1
|
Toledo E, Iraqi M, Pandey A, Tzadka S, Le Saux G, Porgador A, Schvartzman M. Multifunctional Nanoscale Platform for the Study of T Cell Receptor Segregation. ACS OMEGA 2023; 8:28968-28975. [PMID: 37599975 PMCID: PMC10433356 DOI: 10.1021/acsomega.2c08194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/10/2023] [Indexed: 08/22/2023]
Abstract
T cells respond not only to biochemical stimuli transmitted through their activating, costimulatory, and inhibitory receptors but also to biophysical aspects of their environment, including the receptors' spatial arrangement. While these receptors form nanoclusters that can either colocalize or segregate, the roles of these colocalization and segregation remain unclear. Deciphering these roles requires a nanoscale platform with independent and simultaneous spatial control of multiple types of receptors. Herein, using a straightforward and modular fabrication process, we engineered a tunable nanoscale chip used as a platform for T cell stimulation, allowing spatial control over the clustering and segregation of activating, costimulatory, and inhibitory receptors. Using this platform, we showed that, upon blocked inhibition, cells became sensitive to changes in the nanoscale ligand configuration. The nanofabrication methodology described here opens a pathway to numerous studies, which will produce an important insight into the molecular mechanism of T cell activation. This insight is essential for the fundamental understanding of our immune system as well as for the rational design of future immunotherapies.
Collapse
Affiliation(s)
- Esti Toledo
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Muhammed Iraqi
- The
Shraga Segal Department of Microbiology, Immunology, and Genetics,
Faculty of Health Science, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
| | - Ashish Pandey
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sivan Tzadka
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Guillaume Le Saux
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Angel Porgador
- The
Shraga Segal Department of Microbiology, Immunology, and Genetics,
Faculty of Health Science, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
| | - Mark Schvartzman
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
2
|
Martínez-Miguel M, Castellote-Borrell M, Köber M, Kyvik AR, Tomsen-Melero J, Vargas-Nadal G, Muñoz J, Pulido D, Cristóbal-Lecina E, Passemard S, Royo M, Mas-Torrent M, Veciana J, Giannotti MI, Guasch J, Ventosa N, Ratera I. Hierarchical Quatsome-RGD Nanoarchitectonic Surfaces for Enhanced Integrin-Mediated Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48179-48193. [PMID: 36251059 PMCID: PMC9614722 DOI: 10.1021/acsami.2c10497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The synthesis and study of the tripeptide Arg-Gly-Asp (RGD), the binding site of different extracellular matrix proteins, e.g., fibronectin and vitronectin, has allowed the production of a wide range of cell adhesive surfaces. Although the surface density and spacing of the RGD peptide at the nanoscale have already shown a significant influence on cell adhesion, the impact of its hierarchical nanostructure is still rather unexplored. Accordingly, a versatile colloidal system named quatsomes, based on fluid nanovesicles formed by the self-assembling of cholesterol and surfactant molecules, has been devised as a novel template to achieve hierarchical nanostructures of the RGD peptide. To this end, RGD was anchored on the vesicle's fluid membrane of quatsomes, and the RGD-functionalized nanovesicles were covalently anchored to planar gold surfaces, forming a state of quasi-suspension, through a long poly(ethylene glycol) (PEG) chain with a thiol termination. An underlying self-assembled monolayer (SAM) of a shorter PEG was introduced for vesicle stabilization and to avoid unspecific cell adhesion. In comparison with substrates featuring a homogeneous distribution of RGD peptides, the resulting hierarchical nanoarchitectonic dramatically enhanced cell adhesion, despite lower overall RGD molecules on the surface. The new versatile platform was thoroughly characterized using a multitechnique approach, proving its enhanced performance. These findings open new methods for the hierarchical immobilization of biomolecules on surfaces using quatsomes as a robust and novel tissue engineering strategy.
Collapse
Affiliation(s)
- Marc Martínez-Miguel
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | | | - Mariana Köber
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Adriana R. Kyvik
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Judit Tomsen-Melero
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Guillem Vargas-Nadal
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Jose Muñoz
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Daniel Pulido
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Unidad
de Péptidos, UB, Unidad asociada
al CSIC por el IQAC, Barcelona 08028, Spain
| | - Edgar Cristóbal-Lecina
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Unidad
de Péptidos, UB, Unidad asociada
al CSIC por el IQAC, Barcelona 08028, Spain
| | - Solène Passemard
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Miriam Royo
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Institut
de Química Avançada de Catalunya (IQAC−CSIC), Barcelona 08034, Spain
| | - Marta Mas-Torrent
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Jaume Veciana
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Marina I. Giannotti
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Nanoprobes
and Nanoswitches group, Institute for Bioengineering of Catalonia
(IBEC), The Barcelona Institute of Science
and Technology (BIST), Barcelona 08028, Spain
- Departament
de Ciència dels Materials i Química Física, Universitat de Barcelona, Barcelona 08028, Spain
| | - Judith Guasch
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Dynamic Biomimetics
for Cancer Immunotherapy, Max Planck Partner
Group, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain
| | - Nora Ventosa
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Imma Ratera
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
3
|
Di Russo J, Young JL, Wegner JW, Steins T, Kessler H, Spatz JP. Integrin α5β1 nano-presentation regulates collective keratinocyte migration independent of substrate rigidity. eLife 2021; 10:69861. [PMID: 34554089 PMCID: PMC8460267 DOI: 10.7554/elife.69861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/13/2021] [Indexed: 01/01/2023] Open
Abstract
Nanometer-scale properties of the extracellular matrix influence many biological processes, including cell motility. While much information is available for single-cell migration, to date, no knowledge exists on how the nanoscale presentation of extracellular matrix receptors influences collective cell migration. In wound healing, basal keratinocytes collectively migrate on a fibronectin-rich provisional basement membrane to re-epithelialize the injured skin. Among other receptors, the fibronectin receptor integrin α5β1 plays a pivotal role in this process. Using a highly specific integrin α5β1 peptidomimetic combined with nanopatterned hydrogels, we show that keratinocyte sheets regulate their migration ability at an optimal integrin α5β1 nanospacing. This efficiency relies on the effective propagation of stresses within the cell monolayer independent of substrate stiffness. For the first time, this work highlights the importance of extracellular matrix receptor nanoscale organization required for efficient tissue regeneration.
Collapse
Affiliation(s)
- Jacopo Di Russo
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Interdisciplinary Centre for Clinical Research, Aachen, Germany.,DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse, Aachen, Germany.,Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Jennifer L Young
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | | | - Timmy Steins
- Interdisciplinary Centre for Clinical Research, Aachen, Germany.,Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Horst Kessler
- Institute for Advance Study, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Molecular System Engineering - IMSE - Heidelberg University, Heidelberg, Germany.,Max Planck School Matter to Life, Heidelberg, Germany
| |
Collapse
|
4
|
Riker KD, Daly ML, Papanikolas MJ, Jian T, Klawa SJ, Shin Sahin JYS, Liu D, Singh A, Miller AG, Freeman R. A Programmable Toolkit to Dynamically Signal Cells Using Peptide Strand Displacement. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21018-21029. [PMID: 33938725 DOI: 10.1021/acsami.1c03370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The native extracellular matrix communicates and interacts with cells by dynamically displaying signals to control their behavior. Mimicking this dynamic environment in vitro is essential in order to unravel how cell-matrix interactions guide cell fate. Here, we present a synthetic platform for the temporal display of cell-adhesive signals using coiled-coil peptides. By designing an integrin-engaging coiled-coil pair to have a toehold (unpaired domain), we were able to use a peptide strand displacement reaction to remove the cell cue from the surface. This allowed us to test how the user-defined display of RGDS ligands at variable duration and periodicity of ligand exposure influence cell spreading degree and kinetics. Transient display of αVβ3-selective ligands instructed fibroblast cells to reversibly spread and contract in response to changes in ligand exposure over multiple cycles, exhibiting a universal kinetic response. Also, cells that were triggered to spread and contract repeatedly exhibited greater enrichment of integrins in focal adhesions versus cells cultured on persistent RGDS-displaying surfaces. This dynamic platform will allow us to uncover the molecular code by which cells sense and respond to changes in their environment and will provide insights into ways to program cellular behavior.
Collapse
Affiliation(s)
- Kyle D Riker
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Margaret L Daly
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Micah J Papanikolas
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tengyue Jian
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen J Klawa
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jacqueline Yalin S Shin Sahin
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dingyuan Liu
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Anamika Singh
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - A Griffin Miller
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Zhang C, Siddhanta S, Paria D, Li Y, Zheng C, Barman I. Spectroscopy-Assisted Label-free Molecular Analysis of Live Cell Surface with Vertically Aligned Plasmonic Nanopillars. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100161. [PMID: 33942486 PMCID: PMC8363029 DOI: 10.1002/smll.202100161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/07/2021] [Indexed: 05/31/2023]
Abstract
A generalized label-free platform for surface-selective molecular sensing in living cells can transform the ability to examine complex events in the cell membrane. While vertically aligned semiconductor and metal-semiconductor hybrid nanopillars have rapidly surfaced for stimulating and probing the intracellular environment, the potential of such constructs for selectively interrogating the cell membrane is surprisingly underappreciated. In this work, a new platform, entitled nano-PROD (nano-pillar based Raman optical detection), enables molecular recording by probing fundamental vibrational modes of membrane constituents of cells adherent on a large-area silver-coated silicon nanopillar substrate fabricated using a precursor solution-based nanomanufacturing process. It is shown that the nano-PROD platform sustains live cells in near-physiological conditions, which can be directly profiled using surface-enhanced Raman spectroscopy due to the confined electromagnetic field enhancement. The experimental results highlight the utility of the platform in probing specific cell surface markers for accurately recognizing the phenotypically identical prostate cancer cells, differing only in prostate-specific membrane antigen expression. Due to its tunability, nano-PROD has the promise to be readily extendable to other applications that can leverage its unique combination of nanoscale topographic features and molecular sensing capabilities, from stain-free cytopathology inspection to understanding spatio-mechanical regulation in membrane receptor function.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Soumik Siddhanta
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Debadrita Paria
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yaozheng Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Saffioti NA, Cavalcanti-Adam EA, Pallarola D. Biosensors for Studies on Adhesion-Mediated Cellular Responses to Their Microenvironment. Front Bioeng Biotechnol 2020; 8:597950. [PMID: 33262979 PMCID: PMC7685988 DOI: 10.3389/fbioe.2020.597950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022] Open
Abstract
Cells interact with their microenvironment by constantly sensing mechanical and chemical cues converting them into biochemical signals. These processes allow cells to respond and adapt to changes in their environment, and are crucial for most cellular functions. Understanding the mechanism underlying this complex interplay at the cell-matrix interface is of fundamental value to decipher key biochemical and mechanical factors regulating cell fate. The combination of material science and surface chemistry aided in the creation of controllable environments to study cell mechanosensing and mechanotransduction. Biologically inspired materials tailored with specific bioactive molecules, desired physical properties and tunable topography have emerged as suitable tools to study cell behavior. Among these materials, synthetic cell interfaces with built-in sensing capabilities are highly advantageous to measure biophysical and biochemical interaction between cells and their environment. In this review, we discuss the design of micro and nanostructured biomaterials engineered not only to mimic the structure, properties, and function of the cellular microenvironment, but also to obtain quantitative information on how cells sense and probe specific adhesive cues from the extracellular domain. This type of responsive biointerfaces provides a readout of mechanics, biochemistry, and electrical activity in real time allowing observation of cellular processes with molecular specificity. Specifically designed sensors based on advanced optical and electrochemical readout are discussed. We further provide an insight into the emerging role of multifunctional micro and nanosensors to control and monitor cell functions by means of material design.
Collapse
Affiliation(s)
- Nicolás Andrés Saffioti
- Instituto de Nanosistemas, Universidad Nacional de General San Martín, San Martín, Argentina
| | | | - Diego Pallarola
- Instituto de Nanosistemas, Universidad Nacional de General San Martín, San Martín, Argentina
| |
Collapse
|
7
|
Martínez-Miguel M, Kyvik AR, M Ernst L, Martínez-Moreno A, Cano-Garrido O, Garcia-Fruitós E, Vazquez E, Ventosa N, Guasch J, Veciana J, Villaverde A, Ratera I. Stable anchoring of bacteria-based protein nanoparticles for surface enhanced cell guidance. J Mater Chem B 2020; 8:5080-5088. [PMID: 32400840 DOI: 10.1039/d0tb00702a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In tissue engineering, biological, physical, and chemical inputs have to be combined to properly mimic cellular environments and successfully build artificial tissues which can be designed to fulfill different biomedical needs such as the shortage of organ donors or the development of in vitro disease models for drug testing. Inclusion body-like protein nanoparticles (pNPs) can simultaneously provide such physical and biochemical stimuli to cells when attached to surfaces. However, this attachment has only been made by physisorption. To provide a stable anchoring, a covalent binding of lactic acid bacteria (LAB) produced pNPs, which lack the innate pyrogenic impurities of Gram-negative bacteria like Escherichia coli, is presented. The reported micropatterns feature a robust nanoscale topography with an unprecedented mechanical stability. In addition, they are denser and more capable of influencing cell morphology and orientation. The increased stability and the absence of pyrogenic impurities represent a step forward towards the translation of this material to a clinical setting.
Collapse
Affiliation(s)
- Marc Martínez-Miguel
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Le Saux G, Wu MC, Toledo E, Chen YQ, Fan YJ, Kuo JC, Schvartzman M. Cell-Cell Adhesion-Driven Contact Guidance and Its Effect on Human Mesenchymal Stem Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22399-22409. [PMID: 32323968 DOI: 10.1021/acsami.9b20939] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Contact guidance has been extensively explored using patterned adhesion functionalities that predominantly mimic cell-matrix interactions. Whether contact guidance can also be driven by other types of interactions, such as cell-cell adhesion, still remains a question. Herein, this query is addressed by engineering a set of microstrip patterns of (i) cell-cell adhesion ligands and (ii) segregated cell-cell and cell-matrix ligands as a simple yet versatile set of platforms for the guidance of spreading, adhesion, and differentiation of mesenchymal stem cells. It was unprecedently found that micropatterns of cell-cell adhesion ligands can induce contact guidance. Surprisingly, it was found that patterns of alternating cell-matrix and cell-cell strips also induce contact guidance despite providing a spatial continuum for cell adhesion. This guidance is believed to be due to the difference between the potencies of the two adhesions. Furthermore, patterns that combine the two segregated adhesion functionalities were shown to induce more human mesenchymal stem cell osteogenic differentiation than monofunctional patterns. This work provides new insight into the functional crosstalk between cell-cell and cell-matrix adhesions and, overall, further highlights the ubiquitous impact of the biochemical anisotropy of the extracellular environment on cell function.
Collapse
Affiliation(s)
- Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Isle Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ming-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Esti Toledo
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Isle Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yin-Quan Chen
- Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
- Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Isle Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
9
|
Tatkiewicz WI, Seras-Franzoso J, García-Fruitós E, Vazquez E, Kyvik AR, Ventosa N, Guasch J, Villaverde A, Veciana J, Ratera I. High-Throughput Cell Motility Studies on Surface-Bound Protein Nanoparticles with Diverse Structural and Compositional Characteristics. ACS Biomater Sci Eng 2019; 5:5470-5480. [PMID: 33464066 DOI: 10.1021/acsbiomaterials.9b01085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eighty areas with different structural and compositional characteristics made of bacterial inclusion bodies formed by the fibroblast growth factor (FGF-IBs) were simultaneously patterned on a glass surface with an evaporation-assisted method that relies on the coffee-drop effect. The resulting surface patterned with these protein nanoparticles enabled to perform a high-throughput study of the motility of NIH-3T3 fibroblasts under different conditions including the gradient steepness, particle concentrations, and area widths of patterned FGF-IBs, using for the data analysis a methodology that includes "heat maps". From this analysis, we observed that gradients of concentrations of surface-bound FGF-IBs stimulate the total cell movement but do not affect the total net distances traveled by cells. Moreover, cells tend to move toward an optimal intermediate FGF-IB concentration (i.e., cells seeded on areas with high IB concentrations moved toward areas with lower concentrations and vice versa, reaching the optimal concentration). Additionally, a higher motility was obtained when cells were deposited on narrow and highly concentrated areas with IBs. FGF-IBs can be therefore used to enhance and guide cell migration, confirming that the decoration of surfaces with such IB-like protein nanoparticles is a promising platform for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Witold I Tatkiewicz
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Joaquin Seras-Franzoso
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Elena García-Fruitós
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Adriana R Kyvik
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Nora Ventosa
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Judith Guasch
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain.,Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Imma Ratera
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| |
Collapse
|
10
|
Fraioli R, Neubauer S, Rechenmacher F, Bosch BM, Dashnyam K, Kim JH, Perez RA, Kim HW, Gil FJ, Ginebra MP, Manero JM, Kessler H, Mas-Moruno C. Control of stem cell response and bone growth on biomaterials by fully non-peptidic integrin selective ligands. Biomater Sci 2019; 7:1281-1285. [DOI: 10.1039/c8bm01466c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integrin selective peptidomimetics tune stem cell behavior in vitro and improve bone formation in rat calvarial defects.
Collapse
|
11
|
Diaz C, Neubauer S, Rechenmacher F, Kessler H, Missirlis D. Recruitment of integrin ανβ3 to integrin α5β1-induced clusters enables focal adhesion maturation and cell spreading. J Cell Sci 2019; 133:jcs.232702. [DOI: 10.1242/jcs.232702] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
The major fibronectin (FN) binding integrins α5β1 and αvβ3 exhibit cooperativity during cell adhesion, migration and mechanosensing, through mechanisms that are not yet fully resolved. Exploiting mechanically-tunable, nano-patterned substrates, and peptidomimetic ligands designed to selectively bind corresponding integrins, we report that focal adhesions (FAs) of endothelial cells assembled on integrin α5β1-selective substrates, rapidly recruit αvβ3 integrins, but not vice versa. Blocking of integrin αvβ3 hindered FA maturation and cell spreading on α5β1-selective substrates, indicating a mechanism dependent on extracellular ligand binding and highlighting the requirement of αvβ3 engagement for efficient adhesion. Recruitment of αvβ3 integrins additionally occurred on hydrogel substrates of varying mechanical properties, above a threshold stiffness supporting FA formation. Mechanistic studies revealed the need for soluble factors present in serum to allow recruitment, and excluded exogenous, or endogenous, FN as the responsible ligand for integrin αvβ3 accumulation to adhesion clusters. Our findings highlight a novel mechanism of integrin co-operation and the critical role for αvβ3 integrins in promoting cell adhesion on α5β1-selective substrates.
Collapse
Affiliation(s)
- Carolina Diaz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research; postal address: Jahnstr. 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg University; postal address: INF 253, D-69120 Heidelberg, Germany
| | - Stefanie Neubauer
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München; postal address: Lichtenbergstr. 4, D-85747, Garching, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München; postal address: Lichtenbergstr. 4, D-85747, Garching, Germany
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München; postal address: Lichtenbergstr. 4, D-85747, Garching, Germany
| | - Dimitris Missirlis
- Department of Cellular Biophysics, Max Planck Institute for Medical Research; postal address: Jahnstr. 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg University; postal address: INF 253, D-69120 Heidelberg, Germany
| |
Collapse
|
12
|
Sales A, Picart C, Kemkemer R. Age-dependent migratory behavior of human endothelial cells revealed by substrate microtopography. Exp Cell Res 2018; 374:1-11. [PMID: 30342990 DOI: 10.1016/j.yexcr.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023]
Abstract
Cell migration is part of many important in vivo biological processes and is influenced by chemical and physical factors such as substrate topography. Although the migratory behavior of different cell types on structured substrates has already been investigated, up to date it is largely unknown if specimen's age affects cell migration on structures. In this work, we investigated age-dependent migratory behavior of human endothelial cells from young (≤ 31 years old) and old (≥ 60 years old) donors on poly(dimethylsiloxane) microstructured substrates consisting of well-defined parallel grooves. We observed a decrease in cell migration velocity in all substrate conditions and in persistence length perpendicular to the grooves in cells from old donors. Nevertheless, in comparison to young cells, old cells exhibited a higher cell directionality along grooves of certain depths and a higher persistence time. We also found a systematic decrease of donor age-dependent responses of cell protrusions in orientation, velocity and length, all of them decreased in old cells. These observations lead us to hypothesize a possible impairment of actin cytoskeleton network and affected actin polymerization and steering systems, caused by aging.
Collapse
Affiliation(s)
- Adrià Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany.
| | - Catherine Picart
- Centre National de la Recherche Scientifique UMR 5628, Laboratoire des Matériaux et du Génie Physique, Institute of Technology, 38016 Grenoble, France
| | - Ralf Kemkemer
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Heidelberg, Germany; Reutlingen University, 72762 Reutlingen, Germany.
| |
Collapse
|
13
|
Guasch J, Hoffmann M, Diemer J, Riahinezhad H, Neubauer S, Kessler H, Spatz JP. Combining Adhesive Nanostructured Surfaces and Costimulatory Signals to Increase T Cell Activation. NANO LETTERS 2018; 18:5899-5904. [PMID: 30088769 DOI: 10.1021/acs.nanolett.8b02588] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Adoptive cell therapies are showing very promising results in the fight against cancer. However, these therapies are expensive and technically challenging in part due to the need of a large number of specific T cells, which must be activated and expanded in vitro. Here we describe a method to activate primary human T cells using a combination of nanostructured surfaces functionalized with the stimulating anti-CD3 antibody and the peptidic sequence arginine-glycine-aspartic acid, as well as costimulatory agents (anti-CD28 antibody and a cocktail of phorbol 12-myristate 13-acetate, ionomycin, and protein transport inhibitors). Thus, we propose a method that combines nanotechnology with cell biology procedures to efficiently produce T cells in the laboratory, challenging the current state-of-the-art expansion methodologies.
Collapse
Affiliation(s)
- Judith Guasch
- Dynamic Biomaterials for Cancer Immunotherapy , Max Planck Partner Group, Institute of Materials Science of Barcelona (ICMAB-CSIC) , Campus UAB , E-08193 Bellaterra , Spain
- Department of Molecular Nanoscience and Organic Materials , ICMAB-CSIC and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Campus UAB , E-08193 Bellaterra , Spain
| | - Marco Hoffmann
- Department of Cellular Biophysics , Max Planck Institute for Medical Research , Jahnstrasse 29 , D-69120 Heidelberg , Germany
- Department of Biophysical Chemistry , University of Heidelberg , Im Neuenheimer Feld 253 , D-69120 Heidelberg , Germany
| | - Jennifer Diemer
- Department of Cellular Biophysics , Max Planck Institute for Medical Research , Jahnstrasse 29 , D-69120 Heidelberg , Germany
- Department of Biophysical Chemistry , University of Heidelberg , Im Neuenheimer Feld 253 , D-69120 Heidelberg , Germany
| | - Hossein Riahinezhad
- Department of Cellular Biophysics , Max Planck Institute for Medical Research , Jahnstrasse 29 , D-69120 Heidelberg , Germany
- Department of Biophysical Chemistry , University of Heidelberg , Im Neuenheimer Feld 253 , D-69120 Heidelberg , Germany
| | - Stefanie Neubauer
- Institute for Advanced Study (IAS) and Center of Integrated Protein Science (CIPSM), Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , D-85747 Garching , Germany
| | - Horst Kessler
- Institute for Advanced Study (IAS) and Center of Integrated Protein Science (CIPSM), Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , D-85747 Garching , Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics , Max Planck Institute for Medical Research , Jahnstrasse 29 , D-69120 Heidelberg , Germany
- Department of Biophysical Chemistry , University of Heidelberg , Im Neuenheimer Feld 253 , D-69120 Heidelberg , Germany
| |
Collapse
|
14
|
Tatkiewicz WI, Seras-Franzoso J, Garcia-Fruitós E, Vazquez E, Kyvik AR, Guasch J, Villaverde A, Veciana J, Ratera I. Surface-Bound Gradient Deposition of Protein Nanoparticles for Cell Motility Studies. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25779-25786. [PMID: 29989793 DOI: 10.1021/acsami.8b06821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A versatile evaporation-assisted methodology based on the coffee-drop effect is described to deposit nanoparticles on surfaces, obtaining for the first time patterned gradients of protein nanoparticles (pNPs) by using a simple custom-made device. Fully controllable patterns with specific periodicities consisting of stripes with different widths and distinct nanoparticle concentration as well as gradients can be produced over large areas (∼10 cm2) in a fast (up to 10 mm2/min), reproducible, and cost-effective manner using an operational protocol optimized by an evolutionary algorithm. The developed method opens the possibility to decorate surfaces "a-la-carte" with pNPs enabling different categories of high-throughput studies on cell motility.
Collapse
Affiliation(s)
- Witold I Tatkiewicz
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Joaquin Seras-Franzoso
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Elena Garcia-Fruitós
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - A R Kyvik
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Judith Guasch
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
- Dynamic Biomaterials for Cancer Immunotherapy , Max Planck Partner Group, ICMAB-CSIC , Campus UAB , 08193 Bellaterra , Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Imma Ratera
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| |
Collapse
|
15
|
Yüz SG, Ricken J, Wegner SV. Independent Control over Multiple Cell Types in Space and Time Using Orthogonal Blue and Red Light Switchable Cell Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800446. [PMID: 30128251 PMCID: PMC6097145 DOI: 10.1002/advs.201800446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/27/2018] [Indexed: 05/14/2023]
Abstract
Independent control over multiple cell-material interactions with high spatiotemporal resolution is a key for many biomedical applications and understanding cell biology, as different cell types can perform different tasks in a multicellular context. In this study, the binding of two different cell types to materials is orthogonally controlled with blue and red light providing independent regulation in space and time. Cells expressing the photoswitchable protein cryptochrome 2 (CRY2) on cell surface bind to N-truncated CRY-interacting basic helix-loop-helix protein 1 (CIBN)-immobilized substrates under blue light and cells expressing the photoswitchable protein phytochrome B (PhyB ) on cell surface bind to phytochrome interaction factor 6 (PIF6)-immobilized substrates under red light, respectively. These light-switchable cell interactions provide orthogonal and noninvasive control using two wavelengths of visible light. Moreover, both cell-material interactions are dynamically switched on under light and reversible in the dark. The specificity of the CRY2/CIBN and PhyB/PIF6 interactions and their response to different wavelengths of light allow selectively activating the binding of one cell type with blue and the other cell type with red light in the presence of the other cell type.
Collapse
Affiliation(s)
- Simge G. Yüz
- Max Planck Institute of Polymer ResearchAckermannweg 1055128MainzGermany
- Department of Biophysical ChemistryUniversity of HeidelbergIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Julia Ricken
- Max Planck Institute of Polymer ResearchAckermannweg 1055128MainzGermany
- Department of Biophysical ChemistryUniversity of HeidelbergIm Neuenheimer Feld 25369120HeidelbergGermany
| | | |
Collapse
|
16
|
Pérez del Río E, Martinez Miguel M, Veciana J, Ratera I, Guasch J. Artificial 3D Culture Systems for T Cell Expansion. ACS OMEGA 2018; 3:5273-5280. [PMID: 30023914 PMCID: PMC6044561 DOI: 10.1021/acsomega.8b00521] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Adoptive cell therapy, i.e., the extraction, manipulation, and administration of ex vivo generated autologous T cells to patients, is an emerging alternative to regular procedures in cancer treatment. Nevertheless, these personalized treatments require laborious and expensive laboratory procedures that should be alleviated to enable their incorporation into the clinics. With the objective to improve the ex vivo expansion of large amount of specific T cells, we propose the use of three-dimensional (3D) structures during their activation with artificial antigen-presenting cells, thus resembling the natural environment of the secondary lymphoid organs. Thus, the activation, proliferation, and differentiation of T cells have been analyzed when cultured in the presence of two 3D systems, Matrigel and a 3D polystyrene scaffold, showing an increase in cell proliferation compared to standard suspension systems.
Collapse
Affiliation(s)
- Eduardo Pérez del Río
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Networking Research
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), and Dynamic Biomaterials
for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Marc Martinez Miguel
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Networking Research
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), and Dynamic Biomaterials
for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Jaume Veciana
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Networking Research
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), and Dynamic Biomaterials
for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Imma Ratera
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Networking Research
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), and Dynamic Biomaterials
for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Judith Guasch
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Networking Research
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), and Dynamic Biomaterials
for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
17
|
Nair RV, Farrukh A, del Campo A. A Photoactivatable α5
β1
-Specific Integrin Ligand. Chembiochem 2018; 19:1280-1287. [DOI: 10.1002/cbic.201800180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Roshna V. Nair
- INM-Leibniz Institute for New Materials; Campus D2 2 66123 Saarbrücken Germany
| | - Aleeza Farrukh
- INM-Leibniz Institute for New Materials; Campus D2 2 66123 Saarbrücken Germany
| | - Aránzazu del Campo
- INM-Leibniz Institute for New Materials; Campus D2 2 66123 Saarbrücken Germany
- Chemistry Department; Saarland University; Campus C4 2 66123 Saarbrücken Germany
| |
Collapse
|
18
|
Le Saux G, Edri A, Keydar Y, Hadad U, Porgador A, Schvartzman M. Spatial and Chemical Surface Guidance of NK Cell Cytotoxic Activity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11486-11494. [PMID: 29557634 DOI: 10.1021/acsami.7b19643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Studying how different signaling pathways spatially integrate in cells requires selective manipulation and control of different transmembrane ligand-receptor pairs at the same time. This work explores a novel method for precisely arranging two arbitrarily chosen ligands on a micron-scale two-dimensional pattern. The approach is based on lithographic patterning of Au and TiO2 films, followed by their selective functionalization with Ni-nitrilotriacetic acid-histidine and biotin-avidin chemistries, respectively. The selectivity of chemical and biological functionalizations is demonstrated by X-ray photoelectron spectroscopy and immunofluorescence imaging, respectively. This approach is applied to produce the first type of bifunctional surfaces with controllably positioned ligands for activating the receptors of natural killer (NK) immune cells. NK cells were used as a model system to demonstrate the potency of the surface in guiding site-selective cell attachment and activation. Upon applying the suitable ligand or ligand combination, the surfaces guided the appropriate single- or bifunctional attachment and activation. These encouraging results demonstrate the effectiveness of the system as an experimental platform aimed at the comprehensive understanding of the immunological synapse. The great simplicity, modularity, and specificity of this approach make it applicable for a myriad of combinations of other biomolecules and applications, turning it into the "Swiss knife" of biointerfaces.
Collapse
|
19
|
αvβ3 and α5β1 integrin-specific ligands: From tumor angiogenesis inhibitors to vascularization promoters in regenerative medicine? Biotechnol Adv 2017; 36:208-227. [PMID: 29155160 DOI: 10.1016/j.biotechadv.2017.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022]
Abstract
Integrins are cell adhesion receptors predominantly important during normal and tumor angiogenesis. A sequence present on several extracellular matrix proteins composed of Arg-Gly-Asp (RGD) has attracted attention due to its role in cell adhesion mediated by integrins. The development of ligands that can bind to integrins involved in tumor angiogenesis and brake disease progression has resulted in new investigational drug entities reaching the clinical trial phase in humans. The use of integrin-specific ligands can be useful for the vascularization of regenerative medicine constructs, which remains a major limitation for translation into clinical practice. In order to enhance vascularization, immobilization of integrin-specific RGD peptidomimetics within constructs is a recommended approach, due to their high specificity and selectivity towards certain desired integrins. This review endeavours to address the potential of peptidomimetic-coated biomaterials as vascular network promoters for regenerative medicine purposes. Clinical studies involving molecules tracking active integrins in cancer angiogenesis and reasons for their failure are also addressed.
Collapse
|
20
|
Guasch J, Muth CA, Diemer J, Riahinezhad H, Spatz JP. Integrin-Assisted T-Cell Activation on Nanostructured Hydrogels. NANO LETTERS 2017; 17:6110-6116. [PMID: 28876947 DOI: 10.1021/acs.nanolett.7b02636] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adoptive cell therapy (ACT) has shown very promising results as treatment for cancer in a few clinical trials, such as the complete remissions of otherwise terminal leukemia patients. Nevertheless, the introduction of ACT into clinics requires overcoming not only medical but also technical challenges, such as the ex vivo expansion of large amounts of specific T-cells. Nanostructured surfaces represent a novel T-cell stimulation technique that enables us to fine-tune the density and orientation of activating molecules presented to the cells. In this work, we studied the influence of integrin-mediated cell-adhesion on T-cell activation, proliferation, and differentiation using nanostructured surfaces, which provide a well-defined system at the nanoscale compared with standard cultures. Specifically, we synthesized a polymeric polyethylene glycol (PEG) hydrogel cross-linked with two fibronectin-derived peptides, cyclic Arg-Gly-Asp (cRGD) and cyclic Leu-Asp-Val (cLDV), that are known to activate different integrins. Moreover, the hydrogels were decorated with a quasi-hexagonal array of gold nanoparticles (AuNPs) functionalized with the activating antibody CD3 to initiate T-cell activation. Both cLDV and cRGD hydrogels showed higher T-cell activation (CD69 expression and IL-2 secretion) than nonfunctionalized PEG hydrogels. However, only the cRGD hydrogels clearly supported proliferation giving a higher proportion of cells with memory (CD4+CD45RO+) than naı̈ve (CD4+CD45RA+) phenotypes when interparticle distances smaller than 150 nm were used. Thus, T-cell proliferation can be enhanced by the activation of integrins through the RGD sequence.
Collapse
Affiliation(s)
- Judith Guasch
- Dynamic Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, Institute of Materials Science of Barcelona (ICMAB-CSIC) , Campus UAB, Bellaterra, E-08193, Spain
- Department of Molecular Nanoscience and Organic Materials, Institute of Materials Science of Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Campus UAB, Bellaterra, E-08193, Spain
- Department of Cellular Biophysics, Max Planck Institute for Medical Research , Jahnstrasse 29, Heidelberg, D-69120, Germany
- Department of Biophysical Chemistry, University of Heidelberg , Im Neuenheimer Feld 253, Heidelberg, D-69120, Germany
| | - Christine A Muth
- Department of Cellular Biophysics, Max Planck Institute for Medical Research , Jahnstrasse 29, Heidelberg, D-69120, Germany
- Department of Biophysical Chemistry, University of Heidelberg , Im Neuenheimer Feld 253, Heidelberg, D-69120, Germany
| | - Jennifer Diemer
- Department of Cellular Biophysics, Max Planck Institute for Medical Research , Jahnstrasse 29, Heidelberg, D-69120, Germany
- Department of Biophysical Chemistry, University of Heidelberg , Im Neuenheimer Feld 253, Heidelberg, D-69120, Germany
| | - Hossein Riahinezhad
- Department of Cellular Biophysics, Max Planck Institute for Medical Research , Jahnstrasse 29, Heidelberg, D-69120, Germany
- Department of Biophysical Chemistry, University of Heidelberg , Im Neuenheimer Feld 253, Heidelberg, D-69120, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research , Jahnstrasse 29, Heidelberg, D-69120, Germany
- Department of Biophysical Chemistry, University of Heidelberg , Im Neuenheimer Feld 253, Heidelberg, D-69120, Germany
| |
Collapse
|
21
|
Winnacker M. Covalent polyester-biomolecule conjugates: advances in their synthesis and applications in biomedicine and nanotechnology. POLYM INT 2017. [DOI: 10.1002/pi.5459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Malte Winnacker
- WACKER-Chair of Macromolecular Chemistry and Catalysis Research Center; Technische Universität München, Garching bei München; Germany
| |
Collapse
|
22
|
Forato F, Liu H, Benoit R, Fayon F, Charlier C, Fateh A, Defontaine A, Tellier C, Talham DR, Queffélec C, Bujoli B. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5480-5490. [PMID: 27166821 DOI: 10.1021/acs.langmuir.6b01020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.
Collapse
Affiliation(s)
- Florian Forato
- Chimie et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230 , 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Hao Liu
- Department of Chemistry, University of Florida , Gainesville, Florida 32611-7200, United States
| | - Roland Benoit
- CRMD-CNRS, 1B rue de la férollerie, 45071 Orléans Cedex 2, France
| | - Franck Fayon
- CNRS, CEMHTI UPR3079, Université de Orléans , F-45071 Orléans, France
| | - Cathy Charlier
- Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286 , 2 rue de la Houssinière BP 92208, 44322 Nantes Cedex 3, France
| | - Amina Fateh
- Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286 , 2 rue de la Houssinière BP 92208, 44322 Nantes Cedex 3, France
| | - Alain Defontaine
- Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286 , 2 rue de la Houssinière BP 92208, 44322 Nantes Cedex 3, France
| | - Charles Tellier
- Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286 , 2 rue de la Houssinière BP 92208, 44322 Nantes Cedex 3, France
| | - Daniel R Talham
- Department of Chemistry, University of Florida , Gainesville, Florida 32611-7200, United States
| | - Clémence Queffélec
- Chimie et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230 , 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Bruno Bujoli
- Chimie et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230 , 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| |
Collapse
|
23
|
Mas-Moruno C, Fraioli R, Rechenmacher F, Neubauer S, Kapp TG, Kessler H. αvβ3- or α5β1-Integrin-Selective Peptidomimetics for Surface Coating. Angew Chem Int Ed Engl 2016; 55:7048-67. [PMID: 27258759 DOI: 10.1002/anie.201509782] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 12/21/2022]
Abstract
Engineering biomaterials with integrin-binding activity is a very powerful approach to promote cell adhesion, modulate cell behavior, and induce specific biological responses at the surface level. The aim of this Review is to illustrate the evolution of surface-coating molecules in this field: from peptides and proteins with relatively low integrin-binding activity and receptor selectivity to highly active and selective peptidomimetic ligands. In particular, we will bring into focus the difficult challenge of achieving selectivity between the two closely related integrin subtypes αvβ3 and α5β1. The functionalization of surfaces with such peptidomimetics opens the way for a new generation of highly specific cell-instructive surfaces to dissect the biological role of integrin subtypes and for application in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering, Universitat Politècnica de Catalunya (UPC), Diagonal 647, 08028, Barcelona, Spain.
| | - Roberta Fraioli
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering, Universitat Politècnica de Catalunya (UPC), Diagonal 647, 08028, Barcelona, Spain
| | - Florian Rechenmacher
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Stefanie Neubauer
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Tobias G Kapp
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Horst Kessler
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
24
|
Mas-Moruno C, Fraioli R, Rechenmacher F, Neubauer S, Kapp TG, Kessler H. αvβ3- oder α5β1-Integrin-selektive Peptidmimetika für die Oberflächenbeschichtung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering; Universitat Politècnica de Catalunya (UPC); Diagonal 647 08028 Barcelona Spanien
| | - Roberta Fraioli
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering; Universitat Politècnica de Catalunya (UPC); Diagonal 647 08028 Barcelona Spanien
| | - Florian Rechenmacher
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Stefanie Neubauer
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Tobias G. Kapp
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Horst Kessler
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
25
|
Schaufler V, Czichos-Medda H, Hirschfeld-Warnecken V, Neubauer S, Rechenmacher F, Medda R, Kessler H, Geiger B, Spatz JP, Cavalcanti-Adam EA. Selective binding and lateral clustering of α5β1 and αvβ3 integrins: Unraveling the spatial requirements for cell spreading and focal adhesion assembly. Cell Adh Migr 2016; 10:505-515. [PMID: 27003228 PMCID: PMC5079398 DOI: 10.1080/19336918.2016.1163453] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Coordination of the specific functions of α5β1 and αvβ3 integrins is crucial for the precise regulation of cell adhesion, spreading and migration, yet the contribution of differential integrin-specific crosstalk to these processes remains unclear. To determine the specific functions of αvβ3 and α5β1 integrins, we used nanoarrays of gold particles presenting immobilized, integrin-selective peptidomimetic ligands. Integrin binding to the peptidomimetics is highly selective, and cells can spread on both ligands. However, spreading is faster and the projected cell area is greater on α5β1 ligand; both depend on ligand spacing. Quantitative analysis of adhesion plaques shows that focal adhesion size is increased in cells adhering to αvβ3 ligand at 30 and 60 nm spacings. Analysis of αvβ3 and α5β1 integrin clusters indicates that fibrillar adhesions are more prominent in cells adhering to α5β1 ligand, while clusters are mostly localized at the cell margins in cells adhering to αvβ3 ligand. αvβ3 integrin clusters are more pronounced on αvβ3 ligand, though they can also be detected in cells adhering to α5β1 ligand. Furthermore, α5β1 integrin clusters are present in cells adhering to α5β1 ligand, and often colocalize with αvβ3 clusters. Taken together, these findings indicate that the activation of αvβ3 integrin by ligand binding is dispensable for initial adhesion and spreading, but essential to formation of stable focal adhesions.
Collapse
Affiliation(s)
- Viktoria Schaufler
- a Department of New Materials and Biosystems , Max Planck Institute for Intelligent Systems , Stuttgart , Germany.,b Department of Biophysical Chemistry , Institute of Physical Chemistry, University of Heidelberg , Heidelberg , Germany
| | - Helmi Czichos-Medda
- a Department of New Materials and Biosystems , Max Planck Institute for Intelligent Systems , Stuttgart , Germany.,b Department of Biophysical Chemistry , Institute of Physical Chemistry, University of Heidelberg , Heidelberg , Germany
| | - Vera Hirschfeld-Warnecken
- a Department of New Materials and Biosystems , Max Planck Institute for Intelligent Systems , Stuttgart , Germany.,b Department of Biophysical Chemistry , Institute of Physical Chemistry, University of Heidelberg , Heidelberg , Germany
| | - Stefanie Neubauer
- c Institute for Advanced Study and Center for Integrated Protein Science , Department of Chemistry, Technical University Munich , Garching , Germany
| | - Florian Rechenmacher
- c Institute for Advanced Study and Center for Integrated Protein Science , Department of Chemistry, Technical University Munich , Garching , Germany
| | - Rebecca Medda
- a Department of New Materials and Biosystems , Max Planck Institute for Intelligent Systems , Stuttgart , Germany.,b Department of Biophysical Chemistry , Institute of Physical Chemistry, University of Heidelberg , Heidelberg , Germany
| | - Horst Kessler
- c Institute for Advanced Study and Center for Integrated Protein Science , Department of Chemistry, Technical University Munich , Garching , Germany
| | - Benjamin Geiger
- d Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot , Israel
| | - Joachim P Spatz
- a Department of New Materials and Biosystems , Max Planck Institute for Intelligent Systems , Stuttgart , Germany.,b Department of Biophysical Chemistry , Institute of Physical Chemistry, University of Heidelberg , Heidelberg , Germany
| | - E Ada Cavalcanti-Adam
- a Department of New Materials and Biosystems , Max Planck Institute for Intelligent Systems , Stuttgart , Germany.,b Department of Biophysical Chemistry , Institute of Physical Chemistry, University of Heidelberg , Heidelberg , Germany
| |
Collapse
|
26
|
Missirlis D, Haraszti T, Scheele CVC, Wiegand T, Diaz C, Neubauer S, Rechenmacher F, Kessler H, Spatz JP. Substrate engagement of integrins α5β1 and αvβ3 is necessary, but not sufficient, for high directional persistence in migration on fibronectin. Sci Rep 2016; 6:23258. [PMID: 26987342 PMCID: PMC4796868 DOI: 10.1038/srep23258] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/02/2016] [Indexed: 12/29/2022] Open
Abstract
The interplay between specific integrin-mediated matrix adhesion and directional persistence in cell migration is not well understood. Here, we characterized fibroblast adhesion and migration on the extracellular matrix glycoproteins fibronectin and vitronectin, focusing on the role of α5β1 and αvβ3 integrins. Fibroblasts manifested high directional persistence in migration on fibronectin-, but not vitronectin-coated substrates, in a ligand density-dependent manner. Fibronectin stimulated α5β1-dependent organization of the actin cytoskeleton into oriented, ventral stress fibers, and assembly of dynamic, polarized protrusions, characterized as regions free of stress fibers and rich in nascent adhesions at their edge. Such protrusions correlated with persistent, local leading edge advancement, but were not sufficient, nor necessary for directional migration over longer times. Selective blocking of αvβ3 or α5β1 integrins using small molecule integrin antagonists reduced directional persistence on fibronectin, indicating integrin cooperativity in maintaining directionality. On the other hand, patterned substrates, designed to selectively engage either integrin, or their combination, were not sufficient to establish directional migration. Overall, our study demonstrates adhesive coating-dependent regulation of directional persistence in fibroblast migration and challenges the generality of the previously suggested role of β1 and β3 integrins in directional migration.
Collapse
Affiliation(s)
- Dimitris Missirlis
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems &University of Heidelberg, Department of Biophysical Chemistry Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | - Tamás Haraszti
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems &University of Heidelberg, Department of Biophysical Chemistry Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | - Catharina v C Scheele
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems &University of Heidelberg, Department of Biophysical Chemistry Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | - Tina Wiegand
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems &University of Heidelberg, Department of Biophysical Chemistry Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | - Carolina Diaz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems &University of Heidelberg, Department of Biophysical Chemistry Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | - Stefanie Neubauer
- Institute for Advanced Study (IAS) and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study (IAS) and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Horst Kessler
- Institute for Advanced Study (IAS) and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Joachim P Spatz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems &University of Heidelberg, Department of Biophysical Chemistry Heisenbergstr. 3, D-70569 Stuttgart, Germany
| |
Collapse
|
27
|
Corvaglia V, Marega R, De Leo F, Michiels C, Bonifazi D. Unleashing Cancer Cells on Surfaces Exposing Motogenic IGDQ Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:321-329. [PMID: 26583377 DOI: 10.1002/smll.201501963] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Thiolated peptides bearing the Ile-Gly-Asp (IGD) motif, a highly conserved sequence of fibronectin, are used for the preparation of anisotropic self-assembled monolayers (SAM gradients) to study the whole-population migratory behavior of metastatic breast cancer cells (MDA-MB-231 cells). Ile-Gly-Asp-Gln-(IGDQ)-exposing SAMs sustain the adhesion of MDA-MB-231 cells by triggering focal adhesion kinase phosphorylation, similarly to the analogous Gly-Arg-Gly-Asp-(GRGD)-terminating surfaces. However, the biological responses of different cell lines interfaced with the SAM gradients show that only those exposing the IGDQ sequence induce significant migration of MDA-MB-231 cells. In particular, the observed migratory behavior suggests the presence of cell subpopulations associated with a "stationary" or a "migratory" phenotype, the latter determining a considerable cell migration at the sub-cm length scale. These findings are of great importance as they suggest for the first time an active role of biological surfaces exposing the IGD motif in the multicomponent orchestration of cellular signaling involved in the metastatic progression.
Collapse
Affiliation(s)
- Valentina Corvaglia
- Namur Research College (NARC) and Department of Chemistry, University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, P.le Europa 1, 34127, Trieste, Italy
| | - Riccardo Marega
- Namur Research College (NARC) and Department of Chemistry, University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Federica De Leo
- Namur Research College (NARC) and Department of Chemistry, University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Carine Michiels
- Cellular Biology Research Unit-NARILIS, University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Davide Bonifazi
- Namur Research College (NARC) and Department of Chemistry, University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, P.le Europa 1, 34127, Trieste, Italy
| |
Collapse
|