engineering principles to biological systems, collaboration across disciplines, and rapid translation of technologies from the benchtop to the bedside. Given these strengths, tissue engineers are particularly well suited to apply their skill set to the current crisis and viral outbreaks in general. This work introduces the basics of virology and epidemiology for tissue engineers, and highlights important developments in the field of tissue engineering relevant to the current pandemic, including in vitro model systems, vaccine technology, and small-molecule drug delivery. COVID-19 serves as a call to arms for scientists across all disciplines, and tissue engineers are well trained to be leaders and contributors in this time of need. Impact statement Given the steep mortality caused by the recent novel coronavirus (COVID-19) pandemic, there is clear need for advances in diagnostics and therapeutics for viral outbreaks. Tissue engineering has the potential for critical impact on clinical outcomes in viral outbreaks. Tissue engineers, if mobilized, could play key roles as leaders in the outbreak, given their ability to apply engineering principles to biological processes, experience in collaborative environments, and penchant for technological translation from benchtop to bedside. In this work, three areas pioneered by tissue engineers that could be applied to the current COVID-19 crisis and future viral outbreaks are highlighted.
Collapse
Affiliation(s)
- Alexander M. Tatara
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Covalent Surface Functionalization of Bovine Serum Albumin to Magnesium Surface to Provide Robust Corrosion Inhibition and Enhance In Vitro Osteo-Inductivity. Polymers (Basel) 2020; 12:polym12020439. [PMID: 32069827 PMCID: PMC7077681 DOI: 10.3390/polym12020439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Herein, we describe precisely a covalent modification of pure magnesium (Mg) surface and its application to induce in vitro osteogenic differentiation. The new concept of a chemical bonding method is proposed for developing stable chemical bonds on the Mg surface through the serial assembly of bioactive additives that include ascorbic acid (AA) and bovine serum albumin (BSA). We studied both the physicochemical and electrochemical properties using scanning electron microscopy and other techniques to confirm how the covalent bonding of BSA on Mg can, after coating, significantly enhance the chemical stability of the substrate. The modified Mg-OH-AA-BSA exhibits better anti-corrosion behavior with high corrosion potential (Ecorr = -0.96 V) and low corrosion current density (Icorr = 0.2 µA cm-2) as compared to the pure Mg (Ecorr = -1.46 V, Icorr = 10.42 µA cm-2). The outer layer of BSA on Mg protects the fast degradation rate of Mg, which is the consequence of the strong chemicals bonds between amine groups on BSA with carboxylic groups on AA as the possible mechanism of peptide bonds. Collectively, the results suggest that the surface-modified Mg provides a strong bio-interface, and enhances the proliferation and differentiation of pre-osteoblast (MC3T3-E1) cells through a protein-lipid interaction. We therefore conclude that the technique we describe provides a cost-effective and scalable way to generate chemically stable Mg surface that inherits a biological advantage in orthopedic and dental implants in clinical applications.
Collapse
|
13
|
Saleem M, Rasheed S, Yougen C. Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:242-266. [PMID: 32489483 PMCID: PMC7241470 DOI: 10.1080/14686996.2020.1748520] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 05/06/2023]
Abstract
In recent years remarkable efforts have been made to produce artificial bone through tissue engineering techniques. Silk fibroin (SF) and hydroxyapatite (HA) have been used in bone tissue regeneration as biomaterials due to mechanical properties of SF and biocompatibility of HA. There has been growing interest in developing SF/HA composites to reduce bone defects. In this regard, several attempts have been made to study the biocompatibility and osteoconductive properties of this material. This article overviews the recent advance from last few decades in terms of the preparative methods and application of SF/HA in bone regeneration. Its first part is related to SF that presents the most common sources, preparation methods and comparison of SF with other biomaterials. The second part illustrates the importance of HA by providing information about its production and properties. The third part presents comparative studies of SF/HA composites with different concentrations of HA along with methods of preparation of composites and their applications.
Collapse
Affiliation(s)
- Muhammad Saleem
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, Guangdong, 518060, China
- Department of Optoelectronic Science and Technology, 518060, Shenzhen University, P.R China
- Department of Chemistry, University of Kotli, AzadJammu and Kashmir
| | - Sidra Rasheed
- Department of Chemistry, University of Kotli, AzadJammu and Kashmir
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Defence Road, Off. Raiwind Road, Lahore, 54000, Pakistan
| | - Chen Yougen
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, Guangdong, 518060, China
- Department of Optoelectronic Science and Technology, 518060, Shenzhen University, P.R China
- CONTACT Chen Yougen Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong518060, China
| |
Collapse
|
14
|
Hu X, Xu J, Li W, Li L, Parungao R, Wang Y, Zheng S, Nie Y, Liu T, Song K. Therapeutic "Tool" in Reconstruction and Regeneration of Tissue Engineering for Osteochondral Repair. Appl Biochem Biotechnol 2019; 191:785-809. [PMID: 31863349 DOI: 10.1007/s12010-019-03214-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Repairing osteochondral defects to restore joint function is a major challenge in regenerative medicine. However, with recent advances in tissue engineering, the development of potential treatments is promising. In recent years, in addition to single-layer scaffolds, double-layer or multilayer scaffolds have been prepared to mimic the structure of articular cartilage and subchondral bone for osteochondral repair. Although there are a range of different cells such as umbilical cord stem cells, bone marrow mesenchyml stem cell, and others that can be used, the availability, ease of preparation, and the osteogenic and chondrogenic capacity of these cells are important factors that will influence its selection for tissue engineering. Furthermore, appropriate cell proliferation and differentiation of these cells is also key for the optimal repair of osteochondral defects. The development of bioreactors has enhanced methods to stimulate the proliferation and differentiation of cells. In this review, we summarize the recent advances in tissue engineering, including the development of layered scaffolds, cells, and bioreactors that have changed the approach towards the development of novel treatments for osteochondral repair.
Collapse
Affiliation(s)
- Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenfang Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.,Key Laboratory of Biological Medicines, Universities of Shandong Province Weifang Key Laboratory of Antibody Medicines, School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Liying Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Roxanne Parungao
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Shuangshuang Zheng
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China. .,Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
15
|
Wang SJ, Jiang D, Zhang ZZ, Chen YR, Yang ZD, Zhang JY, Shi J, Wang X, Yu JK. Biomimetic Nanosilica-Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell-Free, One-Step Surgery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904341. [PMID: 31621958 DOI: 10.1002/adma.201904341] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Indexed: 05/18/2023]
Abstract
Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regeneration. A robust biosilicification strategy is reported to impart a uniform and stable osteoinductive surface to porous collagen scaffolds. The resultant nSC composites possess a native-bone-like porous structure and a nanosilica coating. The osteoinductivity of the nSC scaffolds is strongly dependent on the surface roughness and silicon content in the silica coating. Notably, without the use of exogenous cells and growth factors (GFs), the nSC scaffolds induce successful repair of a critical-sized calvarium defect in a rabbit model. It is revealed that topographic and chemical cues presented by nSC scaffolds could synergistically activate multiple signaling pathways related to mesenchymal stem cell recruitment and bone regeneration. Thus, this facile surface biosilicification approach could be valuable by enabling production of BTE scaffolds with large sizes, complex porous structures, and varied osteoinductivity. The nanosilica-functionalized scaffolds can be implanted via a cell/GF-free, one-step surgery for in situ bone regeneration, thus demonstrating high potential for clinical translation in treatment of massive bone defects.
Collapse
Affiliation(s)
- Shao-Jie Wang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, 361000, China
| | - Dong Jiang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Zheng-Zheng Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Zheng-Dong Yang
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Ji-Ying Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Jinjun Shi
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
16
|
Du Y, Guo JL, Wang J, Mikos AG, Zhang S. Hierarchically designed bone scaffolds: From internal cues to external stimuli. Biomaterials 2019; 218:119334. [PMID: 31306826 PMCID: PMC6663598 DOI: 10.1016/j.biomaterials.2019.119334] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
Bone tissue engineering utilizes three critical elements - cells, scaffolds, and bioactive factors - to recapitulate the bone tissue microenvironment, inducing the formation of new bone. Recent advances in materials development have enabled the production of scaffolds that more effectively mimic the hierarchical features of bone matrix, ranging from molecular composition to nano/micro-scale biochemical and physical features. This review summarizes recent advances within the field in utilizing these features of native bone to guide the hierarchical design of materials and scaffolds. Biomimetic strategies discussed in this review cover several levels of hierarchical design, including the development of element-doped compositions of bioceramics, the usage of molecular templates for in vitro biomineralization at the nanoscale, the fabrication of biomimetic scaffold architecture at the micro- and nanoscale, and the application of external physical stimuli at the macroscale to regulate bone growth. Developments at each level are discussed with an emphasis on their in vitro and in vivo outcomes in promoting osteogenic tissue development. Ultimately, these hierarchically designed scaffolds can complement or even replace the usage of cells and biological elements, which present clinical and regulatory barriers to translation. As the field progresses ever closer to clinical translation, the creation of viable therapies will thus benefit from further development of hierarchically designed materials and scaffolds.
Collapse
Affiliation(s)
- Yingying Du
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jason L Guo
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77251-1892, USA
| | - Jianglin Wang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77251-1892, USA.
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
17
|
Zhao R, Xu Z, Li B, Chen T, Mei N, Wang C, Zhou Z, You L, Wu C, Wang X, Tang S. A comparative study on agarose acetate and PDLLA scaffold for rabbit femur defect regeneration. ACTA ACUST UNITED AC 2019; 14:065007. [PMID: 31422950 DOI: 10.1088/1748-605x/ab3c1b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of degradable polymer scaffolds is a key issue in bone regeneration. Poly(D, L-lactide) (PDLLA) and its derivatives have usually been applied to the construction of degradable scaffolds, but these scaffolds had problems with acidic degradation products and quick loss of mechanic strength during the later degradation, which usually led to scaffold collapse and cavity formation because of the slower rate of bone regeneration. In the present paper, a polysaccharide derivative, agarose acetate (AGA), was synthesized and a novel porous AGA scaffold was successfully developed through a salt-leaching process. The AGA scaffold had over 90% porosity without swelling in water, and compared to collapse and acidic products of PDLLA scaffold during degradation, the AGA scaffold maintained a stable morphology and a nearly neutral pH value over 18 months' degradation in PBS. A bone mesenchymal stem cells (BMSCs) adhesion and proliferation experiment showed that more cells adhered to the AGA scaffold than to the PDLLA scaffold. A subcutaneous implant test showed that the AGA scaffold slowly degraded and did not cause an inflammatory response surrounding the implantation lesion site. AGA scaffold was implanted into femur defects in New Zealand white rabbits to test its in vivo performance. Results indicated that the AGA scaffold accelerated the process of bone regeneration compared to the PDLLA group and, with time, new bone was formed from the margin toward the center of the scaffolds, and the scaffold left in place retained its porous structure without collapsing. Meanwhile, the AGA scaffold showed a low degradation rate and kept its shape during the in vivo degradation compared to the PDLLA scaffold. This performance could have the benefit of integrated regenerative bone being formed instead of cavities due to the quickly degraded scaffold disappearing. These results demonstrate that the AGA scaffold has significant potential in bone regeneration applications.
Collapse
Affiliation(s)
- Ruifang Zhao
- Biomedical Engineering Institute, Jinan University, Guangzhou 510632 People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cipriani F, Ariño Palao B, Gonzalez de Torre I, Vega Castrillo A, Aguado Hernández HJ, Alonso Rodrigo M, Àlvarez Barcia AJ, Sanchez A, García Diaz V, Lopez Peña M, Rodriguez-Cabello JC. An elastin-like recombinamer-based bioactive hydrogel embedded with mesenchymal stromal cells as an injectable scaffold for osteochondral repair. Regen Biomater 2019; 6:335-347. [PMID: 31827887 PMCID: PMC6897338 DOI: 10.1093/rb/rbz023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to evaluate injectable, in situ cross-linkable elastin-like recombinamers (ELRs) for osteochondral repair. Both the ELR-based hydrogel alone and the ELR-based hydrogel embedded with rabbit mesenchymal stromal cells (rMSCs) were tested for the regeneration of critical subchondral defects in 10 New Zealand rabbits. Thus, cylindrical osteochondral defects were filled with an aqueous solution of ELRs and the animals sacrificed at 4 months for histological and gross evaluation of features of biomaterial performance, including integration, cellular infiltration, surrounding matrix quality and the new matrix in the defects. Although both approaches helped cartilage regeneration, the results suggest that the specific composition of the rMSC-containing hydrogel permitted adequate bone regeneration, whereas the ELR-based hydrogel alone led to an excellent regeneration of hyaline cartilage. In conclusion, the ELR cross-linker solution can be easily delivered and forms a stable well-integrated hydrogel that supports infiltration and de novo matrix synthesis.
Collapse
Affiliation(s)
- Filippo Cipriani
- Technical Proteins Nanobiotechnology S.L., Paseo Belén 9A, Valladolid 47011, Spain
| | - Blanca Ariño Palao
- Departamento de traumatología, Hospital Clínico de Valladolid, Av. Ramón y Cajal 3, Valladolid 47003, Spain
| | - Israel Gonzalez de Torre
- Technical Proteins Nanobiotechnology S.L., Paseo Belén 9A, Valladolid 47011, Spain.,Bioforge, University of Valladolid CIBER-BBN, Paseo de Belén 19, Valladolid 47011, Spain
| | - Aurelio Vega Castrillo
- Departamento de traumatología, Hospital Clínico de Valladolid, Av. Ramón y Cajal 3, Valladolid 47003, Spain
| | | | - Matilde Alonso Rodrigo
- Technical Proteins Nanobiotechnology S.L., Paseo Belén 9A, Valladolid 47011, Spain.,Bioforge, University of Valladolid CIBER-BBN, Paseo de Belén 19, Valladolid 47011, Spain
| | - Angel José Àlvarez Barcia
- SIBA-UVA: servicio investigación y bienestar animal, University of Valladolid, C/Plaza de Santa Cruz 8, Valladolid 47002, Spain
| | - Ana Sanchez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Calle Sanz y Fores 3, Valladolid 47003, Spain
| | - Verónica García Diaz
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Calle Sanz y Fores 3, Valladolid 47003, Spain
| | - Monica Lopez Peña
- Facultad de veterinaria, Campus Universitario, Avda. Carballo Calero s/n, Lugo 27002, Spain
| | - José Carlos Rodriguez-Cabello
- Technical Proteins Nanobiotechnology S.L., Paseo Belén 9A, Valladolid 47011, Spain.,Bioforge, University of Valladolid CIBER-BBN, Paseo de Belén 19, Valladolid 47011, Spain
| |
Collapse
|
19
|
He XT, Wang J, Li X, Yin Y, Sun HH, Chen FM. The Critical Role of Cell Homing in Cytotherapeutics and Regenerative Medicine. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiao-Tao He
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- National Clinical Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Jia Wang
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Xuan Li
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- National Clinical Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Hai-Hua Sun
- National Clinical Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- National Clinical Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
- Shaanxi Engineering Research Center for Dental Materials, and Advanced Manufacture; Biomaterials Unit; School of Stomatology; Fourth Military Medical University; 710032 Xi'an P. R. China
| |
Collapse
|
20
|
Rokaya D, Srimaneepong V, Sapkota J, Qin J, Siraleartmukul K, Siriwongrungson V. Polymeric materials and films in dentistry: An overview. J Adv Res 2018; 14:25-34. [PMID: 30364755 PMCID: PMC6198729 DOI: 10.1016/j.jare.2018.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
The use of polymeric materials (PMs) and polymeric films (PMFs) has increased in medicine and dentistry. This increasing interest is attributed to not only the excellent surfaces of PMs and PMFs but also their desired mechanical and biological properties, low production cost, and ease in processing, allowing them to be tailored for a wide range of applications. Specifically, PMs and PMFs are used in dentistry for their antimicrobial, drug delivery properties; in preventive, restorative and regenerative therapies; and for corrosion and friction reduction. PMFs such as acrylic acid copolymers are used as a dental adhesive; polylactic acids are used for dental pulp and dentin regeneration, and bioactive polymers are used as advanced drug delivery systems. The objective of this article was to review the literatures on the latest advancements in the use of PMs and PMFs in medicine and dentistry. Published literature (1990–2017) on PMs and PMFs for use in medicine and dentistry was reviewed using MEDLINE/PubMed and ScienceDirect resources. Furthermore, this review also explores the diversity of latest PMs and PMFs that have been utilized in dental applications, and analyzes the benefits and limitations of PMs and PMFs. Most of the PMs and PMFs have shown to improve the biomechanical properties of dental materials, but in future, more clinical studies are needed to create better treatment guidelines for patients.
Collapse
Affiliation(s)
- Dinesh Rokaya
- Biomaterial and Material for Dental Treatment, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Viritpon Srimaneepong
- Biomaterial and Material for Dental Treatment, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Janak Sapkota
- Institute of Polymer Processing, Department of Polymer Engineering and Science, Montanuniversitaet Leoben, Otto-Glockel Strasse 2, 800 Leoben, Austria
| | - Jiaqian Qin
- Metallurgy and Materials Science Research Institute (MMRI), Chulalongkorn University, Bangkok, Thailand
| | - Krisana Siraleartmukul
- Metallurgy and Materials Science Research Institute (MMRI), Chulalongkorn University, Bangkok, Thailand
| | - Vilailuck Siriwongrungson
- College of Advanced Manufacturing Innovations, King Mongkut's Institute of Technology, Ladkrabang, Thailand
| |
Collapse
|
21
|
Wu PK, Chen CF, Wang JY, Chen PCH, Chang MC, Hung SC, Chen WM. Freezing Nitrogen Ethanol Composite May be a Viable Approach for Cryotherapy of Human Giant Cell Tumor of Bone. Clin Orthop Relat Res 2017; 475:1650-1663. [PMID: 28197783 PMCID: PMC5406334 DOI: 10.1007/s11999-017-5239-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/06/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liquid nitrogen has been used as adjuvant cryotherapy for treating giant cell tumor (GCT) of bone. However, the liquid phase and ultrafreezing (-196° C) properties increase the risk of damage to the adjacent tissues and may lead to perioperative complications. A novel semisolid cryogen, freezing nitrogen ethanol composite, might mitigate these shortcomings because of less-extreme freezing. We therefore wished to evaluate freezing nitrogen ethanol composite as a coolant to determine its properties in tumor cryoablation. QUESTIONS/PURPOSES (1) Is freezing nitrogen ethanol composite-mediated freezing effective for tumor cryoablation in an ex vivo model, and if yes, is apoptosis involved in the tumor-killing mechanism? (2) Does freezing nitrogen ethanol composite treatment block neovascularization and neoplastic progression of the grafted GCTs and is it comparable to that of liquid nitrogen in an in vivo chicken model? (3) Can use of freezing nitrogen ethanol composite as an adjuvant to curettage result in successful short-term treatment, defined as absence of GCT recurrence at a minimum of 1 year in a small proof-of-concept clinical series? METHODS The cryogenic effect on bone tissue mediated by freezing nitrogen ethanol composite and liquid nitrogen was verified by thermal measurement in a time-course manner. Cryoablation on human GCT tissue was examined ex vivo for effect on morphologic features (cell shrinkage) and DNA fragmentation (apoptosis). The presumed mechanism was investigated by molecular analysis of apoptosis regulatory proteins including caspases 3, 8, and 9 and Bax/Bcl-2. Chicken chorioallantoic membrane was used as an in vivo model to evaluate the effects of freezing nitrogen ethanol composite and liquid nitrogen treatment on GCT-derived neovascularization and tumor neoplasm. A small group of patients with GCT of bone was treated by curettage and adjuvant freezing nitrogen ethanol composite cryotherapy in a proof-of-concept study. Tumor recurrence and perioperative complications were evaluated at a minimum of 19 months followup (mean, 24 months; range, 19-30 months). RESULTS Freshly prepared freezing nitrogen ethanol composite froze to -136° C and achieved -122° C isotherm across a piece of 10 ± 0.50-mm-thick bone with a freezing rate of -34° C per minute, a temperature expected to meet clinical tumor-killing requirements. Human GCT tissues revealed histologic changes including shrinkage in morphologic features of multinucleated giant cells in the liquid nitrogen (202 ± 45 μm; p = 0.006) and freezing nitrogen ethanol composite groups (169 ± 27.4 μm; p < 0.001), and a decreased nucleated area of neoplastic stromal cells for the 30-second treatment. Enhanced counts of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells verified the involvement of DNA fragmentation in cryoablated GCT tissues. Western blotting analysis on the expression of apoptosis regulatory proteins showed enhancement of proteocleavage-activated caspases 3, 8, and 9 and higher ratios of Bax/Bcl2 in the liquid nitrogen- and freezing nitrogen ethanol composite-treated samples. Numbers of blood vessels and human origin tumor cells also were decreased by freezing nitrogen ethanol composite and liquid nitrogen treatment in the GCT-grafted chicken chorioallantoic membrane model. Seven patients with GCT treated by curettage and adjuvant cryotherapy by use of freezing nitrogen ethanol composite preparation had no intra- or postoperative complications related to the freezing, and no recurrences during the study surveillance period. CONCLUSIONS These preliminary in vitro and clinical findings suggest that freezing nitrogen ethanol composite may be an effective cryogen showing ex vivo and in vivo tumor cryoablation comparable to liquid nitrogen. The semisolid phase and proper thermal conduction might avoid some of the disadvantages of liquid nitrogen in cryotherapy, but a larger clinical study is needed to confirm these findings. LEVEL OF EVIDENCE Level IV, therapeutic study.
Collapse
Affiliation(s)
- Po-Kuei Wu
- 0000 0001 0425 5914grid.260770.4Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan ,0000 0004 0604 5314grid.278247.cDepartment of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan ,0000 0004 0604 5314grid.278247.cDepartment of Orthopaedics & Traumatology, Taipei Veterans General Hospital, 201, Sec 2, Shih-Pai Road, Taipei, 112 Taiwan ,0000 0001 0425 5914grid.260770.4Department of Orthopedics, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Fong Chen
- 0000 0001 0425 5914grid.260770.4Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan ,0000 0004 0604 5314grid.278247.cDepartment of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan ,0000 0004 0604 5314grid.278247.cDepartment of Orthopaedics & Traumatology, Taipei Veterans General Hospital, 201, Sec 2, Shih-Pai Road, Taipei, 112 Taiwan ,0000 0001 0425 5914grid.260770.4Department of Orthopedics, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jir-You Wang
- 0000 0004 0604 5314grid.278247.cDepartment of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan ,0000 0004 0604 5314grid.278247.cDepartment of Orthopaedics & Traumatology, Taipei Veterans General Hospital, 201, Sec 2, Shih-Pai Road, Taipei, 112 Taiwan ,0000 0001 0425 5914grid.260770.4Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Paul Chih-Hsueh Chen
- 0000 0004 0604 5314grid.278247.cDepartment of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chau Chang
- 0000 0004 0604 5314grid.278247.cDepartment of Orthopaedics & Traumatology, Taipei Veterans General Hospital, 201, Sec 2, Shih-Pai Road, Taipei, 112 Taiwan ,0000 0001 0425 5914grid.260770.4Department of Orthopedics, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Chieh Hung
- 0000 0001 0083 6092grid.254145.3Integrative Stem Cell Center, China Medical University Hospital, Institute of Clinical Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Ming Chen
- 0000 0004 0604 5314grid.278247.cDepartment of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan ,0000 0004 0604 5314grid.278247.cDepartment of Orthopaedics & Traumatology, Taipei Veterans General Hospital, 201, Sec 2, Shih-Pai Road, Taipei, 112 Taiwan ,0000 0001 0425 5914grid.260770.4Department of Orthopedics, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
22
|
Zhang J, Jia J, Kim JP, Shen H, Yang F, Zhang Q, Xu M, Bi W, Wang X, Yang J, Wu D. Ionic Colloidal Molding as a Biomimetic Scaffolding Strategy for Uniform Bone Tissue Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605546. [PMID: 28221007 DOI: 10.1002/adma.201605546] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Inspired by the highly ordered nanostructure of bone, nanodopant composite biomaterials are gaining special attention for their ability to guide bone tissue regeneration through structural and biological cues. However, bone malformation in orthopedic surgery is a lingering issue, partly due to the high surface energy of traditional nanoparticles contributing to aggregation and inhomogeneity. Recently, carboxyl-functionalized synthetic polymers have been shown to mimic the carboxyl-rich surface motifs of non-collagenous proteins in stabilizing hydroxyapatite and directing intrafibrillar mineralization in-vitro. Based on this biomimetic approach, it is herein demonstrated that carboxyl functionalization of poly(lactic-co-glycolic acid) can achieve great material homogeneity in nanocomposites. This ionic colloidal molding method stabilizes hydroxyapatite precursors to confer even nanodopant packing, improving therapeutic outcomes in bone repair by remarkably improving mechanical properties of nanocomposites and optimizing controlled drug release, resulting in better cell in-growth and osteogenic differentiation. Lastly, better controlled biomaterial degradation significantly improved osteointegration, translating to highly regular bone formation with minimal fibrous tissue and increased bone density in rabbit radial defect models. Ionic colloidal molding is a simple yet effective approach of achieving materials homogeneity and modulating crystal nucleation, serving as an excellent biomimetic scaffolding strategy to rebuild natural bone integrity.
Collapse
Affiliation(s)
- Jian Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Jinpeng Jia
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, 28 Fuxing Road, Beijing, 100853, China
| | - Jimin P Kim
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Shen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Qiang Zhang
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, 28 Fuxing Road, Beijing, 100853, China
| | - Meng Xu
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, 28 Fuxing Road, Beijing, 100853, China
| | - Wenzhi Bi
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, 28 Fuxing Road, Beijing, 100853, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
23
|
Yin Y, Li X, He XT, Wu RX, Sun HH, Chen FM. Leveraging Stem Cell Homing for Therapeutic Regeneration. J Dent Res 2017; 96:601-609. [PMID: 28414563 DOI: 10.1177/0022034517706070] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resident stem cell pools in many tissues/organs are responsible not only for tissue maintenance during physiologic turnover but also for the process of wound repair following injury. With inspiration from stem cell trafficking within the body under physiologic and pathologic conditions, recent advances have been made toward inducing stem cell mobilization and directing patients' own cells to sites of interest for treating a broad spectrum of diseases. An evolving body of work corroborates that delivering guidance cues can mobilize stem cells from the bone marrow and drive these cells toward a specific region. In addition, the transplantation of cell-friendly biomaterials incorporating certain biomolecules has led to the regeneration of lost/damaged tissue without the need for delivering cellular materials manipulated ex vivo. Recently, cell homing has resulted in remarkable biological discoveries in the laboratory as well as great curative successes in preclinical scenarios. Here, we review the biological evidence underlying in vivo cell mobilization and homing with the aim of leveraging endogenous reparative cells for therapeutic applications. Considering both the promise and the obstacles of this approach, we discuss how matrix components of the in vivo milieu can be modified to promote the native regenerative process and inspire future tissue-engineering design.
Collapse
Affiliation(s)
- Y Yin
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - X Li
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - X T He
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - R X Wu
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - H H Sun
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - F M Chen
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
24
|
Trachtenberg JE, Santoro M, Williams C, Piard CM, Smith BT, Placone JK, Menegaz BA, Molina ER, Lamhamedi-Cherradi SE, Ludwig JA, Sikavitsas VI, Fisher JP, Mikos AG. Effects of Shear Stress Gradients on Ewing Sarcoma Cells Using 3D Printed Scaffolds and Flow Perfusion. ACS Biomater Sci Eng 2017; 4:347-356. [DOI: 10.1021/acsbiomaterials.6b00641] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jordan E. Trachtenberg
- Department
of Bioengineering, Bioscience Research Collaborative − MS 142, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Marco Santoro
- Fischell
Department of Bioengineering, Jeong Kim Engineering Building, University of Maryland, 8228 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Cortes Williams
- Stephenson
School of Biomedical Engineering, University of Oklahoma, 202 West Boyd Street, Norman, Oklahoma 73019, United States
| | - Charlotte M. Piard
- Fischell
Department of Bioengineering, Jeong Kim Engineering Building, University of Maryland, 8228 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Brandon T. Smith
- Department
of Bioengineering, Bioscience Research Collaborative − MS 142, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Jesse K. Placone
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive #0412, La Jolla, California 92093, United States
| | - Brian A. Menegaz
- Department
of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Eric R. Molina
- Department
of Bioengineering, Bioscience Research Collaborative − MS 142, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Salah-Eddine Lamhamedi-Cherradi
- Department
of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Joseph A. Ludwig
- Department
of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Vassilios I. Sikavitsas
- Stephenson
School of Biomedical Engineering, University of Oklahoma, 202 West Boyd Street, Norman, Oklahoma 73019, United States
| | - John P. Fisher
- Fischell
Department of Bioengineering, Jeong Kim Engineering Building, University of Maryland, 8228 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Antonios G. Mikos
- Department
of Bioengineering, Bioscience Research Collaborative − MS 142, Rice University, 6500 Main Street, Houston, Texas 77030, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| |
Collapse
|
25
|
Liu T, Huang R, Zhong J, Yang Y, Tan Z, Tan W. Control of cell proliferation in E-jet 3D-printed scaffolds for tissue engineering applications: the influence of the cell alignment angle. J Mater Chem B 2017; 5:3728-3738. [DOI: 10.1039/c7tb00377c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study used E-jet 3D printing to fabricate various scaffolds for tissue engineering which could guide and improve cell growth.
Collapse
Affiliation(s)
- Tong Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Biology
- Hunan University
- Changsha
- China
| | | | | | - Yikun Yang
- College of Biology
- Hunan University
- Changsha
- China
| | - Zhikai Tan
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Biology
- Hunan University
- Changsha
- China
| | - Weihong Tan
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Biology
- Hunan University
- Changsha
- China
| |
Collapse
|
26
|
Wang L, Chen D, Jiang K, Shen G. New insights and perspectives into biological materials for flexible electronics. Chem Soc Rev 2017; 46:6764-6815. [DOI: 10.1039/c7cs00278e] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Materials based on biological materials are becoming increasingly competitive and are likely to be critical components in flexible electronic devices.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun 130012
- P. R. China
| | - Di Chen
- School of Mathematics and Physics
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Kai Jiang
- Institute & Hospital of Hepatobiliary Surgery
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA
- Chinese PLA Medical School
- Chinese PLA General Hospital
- Beijing 100853
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing 100083
- China
| |
Collapse
|
27
|
Gentile P, Scioli MG, Bielli A, Orlandi A, Cervelli V. Concise Review: The Use of Adipose-Derived Stromal Vascular Fraction Cells and Platelet Rich Plasma in Regenerative Plastic Surgery. Stem Cells 2017; 35:117-134. [PMID: 27641055 DOI: 10.1002/stem.2498] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/30/2016] [Indexed: 12/14/2022]
Abstract
Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of tissues. Recently, many authors have focused their attention on mesenchymal stem/stromal cells (MSCs) for their capacity to differentiate into many cell lineages. The most widely studied cell types are bone marrow mesenchymal stem cells and adipose-derived stem cells (ASCs), which display similar results. Biomaterials, cells, and growth factors are needed to design a regenerative plastic surgery approach in the treatment of organ and tissue defects, but not all tissues are created equal. The aim of this article is to describe the advances in tissue engineering through the use of ASCs, platelet rich plasma, and biomaterials to enable regeneration of damaged complex tissue. Stem Cells 2017;35:117-134.
Collapse
Affiliation(s)
- Pietro Gentile
- Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", Rome, Italy
- Plastic and Reconstructive Surgery, Catholic University "Our Lady of Good Counsel", Tirane, Albania
| | | | - Alessandra Bielli
- Anatomic Pathology Institute, University of Rome "Tor Vergata", Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology Institute, University of Rome "Tor Vergata", Rome, Italy
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
28
|
Yang B, Zou Q, Lin L, Li L, Zuo Y, Li Y. Synthesis and characterization of fluorescein-grafted polyurethane for potential application in biomedical tracing. J Biomater Appl 2016; 31:901-910. [PMID: 27932701 DOI: 10.1177/0885328216681893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Redesigned multifunctional biopolymers represent a novel building bridge for interdisciplinary collaborations in biomaterials development. We prepared fluorescein-grafted polyurethane scaffolds (PU-C1, PU-C5, and PU-B1) to meet both clinical needs and biological safety evaluations, using different contents of calcein and different synthesis procedures for potential biomedical tracing. X-ray diffraction, infrared, X-ray photoelectron spectroscopy, nuclear magnetic resonance, scanning electron microscopy, and light microscopy were used to analyze the composition and structure of polyurethanes, as well as to observe their morphology with and without biomarkers. Fluorescence spectrophotometer and fluorescence microscopy were used to detect the fluorescence characteristics. The results showed that the grafting of calcein significantly affected the chemical structure and fluorescence sensitivities of copolymers. When compared to calcein, which was added before synthesis (PU-C1), the marker that was added during the extender process (PU-B1) presented higher fluorescence efficiency. Both PU-C5 and PU-B1 exhibited strong fluorescent response and good cytocompatibility in vitro and in vivo, with no interference from the autofluorescence of tissues after 4 weeks of implantation. The fluorescence-marked material can be used to continuously and noninvasively monitor the dynamic changes in polymers, which provides a way to clearly trace the material or to distinguish between the material and tissue in vivo.
Collapse
Affiliation(s)
- Boyuan Yang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, China
| | - Qin Zou
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, China
| | - Lili Lin
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, China
| | - Limei Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, China
| | - Yi Zuo
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, China
| | - Yubao Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, China
| |
Collapse
|
29
|
Synthesis and characterization of a zwitterionic hydrogel blend with low coefficient of friction. Acta Biomater 2016; 46:245-255. [PMID: 27650587 DOI: 10.1016/j.actbio.2016.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/02/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023]
Abstract
Hydrogels display a great deal of potential for a wide variety of biomedical applications. Often times the performance of these biomimetic materials is limited due to inferior friction and wear properties. This manuscript presents a method inspired by the tribological phenomena observed in nature for enhancing the lubricious properties of poly(vinyl alcohol) (PVA) hydrogels. This was achieved by blending PVA with various amounts of zwitterionic polymer, poly([2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide) (pMEDSAH). Our results indicate that pMEDSAH acts as an effective boundary lubricant, allowing for reduction in coefficient of friction by more than 80%. This reduction in friction coefficient was achieved while maintaining comparable mechanical and physical properties to that of the neat material. Also, these zwitterionic blends were found to be cytocompatible. Analysis of the structure to property relationships within this system indicate that the zwitterionic polymer served as a boundary lubricant and promoted a reduction in friction through hydration lubrication. This novel approach provides a promising platform for further investigations enhancing the tribological properties of hydrogels for biomedical applications. STATEMENT OF SIGNIFICANCE The novelty of this work stems from showing that zwitterionic polymers can be used as an extremely effective hydrogel boundary lubricant. This work will have significant scientific impact because to date, design of hydrogels has emphasized replication of mechanical properties, but in order for these types of materials to be fully utilized as biomaterials it is imperative that they possess improved tribological and lubrication properties, because ignoring the surface and boundary lubrication mechanism, make these potential load-bearing substitutes incompatible with other natural articulating surfaces, leading the constructs to wear, fail, and damage healthy tissue. Our work also provides unique insight to the structure-property-function relationships of these biomaterials which will be of great interest to the readership of the journal.
Collapse
|
30
|
Guo J, Liu X, Lee Miller A, Waletzki BE, Yaszemski MJ, Lu L. Novel porous poly(propylene fumarate-co-caprolactone) scaffolds fabricated by thermally induced phase separation. J Biomed Mater Res A 2016; 105:226-235. [PMID: 27513282 DOI: 10.1002/jbm.a.35862] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 11/12/2022]
Abstract
Scaffolds with porous structures are highly applicable for tissue engineering and regenerative medicine. In the present study, 3-dimensional poly(propylene fumarate-co-caprolactone) [P(PF-co-CL)] scaffolds were fabricated from a P(PF-co-CL)-dioxane-water ternary system through thermally induced phase separation (TIPS). Cloud points of P(PF-co-CL) in dioxane-water solutions increased with increased solute concentration, but increased dioxane composition decreased cloud point. Among 3 polymer concentrations (4, 8, and 12 wt%), 8 wt% P(PF-co-CL) scaffolds exhibited the best pore interconnectivity, with large, regular sized pores. Scaffolds were formed in 3 solutions with different dioxane-water ratios (74/26, 78/22, and 82/18 wt/wt); the 78/22 wt/wt scaffold had finger-shaped patterns with better interconnectivity than scaffolds from the other two ratios. Higher dioxane-water ratios resulted in a larger contact angle and thus less wettability for the fabricated scaffold, while scaffolds fabricated from higher concentrations of P(PF-co-CL) or high dioxane-water ratios had better biomineralization after soaking in simulated body fluid. In vitro cell viability testing showed the scaffolds had good biocompatibility with both bone and nerve cells. The results indicate that the polymer concentration and solvents ratio significantly affect the formation of porous structures, and optimum processing parameters were found to be 8% polymer concentration and 22% to 24% water content. These porous P(PF-co-CL) scaffolds fabricated via TIPS may be useful in various tissue engineering applications © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 226-235, 2017.
Collapse
Affiliation(s)
- Ji Guo
- Department of Physiology and Biomedical Engineering and Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905.,Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai, 200000, China
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering and Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905
| | - A Lee Miller
- Department of Physiology and Biomedical Engineering and Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905
| | - Brian E Waletzki
- Department of Physiology and Biomedical Engineering and Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905
| | - Michael J Yaszemski
- Department of Physiology and Biomedical Engineering and Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering and Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905
| |
Collapse
|
31
|
Zhao M, Chen Z, Liu K, Wan YQ, Li XD, Luo XW, Bai YG, Yang ZL, Feng G. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes. J Zhejiang Univ Sci B 2016; 16:914-23. [PMID: 26537209 DOI: 10.1631/jzus.b1500036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE In our previous work, we prepared a type of chitosan hydrogel with excellent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was used to repair the articular cartilage defects. METHODS Chitosan hydrogels were prepared with a crosslinker formed by combining 1,6-diisocyanatohexane and polyethylene glycol. Chitosan hydrogel scaffold was seeded with rabbit chondrocytes that had been cultured for one week in vitro to form the preliminary tissue-engineered cartilage. This preliminary tissue-engineered cartilage was then transplanted into the defective rabbit articular cartilage. There were three treatment groups: the experimental group received preliminary tissue-engineered cartilage; the blank group received pure chitosan hydrogels; and, the control group had received no implantation. The knee joints were harvested at predetermined time. The repaired cartilage was analyzed through gross morphology, histologically and immunohistochemically. The repairs were scored according to the international cartilage repair society (ICRS) standard. RESULTS The gross morphology results suggested that the defects were repaired completely in the experimental group after twelve weeks. The regenerated tissue connected closely with subchondral bone and the boundary with normal tissue was fuzzy. The cartilage lacuna in the regenerated tissue was similar to normal cartilage lacuna. The results of ICRS gross and histological grading showed that there were significant differences among the three groups (P<0.05). CONCLUSIONS Chondrocytes implanted in the scaffold can adhere, proliferate, and secrete extracellular matrix. The novel tissue-engineered cartilage constructed in our research can completely repair the structure of damaged articular cartilage.
Collapse
Affiliation(s)
- Ming Zhao
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital and the Second Clinical Institute of North Sichuan Medical University, Nanchong 637000, China.,Department of Orthopaedic Surgery, Pixian People Hospital, Pixian 611730, China
| | - Zhu Chen
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital and the Second Clinical Institute of North Sichuan Medical University, Nanchong 637000, China
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital and the Second Clinical Institute of North Sichuan Medical University, Nanchong 637000, China
| | - Yu-qing Wan
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville 22908, USA
| | - Xu-dong Li
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville 22908, USA
| | - Xu-wei Luo
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital and the Second Clinical Institute of North Sichuan Medical University, Nanchong 637000, China
| | - Yi-guang Bai
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital and the Second Clinical Institute of North Sichuan Medical University, Nanchong 637000, China
| | - Ze-long Yang
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital and the Second Clinical Institute of North Sichuan Medical University, Nanchong 637000, China
| | - Gang Feng
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital and the Second Clinical Institute of North Sichuan Medical University, Nanchong 637000, China
| |
Collapse
|
32
|
Du Y, Yu M, Chen X, Ma PX, Lei B. Development of Biodegradable Poly(citrate)-Polyhedral Oligomeric Silsesquioxanes Hybrid Elastomers with High Mechanical Properties and Osteogenic Differentiation Activity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3079-3091. [PMID: 26765285 DOI: 10.1021/acsami.5b10378] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biodegradable elastomeric biomaterials have attracted much attention in tissue engineering due to their biomimetic viscoelastic behavior and biocompatibility. However, the low mechanical stability at hydrated state, fast biodegradation in vivo, and poor osteogenic activity greatly limited bioelastomers applications in bone tissue regeneration. Herein, we develop a series of poly(octanediol citrate)-polyhedral oligomeric silsesquioxanes (POC-POSS) hybrids with highly tunable elastomeric behavior (hydrated state) and biodegradation and osteoblasts biocompatibility through a facile one-pot thermal polymerization strategy. POC-POSS hybrids show significantly improved stiffness and ductility in either dry or hydrated conditions, as well as good antibiodegradation ability (20-50% weight loss in 3 months). POC-POSS hybrids exhibit significantly enhanced osteogenic differentiation through upregulating alkaline phosphatase (ALP) activity, calcium deposition, and expression of osteogenic markers (ALPL, BGLAP, and Runx2). The high mechanical stability at hydrated state and enhanced osteogenic activity make POC-POSS hybrid elastomers promising as scaffolds and nanoscale vehicles for bone tissue regeneration and drug delivery. This study may also provide a new strategy (controlling the stiffness under hydrated condition) to design advanced hybrid biomaterials with high mechanical properties under physiological condition for tissue regeneration applications.
Collapse
Affiliation(s)
- Yuzhang Du
- Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an, Shaanxi 710054, China
| | - Meng Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an, Shaanxi 710054, China
| | - Xiaofeng Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou 510000, Guangdong, China
| | - Peter X Ma
- Department of Biologic and Materials Sciences, University of Michigan , Ann Arbor 48109-2009, Michigan, United States
- Department of Biomedical Engineering, University of Michigan , Ann Arbor 48109-2009, Michigan, United States
- Macromolecular Science and Engineering Center, University of Michigan , Ann Arbor, Michigan 48109-2009, United States
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an, Shaanxi 710054, China
| |
Collapse
|
33
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
34
|
Alghazali KM, Nima ZA, Hamzah RN, Dhar MS, Anderson DE, Biris AS. Bone-tissue engineering: complex tunable structural and biological responses to injury, drug delivery, and cell-based therapies. Drug Metab Rev 2015; 47:431-54. [PMID: 26651522 DOI: 10.3109/03602532.2015.1115871] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone loss and failure of proper bone healing continues to be a significant medical condition in need of solutions that can be implemented successfully both in human and veterinary medicine. This is particularly true when large segmental defects are present, the bone has failed to return to normal form or function, or the healing process is extremely prolonged. Given the inherent complexity of bone tissue - its unique structural, mechanical, and compositional properties, as well as its ability to support various cells - it is difficult to find ideal candidate materials that could be used as the foundation for tissue regeneration from technological platforms. Recently, important developments have been made in the implementation of complex structures built both at the macro- and the nano-level that have been shown to positively impact bone formation and to have the ability to deliver active biological molecules (drugs, growth factors, proteins, cells) for controlled tissue regeneration and the prevention of infection. These materials are diverse, ranging from polymers to ceramics and various composites. This review presents developments in this area with a focus on the role of scaffold structure and chemistry on the biologic processes that influence bone physiology and regeneration.
Collapse
Affiliation(s)
- Karrer M Alghazali
- a Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock , Little Rock , AR , USA and
| | - Zeid A Nima
- a Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock , Little Rock , AR , USA and
| | - Rabab N Hamzah
- a Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock , Little Rock , AR , USA and
| | - Madhu S Dhar
- b Tissue Regeneration Laboratory, Department of Large Animal Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville , TN , USA
| | - David E Anderson
- b Tissue Regeneration Laboratory, Department of Large Animal Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville , TN , USA
| | - Alexandru S Biris
- a Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock , Little Rock , AR , USA and
| |
Collapse
|
35
|
De Santis R, D'Amora U, Russo T, Ronca A, Gloria A, Ambrosio L. 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:250. [PMID: 26420041 DOI: 10.1007/s10856-015-5582-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Magnetic nanocomposite scaffolds based on poly(ε-caprolactone) and poly(ethylene glycol) were fabricated by 3D fibre deposition modelling (FDM) and stereolithography techniques. In addition, hybrid coaxial and bilayer magnetic scaffolds were produced by combining such techniques. The aim of the current research was to analyse some structural and functional features of 3D magnetic scaffolds obtained by the 3D fibre deposition technique and by stereolithography as well as features of multimaterial scaffolds in the form of coaxial and bilayer structures obtained by the proper integration of such methods. The compressive mechanical behaviour of these scaffolds was investigated in a wet environment at 37 °C, and the morphological features were analysed through scanning electron microscopy (SEM) and X-ray micro-computed tomography. The capability of a magnetic scaffold to absorb magnetic nanoparticles (MNPs) in water solution was also assessed. confocal laser scanning microscopy was used to assess the in vitro biological behaviour of human mesenchymal stem cells (hMSCs) seeded on 3D structures. Results showed that a wide range of mechanical properties, covering those spanning hard and soft tissues, can be obtained by 3D FDM and stereolithography techniques. 3D virtual reconstruction and SEM showed the precision with which the scaffolds were fabricated, and a good-quality interface between poly(ε-caprolactone) and poly(ethylene glycol) based scaffolds was observed for bilayer and coaxial scaffolds. Magnetised scaffolds are capable of absorbing water solution of MNPs, and a preliminary information on cell adhesion and spreading of hMSCs was obtained without the application of an external magnetic field.
Collapse
Affiliation(s)
- Roberto De Santis
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V. le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy.
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V. le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V. le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V. le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V. le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy
| | - Luigi Ambrosio
- Department of Chemical Science and Materials Technology, National Research Council of Italy, Piazzale Aldo Moro 7, 00185, Rome, Italy
| |
Collapse
|
36
|
Mashinchian O, Turner LA, Dalby MJ, Laurent S, Shokrgozar MA, Bonakdar S, Imani M, Mahmoudi M. Regulation of stem cell fate by nanomaterial substrates. Nanomedicine (Lond) 2015; 10:829-47. [DOI: 10.2217/nnm.14.225] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stem cells are increasingly studied because of their potential to underpin a range of novel therapies, including regenerative strategies, cell type-specific therapy and tissue repair, among others. Bionanomaterials can mimic the stem cell environment and modulate stem cell differentiation and proliferation. New advances in these fields are presented in this review. This work highlights the importance of topography and elasticity of the nano-/micro-environment, or niche, for the initiation and induction of stem cell differentiation and proliferation.
Collapse
Affiliation(s)
- Omid Mashinchian
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, PO Box 14177–55469, Tehran, Iran
| | - Lesley-Anne Turner
- Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Matthew J Dalby
- Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Sophie Laurent
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, B-7000 Mons, Belgium
- CMMI – Center for Microscopy & Molecular Imaging, Rue Adrienne Bolland, 8, B-6041 Gosselies, Belgium
| | | | - Shahin Bonakdar
- National Cell Bank, Pasteur Institute of Iran, PO Box 13169–43551, Tehran, Iran
| | - Mohammad Imani
- Novel Drug Delivery Systems Department, Iran Polymer & Petrochemical Institute (IPPI), PO Box 14965/115, Tehran, Iran
| | - Morteza Mahmoudi
- Department of Nanotechnology & Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, PO Box 14155–6451, Tehran, Iran
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305–5101, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305–5101, USA
| |
Collapse
|
37
|
Huang X, Bai S, Lu Q, Liu X, Liu S, Zhu H. Osteoinductive-nanoscaled silk/HA composite scaffolds for bone tissue engineering application. J Biomed Mater Res B Appl Biomater 2014; 103:1402-14. [DOI: 10.1002/jbm.b.33323] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/05/2014] [Accepted: 11/04/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Xiaowei Huang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 People's Republic of China
| | - Shumeng Bai
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 People's Republic of China
| | - Xi Liu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 People's Republic of China
| | - Shanshan Liu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 People's Republic of China
| | - Hesun Zhu
- Research Center of Materials Science; Beijing Institute of Technology; Beijing 100081 People's Republic of China
| |
Collapse
|
38
|
Abstract
Ultimately much work remains to be done in the companion fields of biomaterials and stem cells. Nonetheless, the monumental progress in TE that has been reported in the studies summarized here demonstrates that regenerative approaches to problems in general surgery need to be explored in more depth. Furthermore, the surgical disciplines of reconstruction and transplantation need to recognize their research counterparts in TE, given its potential to actualize freedom from immunosuppression, one of the most elusive goals in modern surgery. The engineering and proliferation of autologous cells, tissues, and organs ex vivo before surgical operation can significantly reduce the obstacles current practitioners are intimately familiar with: donor site morbidity and immunologic rejection. Therefore, in addition to the truly exciting research and development prospects and implications for the commercial sector, patients with end-stage diseases and debilitating injury stand to gain the most from clinically adapted TE therapies.
Collapse
|
39
|
Liu X, Wang P, Chen W, Weir MD, Bao C, Xu HHK. Human embryonic stem cells and macroporous calcium phosphate construct for bone regeneration in cranial defects in rats. Acta Biomater 2014; 10:4484-93. [PMID: 24972090 DOI: 10.1016/j.actbio.2014.06.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/09/2014] [Accepted: 06/17/2014] [Indexed: 02/05/2023]
Abstract
Human embryonic stem cells (hESCs) are an exciting cell source as they offer an unlimited supply of cells that can differentiate into all cell types for regenerative medicine applications. To date, there has been no report on hESCs with calcium phosphate cement (CPC) scaffolds for bone regeneration in vivo. The objectives of this study were to: (i) investigate hESCs for bone regeneration in vivo in critical-sized cranial defects in rats; and (ii) determine the effects of cell seeding and platelets in macroporous CPC on new bone and blood vessel formation. hESCs were cultured to yield mesenchymal stem cells (MSCs), which underwent osteogenic differentiation. Four groups were tested in rats: (i) CPC control without cells; (ii) CPC with hESC-derived MSCs (CPC+hESC-MSC); (iii) CPC with hESC-MSCs and 30% human platelet concentrate (hPC) (CPC+hESC-MSC+30% hPC); and (iv) CPC+hESC-MSC+50% hPC. In vitro, MSCs were derived from embryoid bodies of hESCs. Cells on CPC were differentiated into the osteogenic lineage, with highly elevated alkaline phosphatase and osteocalcin expressions, as well as mineralization. At 12weeks in vivo, the groups with hESC-MSCs and hPC had three times as much new bone as, and twice the blood vessel density of, the CPC control. The new bone in the defects contained osteocytes and blood vessels, and the new bone front was lined with osteoblasts. The group with 30% hPC and hESC-MSCs had a blood vessel density that was 49% greater than the hESC-MSC group without hPC, likely due to the various growth factors in the platelets enhancing both new bone and blood vessel formation. In conclusion, hESCs are promising for bone tissue engineering, and hPC can enhance new bone and blood vessel formation. Macroporous CPC with hESC-MSCs and hPC may be useful for bone regeneration in craniofacial and orthopedic applications.
Collapse
Affiliation(s)
- Xian Liu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Wang
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenchuan Chen
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
40
|
Focaroli S, Teti G, Salvatore V, Durante S, Belmonte MM, Giardino R, Mazzotti A, Bigi A, Falconi M. Chondrogenic differentiation of human adipose mesenchimal stem cells: influence of a biomimetic gelatin genipin crosslinked porous scaffold. Microsc Res Tech 2014; 77:928-34. [PMID: 25099470 DOI: 10.1002/jemt.22417] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/16/2014] [Accepted: 07/25/2014] [Indexed: 11/11/2022]
Abstract
Human adipose derived stem cells have shown chondrogenic differentiation potential in cartilage tissue engineering in combination with biomimetic materials. In this study, the chondrogenic potential of a porous gelatin based scaffold genipin (GNP) crosslinked was investigated in human mesenchymal stem cells obtained from adipose tissue. Cells were cultured up to 4 weeks on the scaffold and on monolayer, MTT assay was performed to evaluate cell viability, light, and transmission electron microscopy were carried out to demonstrate cell proliferation, scaffold adhesion, and cell colonization inside the porous architecture of the biomaterial. The expression of chondrogenic markers such as SOX9, collagen type II, aggregan, and versican was investigated by Real Time PCR. Results showed an high cell viability, adhesion, and colonization of the scaffold. Real Time PCR data demonstrated an upregulation of all the chondrogenic markers analyzed. In conclusion, 3D gelatin GNP crosslinked porous scaffold provides an improved environment for chondrogenic differentiation of stem cells compared with cell monolayer culture system.
Collapse
Affiliation(s)
- Stefano Focaroli
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Evaluation of a biomimetic poly(ε-caprolactone)/β-tricalcium phosphate multispiral scaffold for bone tissue engineering:In vitroandin vivostudies. Biointerphases 2014; 9:029011. [DOI: 10.1116/1.4870781] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Trachtenberg JE, Mountziaris PM, Miller JS, Wettergreen M, Kasper FK, Mikos AG. Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering. J Biomed Mater Res A 2014; 102:4326-35. [DOI: 10.1002/jbm.a.35108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Jordan S. Miller
- Department of Bioengineering; Rice University; Houston Texas 77251-1892
| | | | - Fred K. Kasper
- Department of Bioengineering; Rice University; Houston Texas 77251-1892
| | - Antonios G. Mikos
- Department of Bioengineering; Rice University; Houston Texas 77251-1892
| |
Collapse
|
43
|
Kim J, Kim HN, Lim KT, Kim Y, Seonwoo H, Park SH, Lim HJ, Kim DH, Suh KY, Choung PH, Choung YH, Chung JH. Designing nanotopographical density of extracellular matrix for controlled morphology and function of human mesenchymal stem cells. Sci Rep 2013; 3:3552. [PMID: 24352057 PMCID: PMC6506445 DOI: 10.1038/srep03552] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 11/29/2013] [Indexed: 12/14/2022] Open
Abstract
Inspired by ultrastructural analysis of ex vivo human tissues as well as the physiological importance of structural density, we fabricated nanogrooves with 1:1, 1:3, and 1:5 spacing ratio (width:spacing, width = 550 nm). In response to the nanotopographical density, the adhesion, migration, and differentiation of human mesenchymal stem cells (hMSCs) were sensitively controlled, but the proliferation showed no significant difference. In particular, the osteo- or neurogenesis of hMSCs were enhanced at the 1:3 spacing ratio rather than 1:1 or 1:5 spacing ratio, implying an existence of potentially optimized nanotopographical density for stem cell function. Furthermore, such cellular behaviors were positively correlated with several cell morphological indexes as well as the expression of integrin β1 or N-cadherin. Our findings propose that nanotopographical density may be a key parameter for the design and manipulation of functional scaffolds for stem cell-based tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jangho Kim
- 1] Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea [2]
| | - Hong Nam Kim
- 1] Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-742, Republic of Korea [2]
| | - Ki-Taek Lim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Yeonju Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea
| | - Hoon Seonwoo
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Soo Hyun Park
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Hye Jin Lim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Kahp-Yang Suh
- 1] Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-742, Republic of Korea [2]
| | - Pill-Hoon Choung
- Tooth Bioengineering National Research Lab, Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea
| | - Jong Hoon Chung
- 1] Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea [2] Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
44
|
Vo TN, Ekenseair AK, Kasper FK, Mikos AG. Synthesis, physicochemical characterization, and cytocompatibility of bioresorbable, dual-gelling injectable hydrogels. Biomacromolecules 2013; 15:132-42. [PMID: 24320599 DOI: 10.1021/bm401413c] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Injectable, dual-gelling hydrogels were successfully developed through the combination of physical thermogellation at 37 °C and favorable amine:epoxy chemical cross-linking. Poly(N-isopropylacrylamide)-based thermogelling macromers with a hydrolyzable lactone ring and epoxy pendant groups and a biodegradable diamine-functionalized polyamidoamine cross-linker were synthesized, characterized, and combined to produce nonsyneresing and bioresorbable hydrogels. Differential scanning calorimetry and oscillatory rheometry demonstrated the rapid and dual-gelling nature of the hydrogel formation. The postgelation dimensional stability, swelling, and mechanical behavior of the hydrogel system were shown to be easily tuned in the synthesis and formulation stages. The leachable products were found to be cytocompatible under all conditions, while the degradation products demonstrated a dose- and time-dependent response due to solution osmolality. Preliminary encapsulation studies showed mesenchymal stem cell viability could be maintained for 7 days. The results suggest that injectable and thermally and chemically cross-linkable hydrogels are promising alternatives to prefabricated biomaterials for tissue engineering applications, particularly for cell delivery.
Collapse
Affiliation(s)
- Tiffany N Vo
- Department of Bioengineering, Rice University , Houston, Texas 77030, United States
| | | | | | | |
Collapse
|
45
|
Madry H, Rey-Rico A, Venkatesan JK, Johnstone B, Cucchiarini M. Transforming growth factor Beta-releasing scaffolds for cartilage tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:106-25. [PMID: 23815376 DOI: 10.1089/ten.teb.2013.0271] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The maintenance of a critical threshold concentration of transforming growth factor beta (TGF-β) for a given period of time is crucial for the onset and maintenance of chondrogenesis. Thus, the development of scaffolds that provide temporal and/or spatial control of TGF-β bioavailability has appeal as a mechanism to induce the chondrogenesis of stem cells in vitro and in vivo for articular cartilage repair. In the past decade, many types of scaffolds have been designed to advance this goal: hydrogels based on polysaccharides, hyaluronic acid, and alginate; protein-based hydrogels such as fibrin, gelatin, and collagens; biopolymeric gels and synthetic polymers; and solid and hybrid composite (hydrogel/solid) scaffolds. In this study, we review the progress in developing strategies to deliver TGF-β from scaffolds with the aim of enhancing chondrogenesis. In the future, such scaffolds could prove critical for tissue engineering cartilage, both in vitro and in vivo.
Collapse
Affiliation(s)
- Henning Madry
- 1 Center of Experimental Orthopaedics, Saarland University , Homburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering--Part I: recapitulation of native tissue healing and variables for the design of delivery systems. TISSUE ENGINEERING. PART B, REVIEWS 2013; 19:308-26. [PMID: 23268651 PMCID: PMC3690094 DOI: 10.1089/ten.teb.2012.0138] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 12/11/2012] [Indexed: 12/12/2022]
Abstract
The potential of growth factors to stimulate tissue healing through the enhancement of cell proliferation, migration, and differentiation is undeniable. However, critical parameters on the design of adequate carriers, such as uncontrolled spatiotemporal presence of bioactive factors, inadequate release profiles, and supraphysiological dosages of growth factors, have impaired the translation of these systems onto clinical practice. This review describes the healing cascades for bone, cartilage, and osteochondral interface, highlighting the role of specific growth factors for triggering the reactions leading to tissue regeneration. Critical criteria on the design of carriers for controlled release of bioactive factors are also reported, focusing on the need to provide a spatiotemporal control over the delivery and presentation of these molecules.
Collapse
Affiliation(s)
- Vítor E. Santo
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E. Gomes
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F. Mano
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
47
|
Nejadnik MR, Yang X, Mimura T, Birgani ZT, Habibovic P, Itatani K, Jansen JA, Hilborn J, Ossipov D, Mikos AG, Leeuwenburgh SCG. Calcium-Mediated Secondary Cross-Linking of Bisphosphonated Oligo(poly(ethylene glycol) Fumarate) Hydrogels. Macromol Biosci 2013; 13:1308-13. [DOI: 10.1002/mabi.201300117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/14/2013] [Indexed: 12/26/2022]
Affiliation(s)
- M. Reza Nejadnik
- Department of Biomaterials; Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| | - Xia Yang
- Department of Materials Chemistry; Uppsala University; Angstrom Laboratory, Uppsala Sweden
| | - Tokio Mimura
- Department of Materials and Life Sciences; Faculty of Science and Engineering; Sophia University; Tokyo Japan
| | - Zeinab Tahmasebi Birgani
- Department of Tissue Regeneration; University of Twente; MIRA Institute for Biomedical Technology and Technical Medicine; Enschede The Netherlands
| | - Pamela Habibovic
- Department of Tissue Regeneration; University of Twente; MIRA Institute for Biomedical Technology and Technical Medicine; Enschede The Netherlands
| | - Kiyoshi Itatani
- Department of Materials and Life Sciences; Faculty of Science and Engineering; Sophia University; Tokyo Japan
| | - John A. Jansen
- Department of Biomaterials; Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| | - Jons Hilborn
- Department of Materials Chemistry; Uppsala University; Angstrom Laboratory, Uppsala Sweden
| | - Dmitri Ossipov
- Department of Materials Chemistry; Uppsala University; Angstrom Laboratory, Uppsala Sweden
| | | | | |
Collapse
|
48
|
Pasqui D, Torricelli P, De Cagna M, Fini M, Barbucci R. Carboxymethyl cellulose-hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications. J Biomed Mater Res A 2013; 102:1568-79. [PMID: 23720392 DOI: 10.1002/jbm.a.34810] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/07/2013] [Accepted: 05/16/2013] [Indexed: 11/11/2022]
Abstract
Natural bone is a complex inorganic-organic nanocomposite material, in which hydroxyapatite (HA) nanocrystals and collagen fibrils are well organized into hierarchical architecture over several length scales. In this work, we reported a new hybrid material (CMC-HA) containing HA drown in a carboxymethylcellulose (CMC)-based hydrogel. The strategy for inserting HA nanocrystals within the hydrogel matrix consists of making the freeze-dried hydrogel to swell in a solution containing HA microcrystals. The composite CMC-HA hydrogel has been characterized from a physicochemical and morphological point of view by means of FTIR spectroscopy, rheological measurements, and field emission scanning electron microscopy (FESEM). No release of HA was measured in water or NaCl solution. The distribution of HA crystal on the surface and inside the hydrogel was determined by time of flight secondary ion mass spectrometry (ToF-SIMS) and FESEM. The biological performance of CMC-HA hydrogel were tested by using osteoblast MG63 line and compared with a CMC-based hydrogel without HA. The evaluation of osteoblast markers and gene expression showed that the addition of HA to CMC hydrogel enhanced cell proliferation and metabolic activity and promoted the production of mineralized extracellular matrix.
Collapse
Affiliation(s)
- Daniela Pasqui
- C.R.I.S.M.A. University of Siena, 53034, Colle di Val d'Elsa, (SI), Italy; Prior at Department of Clinical and Molecular Science, Università Politecnica delle Marche, 60121, Ancona, Italy
| | | | | | | | | |
Collapse
|
49
|
Panzavolta S, Torricelli P, Amadori S, Parrilli A, Rubini K, della Bella E, Fini M, Bigi A. 3D interconnected porous biomimetic scaffolds: In vitro cell response. J Biomed Mater Res A 2013; 101:3560-70. [PMID: 23629945 DOI: 10.1002/jbm.a.34662] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/14/2013] [Accepted: 02/11/2013] [Indexed: 11/06/2022]
Abstract
Bone cell response to 3D bioinspired scaffolds was tested on osteoblast culture supernatants and by means of quantitative polymerase chain reaction (qPCR). Foaming and freeze-drying method was optimized in order to obtain three-dimensional interconnected porous scaffolds of gelatin at different contents of nanocrystalline hydroxyapatite (HA). Addition of a non toxic crosslinking agent during foaming stabilized the scaffolds, as confirmed by the slow and relatively low gelatin release in phosphate buffer up to 28 days. Micro-computed tomography reconstructed images showed porous interconnected structures, with interconnected pores displaying average diameter ranging from about 158 to about 71 μm as the inorganic phase content increases from 0 to 50 wt %. The high values of connectivity (>99%), porosity (> 60%), and percentage of pores with a size in the range 100-300 μm (>50%) were maintained up to 30 wt % HA, whereas higher content provoked a reduction of these parameters, as well as of the average pore size, and a significant increase of the compressive modulus and collapse strength up to 8 ± 1 and 0.9 ± 0.2 MPa, respectively. Osteoblast cultured on the scaffolds showed good adhesion, proliferation and differentiation. The presence of HA promoted ALP activity, TGF-β1, and osteocalcin production, in agreement with the observed upregulation of ALP, OC, Runx2, and TGF-β1 gene in qPCR analysis, indicating that the composite scaffolds enhanced osteoblast activation and extra-cellular matrix mineralization processes.
Collapse
Affiliation(s)
- Silvia Panzavolta
- Department of Chemistry "G. Ciamician,", University of Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
|