1
|
Yu L, Wang Y, Su X, Liu C, Xue K, Luo H, Zhang Y, Zhu H. In Situ Construction of Near-Infrared Response Hybrid Up-Conversion Photocatalyst for Degrading Organic Dyes and Antibiotics. Molecules 2023; 28:6674. [PMID: 37764450 PMCID: PMC10534851 DOI: 10.3390/molecules28186674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Unique nonlinear optical properties for converting low-energy incident light into high-energy radiation enable up-conversion materials to be employed in photocatalytic systems. An efficient near-infrared (NIR) response photocatalyst was successfully fabricated through a facile two-step method to load BiOBr on the Nd3+, Er3+@NaYF4 (NE@NYF) up-conversion material. The NE@NYF can transform NIR into visible and UV light and promote charge-energy transfer in the semiconductor. Consequently, the as-obtained photocatalysts exhibit excellent photodegradation performance for rhodamine B dye (RhB) and tetracycline (TC) organic pollutants. About 98.9% of the RhB was decomposed within 60 min with the 20% NE@NYF-B sample, outperforming the pristine BiOBr (61.9%). In addition, the 20% NE@NYF-B composite could decompose approximately 72.7% of the organic carbon during a 10 h reaction, which was almost two-fold more than that of BiOBr. Meanwhile, a possible charge transfer mechanism is proposed based on the recombination of electron-hole pairs and reactive oxygen species. This work provides a rational hybrid structure photocatalyst for improving photocatalytic performance in the broadband spectrum and provides a new strategy for NIR light utilization.
Collapse
Affiliation(s)
- Lianqing Yu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China; (Y.W.); (C.L.); (K.X.); (H.L.)
| | - Yankun Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China; (Y.W.); (C.L.); (K.X.); (H.L.)
| | - Xinhai Su
- School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China;
| | - Chong Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China; (Y.W.); (C.L.); (K.X.); (H.L.)
| | - Kehui Xue
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China; (Y.W.); (C.L.); (K.X.); (H.L.)
| | - Huihua Luo
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China; (Y.W.); (C.L.); (K.X.); (H.L.)
| | - Yaping Zhang
- College of Science, China University of Petroleum, Qingdao 266580, China; (Y.Z.); (H.Z.)
| | - Haifeng Zhu
- College of Science, China University of Petroleum, Qingdao 266580, China; (Y.Z.); (H.Z.)
| |
Collapse
|
2
|
Zhao H, Huai J, Weng C, Han H. A new spiropyran compound for selective naked-eye detection of copper ions in aqueous media and on test paper strips. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Wang Q, Chen M, Xiong C, Zhu X, Chen C, Zhou F, Dong Y, Wang Y, Xu J, Li Y, Liu J, Zhang H, Ye B, Zhou H, Wu Y. Dual confinement of high-loading enzymes within metal-organic frameworks for glucose sensor with enhanced cascade biocatalysis. Biosens Bioelectron 2021; 196:113695. [PMID: 34688111 DOI: 10.1016/j.bios.2021.113695] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/17/2022]
Abstract
The intrinsically fragile nature and leakage of the enzymes is a major obstacle for the commercial sensor of a continuous glucose monitoring system. Herein, a dual confinement effect is developed in a three dimensional (3D) nanocage-based zeolite imidazole framework (NC-ZIF), during which the high-loading enzymes can be well encapsulated with unusual bioactivity and stability. The shell of NC-ZIF sets the first confinement to prevent enzymes leakage, and the interior nanocage of NC-ZIF provides second confinement to immobilize enzymes and offers a spacious environment to maintain their conformational freedom. Moreover, the mesoporosity of the formed NC-ZIF can be precisely controlled, which can effectively enhance the mass transport. The resulted GOx/Hemin@NC-ZIF multi-enzymes system could not only realize rapid detection of glucose by colorimetric and electrochemical sensors with high catalytic cascade activity (with an 8.3-fold and 16-fold enhancements in comparison with free enzymes in solution, respectively), but also exhibit long-term stability, excellent selectivity and reusability. More importantly, the based wearable sweatband sensor measurement results showed a high correlation (>0.84, P < 0.001) with the levels measured by commercial glucometer. The reported dual confinement strategy opens up a window to immobilize enzymes with enhanced catalytic efficiency and stability for clinical-grade noninvasive continuous glucose sensor.
Collapse
Affiliation(s)
- Qiuping Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China; Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Min Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Can Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaofei Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Cai Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Fangyao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yun Dong
- State Key Laboratory of Particle Detection and Electronics & Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jie Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yimin Li
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Jiandang Liu
- State Key Laboratory of Particle Detection and Electronics & Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics & Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics & Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Huang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Yuen Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China; Dalian National Laboratory for Clean Energy, Dalian, 116023, China.
| |
Collapse
|
4
|
Engineering of a Novel, Magnetic, Bi-Functional, Enzymatic Nanobiocatalyst for the Highly Efficient Synthesis of Enantiopure (R)-3-quinuclidinol. Catalysts 2021. [DOI: 10.3390/catal11091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ni2+-NTA-boosted magnetic porous silica nanoparticles (Ni@MSN) to serve as ideal support for bi-functional enzyme were fabricated for the first time. The versatility of this support was validated by one-step purification and immobilization of bi-functional enzyme MLG consisting of 3-Quinuclidinone reductase and glucose dehydrogenase, which can simultaneously catalyze both carbonyl reduction and cofactor regeneration, to fabricate an artificial bi-functional nanobiocatalyst (namely, MLG-Ni@MSN). The enzyme loading of 71.7 mg/g support and 92.7% immobilization efficiency were obtained. Moreover, the immobilized MLG showed wider pH and temperature tolerance and greater storage stability than free MLG under the same conditions. The nanosystem was employed as biocatalyst to accomplish the 3-quinuclidinone (70 g/L) to (R)-3-quinuclidinol biotransformation in 100% conversion yield with >99% selectivity within 6 h and simultaneous cofactor regeneration. Furthermore, the immobilized MLG retained up to 80.3% (carbonyl reduction) and 78.0% (cofactor regeneration) of the initial activity after being recycled eight times. In addition, the MLG-Ni@MSN system exhibited almost no enzyme leaching during biotransformation and recycling. Therefore, we have reason to believe that the Ni@MSN support gave great promise for constructing a new biocatalytic nanosystem with multifunctional enzymes to achieve some other complex bioconversions.
Collapse
|
5
|
Richards BS, Hudry D, Busko D, Turshatov A, Howard IA. Photon Upconversion for Photovoltaics and Photocatalysis: A Critical Review. Chem Rev 2021; 121:9165-9195. [PMID: 34327987 DOI: 10.1021/acs.chemrev.1c00034] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Opportunities for enhancing solar energy harvesting using photon upconversion are reviewed. The increasing prominence of bifacial solar cells is an enabling factor for the implementation of upconversion, however, when the realistic constraints of current best-performing silicon devices are considered, many challenges remain before silicon photovoltaics operating under nonconcentrated sunlight can be enhanced via lanthanide-based upconversion. A photophysical model reveals that >1-2 orders of magnitude increase in the intermediate state lifetime, energy transfer rate, or generation rate would be needed before such solar upconversion could start to become efficient. Methods to increase the generation rate such as the use of cosensitizers to expand the absorption range and the use of plasmonics or photonic structures are reviewed. The opportunities and challenges for these approaches (or combinations thereof) to achieve efficient solar upconversion are discussed. The opportunity for enhancing the performance of technologies such as luminescent solar concentrators by combining upconversion together with micro-optics is also reviewed. Triplet-triplet annihilation-based upconversion is progressing steadily toward being relevant to lower-bandgap solar cells. Looking toward photocatalysis, photophysical modeling indicates that current blue-to-ultraviolet lanthanide upconversion systems are very inefficient. However, hope remains in this direction for organic upconversion enhancing the performance of visible-light-active photocatalysts.
Collapse
Affiliation(s)
- Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Damien Hudry
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dmitry Busko
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andrey Turshatov
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Fagan A, Bartkowski M, Giordani S. Spiropyran-Based Drug Delivery Systems. Front Chem 2021; 9:720087. [PMID: 34395385 PMCID: PMC8358077 DOI: 10.3389/fchem.2021.720087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Nanocarriers are rapidly growing in popularity in the field of drug delivery. The ability of nanocarriers to encapsulate and distribute poorly soluble drugs while minimising their undesired effects is significantly advantageous over traditional drug delivery. Nanocarriers can also be decorated with imaging moieties and targeting agents, further incrementing their functionality. Of recent interest as potential nanocarriers are spiropyrans; a family of photochromic molecular switches. Due to their multi-responsiveness to endo- and exogenous stimuli, and their intrinsic biocompatibility, they have been utilised in various drug delivery systems (DDSs) to date. In this review, we provide an overview of the developments in spiropyran-based DDSs. The benefits and drawbacks of utilising spiropyrans in drug delivery are assessed and an outline of spiropyran-based drug delivery systems is presented.
Collapse
Affiliation(s)
| | | | - Silvia Giordani
- School of Chemical Sciences, Dublin City University (DCU), Dublin, Ireland
| |
Collapse
|
7
|
Zhao D, Yang N, Xu L, Du J, Yang Y, Wang D. Hollow structures as drug carriers: Recognition, response, and release. NANO RESEARCH 2021; 15:739-757. [PMID: 34254012 PMCID: PMC8262765 DOI: 10.1007/s12274-021-3595-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 05/19/2023]
Abstract
Hollow structures have demonstrated great potential in drug delivery owing to their privileged structure, such as high surface-to-volume ratio, low density, large cavities, and hierarchical pores. In this review, we provide a comprehensive overview of hollow structured materials applied in targeting recognition, smart response, and drug release, and we have addressed the possible chemical factors and reactions in these three processes. The advantages of hollow nanostructures are summarized as follows: hollow cavity contributes to large loading capacity; a tailored structure helps controllable drug release; variable compounds adapt to flexible application; surface modification facilitates smart responsive release. Especially, because the multiple physical barriers and chemical interactions can be induced by multishells, hollow multishelled structure is considered as a promising material with unique loading and releasing properties. Finally, we conclude this review with some perspectives on the future research and development of the hollow structures as drug carriers.
Collapse
Affiliation(s)
- Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lekai Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- Green Catalysis Center, and College of Chemistry, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Jiang Du
- Green Catalysis Center, and College of Chemistry, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433 China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
8
|
Zhang J, Di Z, Yan H, Zhao Y, Li L. One-Step Synthesis of Single-Stranded DNA-Bridged Iron Oxide Supraparticles as MRI Contrast Agents. NANO LETTERS 2021; 21:2793-2799. [PMID: 33740379 DOI: 10.1021/acs.nanolett.0c04825] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite progress on DNA-assembled nanoparticle (NP) superstructures, their complicated synthesis procedures hamper their potential biomedical applications. Here, we present an exceptionally simple strategy for the synthesis of single-stranded DNA (ssDNA) assembled Fe3O4 supraparticles (DFe-SPs) as magnetic resonance contrast agents. Unlike traditional approaches that assemble DNA-conjugated NPs via Watson-Crick hybridization, our DFe-SPs are formed with a high yield through one-step synthesis and assembly of ultrasmall Fe3O4 NPs via ssDNA-metal coordination bridges. We demonstrate that the DFe-SPs can efficiently accumulate into tumors for sensitive MR imaging. By virtue of reversible DNA-metal coordination bridges, the DFe-SPs could be disassembled into isolated small NPs in vivo, facilitating their elimination from the body. This work opens a new avenue for the ssDNA-mediated synthesis of superstructures, which expands the repertoire of DNA-directed NP assembly for biomedical applications.
Collapse
Affiliation(s)
- Jingfang Zhang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhenghan Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Husheng Yan
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Yu X, Shi H, Li Y, Guo Y, Zhang P, Wang G, Li L, Chen X, Ding L, Ju H. Thermally Triggered, Cell-Specific Enzymatic Glyco-Editing: In Situ Regulation of Lectin Recognition and Immune Response on Target Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54387-54398. [PMID: 33236873 DOI: 10.1021/acsami.0c15212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In situ glyco-editing on the cell surface can endow cellular glycoforms with new structures and properties; however, the lack of cell specificity and dependence on cells' endogenous functions plague the revelation of cellular glycan recognition properties and hamper the application of glyco-editing in complicated authentic biosystems. Herein, we develop a thermally triggered, cell-specific glyco-editing method for regulation of lectin recognition on target live cells in both single- and cocultured settings. The method relies on the aptamer-mediated anchoring of microgel-encapsulated neuraminidase on target cells and subsequent thermally triggered enzyme release for localized sialic acid (Sia) trimming. This temperature-based enzyme accessibility modulation strategy exempts genetic or metabolic engineering operations and, thus for the first time, enables tumor-specific desialylation on complicated tissue slices. The proposed method also provides an unprecedented opportunity to potentiate the innate immune response of natural killer cells toward target tumor cells through thermally triggered cell-specific desialylation, which paves the way for in vivo glycoimmune-checkpoint-targeted cancer therapeutic intervention.
Collapse
Affiliation(s)
- Xiaofei Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huifang Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuna Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Peiwen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guyu Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xian Chen
- Jiangsu Province Blood Center, Nanjing 210008, China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Tao Y, Chan HF, Shi B, Li M, Leong KW. Light: A Magical Tool for Controlled Drug Delivery. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005029. [PMID: 34483808 PMCID: PMC8415493 DOI: 10.1002/adfm.202005029] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 05/04/2023]
Abstract
Light is a particularly appealing tool for on-demand drug delivery due to its noninvasive nature, ease of application and exquisite temporal and spatial control. Great progress has been achieved in the development of novel light-driven drug delivery strategies with both breadth and depth. Light-controlled drug delivery platforms can be generally categorized into three groups: photochemical, photothermal, and photoisomerization-mediated therapies. Various advanced materials, such as metal nanoparticles, metal sulfides and oxides, metal-organic frameworks, carbon nanomaterials, upconversion nanoparticles, semiconductor nanoparticles, stimuli-responsive micelles, polymer- and liposome-based nanoparticles have been applied for light-stimulated drug delivery. In view of the increasing interest in on-demand targeted drug delivery, we review the development of light-responsive systems with a focus on recent advances, key limitations, and future directions.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Kam W Leong
- Department of Biomedical Engineering, Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
11
|
Near-infrared photocontrolled therapeutic release via upconversion nanocomposites. J Control Release 2020; 324:104-123. [DOI: 10.1016/j.jconrel.2020.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
|
12
|
Yao G, Li J, Li Q, Chen X, Liu X, Wang F, Qu Z, Ge Z, Narayanan RP, Williams D, Pei H, Zuo X, Wang L, Yan H, Feringa BL, Fan C. Programming nanoparticle valence bonds with single-stranded DNA encoders. NATURE MATERIALS 2020; 19:781-788. [PMID: 31873228 DOI: 10.1038/s41563-019-0549-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/01/2019] [Indexed: 05/22/2023]
Abstract
Nature has evolved strategies to encode information within a single biopolymer to program biomolecular interactions with characteristic stoichiometry, orthogonality and reconfigurability. Nevertheless, synthetic approaches for programming molecular reactions or assembly generally rely on the use of multiple polymer chains (for example, patchy particles). Here we demonstrate a method for patterning colloidal gold nanoparticles with valence bond analogues using single-stranded DNA encoders containing polyadenine (polyA). By programming the order, length and sequence of each encoder with alternating polyA/non-polyA domains, we synthesize programmable atom-like nanoparticles (PANs) with n-valence that can be used to assemble a spectrum of low-coordination colloidal molecules with different composition, size, chirality and linearity. Moreover, by exploiting the reconfigurability of PANs, we demonstrate dynamic colloidal bond-breaking and bond-formation reactions, structural rearrangement and even the implementation of Boolean logic operations. This approach may be useful for generating responsive functional materials for distinct technological applications.
Collapse
Affiliation(s)
- Guangbao Yao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Qian Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoliang Chen
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoguo Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibei Qu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhilei Ge
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Raghu Pradeep Narayanan
- Center for Molecular Design and Biomimetics, The Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Dewight Williams
- Erying Materials Center, Office of Knowledge Enterprise Development, Arizona State University, Tempe, AZ, USA
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiaolei Zuo
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Hao Yan
- Center for Molecular Design and Biomimetics, The Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
- Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Ovais M, Mukherjee S, Pramanik A, Das D, Mukherjee A, Raza A, Chen C. Designing Stimuli-Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000055. [PMID: 32227413 DOI: 10.1002/adma.202000055] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 05/12/2023]
Abstract
Tailoring personalized cancer nanomedicines demands detailed understanding of the tumor microenvironment. In recent years, smart upconversion nanoparticles with the ability to exploit the unique characteristics of the tumor microenvironment for precise targeting have been designed. To activate upconversion nanoparticles, various bio-physicochemical characteristics of the tumor microenvironment, namely, acidic pH, redox reactants, and hypoxia, are exploited. Stimuli-responsive upconversion nanoparticles also utilize the excessive presence of adenosine triphosphate (ATP), riboflavin, and Zn2+ in tumors. An overview of the design of stimulus-responsive upconversion nanoparticles that precisely target and respond to tumors via targeting the tumor microenvironment and intracellular signals is provided. Detailed understanding of the tumor microenvironment and the personalized design of upconversion nanoparticles will result in more effective clinical translation.
Collapse
Affiliation(s)
- Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, 6500 Main St Ste 1030, Houston, TX, 77030, USA
| | - Arindam Pramanik
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Devlina Das
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, 641004, India
| | - Anubhab Mukherjee
- Department of Formulation, R&D, Aavishkar Oral Strips Pvt. Ltd., Cherlapally, Hyderabad, 500051, India
| | - Abida Raza
- NILOP Nanomedicine Research Laboratories (NNRL), National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences Lehtrar Road, Islamabad, 45650, Pakistan
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Wang K, Wu Q, Wang X, Liang G, Yang A, Li J. Near-infrared control and real-time detection of osteogenic differentiation in mesenchymal stem cells by multifunctional upconversion nanoparticles. NANOSCALE 2020; 12:10106-10116. [PMID: 32350492 DOI: 10.1039/d0nr00872a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Finding a method to control and detect the differentiation of stem cells in real time remains a challenge for regenerative medicine. Here we developed the multifunctional upconversion nanoparticle (UCNP) approach for both near-infrared (NIR) control and the real-time detection of osteogenic differentiation in mesenchymal stem cells (MSCs). We first synthesized Tm/Er doped core-shell UCNPs (NaYF4:Yb/Tm/Er@NaYF4), and the core-shell UCNPs were coated with mesoporous silica for drug loading and installing photomechanical azobenzene (azo). Then the Arg-Gly-Asp (RGD) peptide and the matrix metalloproteinase 13 (MMP13) sensitive peptide-black hole quencher-3 group (CGPLGVRGK-BHQ-3) were conjugated on the surface of UCNPs for cell targeting and detection of cell differentiation. The final multifunctional UCNPs are called UCNP@mSiO2-azo-peptide-BHQ-3. The drug icariin (ICA), which can induce the osteogenic differentiation of MSCs, was loaded into UCNP@mSiO2-azo-peptide-BHQ-3 to form the UCNP nanocomplexes. ICA could be released from UCNP nanocomplexes in a NIR-controlled manner that is based on the transformation of the trans-isomer of azo into the cis isomer under the upconverted UV and visible light. Meanwhile, UCNP@mSiO2-azo-peptide-BHQ-3 could also be used as a nanoprobe to detect the activity of the MMP13 enzyme by enzyme digestion and UCNP fluorescence recovery. By detecting MMP13, which is produced by osteogenic differentiation, a real-time detection of cell differentiation in living differentiated MSCs could be achieved using UCNP nanoprobes. Thus, the multifunctional UCNPs combined the control of cell differentiation with the real-time detection of cell differentiation in MSCs, which makes them a powerful tool for regulating and detecting the differentiation of MSCs in regenerative medicine.
Collapse
Affiliation(s)
- Kaipeng Wang
- Guangdong Provincial Key Laboratory of Laser Life Science, MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | | | | | | | | | | |
Collapse
|
15
|
Pugachev AD, Ozhogin IV, Lukyanova MB, Lukyanov BS, Rostovtseva IA, Dorogan IV, Makarova NI, Tkachev VV, Metelitsa AV, Aldoshin SM. Visible to near-IR molecular switches based on photochromic indoline spiropyrans with a conjugated cationic fragment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118041. [PMID: 31955116 DOI: 10.1016/j.saa.2020.118041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Photochromic molecules which can absorb and emit light within the "biological window" (650-1450 nm) are of great interest for using in various important biomedical applications such as bio-imaging, photopharmacology, targeted drug delivery, etc. Here we present three new indoline spiropyrans containing conjugated cationic fragments and halogen substituents in the 2H-chromene moiety which were synthesized by a simple one-pot method. The molecular structure of the obtained compounds was confirmed by FT-IR, 1H and 13C NMR spectroscopy (including 2D methods), HRMS, elemental and single crystal X-ray analysis. Photochemical studies revealed the photochromic activity of spiropyrans at room temperature which caused photoswitchable fluorescence in the near-IR region after UV-irradiation. While the spirocyclic forms of compounds demonstrated absorption bands in the UV-Vis spectra with maxima in the visible region at about 445 nm and were not fluorescent, the photogenerated merocyanine isomers absorbed in the near-IR range at 708-738 nm and emitted at 768-791 nm. It was found that compound 1a with fluorine substituent possesses the most red-shifted absorption and emission bands of merocyanine form among all the known photochromic spiropyrans with maxima at 738 and 791 nm correspondingly. TD DFT calculations have shown that the longest wavelength absorption maxima of the merocyanine forms correspond to S0-S1 transitions of the isomers with at least one trans-trans-trans-configured vinylindolium fragment which brings them closer to cyanine-like structure and causes an appearance of the absorption and emission bands in the near-IR region.
Collapse
Affiliation(s)
- Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation.
| | - Maria B Lukyanova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation; Don State Technical University, 1 Gagarin sq., 344000 Rostov-on-Don, Russian Federation
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Igor V Dorogan
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Valery V Tkachev
- Institute of Problems of Chemical Physics, Russian Acadeemy of Sciences, 1 Akad. Semenova ave., 142432 Chernogolovka, Moscow Region, Russian Federation; Institute of Physiologically Active Substances, 1 Severny proezd, 142432 Chernogolovka, Moscow Region, Russian Federation
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Sergey M Aldoshin
- Institute of Problems of Chemical Physics, Russian Acadeemy of Sciences, 1 Akad. Semenova ave., 142432 Chernogolovka, Moscow Region, Russian Federation
| |
Collapse
|
16
|
Zhao W, Zhao Y, Wang Q, Liu T, Sun J, Zhang R. Remote Light-Responsive Nanocarriers for Controlled Drug Delivery: Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903060. [PMID: 31599125 DOI: 10.1002/smll.201903060] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Engineering of smart photoactivated nanomaterials for targeted drug delivery systems (DDS) has recently attracted considerable research interest as light enables precise and accurate controlled release of drug molecules in specific diseased cells and/or tissues in a highly spatial and temporal manner. In general, the development of appropriate light-triggered DDS relies on processes of photolysis, photoisomerization, photo-cross-linking/un-cross-linking, and photoreduction, which are normally sensitive to ultraviolet (UV) or visible (Vis) light irradiation. Considering the issues of poor tissue penetration and high phototoxicity of these high-energy photons of UV/Vis light, recently nanocarriers have been developed based on light-response to low-energy photon irradiation, in particular for the light wavelengths located in the near infrared (NIR) range. NIR light-triggered drug release systems are normally achieved by using two-photon absorption and photon upconversion processes. Herein, recent advances of light-responsive nanoplatforms for controlled drug release are reviewed, covering the mechanism of light responsive small molecules and polymers, UV and Vis light responsive nanocarriers, and NIR light responsive nanocarriers. NIR-light triggered drug delivery by two-photon excitation and upconversion luminescence strategies is also included. In addition, the challenges and future perspectives for the development of light triggered DDS are highlighted.
Collapse
Affiliation(s)
- Wei Zhao
- Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao, 266042, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD, 4072, Brisbane, Australia
| | - Yongmei Zhao
- School of Pharmacy, Nantong University, Nantong Qixiu Rd. 19, Nantong, 226019, China
| | - Qingfu Wang
- Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao, 266042, China
| | - Tianqing Liu
- QIMR Berghofer Medical Research Institute, Herston Rd. 300, QLD, 4006, Brisbane, Australia
| | - Jingjiang Sun
- Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao, 266042, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD, 4072, Brisbane, Australia
| |
Collapse
|
17
|
Sun H, Yu D, Guan Y, Du Z, Ren J, Qu X. Wireless near-infrared electrical stimulation of neurite outgrowth. Chem Commun (Camb) 2019; 55:9833-9836. [PMID: 31363722 DOI: 10.1039/c9cc03537k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, through using electropolymerized pyrrole (PPy) to coat near-infrared upconversion nanoparticles (UCNPs) on an indium tin oxide (ITO) electrode, the as-prepared PPy/UCNPs photoelectrode could generate an interfacial electric field, release rare earth ions and induce reactive oxygen species (ROS) in PC12 cells under NIR irradiation, which could realize wireless neurite development and outgrowth.
Collapse
Affiliation(s)
- Hanjun Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | | | | | | | | | | |
Collapse
|
18
|
Toxicity response of highly colloidal, bioactive, monodisperse SiO 2@ Pr(OH) 3 hollow microspheres. Colloids Surf B Biointerfaces 2019; 182:110390. [PMID: 31369956 DOI: 10.1016/j.colsurfb.2019.110390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/02/2019] [Accepted: 07/23/2019] [Indexed: 11/20/2022]
Abstract
In a facile synthesis, highly colloidal, bioactive Pr(OH)3-encapsulated silica microspheres (PSMSs) with an average diameter of 500-700 nm were successfully prepared via a sol-gel process followed by heat treatment. The phase formation, morphology, surface and optical properties of the as-synthesized PSMSs were characterized by various techniques including X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), transmission electron microscope (TEM), N2-adsorption-desorption, energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FTIR) and UV/vis spectroscopy. The PSMSs were semi-amorphous or ultra-small in size, highly dispersible in water, mesoporous, irregular in size and spherical in shape. The SEM images show a well-ordered broad nanoporous structure which is preserved after coating with Pr(OH)3 molecules, demonstrating interaction between the optically active Pr3+ ion and silanol (Si-OH) groups via hydrogen bonding. Optical spectra show well-resolved weak intensity 4f-4f absorption transitions in the visible region of the Pr3+ ion, indicating successful grafting of the Pr(OH)3 layer. Toxicity was measured by MTT and NRU assays to determine potential toxicity. Cell viability was suppressed with increasing dosage of PSMSs, but showed greater than 55% cell viability at a concentration of 200 μg/mL, resulting in low toxicity. Due to its high aqueous dispersibility, optical activity, excellent biocompatibility and low toxic nature, it could be a favorable material for biomedical and drug delivery applications.
Collapse
|
19
|
Zong L, Wang Z, Yu R. Lanthanide-Doped Photoluminescence Hollow Structures: Recent Advances and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804510. [PMID: 30680913 DOI: 10.1002/smll.201804510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Lanthanide-doped nanomaterials have attracted significant attention for their preeminent properties and widespread applications. Due to the unique characteristic, the lanthanide-doped photoluminescence materials with hollow structures may provide advantages including enhanced light harvesting, intensified electric field density, improved luminescent property, and larger drug loading capacity. Herein, the synthesis, properties, and applications of lanthanide-doped photoluminescence hollow structures (LPHSs) are comprehensively reviewed. First, different strategies for the engineered synthesis of LPHSs are described in detail, which contain hard, soft, self-templating methods and other techniques. Thereafter, the relationship between their structure features and photoluminescence properties is discussed. Then, niche applications including biomedicines, bioimaging, therapy, and energy storage/conversion are focused on and superiorities of LPHSs for these applications are particularly highlighted. Finally, keen insights into the challenges and personal prospects for the future development of the LPHSs are provided.
Collapse
Affiliation(s)
- Lingbo Zong
- Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zumin Wang
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ranbo Yu
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
20
|
Aramvash A, Zarei H, Azizi A, Seyedkarimi MS. Investigating the Structural Stability of RADA16-I Peptide Conjugated to Gold Nanoparticles. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Hudry D, Howard IA, Popescu R, Gerthsen D, Richards BS. Structure-Property Relationships in Lanthanide-Doped Upconverting Nanocrystals: Recent Advances in Understanding Core-Shell Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900623. [PMID: 30942509 DOI: 10.1002/adma.201900623] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Indexed: 05/27/2023]
Abstract
The production of upconverting nanostructures with tailored optical properties is of major technological interest, and rapid progress toward the realization of such production has been made in recent years. Ultimately, accurate understanding of nanostructure organization will lead to design rules for accurately tailoring optical properties. Here, the context of open questions still of general importance to the upconversion and nanocrystal communities is presented, with a particular emphasis on the structure-property relationships of core-shell upconverting nanocrystals. Although the optical properties of the latter have been thoroughly investigated, little is known regarding their atomic-scale organization. Indeed, solving the atomic-scale structure of such nanomaterials is challenging because of their intrinsic nonperiodic nature. Familiar concepts of crystallography are no longer appropriate; chemical and structural modulation waves must be introduced. To reveal the exact core-shell structures, innovative characterization techniques need to be applied and developed, as discussed herein. The continued development and application of structural characterization techniques will be vital to consolidate the currently incomplete link between atomic-scale structure and upconversion properties. This will ultimately provide a valuable contribution to the emerging detailed guidelines on how to better design upconverting nanostructures to achieve given optical properties in terms of efficiency, absorption, spectral emission, and dynamics.
Collapse
Affiliation(s)
- Damien Hudry
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Engesserstrasse 7, 76131, Karlsruhe, Germany
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Engesserstrasse 7, 76131, Karlsruhe, Germany
| | - Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| |
Collapse
|
22
|
Hollow particles templated from Pickering emulsion with high thermal stability and solvent resistance: Young investigator perspective. J Colloid Interface Sci 2019; 542:144-150. [PMID: 30735889 DOI: 10.1016/j.jcis.2019.01.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/28/2022]
Abstract
HYPOTHESIS Hollow particles have been used in a variety of applications and many methods have been developed. Hollow particles templated from Pickering emulsions due to nanoparticle adsorption at the oil-water interface usually suffer from the collapsed morphologies and low thermal and solvent stability and enhancement of the shell can significantly improve the hollow particle performance. EXPERIMENTS This paper reports hollow particles templated from Pickering emulsion droplets in combination with UV photopolymerization. The Pickering emulsions were stabilized by functional silica nanoparticles at the O/W interface and the oil phase contains photosensitive reactants, initiator, catalyst and volatile solvents. The effects of nanoparticles concentration, O/W volume ratio, pH, dispersion speed and time on the stabilization of Pickering emulsion were firstly carried out and the properties of hollow particles formed by traditional interfacial crosslinking and UV photopolymerization were systematically investigated. FINDINGS Compared with previous interfacial crosslinking method, the UV photopolymerization method gives much more robust shells and we show in the paper that the hollow particles have much higher solvent resistance and thermal stability. The enhancement of thermal stability and solvent resistance of the hollow particle could extend its applications to more harsh fields such as self-healing coatings used in deep sea conditions.
Collapse
|
23
|
Chen G, Huang S, Kou X, Wei S, Huang S, Jiang S, Shen J, Zhu F, Ouyang G. A Convenient and Versatile Amino‐Acid‐Boosted Biomimetic Strategy for the Nondestructive Encapsulation of Biomacromolecules within Metal–Organic Frameworks. Angew Chem Int Ed Engl 2019; 58:1463-1467. [PMID: 30536782 DOI: 10.1002/anie.201813060] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/06/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Siming Huang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-sen University Guangzhou 510275 China
- Department of Radiology, Sun Yat-sen Memorial HospitalSun Yat-sen University Guangzhou 510120 Guangdong China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Songbo Wei
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Shuyao Huang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Shuqi Jiang
- Department of Radiology, Sun Yat-sen Memorial HospitalSun Yat-sen University Guangzhou 510120 Guangdong China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial HospitalSun Yat-sen University Guangzhou 510120 Guangdong China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
24
|
Zhao M, Wang R, Li B, Fan Y, Wu Y, Zhu X, Zhang F. Precise In Vivo Inflammation Imaging Using In Situ Responsive Cross-linking of Glutathione-Modified Ultra-Small NIR-II Lanthanide Nanoparticles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812878] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mengyao Zhao
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers and i Chem; Fudan University; Shanghai 200433 P. R. China
| | - Rui Wang
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers and i Chem; Fudan University; Shanghai 200433 P. R. China
| | - Benhao Li
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers and i Chem; Fudan University; Shanghai 200433 P. R. China
| | - Yong Fan
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers and i Chem; Fudan University; Shanghai 200433 P. R. China
| | - Yifan Wu
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers and i Chem; Fudan University; Shanghai 200433 P. R. China
| | - Xinyan Zhu
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers and i Chem; Fudan University; Shanghai 200433 P. R. China
| | - Fan Zhang
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers and i Chem; Fudan University; Shanghai 200433 P. R. China
| |
Collapse
|
25
|
Zhao M, Wang R, Li B, Fan Y, Wu Y, Zhu X, Zhang F. Precise In Vivo Inflammation Imaging Using In Situ Responsive Cross-linking of Glutathione-Modified Ultra-Small NIR-II Lanthanide Nanoparticles. Angew Chem Int Ed Engl 2019; 58:2050-2054. [PMID: 30589175 DOI: 10.1002/anie.201812878] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 12/19/2022]
Abstract
To improve the bioimaging signal-to-noise ratio (SNR), long-term imaging capability, and decrease the potential biotoxicity, an in vivo cross-linking strategy was developed by using sub-10 nm, glutathione-modified, lanthanide nanoprobes. After administration, the nanoprobes cross-link in response to reactive oxygen species (ROS) at the inflamed area and enable the quick imaging of ROS in the second near-infrared (NIR-II) window. These nanoprobes could be rapidly excreted due to their ultra-small size. This strategy may also be applied to other ultra-small contrast agents for the precise bioimaging by in situ lesion cross-linking.
Collapse
Affiliation(s)
- Mengyao Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Rui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Benhao Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Yong Fan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Yifan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Xinyan Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
26
|
Wang X, Chen L, Sun G, Liu R. Hollow Microcapsules with Controlled Mechanical Properties Templated from Pickering Emulsion Droplets. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xue Wang
- School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| | - Linlin Chen
- School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| | - Guanqing Sun
- School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| | - Ren Liu
- School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| |
Collapse
|
27
|
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9397-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Zhao M, Li B, Wang P, Lu L, Zhang Z, Liu L, Wang S, Li D, Wang R, Zhang F. Supramolecularly Engineered NIR-II and Upconversion Nanoparticles In Vivo Assembly and Disassembly to Improve Bioimaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1804982. [PMID: 30393979 DOI: 10.1002/adma.201804982] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/17/2018] [Indexed: 05/09/2023]
Abstract
Contrast agents for bioimaging suffer from low accumulation at lesion area and high uptake in the reticuloendothelial system (RES). Assembly of nanoparticles in vivo improves their enrichment at tumors and inflamed areas. However, uncontrollable assembly also occurs at the liver and spleen owing to the uptake of nanoparticles by the RES. This is known to probably cause a higher bioimaging background and more severe health hazards, which may hamper the clinical application. Herein, a new near-infrared (NIR)-controlled supramolecular engineering strategy is developed for in vivo assembly and disassembly between lanthanide upconversion nanoparticles and second near-infrared window (NIR-II, 1000-1700 nm) nanoprobes to realize precision bioimaging of tumors. A supramolecular structure is designed to realize assembly via host-guest interactions of azobenzene and β-cyclodextrin to enhance the retention of NIR-II nanoprobes in the tumor area. Meanwhile NIR-laser-controllable nanoprobes disassembly brings about a reduction in the bioimaging background as well as acceleration of their RES clearance rate. This strategy may also be used in other nano-to-micro-scale contrast agents to improve bioimaging signal-to-noise ratio and reduce long-term cytotoxicity.
Collapse
Affiliation(s)
- Mengyao Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Benhao Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Peiyuan Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Lingfei Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Zhengcheng Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Lu Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Shangfeng Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Dandan Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Rui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
29
|
Liu X, Liu M, Chen J, Li Z, Yuan Q. Rational design and biomedical applications of DNA-functionalized upconversion nanoparticles. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Pilkington EH, Gustafsson OJR, Xing Y, Hernandez-Fernaud J, Zampronio C, Kakinen A, Faridi A, Ding F, Wilson P, Ke PC, Davis TP. Profiling the Serum Protein Corona of Fibrillar Human Islet Amyloid Polypeptide. ACS NANO 2018; 12:6066-6078. [PMID: 29746093 PMCID: PMC6239983 DOI: 10.1021/acsnano.8b02346] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amyloids may be regarded as native nanomaterials that form in the presence of complex protein mixtures. By drawing an analogy with the physicochemical properties of nanoparticles in biological fluids, we hypothesized that amyloids should form a protein corona in vivo that would imbue the underlying amyloid with a modified biological identity. To explore this hypothesis, we characterized the protein corona of human islet amyloid polypeptide (IAPP) fibrils in fetal bovine serum using two complementary methodologies developed herein: quartz crystal microbalance and "centrifugal capture", coupled with nanoliquid chromatography tandem mass spectroscopy. Clear evidence for a significant protein corona was obtained. No trends were identified for amyloid corona proteins based on their physicochemical properties, whereas strong binding with IAPP fibrils occurred for linear proteins or multidomain proteins with structural plasticity. Proteomic analysis identified amyloid-enriched proteins that are known to play significant roles in mediating cellular machinery and processing, potentially leading to pathological outcomes and therapeutic targets.
Collapse
Affiliation(s)
- Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash Institute of Pharmaceutical Sciences , 381 Royal Parade , Parkville , VIC 3052 , Australia
- Department of Chemistry , University of Warwick , Library Road , CV4 4AL Coventry , United Kingdom
| | - Ove J R Gustafsson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute , University of South Australia , University Boulevard , Mawson Lakes , SA 5095 , Australia
| | - Yanting Xing
- Department of Physics and Astronomy , Clemson University , Clemson , South Carolina 29634 , United States
| | - Juan Hernandez-Fernaud
- Warwick Proteomics Research Technology Platform, School of Life Sciences , University of Warwick , Gibbet Hill Road , CV4 7AL Coventry , United Kingdom
| | - Cleidi Zampronio
- Warwick Proteomics Research Technology Platform, School of Life Sciences , University of Warwick , Gibbet Hill Road , CV4 7AL Coventry , United Kingdom
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash Institute of Pharmaceutical Sciences , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash Institute of Pharmaceutical Sciences , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Feng Ding
- Department of Physics and Astronomy , Clemson University , Clemson , South Carolina 29634 , United States
| | - Paul Wilson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash Institute of Pharmaceutical Sciences , 381 Royal Parade , Parkville , VIC 3052 , Australia
- Department of Chemistry , University of Warwick , Library Road , CV4 4AL Coventry , United Kingdom
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash Institute of Pharmaceutical Sciences , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash Institute of Pharmaceutical Sciences , 381 Royal Parade , Parkville , VIC 3052 , Australia
- Department of Chemistry , University of Warwick , Library Road , CV4 4AL Coventry , United Kingdom
| |
Collapse
|
31
|
Sang X, Yang Q, Shi G, Zhang L, Wang D, Ni C. Preparation of pH/redox dual responsive polymeric micelles with enhanced stability and drug controlled release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:727-733. [PMID: 30033307 DOI: 10.1016/j.msec.2018.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 05/28/2018] [Accepted: 06/09/2018] [Indexed: 12/19/2022]
Abstract
Stimuli-responsive polymeric micelles were prepared through self-assembly of amphiphilic copolymers poly(ethylene glycol)-poly(γ-benzyl l-glutamate), followed by a core-crosslinking reaction using cystamine as the crosslinking agent. The crosslinked micelles with spherical morphologies in nanometer size showed enhanced stability against dilution and concentrated salt solutions compared to the micelles before crosslinking. Doxorubicin (DOX) as a model drug was encapsulated into the core of micelles through electrostatic interactions between carboxylic acid and DOX. In vitro drug release under pH and redox conditions was investigated. Furthermore, the cytotoxicity of micelles was evaluated before and after drug loading. The endocytosis of DOX-loaded micelles and the intracellular drug release were studied. DOX-loaded micelles exhibited accelerated drug release behaviors in an acidic and reductive environment, and showed an inhibited premature release behavior as compared to the noncrosslinked micelles. Considering their enhanced stability, pH and redox dual triggered responsive characteristics, the polymeric micelles can serve as potential systems for controlled drug delivery.
Collapse
Affiliation(s)
- Xinxin Sang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qiyi Yang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Gang Shi
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Liping Zhang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Dawei Wang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Caihua Ni
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
32
|
Cheng G, Li W, Ha L, Han X, Hao S, Wan Y, Wang Z, Dong F, Zou X, Mao Y, Zheng SY. Self-Assembly of Extracellular Vesicle-like Metal-Organic Framework Nanoparticles for Protection and Intracellular Delivery of Biofunctional Proteins. J Am Chem Soc 2018; 140:7282-7291. [PMID: 29809001 DOI: 10.1021/jacs.8b03584] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intracellular delivery of biofunctional enzymes or therapeutic proteins through systemic administration is of great importance in therapeutic intervention of various diseases. However, current strategies face substantial challenges owing to various biological barriers, including susceptibility to protein degradation and denaturation, poor cellular uptake, and low transduction efficiency into the cytosol. Here, we developed a biomimetic nanoparticle platform for systemic and intracellular delivery of proteins. Through a biocompatible strategy, guest proteins are caged in the matrix of metal-organic frameworks (MOFs) with high efficiency (up to ∼94%) and high loading content up to ∼50 times those achieved by surface conjunction, and the nanoparticles were further decorated with the extracellular vesicle (EV) membrane with an efficiency as high as ∼97%. In vitro and in vivo study manifests that the EV-like nanoparticles can not only protect proteins against protease digestion and evade the immune system clearance but also selectively target homotypic tumor sites and promote tumor cell uptake and autonomous release of the guest protein after internalization. Assisted by biomimetic nanoparticles, intracellular delivery of the bioactive therapeutic protein gelonin significantly inhibits the tumor growth in vivo and increased 14-fold the therapeutic efficacy. Together, our work not only proposes a new concept to construct a biomimetic nanoplatform but also provides a new solution for systemic and intracellular delivery of protein.
Collapse
|
33
|
Wang D, Ding W, Zhou K, Guo S, Zhang Q, Haddleton DM. Coating Titania Nanoparticles with Epoxy-Containing Catechol Polymers via Cu(0)-Living Radical Polymerization as Intelligent Enzyme Carriers. Biomacromolecules 2018; 19:2979-2990. [DOI: 10.1021/acs.biomac.8b00544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Donghao Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Wenyi Ding
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Kaiyue Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Shutong Guo
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Qiang Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - David M. Haddleton
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| |
Collapse
|
34
|
Lino MM, Ferreira L. Light-triggerable formulations for the intracellular controlled release of biomolecules. Drug Discov Today 2018; 23:1062-1070. [DOI: 10.1016/j.drudis.2018.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/03/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022]
|
35
|
Chen Z, Liu C, Cao F, Ren J, Qu X. DNA metallization: principles, methods, structures, and applications. Chem Soc Rev 2018; 47:4017-4072. [DOI: 10.1039/c8cs00011e] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes the research activities on DNA metallization since the concept was first proposed in 1998, covering the principles, methods, structures, and applications.
Collapse
Affiliation(s)
- Zhaowei Chen
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Fangfang Cao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| |
Collapse
|
36
|
Lino MM, Simões S, Pinho S, Ferreira L. Intracellular delivery of more than one protein with spatio-temporal control. NANOSCALE 2017; 9:18668-18680. [PMID: 29165472 DOI: 10.1039/c7nr02414b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Transient, non-integrative modulation of cell function by intracellular delivery of proteins has high potential in cellular reprogramming, gene editing and therapeutic medicine applications. Unfortunately, the capacity to deliver multiple proteins intracellularly with temporal and spatial control has not been demonstrated. Here, we report a near infrared (NIR) laser-activatable nanomaterial that allows for precise control over the release of two proteins from a single nanomaterial. The nanomaterial is formed by gold nanorods (AuNRs) modified with single stranded DNA (ssDNA) to which complementary DNA-conjugated proteins are hybridized. Using DNA strands with distinct melting temperatures we are able to control independently the release of each protein with a laser using the same wavelength but with different powers. Studies in mammalian cells show that AuNRs conjugated with proteins are internalized by endocytosis and NIR laser irradiation promotes endosomal escape and the release of the proteins from the AuNRs simultaneously. Our results further demonstrate the feasibility of protein release from a carrier that has been accumulated within the cell up to 1 day while maintaining its activity.
Collapse
Affiliation(s)
- Miguel M Lino
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| | | | | | | |
Collapse
|
37
|
Cao Z, Bian Q, Chen Y, Liang F, Wang G. Light-Responsive Janus-Particle-Based Coatings for Cell Capture and Release. ACS Macro Lett 2017; 6:1124-1128. [PMID: 35650929 DOI: 10.1021/acsmacrolett.7b00714] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A robust light-responsive coating based on Janus composite particles is achieved. First, strawberry-like silica Janus particles are synthesized by the sol-gel process at a patchy emulsion interface. One side of the silica Janus particles possesses nanoscale roughness, and the other side is flat. Then, spiropyran-containing polymer brushes are grafted onto the coarse hemispherical side of the as-synthesized Janus particles, and the other flat side is modified with imidazoline groups. The light-responsive polymer brush-terminated coarse hemispherical sides direct toward the air when the Janus composite particles self-organize into a layer on the surface of epoxy resin substrate. The imidazoline groups react with the epoxy groups in the epoxy resin to form a robust smart coating. The coating can be reversibly triggered between hydrophobic and hydrophilic by UV and visible-light irradiation, which is attributed to the isomerization of spiropyran moieties. When the hydrophobic ring-closed spiropyran form is prominent, HeLa cells can be effectively captured onto the coating. After UV light irradiation, the ring-closed spiropyran form changes to the hydrophilic ring-opened zwitterionic merocyanine form, and then the captured cells are released. This work shows promising potential for engineering advanced smart biointerfaces.
Collapse
Affiliation(s)
- Ziquan Cao
- School
of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- State
Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing Bian
- School
of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Chen
- State
Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fuxin Liang
- State
Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guojie Wang
- School
of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
38
|
Zhang M, Zhang L, Chen Y, Li L, Su Z, Wang C. Precise synthesis of unique polydopamine/mesoporous calcium phosphate hollow Janus nanoparticles for imaging-guided chemo-photothermal synergistic therapy. Chem Sci 2017; 8:8067-8077. [PMID: 29568455 PMCID: PMC5855123 DOI: 10.1039/c7sc03521g] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
Abstract
A novel synthetic strategy has been developed for fabricating spherical polydopamine/mesoporous calcium phosphate (PDA/mCaP) hollow Janus nanoparticles (H-JNPs).
Multifunctional polymer–inorganic Janus nanoparticles (JNPs) that simultaneously have therapeutic and imaging functions are highly desired in biomedical applications. Here, we fabricated spherical polydopamine/mesoporous calcium phosphate hollow JNPs (PDA/mCaP H-JNPs) via a novel and facile approach. The obtained PDA/mCaP H-JNPs were further selectively functionalized with indocyanine green (ICG) and methoxy-poly(ethylene glycol)thiol (PEG-SH) on PDA domains to achieve a superior photoacoustic (PA) imaging capability and stability, while the other mCaP sides with hollow cavities served as storage spaces and passages for the anti-cancer drug, doxorubicin (DOX). The resultant PEG–ICG–PDA/mCaP H-JNPs possess excellent biocompatibility, a competent drug loading capability, high photothermal conversion efficiency, strong near-infrared (NIR) absorbance, and pH/NIR dual-responsive properties, enabling the H-JNPs to be applied for PA imaging-guided synergistic cancer chemo-phototherapy in vitro and in vivo. Furthermore, the synthetic approach could be extended to prepare PDA/various mesoporous inorganic H-JNPs with spherical shapes for specific applications.
Collapse
Affiliation(s)
- Manjie Zhang
- College of Chemistry , Northeast Normal University , Changchun , 130024 , P. R. China . ;
| | - Lingyu Zhang
- College of Chemistry , Northeast Normal University , Changchun , 130024 , P. R. China . ;
| | - Yidan Chen
- College of Chemistry , Northeast Normal University , Changchun , 130024 , P. R. China . ;
| | - Lu Li
- College of Chemistry , Northeast Normal University , Changchun , 130024 , P. R. China . ;
| | - Zhongmin Su
- College of Chemistry , Northeast Normal University , Changchun , 130024 , P. R. China . ;
| | - Chungang Wang
- College of Chemistry , Northeast Normal University , Changchun , 130024 , P. R. China . ;
| |
Collapse
|
39
|
Gao HD, Thanasekaran P, Chen TH, Chang YH, Chen YJ, Lee HM. An Integrated System to Remotely Trigger Intracellular Signal Transduction by Upconversion Nanoparticle-mediated Kinase Photoactivation. J Vis Exp 2017. [PMID: 28892036 DOI: 10.3791/55769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Upconversion nanoparticle (UCNP)-mediated photoactivation is a new approach to remotely control bioeffectors with much less phototoxicity and with deeper tissue penetration. However, the existing instrumentation on the market is not readily compatible with upconversion application. Therefore, modifying the commercially available instrument is essential for this research. In this paper, we first illustrate the modifications of a conventional fluorimeter and fluorescence microscope to make them compatible for photon upconversion experiments. We then describe the synthesis of a near-infrared (NIR)-triggered caged protein kinase A catalytic subunit (PKA) immobilized on a UCNP complex. Parameters for microinjection and NIR photoactivation procedures are also reported. After the caged PKA-UCNP is microinjected into REF52 fibroblast cells, the NIR irradiation, which is significantly superior to conventional UV irradiation, efficiently triggers the PKA signal transduction pathway in living cells. In addition, positive and negative control experiments confirm that the PKA-induced pathway leading to the disintegration of stress fibers is specifically triggered by NIR irradiation. Thus, the use of protein-modified UCNP provides an innovative approach to remotely control light-modulated cellular experiments, in which direct exposure to UV light must be avoided.
Collapse
Affiliation(s)
- Hua-De Gao
- Institute of Chemistry, Academia Sinica; Department of Chemistry, National Taiwan University
| | | | - Tzu-Ho Chen
- Institute of Chemistry, Academia Sinica; Department of Chemistry, National Taiwan University
| | - Yu-Hsu Chang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology;
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica; Department of Chemistry, National Taiwan University
| | | |
Collapse
|
40
|
Dumbbell DNA-templated CuNPs as a nano-fluorescent probe for detection of enzymes involved in ligase-mediated DNA repair. Biosens Bioelectron 2017; 94:456-463. [DOI: 10.1016/j.bios.2017.03.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 11/23/2022]
|
41
|
Self-assembled photoadditives in polyester films allow stop and go chemical release. Acta Biomater 2017; 54:186-200. [PMID: 28315815 DOI: 10.1016/j.actbio.2017.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/04/2017] [Accepted: 03/13/2017] [Indexed: 12/16/2022]
Abstract
Near-infrared (NIR) triggered chemical delivery allows on-demand release with the advantage of external tissue stimulation. Bioresorbable polyester poly-l-lactic acid (PLLA) was compounded with photoadditives of neat zinc oxide (ZnO) nanoparticles and 980→365nm LiYF4:Tm3+, Yb3+ upconverting nanoparticles (UCNP). Subsequently, neat ZnO and UCNP blended PLLA films of sub-50μm thickness were knife casted with a hydrophobic small molecule drug mimic, fluorescein diacetate. The PLLA films displayed a 500 times increase in fluorescein diacetate release from the 50mW NIR irradiated PLLA/photoadditive film compared to non-irradiated PLLA control films. Larger ratios of UCNP/neat ZnO increased photocatalysis efficiency at low NIR duty cycles. The synergistic increase results from the self-assembled photoadditives of neat zinc oxide and upconverting nanoparticles (UCNPs), as seen in transmission electron microscopy. Colloidal ZnO, which does not self-assemble with UCNPs, had less than half the release kinetics of the self-assembled PLLA films under similar conditions, advocating Förster resonance energy transfer as the mechanism responsible for the synergistic increase. Alternative to intensity modulation, pulse width modulation (duty cycles from 0.1 to 1) of the low intensity 50mW NIR laser diode allowed tailorable release rates from 0.01 to 1.4% per day. With the low intensity NIR activation, tailorable release rates, and favorable biocompatibility of the constituents, implanted PLLA photoadditive thin films could allow feedback mediated chemical delivery. STATEMENT OF SIGNIFICANCE Upconverting nanoparticles and zinc oxide nanorods were found to spontaneously self-assemble into submicron particles in organic solvents. Exposure of the submicron particles to near-infrared light allows stop and go chemical release from biocompatible polymers. Sample preparation of thin films is done with ease through physical mixing of the photoadditives followed by air-dried knife casting. A colloidal ZnO variant that does not self-assemble with upconverting nanoparticles had slower chemical release, suggesting that synergistic chemical release is brought upon by highly efficient energy transfer mechanisms when the nanoparticles are less than 10nm apart. Never before seen composite particles of UCNP/ZnO are displayed, which shows the close interaction of the photoadditives within the polymer matrix.
Collapse
|
42
|
Wu S, Blinco JP, Barner-Kowollik C. Near-Infrared Photoinduced Reactions Assisted by Upconverting Nanoparticles. Chemistry 2017; 23:8325-8332. [DOI: 10.1002/chem.201700658] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Si Wu
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - James P. Blinco
- School of Chemistry, Physics and Mechanical Engineering; Queensland University of Technology (QUT); 2 George St. Brisbane QLD 4001 Australia
- Preparative Macromolecular Chemistry; Institut für Technische Chemie und Polymerchemie; Karlsruhe Institute of Technology (KIT); Engesserstr. 18 76131 Karlsruhe Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering; Queensland University of Technology (QUT); 2 George St. Brisbane QLD 4001 Australia
- Preparative Macromolecular Chemistry; Institut für Technische Chemie und Polymerchemie; Karlsruhe Institute of Technology (KIT); Engesserstr. 18 76131 Karlsruhe Germany
- Institut für Biologische Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
43
|
Huang L, Zhang Q, Dai L, Shen X, Chen W, Cai K. Phenylboronic acid-modified hollow silica nanoparticles for dual-responsive delivery of doxorubicin for targeted tumor therapy. Regen Biomater 2017; 4:111-124. [PMID: 30792886 PMCID: PMC6371689 DOI: 10.1093/rb/rbw045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/22/2016] [Accepted: 12/03/2016] [Indexed: 01/01/2023] Open
Abstract
This work reports a multifunctional nanocarrier based on hollow mesoporous silica nanoparticles (HMSNs) for targeting tumor therapy. Doxorubicin (DOX) was loaded into HMSNs and blocked with cytochrome C conjugated lactobionic acid (CytC-LA) via redox-cleavable disulfide bonds and pH-disassociation boronate ester bonds as intermediate linkers. The CytC-LA was used both as sealing agent and targeting motif. A series of characterizations demonstrated the successful construction of the drug delivery system. The system demonstrated pH and redox dual-responsive drug release behavior in vitro. The DOX loading HMSNs system displayed a good biocompatibility, which could be specifically endocytosed by HepG2 cells and led to high cytotoxicity against tumor cells by inducing cell apoptosis. In vivo data (tumor volume, tumor weight, terminal deoxynucleotidyl transferase dUTP nick end labeling and hematoxylin and eosin staining) proved that the system could deliver DOX to tumor site with high efficiency and inhibit tumor growth with minimal toxic side effect.
Collapse
Affiliation(s)
| | | | | | | | | | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
44
|
Wang J, Li N. Functional hollow nanostructures for imaging and phototherapy of tumors. J Mater Chem B 2017; 5:8430-8445. [DOI: 10.1039/c7tb02381b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Various types of inorganic and organic phototherapeutic hollow nanostructures for the imaging and treatment of tumors are reviewed.
Collapse
Affiliation(s)
- Jinping Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| |
Collapse
|
45
|
Li Z, Ma Y, Qi L. Formation of nickel-doped magnetite hollow nanospheres with high specific surface area and superior removal capability for organic molecules. NANOTECHNOLOGY 2016; 27:485601. [PMID: 27796275 DOI: 10.1088/0957-4484/27/48/485601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A strategy for the formation of magnetic Ni x Fe3-x O4 hollow nanospheres with very high specific surface areas was designed through a facile solvothermal method in mixed solvents of ethylene glycol and water in this work. The Ni/Fe ratios and the crystal phases of the Ni x Fe3-x O4 hollow nanocrystals can be readily tuned by changing the molar ratios of Ni to Fe in the precursors. An inside-out Ostwald ripening mechanism was proposed for the formation of uniform Ni x Fe3-x O4 hollow nanospheres. Moreover, the obtained Ni x Fe3-x O4 hollow nanospheres exhibited excellent adsorption capacity towards organic molecules such as Congo red in water. The maximum adsorption capacities of Ni x Fe3-x O4 hollow nanospheres for Congo red increase dramatically from 263 to 500 mg g-1 with the increase of the Ni contents (x) in Ni x Fe3-x O4 hollow nanospheres from 0.2 to 0.85. The synthesized Ni x Fe3-x O4 nanoparticles can be potentially applied for waste water treatment.
Collapse
Affiliation(s)
- Zhenhu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing, 100871, People's Republic of China. Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China
| | | | | |
Collapse
|
46
|
Chen S, Gao Y, Cao Z, Wu B, Wang L, Wang H, Dang Z, Wang G. Nanocomposites of Spiropyran-Functionalized Polymers and Upconversion Nanoparticles for Controlled Release Stimulated by Near-Infrared Light and pH. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01760] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shuo Chen
- School
of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Polymer Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yujuan Gao
- Laboratory of Biological Effects of Nanomaterials and Nanosafety
National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences, Beijing 100864, China
| | - Ziquan Cao
- School
of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bo Wu
- School
of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Wang
- Laboratory of Biological Effects of Nanomaterials and Nanosafety
National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences, Beijing 100864, China
| | - Hao Wang
- Laboratory of Biological Effects of Nanomaterials and Nanosafety
National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences, Beijing 100864, China
| | - Zhimin Dang
- Department of Polymer Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guojie Wang
- School
of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
47
|
Qing Z, Hou L, Yang L, Zhu L, Yang S, Zheng J, Yang R. A Reversible Nanolamp for Instantaneous Monitoring of Cyanide Based on an Elsner-Like Reaction. Anal Chem 2016; 88:9759-9765. [DOI: 10.1021/acs.analchem.6b02720] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zhihe Qing
- School
of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University, Changsha 410082, P. R. China
| | - Lina Hou
- School
of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Le Yang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University, Changsha 410082, P. R. China
| | - Lixuan Zhu
- School
of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Sheng Yang
- School
of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Jing Zheng
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University, Changsha 410082, P. R. China
| | - Ronghua Yang
- School
of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
48
|
Zhou C, Liu D, Dong S. Innovative Bimolecular-Based Advanced Logic Operations: A Prime Discriminator and An Odd Parity Checker. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20849-20855. [PMID: 27459592 DOI: 10.1021/acsami.6b05505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein, a novel logic operation of prime discriminator is first performed for the function of identifying the prime numbers from natural numbers less than 10. The prime discriminator logic operation is developed by DNA hybridizations and the conjugation of graphene oxide and single-stranded DNA as a reacting platform. On the basis of the similar reaction principle, an odd parity checker is also developed. The odd parity checker logic operation can identify the even numbers and odd numbers from natural numbers less than 10. Such advanced logic operations with digital recognition ability can provide a new field of vision toward prototypical DNA-based logic operations and promote the development of advanced logic circuits.
Collapse
Affiliation(s)
- Chunyang Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun, Jilin Province 130022, P. R. China
| | - Dali Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun, Jilin Province 130022, P. R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, P. R. China
| |
Collapse
|
49
|
González-Béjar M, Francés-Soriano L, Pérez-Prieto J. Upconversion Nanoparticles for Bioimaging and Regenerative Medicine. Front Bioeng Biotechnol 2016; 4:47. [PMID: 27379231 PMCID: PMC4904131 DOI: 10.3389/fbioe.2016.00047] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/23/2016] [Indexed: 02/05/2023] Open
Abstract
Nanomaterials are proving useful for regenerative medicine in combination with stem cell therapy. Nanoparticles (NPs) can be administrated and targeted to desired tissues or organs and subsequently be used in non-invasive real-time visualization and tracking of cells by means of different imaging techniques, can act as therapeutic agent nanocarriers, and can also serve as scaffolds to guide the growth of new tissue. NPs can be of different chemical nature, such as gold, iron oxide, cadmium selenide, and carbon, and have the potential to be used in regenerative medicine. However, there are still many issues to be solved, such as toxicity, stability, and resident time. Upconversion NPs have relevant properties such as (i) low toxicity, (ii) capability to absorb light in an optical region where absorption in tissues is minimal and penetration is optimal (note they can also be designed to emit in the near-infrared region), and (iii) they can be used in multiplexing and multimodal imaging. An overview on the potentiality of upconversion materials in regenerative medicine is given.
Collapse
Affiliation(s)
- María González-Béjar
- Departamento de Química Orgánica, Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Valencia, Spain
| | - Laura Francés-Soriano
- Departamento de Química Orgánica, Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Valencia, Spain
| | - Julia Pérez-Prieto
- Departamento de Química Orgánica, Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Valencia, Spain
| |
Collapse
|
50
|
LIU Y, CHEN Z, WU X, HU S, HU P, YU Y, DAI G, YAN H, TANG Z. Upconversion NaGdF4 nanoparticles for monitoring heat treatment and acid corrosion processes of hair. J RARE EARTH 2016. [DOI: 10.1016/s1002-0721(16)60052-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|