1
|
Garcia JC, Whitehouse-Strong H, Chaulagain N, Shankar K. Tunable Plasmochromic Devices Using Gold Nanoislands Integrated with an Electropolymerized Organic Semiconductor. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24239-24251. [PMID: 40223749 DOI: 10.1021/acsami.4c22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The need for the reversible and on-demand reconfiguration of local surface plasmon resonances (LSPR) has driven the emerging field of active plasmonics. The overwhelming majority of electrochromic-polymer-mediated active plasmonic nanostructures consist of lithographically fabricated nanoarrays or colloidal nanoparticles embedded in conductive polymers, such as polyaniline (PANI). Herein, we introduce the semiconducting polymer poly(3-methylthiophene) (P3MT) as a novel tunable dielectric medium for active plasmon control. Likewise, we employ thermally dewetted gold nanoislands (AuNIs) as scalable, cost-effective, and robust plasmonic nanostructures. To date, active plasmonic devices based on P3MT or thermally dewetted nanostructures have yet to be explored. Active plasmonic devices consisting of AuNIs coated with ultrathin 12-15 nm P3MT shells were fabricated and tested. Modulation between reduced and oxidized P3MT resulted in a reversible average LSPR modulation of 22 nm, which compares to or even outperforms other electrochromic polymers at similar shell thicknesses. The plasmochromic performance of P3MT-coated Au nanoislands with various LSPRs and size distributions was evaluated in terms of modulation depth, response time, reversibility, chromaticity, and stability. Cyclic stability measurements reveal that plasmonic shifts can still be observed after 1000 cycles of repeated modulation. This work not only expands the current roster of tunable dielectric media and plasmonic nanostructures for use in active plasmonics but also lays the foundation for next-generation active plasmonic technologies such as tunable organic photovoltaics (OPVs), organic photodiodes (OPDs), and plasmonic field-effect transistors (FETs).
Collapse
Affiliation(s)
- John C Garcia
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, Alberta T6G 1H9, Canada
| | - Harrison Whitehouse-Strong
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, Alberta T6G 1H9, Canada
| | - Narendra Chaulagain
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, Alberta T6G 1H9, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
2
|
Xie Z, Zhuang J, Chen H, Shao L, Chen Z, Jiang Y, Bi S, Wei X, Chen A, Wang SB, Jiang N. Janus Photothermal Films with Orientated Plasmonic Particle-in-Cavity Surfaces Enabling Heat Control in Solar-Thermal-Electric Generators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68006-68015. [PMID: 39580809 DOI: 10.1021/acsami.4c17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Solar thermoelectric generators (STEGs) consisting of solar absorbers and thermoelectric generators (TEGs) can utilize solar energy to generate electrical power. However, performances of STEGs are limited by the heat losses of solar absorbers in air, which become more and more significant with an increase in the solar absorbing area. Herein, we describe the preparation of Au@AgPd nanostructure monolayer/poly(vinyl alcohol) (PVA) Janus photothermal films with broadband plasmonic absorption in the visible and near-infrared regions. By uniaxially stretching the Janus film, Au@AgPd can align along the stretching direction, which creates particle-in-cavity structures on the PVA surface. Benefiting from the oriented plasmonic particle-in-cavity configuration, the Janus films effectively convert sunlight into heat, trap the heat within their micrometer-depth structure, and facilitate its transfer along the direction of the nanostructure orientation. Integration of the Janus films with commercial TEGs allows thermal concentration onto a small thermoelectric surface, yielding an open-circuit voltage of 308 mV under 102 mW/cm2 natural sunlight illumination. Heat losses in commercial TEGs integrated with Janus films are reduced by approximately 50% while maintaining the same voltage output. Furthermore, incorporating the Janus films into a conventional STEG with carbon-based solar absorbers significantly enhances solar-thermal-electric conversion performance, achieving an output power density of 1.3 W m-2. Our design of Janus photothermal films with oriented particle-in-cavity surfaces can be extended to various solar-thermal systems for high-efficiency solar energy conversion and heat management.
Collapse
Affiliation(s)
- Zongming Xie
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Junhao Zhuang
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Haowen Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Lei Shao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhongyi Chen
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Yunpeng Jiang
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Siqi Bi
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Xin Wei
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Aizheng Chen
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Shi-Bin Wang
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Nina Jiang
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
3
|
Huri A, Mandelbaum Y, Rozenberg M, Muzikansky A, Zysler M, Zitoun D. Surface Plasmon Resonance Modulation by Complexation of Platinum on the Surface of Silver Nanocubes. ACS OMEGA 2024; 9:35526-35536. [PMID: 39184479 PMCID: PMC11339983 DOI: 10.1021/acsomega.4c02150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/06/2024] [Accepted: 06/12/2024] [Indexed: 08/27/2024]
Abstract
The use of plasmonic particles, specifically, localized surface plasmonic resonance (LSPR), may lead to a significant improvement in the electrical, electrochemical, and optical properties of materials. Chemical modification of the dielectric constant near the plasmonic surface should lead to a shift of the optical resonance and, therefore, the basis for color tuning and sensing. In this research, we investigated the variation of the LSPR by modifying the chemical environment of Ag nanoparticles (NPs) through the complexation of Pt(IV) metal cations near the plasmonic surface. This study is carried out by measuring the shift of the plasmon dipole resonance of Ag nanocubes (NCs) and nanowires (NWs) of differing sizes upon coating the Ag surface with a layer of polydopamine (PDA) as a coordinating matrix for Pt(IV) complexes. The red shift of up to 45 nm depends linearly on the thickness of the PDA/Pt(IV) layer and the Pt(IV) content. Additionally, we calculated the dielectric constant of the surrounding medium using a numerical method.
Collapse
Affiliation(s)
- Avi Huri
- Department
of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced
Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Yaakov Mandelbaum
- Department
of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced
Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
- Department
of Applied Physics/Electro-Optics Engineering, Advanced Lab for Electro-Optics Simulations (ALEO), Lev Academic
Center, Jerusalem 9116001, Israel
| | - Mike Rozenberg
- Department
of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced
Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Anya Muzikansky
- Department
of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced
Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Melina Zysler
- Department
of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced
Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - David Zitoun
- Department
of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced
Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
4
|
Li R, Liang Y, Wei H, Zhang H, Kurilkina S, Peng W. Dynamic Spectral Modulation Enabled by Conductive Polymer-Integrated Plasmonic Nanodisk-Hole Arrays. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38047552 DOI: 10.1021/acsami.3c10853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The electrically driven optical performance modulation of the plasmonic nanostructure by conductive polymers provides a prospective technology for miniaturized and integrated active optoelectronic devices. These features of wafer-scale and flexible preparation, a wide spectrum adjustment range, and excellent electric cycling stability are critical to the practical applications of dynamic plasmonic components. Herein, we have demonstrated a large-scale and flexible active plasmonic nanostructure constructed by electrochemically synthesizing nanometric-thickness conductive polymer onto spatially mismatched Au nanodisk-hole (AuND-H) array on the poly(ethylene terephthalate) (PET) substrate, offering low-power electrically driven switching of reflective light in a wide wavelength range of 550-850 nm. The composite structure of the polymer/AuND-H array supports multiple plasmonic resonance modes with strong near-field enhancement and confinement, which provides an excellent dynamic spectral modulation platform. As a result, the PPy/AuND-H array achieves 18.4% reversible switching of spectral intensity at 780 nm and speedy response time, as well as maintains a stable dynamic modulation range at two-potential cycling between -0.6 and 0.1 V after 200 modulation cycles. Compared to the case of the PPy/AuND-H array, the PANI/AuND-H array obtains a more extensive intensity modulation of 25.1% at 750 nm, which is attributed to the significant differences in the extinction coefficient between the oxidized and reduced states of PANI, but its modulation range degrades apparently after 20 cycles driven at applied voltages between -0.1 and 0.8 V. Additionally, the cycling stability could be further improved by reducing the modulation voltage range. Our proposed electromodulated composite structure provides a promising technological proposal for dynamically plasmonic reconfigurable devices.
Collapse
Affiliation(s)
- Rui Li
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Yuzhang Liang
- School of Physics, Dalian University of Technology, Dalian 116024, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
| | - Haonan Wei
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Hui Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Svetlana Kurilkina
- Belarusian State University, Minsk 220030, Belarus
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk 220072, Belarus
| | - Wei Peng
- School of Physics, Dalian University of Technology, Dalian 116024, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Ye Z, Li Z, Feng J, Wu C, Fan Q, Chen C, Chen J, Yin Y. Dual-Responsive Fe 3O 4@Polyaniline Chiral Superstructures for Information Encryption. ACS NANO 2023; 17:18517-18524. [PMID: 37669537 DOI: 10.1021/acsnano.3c06461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Incorporating stimuli-responsive mechanisms into chiral assemblies of nanostructures offers numerous opportunities to create optical materials capable of dynamically modulating their chiroptical properties. In this study, we demonstrate the formation of chiral superstructures by assembling Fe3O4@polyaniline hybrid nanorods by using a gradient magnetic field. The resulting superstructures exhibit a dual response to changes in both the magnetic field and solution pH, enabling dynamic regulation of the position, intensity, and sign of its circular dichroism peaks. Such responsiveness allows for convenient control over the optical rotatory dispersion properties of the assemblies, which are further integrated into the design of a chiroptical switch that can display various colors and patterns when illuminated with light of different wavelengths and polarization states. Finally, an optical information encryption system is constructed through the controlled assembly of the hybrid nanorods to showcase the potential opportunities for practical applications brought by the resulting responsive chiral superstructures.
Collapse
Affiliation(s)
- Zuyang Ye
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ji Feng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chaolumen Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chen Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Jinxing Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
6
|
Jones A, Searles EK, Mayer M, Hoffmann M, Gross N, Oh H, Fery A, Link S, Landes CF. Active Control of Energy Transfer in Plasmonic Nanorod-Polyaniline Hybrids. J Phys Chem Lett 2023; 14:8235-8243. [PMID: 37676024 DOI: 10.1021/acs.jpclett.3c01990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The hybridization of plasmonic energy and charge donors with polymeric acceptors is a possible means to overcome fast internal relaxation that limits potential photocatalytic applications for plasmonic nanomaterials. Polyaniline (PANI) readily hybridizes onto gold nanorods (AuNRs) and has been used for the sensitive monitoring of local refractive index changes. Here, we use single-particle spectroscopy to quantify a previously unreported plasmon damping mechanism in AuNR-PANI hybrids while actively tuning the PANI chemical structure. By eliminating contributions from heterogeneous line width broadening and refractive index changes, we identify efficient resonance energy transfer (RET) between AuNRs and PANI. We find that RET dominates the optical response in our AuNR-PANI hybrids during the dynamic tuning of the spectral overlap of the AuNR donor and PANI acceptor. Harnessing RET between plasmonic nanomaterials and an affordable and processable polymer such as PANI offers an alternate mechanism toward efficient photocatalysis with plasmonic nanoparticle antennas.
Collapse
Affiliation(s)
- Annette Jones
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Emily K Searles
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Martin Mayer
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany
| | - Marisa Hoffmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany
| | - Niklas Gross
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Hyuncheol Oh
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany
| | - Stephan Link
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Zheng J, Boukouvala C, Lewis GR, Ma Y, Chen Y, Ringe E, Shao L, Huang Z, Wang J. Halide-assisted differential growth of chiral nanoparticles with threefold rotational symmetry. Nat Commun 2023; 14:3783. [PMID: 37355650 DOI: 10.1038/s41467-023-39456-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
Enriching the library of chiral plasmonic nanoparticles that can be chemically mass-produced will greatly facilitate the applications of chiral plasmonics in areas ranging from constructing optical metamaterials to sensing chiral molecules and activating immune cells. Here we report on a halide-assisted differential growth strategy that can direct the anisotropic growth of chiral Au nanoparticles with tunable sizes and diverse morphologies. Anisotropic Au nanodisks are employed as seeds to yield triskelion-shaped chiral nanoparticles with threefold rotational symmetry and high dissymmetry factors. The averaged scattering g-factors of the L- and D-nanotriskelions are as large as 0.57 and - 0.49 at 650 nm, respectively. The Au nanotriskelions have been applied in chiral optical switching devices and chiral nanoemitters. We also demonstrate that the manipulation of the directional growth rate enables the generation of a variety of chiral morphologies in the presence of homochiral ligands.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Christina Boukouvala
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, United Kingdom
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom
| | - George R Lewis
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, United Kingdom
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom
| | - Yicong Ma
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yang Chen
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, United Kingdom.
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom.
| | - Lei Shao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Zhifeng Huang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
8
|
Hopmann E, Zhang W, Li H, Elezzabi AY. Advances in electrochromic device technology through the exploitation of nanophotonic and nanoplasmonic effects. NANOPHOTONICS 2023; 12:637-657. [PMID: 36844468 PMCID: PMC9945060 DOI: 10.1515/nanoph-2022-0670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Research regarding electrochromic (EC) materials, such materials that change their color upon application of an electrochemical stimulus, has been conducted for centuries. However, most recently, increasing efforts have been put into developing novel solutions to utilize these on-off switching materials in advanced nanoplasmonic and nanophotonic devices. Due to the significant change in dielectric properties of oxides such as WO3, NiO, Mn2O3 and conducting polymers like PEDOT:PSS and PANI, EC materials have transcended beyond simple smart window applications and are now found in plasmonic devices for full-color displays and enhanced modulation transmission and photonic devices with ultra-high on-off ratios and sensing abilities. Advancements in nanophotonic ECDs have further decreased EC switching speed by several orders of magnitude, allowing integration in real-time measurement and lab-on-chip applications. The EC nature of such nanoscale devices promises low energy consumption with low operating voltages paired with bistability and long lifetimes. We summarize these novel approaches to EC device design, lay out the current short comings and draw a path forward for future utilization.
Collapse
Affiliation(s)
- Eric Hopmann
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, ABT6G 2V4, Canada
| | - Wu Zhang
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, ABT6G 2V4, Canada
| | - Haizeng Li
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong266273, China
| | - Abdulhakem Y. Elezzabi
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, ABT6G 2V4, Canada
| |
Collapse
|
9
|
Li JW, Zhou Y, Xu J, Gao F, Si QK, Wang JY, Zhang F, Wang LP. Water-Soluble and Degradable Gelatin/Polyaniline Assemblies with a High Photothermal Conversion Efficiency for pH-Switchable Precise Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52670-52683. [PMID: 36379044 DOI: 10.1021/acsami.2c16480] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photothermal therapy (PTT) is regarded as one of the potential techniques to replace surgery in the treatment of tumors. Polyaniline (PANI) shows better biocompatibility than inorganic reagents, which has been widely used in tumor photoacoustic (PA) imaging and PTT. However, the poor water solubility and nonspecific aggregation of PANI nanoparticles severely restricted their biomedical application. In addition, it is difficult to control the photothermal effect just on cancer cells. Herein, we develop tumor pH-responsive PANI-Gel/Cu assemblies, which can achieve targeted and precise ablation of tumors. Due to the high hydrophilicity of gelatin, the PANI-Gel/Cu assemblies show excellent dispersion in physiological solutions and long-term stability. By taking advantage of the self-doping effect between the carboxyl groups in gelatin and the imine part of the PANI skeleton, the photothermal characteristics of PANI-Gel/Cu assemblies can be promoted effectively by the acid tumor microenvironment, and the PA imaging of PANI-Gel/Cu assemblies can also be activated by tumor pH. Consequently, both the PTT enhancement and PA signal amplification can be triggered under a tumor microenvironment, and PANI-Gel/Cu assemblies can be targeted to cancer cells with the RGD sequences in their gelatin skeleton. In vivo imaging-guided PTT to A549 cancer shows precise treatment with little harm to normal cells, and PANI-Gel/Cu assemblies can disassemble into tiny particles (<15 nm) under laser irradiation. This work overcomes the intrinsic limitation of PANI materials, i.e., poor water solubility and nonspecific aggregation, meanwhile providing a pH-active PANI-based platform for precise and effective ablation of cancer.
Collapse
Affiliation(s)
- Jia-Wei Li
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, P. R. China
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai200093, P. R. China
| | - Yan Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, P. R. China
| | - Jiao Xu
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, P. R. China
| | - Feng Gao
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, P. R. China
| | - Qian-Kang Si
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, P. R. China
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai200093, P. R. China
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, P. R. China
| | - Feng Zhang
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, P. R. China
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai200093, P. R. China
- State Key Laboratory of Respiratory Disease, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou511436, P. R. China
| | - Li-Ping Wang
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, P. R. China
| |
Collapse
|
10
|
Hwang Y, Koo DJ, Ferhan AR, Sut TN, Yoon BK, Cho NJ, Jackman JA. Optimizing Plasmonic Gold Nanorod Deposition on Glass Surfaces for High-Sensitivity Refractometric Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3432. [PMID: 36234560 PMCID: PMC9565783 DOI: 10.3390/nano12193432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Owing to high surface sensitivity, gold nanorods (AuNRs) are widely used to construct surface-based nanoplasmonic biosensing platforms for label-free molecular diagnostic applications. A key fabrication step involves controlling AuNR deposition onto the target surface, which requires maximizing surface density while minimizing inter-particle aggregation, and is often achieved by surface functionalization with a self-assembled monolayer (SAM) prior to AuNR deposition. To date, existing studies have typically used a fixed concentration of SAM-forming organic molecules (0.2-10% v/v) while understanding how SAM density affects AuNR deposition and resulting sensing performance would be advantageous. Herein, we systematically investigated how controlling the (3-aminopropyl)triethoxysilane (APTES) concentration (1-30% v/v) during SAM preparation affects the fabrication of AuNR-coated glass surfaces for nanoplasmonic biosensing applications. Using scanning electron microscopy (SEM) and UV-visible spectroscopy, we identified an intermediate APTES concentration range that yielded the highest density of individually deposited AuNRs with minimal aggregation and also the highest peak wavelength in aqueous solution. Bulk refractive index sensitivity measurements indicated that the AuNR configuration had a strong effect on the sensing performance, and the corresponding wavelength-shift responses ranged from 125 to 290 nm per refractive index unit (RIU) depending on the APTES concentration used. Biosensing experiments involving protein detection and antigen-antibody interactions further demonstrated the high surface sensitivity of the optimized AuNR platform, especially in the low protein concentration range where the measurement shift was ~8-fold higher than that obtained with previously used sensing platforms.
Collapse
Affiliation(s)
- Youngkyu Hwang
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Dong Jun Koo
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Tun Naw Sut
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
11
|
Podlipskaya TY, Shaparenko NO, Demidova MG, Bulavchenko OA, Bulavchenko AI. The role of reverse micelles and metal-surfactant interactions in the synthesis of gold ink in reverse emulsions stabilized by AOT, Tergitol NP-4 and Span 80. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Choi BB, Kim B, Bice J, Taylor C, Jiang P. Inverse DVD-R grating structured SPR sensor platform with high sensitivity and figure of merit. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Bhartiya P, Chawla R, Dutta PK. pH‐Responsive Charge‐Convertible
N
‐Succinyl Chitosan‐Quercetin Coordination Polymer Nanoparticles for Effective NIR Photothermal Cancer Therapy. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Prabha Bhartiya
- Polymer Research laboratory Department of Chemistry Motilal Nehru National Institute of Technology Allahabad Prayagraj 211004 India
| | - Ruchi Chawla
- Polymer Research laboratory Department of Chemistry Motilal Nehru National Institute of Technology Allahabad Prayagraj 211004 India
| | - Pradip K. Dutta
- Polymer Research laboratory Department of Chemistry Motilal Nehru National Institute of Technology Allahabad Prayagraj 211004 India
| |
Collapse
|
14
|
Wang Y, Yang Y, Yang L, Lin Y, Tian Y, Ni Q, Wang S, Ju H, Guo J, Lu G. Gold Nanostar@Polyaniline Theranostic Agent with High Photothermal Conversion Efficiency for Photoacoustic Imaging-Guided Anticancer Phototherapy at a Low Dosage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28570-28580. [PMID: 35726862 DOI: 10.1021/acsami.2c05679] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the strong and tunable photothermal effect, metallic nanoparticles are of enormous interest in light-activated biomedical applications, such as photoacoustic imaging (PAI) and photothermal therapy (PTT). However, the photothermal conversion efficiency (PCE) of existing metallic photothermal agents is still unsatisfactory. Herein, we develop an efficient photothermal theranostic agent based on a gold nanostar@polyaniline core-shell nanocomposite with high PCE for PAI-guided PTT at a low dosage. After optimizing the relative composition of polyaniline (PANI) and gold nanostars (AuNSs), this nanocomposite eventually empowers an outstanding PCE of up to 78.6%, which is much better than AuNSs or PANI alone and most of the existing photothermal theranostic agents. Besides, the nanocomposite can act as a targeted probe for tumors by hyaluronic acid (HA) modification without compromising the photothermal performance. The obtained nanoprobes named AuNSPHs exhibit promising biocompatibility and great performance of PAI-guided PTT to treat triple-negative breast cancer both in vitro and in vivo. More importantly, a single injection of AuNSPHs significantly suppresses tumor growth with a low dosage of Au (0.095 mg/kg), which is attributed to the high PCE of AuNSPHs. Taking advantage of the exhilarating photothermal conversion ability, this theranostic agent can safely potentiate the antitumor therapeutic efficacy of laser-induced ablation and holds great potential for future medical applications.
Collapse
Affiliation(s)
- Yuanzheng Wang
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P. R. China
| | - Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Liu Yang
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P. R. China
| | - Yihang Lin
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P. R. China
| | - Ying Tian
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P. R. China
| | - Qianqian Ni
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P. R. China
| | - Shouju Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jingxing Guo
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Guangming Lu
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
15
|
Tamaki K, Verma P, Yoshii T, Shimojitosho T, Kuwahara Y, Mori K, Yamashita H. Design of Au nanorods-based plasmonic catalyst in combination with nanohybrid Pd-rGO layer for boosting CO2 hydrogenation to formic acid under visible light irradiation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Chen Z, Zhang F, Lu Y, Li Y, Liu G, Shan J, Liu Q. Bioelectronic modulation of single-wavelength localized surface plasmon resonance (LSPR) for the detection of electroactive biomolecules. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Diehl F, Hageneder S, Fossati S, Auer SK, Dostalek J, Jonas U. Plasmonic nanomaterials with responsive polymer hydrogels for sensing and actuation. Chem Soc Rev 2022; 51:3926-3963. [PMID: 35471654 PMCID: PMC9126188 DOI: 10.1039/d1cs01083b] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/25/2022]
Abstract
Plasmonic nanomaterials have become an integral part of numerous technologies, where they provide important functionalities spanning from extraction and harvesting of light in thin film optical devices to probing of molecular species and their interactions on biochip surfaces. More recently, we witness increasing research efforts devoted to a new class of plasmonic nanomaterials that allow for on-demand tuning of their properties by combining metallic nanostructures and responsive hydrogels. This review addresses this recently emerged vibrant field, which holds potential to expand the spectrum of possible applications and deliver functions that cannot be achieved by separate research in each of the respective fields. It aims at providing an overview of key principles, design rules, and current implementations of both responsive hydrogels and metallic nanostructures. We discuss important aspects that capitalize on the combination of responsive polymer networks with plasmonic nanostructures to perform rapid mechanical actuation and actively controlled nanoscale confinement of light associated with resonant amplification of its intensity. The latest advances towards the implementation of such responsive plasmonic nanomaterials are presented, particularly covering the field of plasmonic biosensing that utilizes refractometric measurements as well as plasmon-enhanced optical spectroscopy readout, optically driven miniature soft actuators, and light-fueled micromachines operating in an environment resembling biological systems.
Collapse
Affiliation(s)
- Fiona Diehl
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf Reichwein-Straße 2, 57074 Siegen, Germany.
| | - Simone Hageneder
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Stefan Fossati
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Simone K Auer
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
- CEST Competence Center for Electrochemical Surface Technologies, 3430 Tulln an der Donau, Austria
| | - Jakub Dostalek
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
- FZU-Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 21, Czech Republic
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf Reichwein-Straße 2, 57074 Siegen, Germany.
| |
Collapse
|
18
|
Han JH, Kim D, Kim J, Kim G, Kim JT, Jeong HH. Responsive photonic nanopixels with hybrid scatterers. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1863-1886. [PMID: 39633928 PMCID: PMC11501278 DOI: 10.1515/nanoph-2021-0806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/07/2024]
Abstract
Metallic and dielectric nanoscatterers are optical pigments that offer rich resonating coloration in the subwavelength regime with prolonged material consistency. Recent advances in responsive materials, whose mechanical shapes and optical properties can change in response to stimuli, expand the scope of scattering-based colorations from static to active. Thus, active color-changing pixels are achieved with extremely high spatial resolution, in conjunction with various responsive polymers and phase-change materials. This review discusses recent progress in developing such responsive photonic nanopixels, ranging from electrochromic to other color-changing concepts. We describe what parameters permit modulation of the scattering colors and highlight superior functional devices. Potential fields of application focusing on imaging devices, including active full-color printing and flexible displays, information encryption, anticounterfeiting, and active holograms, are also discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| |
Collapse
|
19
|
Lu Y, Lam SH, Lu W, Shao L, Chow TH, Wang J. All-State Switching of the Mie Resonance of Conductive Polyaniline Nanospheres. NANO LETTERS 2022; 22:1406-1414. [PMID: 35084205 DOI: 10.1021/acs.nanolett.1c04969] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyaniline (PANI), a conductive polymer, is a promising active material for optical switching. In most studies, active switching has so far been realized only between two states, whereas PANI has a total of six states. The optical properties of nanoscale PANI in all six states have remained unclear. Herein we report on all-state switching of the Mie resonance on PANI nanospheres (NSs) and active plasmon switching on PANI-coated Au nanodisks (NDs). All-state switching of differently sized PANI NSs is achieved by proton doping/dedoping and electrochemical methods. Theoretical studies show that the scattering peaks of the individual PANI NSs originate from Mie resonances. All-state switching is further demonstrated on PANI-coated circular Au NDs, where an unprecedentedly large plasmon peak shift of ∼200 nm is realized. Our study not only provides a fundamental understanding of the optical properties of PANI but also opens the probability for developing high-performance dynamic media for active plasmonics.
Collapse
Affiliation(s)
- Yao Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 0000, People's Republic of China
| | - Shiu Hei Lam
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 0000, People's Republic of China
| | - Wenzheng Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 0000, People's Republic of China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| | - Tsz Him Chow
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 0000, People's Republic of China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 0000, People's Republic of China
| |
Collapse
|
20
|
Wang J, Yu Q, Li XL, Zhao XL, Chen HY, Xu JJ. A Reversible Plasmonic Nanoprobe for Dynamic Imaging of Intracellular pH during Endocytosis. Chem Sci 2022; 13:4893-4901. [PMID: 35655891 PMCID: PMC9067569 DOI: 10.1039/d2sc01069k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/02/2022] [Indexed: 11/21/2022] Open
Abstract
Understanding the pH evolution during endocytosis is essential for our comprehension of the fundamental processes of biology as well as effective nanotherapeutic design. Herein, we constructed a plasmonic Au@PANI core-shell...
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Xiang-Ling Li
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xue-Li Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
21
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
22
|
Lee S, Sim K, Moon SY, Choi J, Jeon Y, Nam JM, Park SJ. Controlled Assembly of Plasmonic Nanoparticles: From Static to Dynamic Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007668. [PMID: 34021638 DOI: 10.1002/adma.202007668] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/30/2020] [Indexed: 05/20/2023]
Abstract
The spatial arrangement of plasmonic nanoparticles can dramatically affect their interaction with electromagnetic waves, which offers an effective approach to systematically control their optical properties and manifest new phenomena. To this end, significant efforts were made to develop methodologies by which the assembly structure of metal nanoparticles can be controlled with high precision. Herein, recent advances in bottom-up chemical strategies toward the well-controlled assembly of plasmonic nanoparticles, including multicomponent and multifunctional systems are reviewed. Further, it is discussed how the progress in this area has paved the way toward the construction of smart dynamic nanostructures capable of on-demand, reversible structural changes that alter their properties in a predictable and reproducible manner. Finally, this review provides insight into the challenges, future directions, and perspectives in the field of controlled plasmonic assemblies.
Collapse
Affiliation(s)
- Sunghee Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Kyunjong Sim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - So Yoon Moon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Jisu Choi
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Yoojung Jeon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
23
|
Kim Y, Cha S, Kim JH, Oh JW, Nam JM. Electrochromic response and control of plasmonic metal nanoparticles. NANOSCALE 2021; 13:9541-9552. [PMID: 34019053 DOI: 10.1039/d1nr01055g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic electrochromism, the dependence of the colour of plasmonic materials on the applied electrical potential, has been under the spotlight recently as a key element for the development of optoelectronic devices and spectroscopic tools. In this review, we focus on the electrochromic behaviour and underlying mechanistic principles of plasmonic metal nanoparticles, whose localised surface plasmon resonance occurs in the visible part of the electromagnetic spectrum, and present a comprehensive review on the recent progress in understanding and controlling plasmonic electrochromism. The mechanisms underlying the electrochromism of plasmonic metal nanoparticles could be divided into four categories, based on the origin of the LSPR shift: (1) capacitive charging model accompanying variation in the Fermi level, (2) faradaic reactions, (3) non-faradaic reactions, and (4) electrochemically active functional molecule-mediated mechanism. We also review recent attempts to synchronise the simulation with the experimental results and the strategies to overcome the intrinsically diminutive LSPR change of the plasmonic metal nanoparticles. A better understanding and controllability of plasmonic electrochromism provides new insights into and means of the connection between photoelectrochemistry and plasmonics as well as future directions for producing advanced optoelectronic materials and devices.
Collapse
Affiliation(s)
- Yoonhee Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
| | | | | | | | | |
Collapse
|
24
|
Kaissner R, Li J, Lu W, Li X, Neubrech F, Wang J, Liu N. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies. SCIENCE ADVANCES 2021; 7:7/19/eabd9450. [PMID: 33952513 PMCID: PMC8099187 DOI: 10.1126/sciadv.abd9450] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/16/2021] [Indexed: 05/28/2023]
Abstract
Recently in nanophotonics, a rigorous evolution from passive to active metasurfaces has been witnessed. This advancement not only brings forward interesting physical phenomena but also elicits opportunities for practical applications. However, active metasurfaces operating at visible frequencies often exhibit low performance due to design and fabrication restrictions at the nanoscale. In this work, we demonstrate electrochemically controlled metasurfaces with high intensity contrast, fast switching rate, and excellent reversibility at visible frequencies. We use a conducting polymer, polyaniline (PANI), that can be locally conjugated on preselected gold nanorods to actively control the phase profiles of the metasurfaces. The optical responses of the metasurfaces can be in situ monitored and optimized by controlling the PANI growth of subwavelength dimension during the electrochemical process. We showcase electrochemically controlled anomalous transmission and holography with good switching performance. Such electrochemically powered optical metasurfaces lay a solid basis to develop metasurface devices for real-world optical applications.
Collapse
Affiliation(s)
- Robin Kaissner
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Jianxiong Li
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany.
| | - Wenzheng Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xin Li
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Frank Neubrech
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Na Liu
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
25
|
Liu H, Huang P, Wu FY, Ma L. Colorimetric determination of acid phosphatase activity and inhibitor screening based on in situ polymerization of aniline catalyzed by gold nanoparticles. Mikrochim Acta 2021; 188:155. [PMID: 33822286 DOI: 10.1007/s00604-021-04799-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/19/2021] [Indexed: 02/03/2023]
Abstract
A colorimetric assay for acid phosphatase (ACP) was constructed that is based on in situ polymerization of aniline catalyzed by gold nanoparticles (AuNPs). Aniline can be polymerized by ammonium persulfate (APS) in acidic condition and form gold-polyaniline core-shell nanoparticles (Au@PANI NPs) in the presence of AuNPs with the assistance of sodium dodecyl sulfate (SDS). AuNPs were also found to accelerate the polymerization process of aniline and thus shorten the reaction time. Upon the introduction of ascorbic acid (AA), the oxidant APS was consumed via the redox reaction. That led to the suppression of the formation of PANI. Consequently, ACP activity can be supervised on the basis of hydrolysis of 2-phospho-L-ascorbic acid trisodium salt (AAP) catalyzed by ACP to release AA. With the increase of ACP activity, the intensity ratio of the absorbance at λ705 nm (A705) and the absorbance at λ530 nm (A530) gradually decreased and the color gradually changed from dark-green to light-green to blue-gray to purple and eventually to pink. This method for ACP determination worked in the range 0.40 to 2.00 U·L-1. The detection limit is 0.043 U·L-1. The assay was applied to determine ACP in human serum. The recovery ranged from 81.0 to 104.6%. Relative standard deviation was less than 5%. This suits the request for biological sample analysis. Graphical abstract Schematic presentation of the colorimetric determination of acid phosphatase activity and inhibitor screening based on in situ polymerization of aniline catalyzed by gold nanoparticles. : acid phosphatase (ACP); : gold nanoparticles (AuNPs); : gold-polyaniline core-shell nanoparticles (Au@PANI NPs); ascorbic acid (AA); 2-phospho-L-ascorbic acid trisodium salt (AAP).
Collapse
Affiliation(s)
- Hui Liu
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang, 330031, China. .,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang, 330031, China. .,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| | - Lihua Ma
- College of Science and Engineering, University of Houston at Clear Lake, 2700 Bay Area Blvd, Houston, TX, 77058, USA
| |
Collapse
|
26
|
Li Z, Fan Q, Wu C, Li Y, Cheng C, Yin Y. Magnetically Tunable Plasmon Coupling of Au Nanoshells Enabled by Space-Free Confined Growth. NANO LETTERS 2020; 20:8242-8249. [PMID: 33054229 DOI: 10.1021/acs.nanolett.0c03350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report the unconventional space-free confined growth of Au nanoshells with well-defined plasmonic properties and active tuning of their plasmon coupling by the nanoscale magnetic assembly. The seeded growth of Au exclusively occurred at the hard-soft interfaces between the Fe3O4 core and phenolic resin without the need of creating a limiting space, which represents a general and elegant approach to various core-shell nanostructures. The deformability of permeable phenolic layers plays an essential role in regulating the interfacial growth of Au nanoshells. While the polymer elasticity suppresses the radial deposition of Au atoms, their high deformability can afford enough spaces for the formation of conformal metallic shells. The coupled magnetic-plasmonic properties allow active tuning of the plasmon coupling and the resonant scattering of Au nanoshells by the magnetic assembly of the hybrid nanoparticles into plasmonic chains, whose potentials in applications have been demonstrated in designing transparent displays and anticounterfeiting devices.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chaolumen Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yichen Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Changjing Cheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
27
|
Lu W, Chow TH, Lu Y, Wang J. Electrochemical coating of different conductive polymers on diverse plasmonic metal nanocrystals. NANOSCALE 2020; 12:21617-21623. [PMID: 33107884 DOI: 10.1039/d0nr05715k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conductive polymers are attracting much attention for realizing active plasmonics on conventional static plasmonic nanostructures because of their variable dielectric functions. Combining organic conductive polymers with inorganic plasmonic nanostructures allows for the creation of active devices, such as active metasurfaces, reconfigurable metalenses and dynamic plasmonic holography. However, the complexity of such a combination, together with the poor control in polymer thickness and morphology, has limited the advancement of active plasmonics. Herein we report on the electrochemical coating of conductive polymers on pre-grown metal nanocrystals. Robust control of the polymer thickness and morphology is accomplished through the variation of the applied electrochemical potential. Various types of conductive polymers are coated on different metal nanocrystals, including Au, Pd and Pt. Active plasmonic color switching and H2O2 sensing are demonstrated with polyaniline-coated Au nanorods.
Collapse
Affiliation(s)
- Wenzheng Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Tsz Him Chow
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yao Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
28
|
Liang L, Lam SH, Ma L, Lu W, Wang SB, Chen A, Wang J, Shao L, Jiang N. (Gold nanorod core)/(poly(3,4-ethylene-dioxythiophene) shell) nanostructures and their monolayer arrays for plasmonic switching. NANOSCALE 2020; 12:20684-20692. [PMID: 33047771 DOI: 10.1039/d0nr05502f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
(Gold nanorod core)/(poly(3,4-ethylene-dioxythiophene) (PEDOT) shell) nanostructures are prepared by the surfactant-assisted oxidative polymerization of 3,4-ethylene-dioxythiophene on the surface of gold nanorods (NRs). The PEDOT shell exhibits distinct dielectric properties at doped and undoped states, which allows the manipulation of plasmonic responses of the Au nanorod core. The shift in plasmon resonance induced by the dedoping of PEDOT is found to be associated with the overlap between the plasmon resonance band of the core/shell nanostructure and the spectral region where the largest refractive index variation of PEDOT occurs, as well as with the type of the dedopant. Macroscopic two-dimensional (2D) monolayer arrays of core/shell nanostructures with controlled particle number densities are fabricated on indium tin oxide (ITO)-coated glass substrates by electrophoretic deposition. A reversible plasmonic shift of about 70 nm is obtained on the core/shell nanostructure monolayer array with a number density of around 18 particles per μm2. Our design of colloidal (Au nanorod core)/(PEDOT shell) nanostructures and their 2D monolayer arrays paves the way for the fabrication of high-performance plasmonic switches in large-scale practical usages as well as for the preparation of advanced, programmable chromic materials for a broad range of applications, such as smart windows, anti-counterfeiting tags, and medical and environmental sensors.
Collapse
Affiliation(s)
- Lili Liang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Shiu Hei Lam
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lijuan Ma
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Wenzheng Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shi-Bin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China. and Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Aizheng Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China. and Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China. and Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518109, China
| | - Nina Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China. and Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
29
|
Xiao B, Zhou X, Xu H, Zhang W, Xu X, Tian F, Qian Y, Yu F, Pu C, Hu H, Zhou Z, Liu X, Patra HK, Slater N, Tang J, Gao J, Shen Y. On/off switchable epicatechin-based ultra-sensitive MRI-visible nanotheranostics - see it and treat it. Biomater Sci 2020; 8:5210-5218. [PMID: 32844846 DOI: 10.1039/d0bm00842g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nanotechnology has a remarkable impact on the preclinical development of future medicines. However, the complicated preparation and systemic toxicity to living systems prevent them from translation to clinical applications. In the present report, we developed a polyepicatechin-based on/off switchable ultra-sensitive magnetic resonance imaging (MRI) visible theranostic nanoparticle (PEMN) for image-guided photothermal therapy (PTT) using our strategy of integrating polymerization and biomineralization into the protein template. We have exploited natural polyphenols as the near infra-red (NIR) switchable photothermal source and MnO2 for the MRI-guided theranostics. PEMN demonstrates excellent MRI contrast ability with a longitudinal relaxivity value up to 30.01 mM-1 s-1. PEMN has shown great tumor inhibition on orthotopic breast tumors and the treatment could be made switchable with an on/off interchangeable mode as needed. PEMN was found to be excretable mainly through the kidneys, avoiding potential systemic toxicity. Thus, PEMN could be extremely useful for developing on-demand therapeutics via'see it and treat it' means with distinguished MRI capability and on/off switchable photothermal properties.
Collapse
Affiliation(s)
- Bing Xiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Neubrech F, Duan X, Liu N. Dynamic plasmonic color generation enabled by functional materials. SCIENCE ADVANCES 2020; 6:6/36/eabc2709. [PMID: 32917622 PMCID: PMC7473667 DOI: 10.1126/sciadv.abc2709] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/23/2020] [Indexed: 05/04/2023]
Abstract
Displays are an indispensable medium to visually convey information in our daily life. Although conventional dye-based color displays have been rigorously advanced by world leading companies, critical issues still remain. For instance, color fading and wavelength-limited resolution restrict further developments. Plasmonic colors emerging from resonant interactions between light and metallic nanostructures can overcome these restrictions. With dynamic characteristics enabled by functional materials, dynamic plasmonic coloration may find a variety of applications in display technologies. In this review, we elucidate basic concepts for dynamic plasmonic color generation and highlight recent advances. In particular, we devote our review to a selection of dynamic controls endowed by functional materials, including magnesium, liquid crystals, electrochromic polymers, and phase change materials. We also discuss their performance in view of potential applications in current display technologies.
Collapse
Affiliation(s)
- Frank Neubrech
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Kirchoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Xiaoyang Duan
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Kirchoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Na Liu
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany.
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
31
|
Lu W, Chow TH, Lai SN, Zheng B, Wang J. Electrochemical Switching of Plasmonic Colors Based on Polyaniline-Coated Plasmonic Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17733-17744. [PMID: 32195574 DOI: 10.1021/acsami.0c01562] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic color generation has attracted much research interest because of the unique optical properties of plasmonic nanocrystals that are promising for chromatic applications, such as flat-panel displays, smart windows, and wearable devices. Low-cost, monodisperse plasmonic nanocrystals supporting strong localized surface plasmon resonances are favorable for the generation of plasmonic colors. However, many implementations so far have either a single static state or complexities in the particle alignment and switching mechanism for generating multiple displaying states. Herein, we report on a facile and robust approach for realizing the electrochemical switching of plasmonic colors out of colloidal plasmonic nanocrystals. The metal nanocrystals are coated with a layer of polyaniline, whose refractive index and optical absorption are reversibly switched through the variation of an applied electrochemical potential. The change in refractive index and optical absorption results in the modulation of the plasmonic scattering intensity with a depth of 11 dB. The electrochemical switching process is fast (∼5 ms) and stable (over 1000 switching cycles). A device configuration is further demonstrated for switching plasmonic color patterns in a transparent electrochemical device, which is made from indium tin oxide electrodes and a polyvinyl alcohol solid electrolyte. Our control of plasmonic colors provides a favorable platform for engineering low-cost and high-performance miniaturized optical devices.
Collapse
Affiliation(s)
- Wenzheng Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tsz Him Chow
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sze Nga Lai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Bo Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
32
|
Song L, Huang Y, Nie Z, Chen T. Macroscopic two-dimensional monolayer films of gold nanoparticles: fabrication strategies, surface engineering and functional applications. NANOSCALE 2020; 12:7433-7460. [PMID: 32219290 DOI: 10.1039/c9nr09420b] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the last few decades, two-dimensional monolayer films of gold nanoparticles (2D MFGS) have attracted increasing attention in various fields, due to their superior attributes of macroscopic size and accessible fabrication, controllable electromagnetic enhancement, distinctive optical harvesting and electron transport capabilities. This review will focus on the recent progress of 2D monolayer films of gold nanoparticles in construction approaches, surface engineering strategies and functional applications in the optical and electric fields. The research challenges and prospective directions of 2D MFGS are also discussed. This review would promote a better understanding of 2D MFGS and establish a necessary bridge among the multidisciplinary research fields.
Collapse
Affiliation(s)
- Liping Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Youju Huang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China. and College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China and National Engineering Research Centre for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| |
Collapse
|
33
|
El-Said WA, Alshitari W, Choi JW. Controlled fabrication of gold nanobipyramids/polypyrrole for shell-isolated nanoparticle-enhanced Raman spectroscopy to detect γ-aminobutyric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117890. [PMID: 31839573 DOI: 10.1016/j.saa.2019.117890] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 05/22/2023]
Abstract
Shell-isolated nanoparticle-enhanced Raman Spectroscopy (SHINERS) has been a non-destructive, highly sensitive, specific and powerful sensing method. Detection of γ-aminobutyric acid (GABA) and glutamate, main neurotransmitters in the human brain, is important to diagnosis the neurological disorder. The purpose of this study is preparing a simple, rapid and inexpensive fabrication of Au nanobipyramids/polymer core/shell as a SHINERS-based biosensor to detect different neurotransmitters such as GABA and glutamate with high sensitivity and specificity. Au nanobipyramids/polymer core/shell was fabricated by using two steps process. In the first Au nanobipyramids with longitude and latitude axial of about 100 nm and 10 nm, respectively, was prepared based on the chemical reduction of Au ions by using sodium borohydride as a reducing agent. Then a thin layer of polypyrrole was used for decorating the Au nanobipyramids by using direct polymerization in the presence of Au nanobipyramids. The sensor composed Au nanobipyramids with a thin layer of polypyrrole that could measure GABA within a wide range of concentrations in the presence of human serum. And this sensor was used for direct monitoring of GABA and glutamate. The proposed biosensor can be applied to monitor the level of neurotransmitters accurately for the diagnosis of various neurological disorders with optical signal enhancement.
Collapse
Affiliation(s)
- Waleed Ahmed El-Said
- Department of Chemical and Biomolecular Engineering, Sogang University, 35, Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea; Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; University of Jeddah, College of Science, Department of Chemistry, P.O. 80327, Jeddah 21589, Saudi Arabia
| | - Wael Alshitari
- University of Jeddah, College of Science, Department of Chemistry, P.O. 80327, Jeddah 21589, Saudi Arabia
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35, Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea.
| |
Collapse
|
34
|
Lin H, Song L, Huang Y, Cheng Q, Yang Y, Guo Z, Su F, Chen T. Macroscopic Au@PANI Core/Shell Nanoparticle Superlattice Monolayer Film with Dual-Responsive Plasmonic Switches. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11296-11304. [PMID: 32043861 DOI: 10.1021/acsami.0c01983] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The self-assembled gold nanoparticle (NP) superlattice displays unusual but distinctive features such as high mechanical and free-standing performance, electrical conductivity, and plasmonic properties, which are widely employed in various applications especially in biological diagnostics and optoelectronic devices. For a two-dimensional (2D) superlattice monolayer film composed of a given metal nanostructure, it is rather challenging to tune either its plasmonic properties or its optical properties in a reversible way, and it has not been reported. It is therefore of significant value to construct a free-standing 2D superlattice monolayer film of gold nanoparticles with an intelligent response and desired functions. Herein, we developed an easy and efficient approach to construct a gold nanoparticle superlattice film with a dual-responsive plasmonic switch. In this system, gold nanoparticles were coated by polyaniline (PANI) and then interracially self-assembled into a monolayer film at the air-liquid interface. The PANI shell plays two important roles in the superlattice monolayer film. First, the PANI shell acts as a physical spacer to provide a steric hindrance to counteract the van der Waals (vdW) attraction between densely packed nanoparticles (NPs), resulting in the formation of a superlattice by adjusting the thickness of the PANI shell. Second, the PANI shells provide the superlattice film with multiple stimuli such as electrical potential and pH change, leading to reversible optical and plasmonic responsiveness. The superlattice monolayer film can show a vivid color change from olive green to pink, or from olive green to violet by the change of the corresponding stimuli. Also, the localized surface plasmonic resonance (LSPR) of the superlattice monolayer film can be reversibly modulated by both by changing the local pH and applying an electric potential. Notably, a significant plasmonic shift of 157 nm can be achieved in the superlattice monolayer film when the PANI shell with a thickness of 35 nm and gold nanorods as a core were used. The superlattice monolayer film with dual-responsive plasmonic switches is promising for a range of potential applications in optoelectronic devices, plasmonic and colorimetric sensors, and surface-enhanced Raman scattering (SERS).
Collapse
Affiliation(s)
- Han Lin
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
- China State Key Laboratory for Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Liping Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Youju Huang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qian Cheng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yanping Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhiyong Guo
- China State Key Laboratory for Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Fengmei Su
- National Engineering Research Centre for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
35
|
Liu S, Wang L, Zhao B, Wang Z, Wang Y, Sun B, Liu Y. Doxorubicin-loaded Cu 2S/Tween-20 nanocomposites for light-triggered tumor photothermal therapy and chemotherapy. RSC Adv 2020; 10:26059-26066. [PMID: 35519742 PMCID: PMC9055350 DOI: 10.1039/d0ra03069d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
In clinical tumor therapy, traditional treatments such as surgery, radiotherapy and chemotherapy all have their own limitations. With the development of nanotechnology, new therapeutic methods based on nanomaterials such as photothermal therapy (PTT) have also emerged. PTT takes advantage of the poor thermal tolerance of tumor cells and uses the heat generated by photothermal reagents to kill tumor cells. A transition metal sulfide represented as Cu2S is an ideal photothermal reagent because of its easy preparation, high extinction coefficient and photothermal conversion efficiency. Surface modification of nanoparticles (NPs) is also necessary, which not only can reduce toxicity and improve colloidal stability, but also can provide the possibility of further chemotherapeutic drug loading. In this work, we report the fabrication of Tween-20 (Tw20)-modified and doxorubicin (Dox)-loaded Cu2S NPs (Cu2S/Dox@Tw20 NPs), which significantly improves the performance in tumor therapy. Apart from the enhancement of colloidal stability and biocompatibility, the drug loading rate of Dox in Tw20 reaches 11.3%. Because of the loading of Dox, Cu2S/Dox@Tw20 NPs exhibit chemotherapeutic behaviors and the tumor inhibition rate is 76.2%. Further combined with a near-infrared laser, the high temperature directly leads to the apoptosis of a large number of tumor cells, while the release of chemotherapeutic drugs under heat can not only continue to kill residual tumor cells, but also inhibit tumor recurrence. Therefore, with the combination of PTT and chemotherapy, the tumor was completely eliminated. Both hematological analysis and histopathological analysis proved that our experiments are safe. In clinical tumor therapy, traditional treatments such as surgery, radiotherapy and chemotherapy all have their own limitations.![]()
Collapse
Affiliation(s)
- Shuwei Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Lu Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling
- Jilin University
- Changchun
- P. R. China
| | - Bin Zhao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling
- Jilin University
- Changchun
- P. R. China
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yinyu Wang
- School of Stomatology
- Baicheng Medical College
- Baicheng
- P. R. China
| | - Bin Sun
- Department of Oral and Maxillofacial Surgery
- School and Hospital of Stomatology
- Jilin University
- Changchun
- P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
36
|
Chen S, Kang ESH, Shiran Chaharsoughi M, Stanishev V, Kühne P, Sun H, Wang C, Fahlman M, Fabiano S, Darakchieva V, Jonsson MP. Conductive polymer nanoantennas for dynamic organic plasmonics. NATURE NANOTECHNOLOGY 2020; 15:35-40. [PMID: 31819242 DOI: 10.1038/s41565-019-0583-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Being able to dynamically shape light at the nanoscale is one of the ultimate goals in nano-optics1. Resonant light-matter interaction can be achieved using conventional plasmonics based on metal nanostructures, but their tunability is highly limited due to a fixed permittivity2. Materials with switchable states and methods for dynamic control of light-matter interaction at the nanoscale are therefore desired. Here we show that nanodisks of a conductive polymer can support localized surface plasmon resonances in the near-infrared and function as dynamic nano-optical antennas, with their resonance behaviour tunable by chemical redox reactions. These plasmons originate from the mobile polaronic charge carriers of a poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf) polymer network. We demonstrate complete and reversible switching of the optical response of the nanoantennas by chemical tuning of their redox state, which modulates the material permittivity between plasmonic and dielectric regimes via non-volatile changes in the mobile charge carrier density. Further research may study different conductive polymers and nanostructures and explore their use in various applications, such as dynamic meta-optics and reflective displays.
Collapse
Affiliation(s)
- Shangzhi Chen
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, Sweden
| | - Evan S H Kang
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, Sweden
| | - Mina Shiran Chaharsoughi
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, Sweden
| | - Vallery Stanishev
- Terahertz Materials Analysis Center (THeMAC) and Center for III-N Technology, C3NiT-Janzèn, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Philipp Kühne
- Terahertz Materials Analysis Center (THeMAC) and Center for III-N Technology, C3NiT-Janzèn, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Hengda Sun
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, Sweden
| | - Chuanfei Wang
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, Sweden
| | - Mats Fahlman
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, Sweden
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, Sweden
| | - Vanya Darakchieva
- Terahertz Materials Analysis Center (THeMAC) and Center for III-N Technology, C3NiT-Janzèn, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Magnus P Jonsson
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, Sweden.
| |
Collapse
|
37
|
Ha M, Kim JH, You M, Li Q, Fan C, Nam JM. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chem Rev 2019; 119:12208-12278. [PMID: 31794202 DOI: 10.1021/acs.chemrev.9b00234] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmonic nanostructures possessing unique and versatile optoelectronic properties have been vastly investigated over the past decade. However, the full potential of plasmonic nanostructure has not yet been fully exploited, particularly with single-component homogeneous structures with monotonic properties, and the addition of new components for making multicomponent nanoparticles may lead to new-yet-unexpected or improved properties. Here we define the term "multi-component nanoparticles" as hybrid structures composed of two or more condensed nanoscale domains with distinctive material compositions, shapes, or sizes. We reviewed and discussed the designing principles and synthetic strategies to efficiently combine multiple components to form hybrid nanoparticles with a new or improved plasmonic functionality. In particular, it has been quite challenging to precisely synthesize widely diverse multicomponent plasmonic structures, limiting realization of the full potential of plasmonic heterostructures. To address this challenge, several synthetic approaches have been reported to form a variety of different multicomponent plasmonic nanoparticles, mainly based on heterogeneous nucleation, atomic replacements, adsorption on supports, and biomolecule-mediated assemblies. In addition, the unique and synergistic features of multicomponent plasmonic nanoparticles, such as combination of pristine material properties, finely tuned plasmon resonance and coupling, enhanced light-matter interactions, geometry-induced polarization, and plasmon-induced energy and charge transfer across the heterointerface, were reported. In this review, we comprehensively summarize the latest advances on state-of-art synthetic strategies, unique properties, and promising applications of multicomponent plasmonic nanoparticles. These plasmonic nanoparticles including heterostructured nanoparticles and composite nanostructures are prepared by direct synthesis and physical force- or biomolecule-mediated assembly, which hold tremendous potential for plasmon-mediated energy transfer, magnetic plasmonics, metamolecules, and nanobiotechnology.
Collapse
Affiliation(s)
- Minji Ha
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Jae-Ho Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Myunghwa You
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Jwa-Min Nam
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| |
Collapse
|
38
|
Wang Y, Zhang X. Ultrafast optical switching based on mutually enhanced resonance modes in gold nanowire gratings. NANOSCALE 2019; 11:17807-17814. [PMID: 31552993 DOI: 10.1039/c9nr05648c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report an efficient ultrafast optical switching device consisting of periodically arranged gold nanowires, which were produced by the multistage deposition of colloidal gold nanoparticles into deep grooves, so that they are as high as 220 nm and continuous as long as 20 mm. Due to the large thickness of the gold nanowires, two resonance modes became efficient and mutually enhanced: the waveguide resonance mode and the Bragg microcavity resonance mode. These resonance modes are based on the same diffraction conditions and have a completely overlapped spectroscopic response. Thus, a sharp resonance mode with a large amplitude and a steep rising edge is observed in the optical extinction spectrum at normal incidence. Strong optical excitation induced a red shift of the resonance spectrum and resulted in an enhanced optical transmission spectrum with a narrow bandwidth and a high response speed. Such an optical switching device with new physics has potential applications in optical logic circuits and integrated optics.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Information Photonics Technology and College of Applied Sciences, Beijing University of Technology, Beijing 100124, P. R. China.
| | | |
Collapse
|
39
|
Tian Q, Li Y, Jiang S, An L, Lin J, Wu H, Huang P, Yang S. Tumor pH-Responsive Albumin/Polyaniline Assemblies for Amplified Photoacoustic Imaging and Augmented Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902926. [PMID: 31448572 DOI: 10.1002/smll.201902926] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/28/2019] [Indexed: 05/14/2023]
Abstract
Tumor-microenvironment-responsive theranostics have great potential for precision diagnosis and effective treatment of cancer. Polyaniline (PANI) is the first reported pH-responsive organic photothermal agent and is widely used as a theranostic agent. However, tumor pH-responsive PANI-based theranostic agents are not explored, mainly because the conversion from the emeraldine base (EB) to emeraldine salt (ES) state of PANI requires pH < 4, which is lower than tumor acidic microenvironment. Herein, a tumor pH-responsive PANI-based theranostic agent is designed and prepared for amplified photoacoustic imaging guided augmented photothermal therapy (PTT), through intermolecular acid-base reactions between carboxyl groups of bovine serum albumin (BSA) and imine moieties of PANI. The albumin/PANI assemblies (BSA-PANI) can convert from the EB to ES state at pH < 7, accompanied by the absorbance redshift from visible to near-infrared region. Both in vitro and in vivo results demonstrate that tumor acidic microenvironment can trigger both the photoacoustic imaging (PAI) signal amplification and the PTT efficacy enhancement of BSA-PANI assemblies. This work not only highlights that BSA-PANI assemblies overcome the limitation of low-pH protonation, but also provides a facile assembly strategy for a tumor pH-responsive PANI-based nanoplatform for cancer theranostics.
Collapse
Affiliation(s)
- Qiwei Tian
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Yaping Li
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Lu An
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Jiaomin Lin
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Huixia Wu
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
40
|
Liu L, Aleisa R, Zhang Y, Feng J, Zheng Y, Yin Y, Wang W. Dynamic Color‐Switching of Plasmonic Nanoparticle Films. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Luntao Liu
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering Shandong University Ji'Nan 250100 P. R. China
| | - Rashed Aleisa
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Yun Zhang
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering Shandong University Ji'Nan 250100 P. R. China
| | - Ji Feng
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Yiqun Zheng
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering Shandong University Ji'Nan 250100 P. R. China
| | - Yadong Yin
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Wenshou Wang
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering Shandong University Ji'Nan 250100 P. R. China
| |
Collapse
|
41
|
Liu L, Aleisa R, Zhang Y, Feng J, Zheng Y, Yin Y, Wang W. Dynamic Color‐Switching of Plasmonic Nanoparticle Films. Angew Chem Int Ed Engl 2019; 58:16307-16313. [DOI: 10.1002/anie.201910116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Luntao Liu
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering Shandong University Ji'Nan 250100 P. R. China
| | - Rashed Aleisa
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Yun Zhang
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering Shandong University Ji'Nan 250100 P. R. China
| | - Ji Feng
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Yiqun Zheng
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering Shandong University Ji'Nan 250100 P. R. China
| | - Yadong Yin
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Wenshou Wang
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering Shandong University Ji'Nan 250100 P. R. China
| |
Collapse
|
42
|
Li J, Zhang C, Gong S, Li X, Yu M, Qian C, Qiao H, Sun M. A nanoscale photothermal agent based on a metal-organic coordination polymer as a drug-loading framework for effective combination therapy. Acta Biomater 2019; 94:435-446. [PMID: 31216493 DOI: 10.1016/j.actbio.2019.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
Metallic materials are widely emerging as photothermal agents owing to their superior photothermal transduction efficiency and satisfactory photostability. In this study, an iron-based coordination polymer (Fe-CNP) loaded with doxorubicin (DOX) was assessed as a dual-function agent for photothermal therapy (PTT) and tumor-targeted chemotherapy. Fe-CNPs were synthesized by a one-step coordination reaction between Fe3+, hydrocaffeic acid, and dopamine-modified hyaluronic acid. A drug-loading method was developed to entrap DOX within Fe-CNPs through the formation of coordination bonds by Fe3+ and DOX (Scheme 1). DOX release was rapidly triggered in the cellular acidic environment and further enhanced by hyperpyrexia in the part of tumor, which will kill the remaining tumor cells after PTT. Animal experiments demonstrated complete inhibition of tumor growth without recurrence in 21 days after injection of DOX@Fe-CNPs with NIR laser irradiation. These results confirmed the enhanced anti-tumor efficiency of the chemo-photothermal nanosystem. Our work may reveal a photothermal coordination polymer as a drug-loading framework and highlight the development of metal-organic materials in combined chemo-photothermal therapy. STATEMENT OF SIGNIFICANCE: Photothermal therapy (PTT), which could directly act on tumors, has been considered as a promising treatment method for cancer. The combination of PTT with chemotherapy is attracting tremendous attention because such advanced application can achieve personalized precise medicine. Unfortunately, most PTT materials have photobleaching property, which results in reduced photothermal efficiency. Furthermore, their clinical applications also suffer from low loading capacity of chemotherapeutic drugs or nonbiodegradability in the biological system. In this study, we hypothesized that iron-based coordination polymers (Fe-CNPs) could function dually as agents to deliver both PTT and tumor-targeted chemotherapy by coordination loading of the chemotherapeutic drug doxorubicin (DOX). Our work may open up new avenues to rationally design versatile platforms for photothermal-chemotherapy to obtain synergistically enhanced therapeutic efficacy.
Collapse
|
43
|
Lu W, Cui X, Chow TH, Shao L, Wang H, Chen H, Wang J. Switching plasmonic Fano resonance in gold nanosphere-nanoplate heterodimers. NANOSCALE 2019; 11:9641-9653. [PMID: 31065663 DOI: 10.1039/c9nr01653h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The interference between spectrally overlapping superradiant and subradiant plasmon resonances generates plasmonic Fano resonance, which allows for attractive applications such as electromagnetically induced transparency, light trapping, and refractometric sensing with high figures of merit. The active switching of plasmonic Fano resonance holds great promise in modulating optical signals, dynamically harvesting light energy, and constructing switchable plasmonic sensors. However, structures enabling the active control of plasmonic Fano resonance have rarely been achieved because of the fabrication complexity and cost. Herein we report on the realization of active plasmonic Fano resonance switching on Au nanosphere-nanoplate heterodimers. The active switching is enabled by varying the refractive index of a layer of polyaniline that fills in the gap between the Au nanosphere and the Au nanoplate. A reversible spectral shift of 20 nm is observed on the individual heterodimers during switching. The maximal spectral shift decreases as the interparticle gap distance is enlarged, showing a strong dependence of the spectral shift on the local electric field intensity enhancement in the gap region. This trend agrees with the predicted dependence of the refractive index sensitivity on the local field intensity enhancement. Our results provide insights into the development of plasmonic structures supporting actively switchable Fano resonances, which can lead to new technological applications, such as switchable cloaking and display, dynamic coding of optical signals, color sorting and filtering. The Au heterodimers with polyaniline in the gap can also be applied for the sensing of local environmental parameters such as pH values and heavy metal ions.
Collapse
Affiliation(s)
- Wenzheng Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Li Z, Yin Y. Stimuli-Responsive Optical Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807061. [PMID: 30773717 DOI: 10.1002/adma.201807061] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Indexed: 05/24/2023]
Abstract
Responsive optical nanomaterials that can sense and translate various external stimuli into optical signals, in the forms of observable changes in appearance and variations in spectral line shapes, are among the most active research topics in nanooptics. They are intensively exploited within the regimes of the four classic optical phenomena-diffraction in photonic crystals, absorption of plasmonic nanostructures, as well as color-switching systems, refraction of assembled birefringent nanostructures, and emission of photoluminescent nanomaterials and molecules. Herein, a comprehensive review of these research activities regarding the fundamental principles and practical strategies is provided. Starting with an overview of their substantial developments during the latest three decades, each subtopic discussion is led with fundamental theories that delineate the correlation between nanostructures and optical properties and the delicate research strategies are elaborated with specific attention focused on working principles and optical performances. The unique advantages and inherent limitations of each responsive optical nanoscale platform are summarized, accompanied by empirical criteria that should be met and perspectives on research opportunities where the developments of next-generation responsive optical nanomaterials might be directed.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
45
|
Wu J, Du YQ, Xia J, Lei W, Zhang T, Wang BP. Optofluidic system based on electrowetting technology for dynamically tunable spectrum absorber. OPTICS EXPRESS 2019; 27:2521-2529. [PMID: 30732289 DOI: 10.1364/oe.27.002521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
An optofluidic system that uses the electrowetting technology to dynamically control the local surface plasmon resonance of the silver nanoparticle is invented. The silver nanoparticle is initially suspended at the interface of the polar liquid and the non-polar liquid. As the interface morphology changes with the applied voltage, the media distribution surrounding particle is changed accordingly, thus realizing the resonance absorption peak's modulation. The investigation result shows that a wide range of the spectral colors from red to blue can be selectively absorbed just by a single device. Specifically, when the radius of the particle is 50 nm, the wavelength of the absorption peak can be dynamically modulated from 460 nm to 607 nm. This proposed method can be used to design and prepare rapidly adjustable optical elements.
Collapse
|
46
|
Xiong K, Tordera D, Jonsson MP, Dahlin AB. Active control of plasmonic colors: emerging display technologies. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:024501. [PMID: 30640724 DOI: 10.1088/1361-6633/aaf844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In recent years there has been a growing interest in the use of plasmonic nanostructures for color generation, a technology that dates back to ancient times. Plasmonic structural colors have several attractive features but once the structures are prepared the colors are normally fixed. Lately, several concepts have emerged for actively tuning the colors, which opens up for many new potential applications, the most obvious being novel color displays. In this review we summarize recent progress in active control of plasmonic colors and evaluate them with respect to performance criteria for color displays. It is suggested that actively controlled plasmonic colors are generally less interesting for emissive displays but could be useful for new types of electrochromic devices relying on ambient light (electronic paper). Furthermore, there are several other potential applications such as images to be revealed on demand and colorimetric sensors.
Collapse
Affiliation(s)
- Kunli Xiong
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | | | | | | |
Collapse
|
47
|
Liu S, Wang L, Li S, Meng X, Sun B, Zhang X, Zhang L, Liu Y, Lin M, Zhang H, Yang B. Multidrug resistant tumors-aimed theranostics on the basis of strong electrostatic attraction between resistant cells and nanomaterials. Biomater Sci 2019; 7:4990-5001. [DOI: 10.1039/c9bm01017c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The gene expression of resistant cells usually raises the negative potential of cell membranes. Utilizing the strong electrostatic attraction of resistant cells with nanomaterials, multidrug resistance tumors-aimed theranostics is demonstrated.
Collapse
|
48
|
Houlihan NM, Karker N, Potyrailo RA, Carpenter MA. High Sensitivity Plasmonic Sensing of Hydrogen over a Broad Dynamic Range Using Catalytic Au-CeO 2 Thin Film Nanocomposites. ACS Sens 2018; 3:2684-2692. [PMID: 30484629 DOI: 10.1021/acssensors.8b01193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Next-generation gas-sensor technologies are needed for diverse applications including environmental surveillance, occupational safety, and industrial process control. However, the dynamic range using existing sensors is often too narrow to meet demands. In this work, plasmonic films of Au-CeO2 that detect hydrogen with 0.38% and 60% lower and upper detection limits in an oxygen-free atmosphere experiment are demonstrated. The observed 15 nm peak shift was 4 times stronger versus other plasmonic H2 sensors. The proposed sensing mechanism that involves H2 dissociation by Auδ+ nanoparticles was validated using XPS, kinetics, and Arrhenius studies. Our understanding of this remarkable sensing behavior in oxygen-free conditions opens new horizons for packaging, art conservation, industrial process control, and other applications where conventional oxygen-dependent sensors lack broad dynamic range.
Collapse
Affiliation(s)
- Nora M. Houlihan
- SUNY Polytechnic Institute, College of Nanoscale Engineering and Technology Innovation, 257 Fuller Road, Albany, New York 12203, United States
| | - Nicholas Karker
- SUNY Polytechnic Institute, College of Nanoscale Engineering and Technology Innovation, 257 Fuller Road, Albany, New York 12203, United States
| | | | - Michael A. Carpenter
- SUNY Polytechnic Institute, College of Nanoscale Engineering and Technology Innovation, 257 Fuller Road, Albany, New York 12203, United States
| |
Collapse
|
49
|
Tumor Photothermal Therapy Employing Photothermal Inorganic Nanoparticles/Polymers Nanocomposites. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2193-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Liu B, Lu X, Qiao Z, Song L, Cheng Q, Zhang J, Zhang A, Huang Y, Chen T. pH and Temperature Dual-Responsive Plasmonic Switches of Gold Nanoparticle Monolayer Film for Multiple Anticounterfeiting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13047-13056. [PMID: 30300548 DOI: 10.1021/acs.langmuir.8b02989] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two-dimensional (2D) gold nanoparticle (Au NP) monolayer film possesses a lot of fascinating peculiarities, and has shown promising applications in photoelectrical devices, catalysis, spectroscopy, sensors, and anticounterfeiting. Because of the localized surface plasmon resonance (LSPR) property predetermined by the natural structure of metal nanoparticles, it is usually difficult to realize the reversible LSPR transition of 2D film. In this work, we report on the fabrication of a large-area free-standing Au NP monolayer film with dual-responsive switchable plasmonic property using a pH- or thermal-responsive dendronized copolymer as a stimuli-sensitive linker. In this system, an oligoethylene-glycol-based (OEG-based) dendronized copolymer (named PG1A) with pH or temperature sensitivity was first modified onto the surface of a Au NP. Then, polyethylene glycol dibenzyl aldehyde (PEG-DA) was introduced to interact with the amino moieties from PG1A before the process of oil-water interfacial self-assembly of NPs, resulting in an elastic, robust, pH- or temperature-sensitive interpenetrating network among Au NPs in monolayer films. In addition, the film could exhibit reversibly plasmonic shifts of about 77 nm and inherent color changes through varying temperature or pH. The obtained free-standing monolayer film also shows an excellent transferable property, which can be easily transferred onto substrates such as plastic molds, PDMS, copper grids, and silicon wafers. In virtue of these peculiarities of the free-standing property, special plasmonic signal, and homologous macroscopic color, the transferred film was primely applied to an anticounterfeiting security label with clear color change at the designed spots, providing a new avenue to plasmonic nanodevices with various applications.
Collapse
Affiliation(s)
- Baoqing Liu
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
| | - Xuefei Lu
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
| | - Ze Qiao
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
| | - Liping Song
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Qian Cheng
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Jiawei Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Afang Zhang
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
| | - Youju Huang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Tao Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| |
Collapse
|