1
|
Qin J, Tang Y, Zeng Y, Liu X, Tang D. Recent advances in flexible sensors: From sensing materials to detection modes. Trends Analyt Chem 2024; 181:118027. [DOI: 10.1016/j.trac.2024.118027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
|
2
|
Park WY, Han J, Moon J, Joo SH, Wada T, Ichikawa Y, Ogawa K, Kim HS, Chen M, Kato H. Mechanically Robust Self-Organized Crack-Free Nanocellular Graphene with Outstanding Electrochemical Properties in Sodium Ion Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311792. [PMID: 38336362 DOI: 10.1002/adma.202311792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Crack-free nanocellular graphenes are attractive materials with extraordinary mechanical and electrochemical properties, but their homogeneous synthesis on the centimeter scale is challenging. Here, a strong nanocellular graphene film achieved by the self-organization of carbon atoms using liquid metal dealloying and employing a defect-free amorphous precursor is reported. This study demonstrates that a Bi melt strongly catalyzes the self-structuring of graphene layers at low processing temperatures. The robust nanoarchitectured graphene displays a high-genus seamless framework and exhibits remarkable tensile strength (34.8 MPa) and high electrical conductivity (1.6 × 104 S m-1). This unique material has excellent potential for flexible and high-rate sodium-ion battery applications.
Collapse
Affiliation(s)
- Wong-Young Park
- Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai, 980-8577, Japan
| | - Jiuhui Han
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, 391 Binshui West Road, Tianjin, 300384, China
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Jongun Moon
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang, 37673, Republic of Korea
- Division of Advanced Materials Engineering, Center for Advanced Powder Materials and Parts, Kongju National University, 1223-24 Cheonan-daero, Cheonan, 31080, Republic of Korea
| | - Soo-Hyun Joo
- Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai, 980-8577, Japan
- Department of Materials Science and Engineering, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea
| | - Takeshi Wada
- Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai, 980-8577, Japan
| | - Yuji Ichikawa
- Fracture and Reliability Research Institute (FRI), Tohoku University, 6-6-11 Aoba, Sendai, 980-8579, Japan
| | - Kazuhiro Ogawa
- Fracture and Reliability Research Institute (FRI), Tohoku University, 6-6-11 Aoba, Sendai, 980-8579, Japan
| | - Hyoung Seop Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang, 37673, Republic of Korea
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Sendai, 980-8577, Japan
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Yonsei-ro 50, Seoul, 03722, Republic of Korea
| | - Mingwei Chen
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218-2681, USA
| | - Hidemi Kato
- Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai, 980-8577, Japan
| |
Collapse
|
3
|
Peng Y, Hu J, Huan Y, Zhang Y. Chemical vapor deposition growth of graphene and other nanomaterials with 3D architectures towards electrocatalysis and secondary battery-related applications. NANOSCALE 2024; 16:7734-7751. [PMID: 38563120 DOI: 10.1039/d3nr06143d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Recently, two-dimensional (2D) layered materials, such as graphene and transition metal dichalcogenides (TMDCs), have garnered a lot of attention in energy storage/conversion-related fields due to their novel physical and chemical properties. Constructing flat graphene and TMDCs nanosheets into 3D architectures can significantly increase their exposed surface area and prevent the restacking of adjacent 2D layers, thus dramatically promoting their applications in various energy-related fields. Chemical Vapor Deposition (CVD) is a low-cost, facile, and scalable method, which has been widely employed to produce high-quality graphene and TMDCs nanosheets with 3D architectures. During the CVD process, the morphologies and properties of the 3D architectures of such 2D materials can be designed by selecting substrates with different compositions, stacking geometries, and micro-structures. In this review, we focus on the recent advances in the CVD synthesis of graphene, TMDCs, and their hybrids with 3D architectures on different 3D-structured substrates, as well as their applications in the electrocatalytic hydrogen evolution reaction (HER) and various secondary batteries. In addition, the challenges and future prospects for the CVD synthesis and energy-related applications of these unique layered materials will also be discussed.
Collapse
Affiliation(s)
- You Peng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Jingyi Hu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Yahuan Huan
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
4
|
Cheng X, Chang X, Zhang X, Dai J, Fong H, Yu J, Liu YT, Ding B. Way to a Library of Ti-Series Oxide Nanofiber Sponges that are Highly Stretchable, Compressible, and Bendable. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307690. [PMID: 38145556 DOI: 10.1002/adma.202307690] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/12/2023] [Indexed: 12/27/2023]
Abstract
Ti-series oxide ceramics in the form of aerogels, such as TiO2, SrTiO3, BaTiO3, and CaCu3Ti4O12, hold tremendous potential as functional materials owing to their excellent optical, dielectric, and catalytic properties. Unfortunately, these inorganic aerogels are usually brittle and prone to pulverization owing to weak inter-particulate interactions, resulting in restricted application performance and serious health risks. Herein, a novel strategy is reported to synthesize an elastic form of an aerogel-like, highly porous structure, in which activity-switchable Ti-series oxide sols transform from the metastable state to the active state during electrospinning, resulting in condensation and solidification at the whipping stage to obtain curled nanofibers. These curled nanofibers are further entangled when flying in the air to form a physically interlocked, elastic network mimicking the microstructure of high-elasticity hydrogels. This strategy provides a library of Ti-series oxide nanofiber sponges with unprecedented stretchability, compressibility, and bendability, possessing extensive opportunities for greener, safer, and broader applications as integrated or wearable functional devices. As a proof-of-concept demonstration, a new, elastic form of TiO2, composed of both "white" and "black" TiO2 nanofiber sponges, is constructed as spontaneous air-conditioning textiles in smart clothing, buildings, and vehicles, with unique bidirectional regulation of radiative cooling in summer and solar heating in winter.
Collapse
Affiliation(s)
- Xiaota Cheng
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xinyi Chang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xinxin Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jin Dai
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Hao Fong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yi-Tao Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
5
|
Ma J, Yan R, Wo X, Cao Y, Yu X, Li A, Huang J, Li F, Luo L, Zhang Q. Synthesis of Superelastic, Highly Conductive Graphene Aerogel/Liquid Metal Foam and its Piezoresistive Application. Chemistry 2024; 30:e202303594. [PMID: 38278765 DOI: 10.1002/chem.202303594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 01/28/2024]
Abstract
Graphene aerogel (GA) has important application potential as piezoresistive sensors due to its low density, high conductivity, high porosity, and good mechanical properties. However, the fabrication of GA-based sensors with good mechanical properties and excellent sensing performance is still challenging. Herein, liquid- metal-modified GAs (GA/LM) are proposed for the development of an excellent GA-based sensor. GA/LM with three-dimensional interconnected layered structure exhibits excellent compressive stress of 41 KPa and fast response time (<20 ms). While generally flexible GA composites cannot be compressed beyond 80 % strain without plastic deformation, GA/LM demonstrates a high compressive strength of 60 kPa under a strain of 90 %. A real-time pressure sensor was fabricated based on GA/LM-2 to monitor swallowing, pulse beating, finger, wrist and knee bending, and even plantar pressure during walking. These excellent features enable potential applications in health detection.
Collapse
Affiliation(s)
- Jinlong Ma
- School of Materials Science and Engineering, Shanghai University, 200436, Shanghai, PR China
- Shaoxing Institute of Technology, Shanghai University, 312000, Shaoxing, PR China
| | - Rui Yan
- School of Materials Science and Engineering, Shanghai University, 200436, Shanghai, PR China
| | - Xiaoye Wo
- School of Materials Science and Engineering, Shanghai University, 200436, Shanghai, PR China
| | - Yanpeng Cao
- School of Materials Science and Engineering, Shanghai University, 200436, Shanghai, PR China
- Shaoxing Institute of Technology, Shanghai University, 312000, Shaoxing, PR China
| | - Xiao Yu
- School of Materials Science and Engineering, Shanghai University, 200436, Shanghai, PR China
- Shaoxing Institute of Technology, Shanghai University, 312000, Shaoxing, PR China
| | - Aijun Li
- School of Materials Science and Engineering, Shanghai University, 200436, Shanghai, PR China
- Shaoxing Institute of Technology, Shanghai University, 312000, Shaoxing, PR China
- Zhejiang Institute of Advanced Materials, Shanghai University, 314113, Jiashan, PR China
| | - Jian Huang
- School of Materials Science and Engineering, Shanghai University, 200436, Shanghai, PR China
- Shaoxing Institute of Technology, Shanghai University, 312000, Shaoxing, PR China
- Zhejiang Institute of Advanced Materials, Shanghai University, 314113, Jiashan, PR China
| | - Fenghua Li
- Shaoxing Institute of Technology, Shanghai University, 312000, Shaoxing, PR China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, Jilin, China
| | - Liqiang Luo
- School of Materials Science and Engineering, Shanghai University, 200436, Shanghai, PR China
- Shaoxing Institute of Technology, Shanghai University, 312000, Shaoxing, PR China
| | - Qixian Zhang
- School of Materials Science and Engineering, Shanghai University, 200436, Shanghai, PR China
- Shaoxing Institute of Technology, Shanghai University, 312000, Shaoxing, PR China
- Zhejiang Institute of Advanced Materials, Shanghai University, 314113, Jiashan, PR China
| |
Collapse
|
6
|
Du J, Fu G, Xu X, Elshahawy AM, Guan C. 3D Printed Graphene-Based Metamaterials: Guesting Multi-Functionality in One Gain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207833. [PMID: 36760019 DOI: 10.1002/smll.202207833] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Indexed: 05/11/2023]
Abstract
Advanced functional materials with fascinating properties and extended structural design have greatly broadened their applications. Metamaterials, exhibiting unprecedented physical properties (mechanical, electromagnetic, acoustic, etc.), are considered frontiers of physics, material science, and engineering. With the emerging 3D printing technology, the manufacturing of metamaterials becomes much more convenient. Graphene, due to its superior properties such as large surface area, superior electrical/thermal conductivity, and outstanding mechanical properties, shows promising applications to add multi-functionality into existing metamaterials for various applications. In this review, the aim is to outline the latest developments and applications of 3D printed graphene-based metamaterials. The structure design of different types of metamaterials and the fabrication strategies for 3D printed graphene-based materials are first reviewed. Then the representative explorations of 3D printed graphene-based metamaterials and multi-functionality that can be introduced with such a combination are further discussed. Subsequently, challenges and opportunities are provided, seeking to point out future directions of 3D printed graphene-based metamaterials.
Collapse
Affiliation(s)
- Junjie Du
- Frontiers Science Center for Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Gangwen Fu
- Frontiers Science Center for Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Xi Xu
- Frontiers Science Center for Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | | | - Cao Guan
- Frontiers Science Center for Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
7
|
Liu S, Lyu M, Yang C, Jiang M, Wang C. Study of Viscoelastic Properties of Graphene Foams Using Dynamic Mechanical Analysis and Coarse-Grained Molecular Dynamics Simulations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2457. [PMID: 36984337 PMCID: PMC10052074 DOI: 10.3390/ma16062457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
As a promising nano-porous material for energy dissipation, the viscoelastic properties of three-dimensional (3D) graphene foams (GrFs) are investigated by combining a dynamic mechanical analysis (DMA) and coarse-grained molecular dynamic (CGMD) simulations. The effects of the different factors, such as the density of the GrFs, temperature, loading frequency, oscillatory amplitude, the pre-strain on the storage and loss modulus of the GrFs as well as the micro-mechanical mechanisms are mainly focused upon. Not only the storage modulus but also the loss modulus are found to be independent of the temperature and the frequency. The storage modulus can be weakened slightly by bond-breaking with an increasing loading amplitude. Furthermore, the tensile/compressive pre-strain and density of the GrFs can be used to effectively tune the viscoelastic properties of the GrFs. These results should be helpful not only for understanding the mechanical mechanism of GrFs but also for optimal designs of advanced damping materials.
Collapse
Affiliation(s)
- Shenggui Liu
- School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Mindong Lyu
- School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Cheng Yang
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minqiang Jiang
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Wang
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Jovanovic JD, Blagojevic SN, Adnadjevic BK. The Effects of rGO Content and Drying Method on the Textural, Mechanical, and Thermal Properties of rGO/Polymer Composites. Polymers (Basel) 2023; 15:polym15051287. [PMID: 36904528 PMCID: PMC10007388 DOI: 10.3390/polym15051287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
Composite hydrogels samples consisting of poly(methyl methacrylate/butyl acrylate/2-hydroxyethylmethacrylate) (poly-OH) and up to 60% reduced graphene oxide (rGO) containing rGO were synthesized. The method of coupled thermally induced self-assembly of graphene oxide (GO) platelets within a polymer matrix and in situ chemical reduction of GO was applied. The synthesized hydrogels were dried using the ambient pressure drying (APD) and freeze-drying (FD) methods. The effects of the weight fraction of rGO in the composites and the drying method on the textural, morphological, thermal, and rheological properties were examined for the dried samples. The obtained results indicate that APD leads to the formation of non-porous xerogels (X) of high bulk density (D), while FD results in the formation of highly porous aerogels (A) with low D. An increase in the weight fraction of rGO in the composite xerogels leads to an increase in D, specific surface area (SA), pore volume (Vp), average pore diameter (dp), and porosity (P). With an increase in the weight fraction of rGO in A-composites, the D values increase while the values of SP, Vp, dp, and P decrease. Thermo-degradation (TD) of both X and A composites takes place through three distinct steps: dehydration, decomposition of residual oxygen functional group, and polymer chain degradation. The thermal stabilities (TS) of the X-composites and X-rGO are higher than those of the A-composites and A-rGO. The values of the storage modulus (E') and the loss modulus (E") of the A-composites increase with the increase in their weight fraction of rGO.
Collapse
Affiliation(s)
- Jelena D. Jovanovic
- Institute of General and Physical Chemistry, Studentski Trg 12-16/V, 11158 Belgrade, Serbia
- Correspondence: or
| | - Stevan N. Blagojevic
- Institute of General and Physical Chemistry, Studentski Trg 12-16/V, 11158 Belgrade, Serbia
| | - Borivoj K. Adnadjevic
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
9
|
Liu F, Gao Y, Wang G, Wang D, Wang Y, He M, Ding X, Duan H, Luo S. Laser-Induced Graphene Enabled Additive Manufacturing of Multifunctional 3D Architectures with Freeform Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204990. [PMID: 36437047 PMCID: PMC9896062 DOI: 10.1002/advs.202204990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Indexed: 06/16/2023]
Abstract
3D printing has become an important strategy for constructing graphene smart structures with arbitrary shapes and complexities. Compared with graphene oxide ink/gel/resin based manners, laser-induced graphene (LIG) is unique for facile and scalable assembly of 1D and 2D structures but still faces size and shape obstacles for constructing 3D macrostructures. In this work, a brand-new LIG based additive manufacturing (LIG-AM) protocol is developed to form bulk 3D graphene with freeform structures without introducing extra binders, templates, and catalysts. On the basis of selective laser sintering, LIG-AM creatively irradiates polyimide (PI) powder-bed for triggering both particle-sintering and graphene-converting processes layer-by-layer, which is unique for assembling varied types of graphene architectures including identical-section, variable-section, and graphene/PI hybrid structures. In addition to exploring combined graphitizing and fusing discipline, processing efficiency and assembling resolution of LIG-AM are also balanceable through synergistic control of lasing power and powder-feeding thickness. By further studying various process dependent properties, a LIG-AM enabled aircraft-wing section model is finally printed to comprehensively demonstrate its shiftable process, hybridizable structure, and multifunctional performance including force-sensing, anti-icing/deicing, and microwave shielding and absorption.
Collapse
Affiliation(s)
- Fu Liu
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Yan Gao
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Guantao Wang
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Dan Wang
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Yanan Wang
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Meihong He
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Xilun Ding
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Haibin Duan
- School of Automation Science and Electrical EngineeringBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Sida Luo
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| |
Collapse
|
10
|
Qiao J, Qiao W, Gao H, Yang J, Li Z, Wang P, Cao C, Zhang J, Tang C, Xue Y. Highly Multifunctional Performances of Boron Nitride Nanosheets/Polydimethylsiloxane Composite Foams. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5760-5773. [PMID: 36649561 DOI: 10.1021/acsami.2c18188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although this kind of hexagonal boron nitride (h-BN)-filled polydimethylsiloxane (PDMS) multifunctional composite foam has been greatly expected, its development is still relatively slow as a result of the limitation of synthetic challenge. In this work, a new foaming process of BNNSs-PDMS, alcohol, and water three-phase emulsion system is employed to synthesize a series of high-quality BNNSs/PDMS composite foams (BSFs) filled with highly functional and uniformly distributed BNNSs. As a result of well-bonded interfaces between the BNNSs and PDMS, enhanced multiple functions of BSFs appeared. The BSFs can show complete resilience at a compressive strain of 90% and only 3.99% irreversible deformation after 100,000 compressing-releasing hyperelastic cycles at a strain of 60%. On the basis of their outstanding shape-memory properties, the maximum voltage value of compression-driven piezo-triboelectric (CDPT) responses of the BSFs is up to ∼20 V. Depending on the remarkable super-elastic and CDPT performances, the BSFs can be used for sensitive sensing of temperature difference and electromechanical responses. Also, in the range of 12-40 GHz, the BSF materials display ultralow dielectric constants between 1.1 and 1.4 with proper dielectric loss tangent values of <0.3 and exhibit an enhanced and broadened sound adsorption capacity ranging from 500 to 6500 Hz. Although BSFs have high porosities of >65%, their thermal conductivities can still reach up to 0.407 ± 0.039 W m-1 K-1. Moreover, the BSF materials display favorable thermal stability, obviously reduced coefficient of thermal expansion, and good flame retardancy. All of these properties render the BSFs as a new category of excellent multifunctional material.
Collapse
Affiliation(s)
- Jiaxiao Qiao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Boron Nitride Micro- and Nano-Materials, Hebei University of Technology, Tianjin 300130, China
| | - Wei Qiao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Boron Nitride Micro- and Nano-Materials, Hebei University of Technology, Tianjin 300130, China
| | - Hejun Gao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Boron Nitride Micro- and Nano-Materials, Hebei University of Technology, Tianjin 300130, China
| | - JingWen Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Boron Nitride Micro- and Nano-Materials, Hebei University of Technology, Tianjin 300130, China
| | - Zexia Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Boron Nitride Micro- and Nano-Materials, Hebei University of Technology, Tianjin 300130, China
| | - Peng Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Boron Nitride Micro- and Nano-Materials, Hebei University of Technology, Tianjin 300130, China
| | - Chaochao Cao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Boron Nitride Micro- and Nano-Materials, Hebei University of Technology, Tianjin 300130, China
| | - Jun Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Boron Nitride Micro- and Nano-Materials, Hebei University of Technology, Tianjin 300130, China
| | - Chengchun Tang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Boron Nitride Micro- and Nano-Materials, Hebei University of Technology, Tianjin 300130, China
| | - Yanming Xue
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Boron Nitride Micro- and Nano-Materials, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
11
|
Wu S, Li H, Futaba DN, Chen G, Chen C, Zhou K, Zhang Q, Li M, Ye Z, Xu M. Structural Design and Fabrication of Multifunctional Nanocarbon Materials for Extreme Environmental Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201046. [PMID: 35560664 DOI: 10.1002/adma.202201046] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Extreme environments represent numerous harsh environmental conditions, such as temperature, pressure, corrosion, and radiation. The tolerance of applications in extreme environments exemplifies significant challenges to both materials and their structures. Given the superior mechanical strength, electrical conductivity, thermal stability, and chemical stability of nanocarbon materials, such as carbon nanotubes (CNTs) and graphene, they are widely investigated as base materials for extreme environmental applications and have shown numerous breakthroughs in the fields of wide-temperature structural-material construction, low-temperature energy storage, underwater sensing, and electronics operated at high temperatures. Here, the critical aspects of structural design and fabrication of nanocarbon materials for extreme environments are reviewed, including a description of the underlying mechanism supporting the performance of nanocarbon materials against extreme environments, the principles of structural design of nanocarbon materials for the optimization of extreme environmental performances, and the fabrication processes developed for the realization of specific extreme environmental applications. Finally, perspectives on how CNTs and graphene can further contribute to the development of extreme environmental applications are presented.
Collapse
Affiliation(s)
- Sijia Wu
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huajian Li
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Don N Futaba
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
| | - Guohai Chen
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
| | - Chen Chen
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kechen Zhou
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qifan Zhang
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Miao Li
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zonglin Ye
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming Xu
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
12
|
Li Y, Tian B, Xiao R, Li X, Liu Y, Ye Q, Zhu N, Peng K, Chen X, Wu B, Zhang R, Liang H. Paenibacillus mucilaginosus LT1906 exopolysaccharide-based composite aerogel for flexible strain sensor. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Lu F, Kong W, Su K, Xia P, Xue Y, Zeng X, Wang X, Zhou M. Activating the pseudocapacitance of multiple-doped carbon foam via long-term charge-discharge circulation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Wu M, Geng H, Hu Y, Ma H, Yang C, Chen H, Wen Y, Cheng H, Li C, Liu F, Jiang L, Qu L. Superelastic graphene aerogel-based metamaterials. Nat Commun 2022; 13:4561. [PMID: 35931668 PMCID: PMC9355988 DOI: 10.1038/s41467-022-32200-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Ultralight, ultrastrong, and supertough graphene aerogel metamaterials combining with multi-functionalities are promising for future military and domestic applications. However, the unsatisfactory mechanical performances and lack of the multiscale structural regulation still impede the development of graphene aerogels. Herein, we demonstrate a laser-engraving strategy toward graphene meta-aerogels (GmAs) with unusual characters. As the prerequisite, the nanofiber-reinforced networks convert the graphene walls’ deformation from the microscopic buckling to the bulk deformation during the compression process, ensuring the highly elastic, robust, and stiff nature. Accordingly, laser-engraving enables arbitrary regulation on the macro-configurations of GmAs with rich geometries and appealing characteristics such as large stretchability of 5400% reversible elongation, ultralight specific weight as small as 0.1 mg cm−3, and ultrawide Poisson’s ratio range from −0.95 to 1.64. Additionally, incorporating specific components into the pre-designed meta-structures could further achieve diversified functionalities. Graphene aerogels are highly porous and have very low density; despite this they also exhibit high mechanical strength. Here the authors present a laser-engraving strategy for producing graphene meta-aerogels with different configurations and properties.
Collapse
Affiliation(s)
- Mingmao Wu
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, China.,Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Hongya Geng
- Department of Materials Imperial College London Prince Consort Road, London, SW7 2AZ, UK
| | - Yajie Hu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Hongyun Ma
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Ce Yang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Hongwu Chen
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Yeye Wen
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Chun Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Feng Liu
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Lan Jiang
- Laser Micro-/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 100081, Beijing, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China. .,State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, P. R. China.
| |
Collapse
|
15
|
Zhao HY, Yu MY, Liu J, Li X, Min P, Yu ZZ. Efficient Preconstruction of Three-Dimensional Graphene Networks for Thermally Conductive Polymer Composites. NANO-MICRO LETTERS 2022; 14:129. [PMID: 35699797 PMCID: PMC9198159 DOI: 10.1007/s40820-022-00878-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/13/2022] [Indexed: 06/02/2023]
Abstract
Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation. Featured by its exceptional thermal conductivity, graphene is an ideal functional filler for fabricating thermally conductive polymer composites to provide efficient thermal management. Extensive studies have been focusing on constructing graphene networks in polymer composites to achieve high thermal conductivities. Compared with conventional composite fabrications by directly mixing graphene with polymers, preconstruction of three-dimensional graphene networks followed by backfilling polymers represents a promising way to produce composites with higher performances, enabling high manufacturing flexibility and controllability. In this review, we first summarize the factors that affect thermal conductivity of graphene composites and strategies for fabricating highly thermally conductive graphene/polymer composites. Subsequently, we give the reasoning behind using preconstructed three-dimensional graphene networks for fabricating thermally conductive polymer composites and highlight their potential applications. Finally, our insight into the existing bottlenecks and opportunities is provided for developing preconstructed porous architectures of graphene and their thermally conductive composites.
Collapse
Affiliation(s)
- Hao-Yu Zhao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Ming-Yuan Yu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Ji Liu
- School of Chemistry, CRANN and AMBER, Trinity College Dublin, Dublin, Ireland.
| | - Xiaofeng Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Peng Min
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
16
|
Banciu CA, Nastase F, Istrate AI, Veca LM. 3D Graphene Foam by Chemical Vapor Deposition: Synthesis, Properties, and Energy-Related Applications. Molecules 2022; 27:molecules27113634. [PMID: 35684569 PMCID: PMC9181857 DOI: 10.3390/molecules27113634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
In this review, we highlight recent advancements in 3D graphene foam synthesis by template-assisted chemical vapor deposition, as well as their potential energy storage and conversion applications. This method offers good control of the number of graphene layers and porosity, as well as continuous connection of the graphene sheets. The review covers all the substrate types, catalysts, and precursors used to synthesize 3D graphene by the CVD method, as well as their most viable energy-related applications.
Collapse
Affiliation(s)
- Cristina Antonela Banciu
- National Institute for Research and Development in Electrical Engineering ICPE-CA Bucharest, 313 Splaiul Unirii, 030138 Bucharest, Romania;
| | - Florin Nastase
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 126 A Erou Iancu Nicolae, 077190 Voluntari, Romania; (F.N.); (A.-I.I.)
| | - Anca-Ionela Istrate
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 126 A Erou Iancu Nicolae, 077190 Voluntari, Romania; (F.N.); (A.-I.I.)
| | - Lucia Monica Veca
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 126 A Erou Iancu Nicolae, 077190 Voluntari, Romania; (F.N.); (A.-I.I.)
- Correspondence:
| |
Collapse
|
17
|
Zou Y, Chen Z, Guo X, Peng Z, Yu C, Zhong W. Mechanically Robust and Elastic Graphene/Aramid Nanofiber/Polyaniline Nanotube Aerogels for Pressure Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17858-17868. [PMID: 35390255 DOI: 10.1021/acsami.2c02538] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The preparation of graphene-based aerogels with excellent mechanical strength, elasticity, and compressibility is still a challenge. Herein, we demonstrate a robust, elastic, and lightweight graphene/aramid nanofiber/polyaniline nanotube (rGO/ANF/PANIT) aerogel that is prepared by mixing graphene oxide (GO), ANF, and PANIT dispersions, followed by thermal treatment at 90 °C, freeze-drying, and a low-temperature annealing process. The PANIT bonds the graphene sheets tightly, benefitting the formation of composite gels. The ANF tightly interconnects the graphene sheets and further reinforces the composite network framework significantly, hence endowing rGO/ANF/PANIT composite aerogels with robust mechanical property. The prepared aerogels present a low density of ∼12 mg cm-3, high conductivity, good resilience, and high compressibility. The rGO/ANF/PANIT aerogels as pressure sensors exhibit a high sensitivity of 1.73 kPa-1, low detection limit (40 Pa), wide detection range, and excellent compressive cycle stability, highlighting the promising applications in pressure-sensitive electrical devices, including medical health detection, wearable electronics, and intelligent packaging fields.
Collapse
Affiliation(s)
- Yubo Zou
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Zeyu Chen
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xu Guo
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhiyuan Peng
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chuying Yu
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wenbin Zhong
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
18
|
Ding M, Li C. Recent Advances in Simple Preparation of 3D Graphene Aerogels Based on 2D Graphene Materials. Front Chem 2022; 10:815463. [PMID: 35155367 PMCID: PMC8825482 DOI: 10.3389/fchem.2022.815463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 12/02/2022] Open
Abstract
Recently, 3D graphene aerogels (3GAs) with high electrical conductivity, excellent mechanical properties, and fast mass and electron transport have attracted increasing attention and shown wide applications (such as flexible electronics devices, sensors, absorbents, catalysis, energy storage devices, solar steam generation devices, and so on). The drying process becomes an important factor limiting the large-scale preparation of 3GAs. Therefore, how to simplify the preparation process plays an important role in the large-scale application of 3GAs. In this study, we summarize the recent progresses of 3GAs by different drying methods and focus on the effect of robust graphene network on the simple preparation of 3GAs. Besides, the design and synthesis strategies of 3GAs with robust graphene network structures have been systematically discussed. Finally, the emerging challenges and prospective for developing simple preparation and functionalization of 3GAs were outlined. It is expected that our study will lay a foundation for large-scale preparation and application of 3GAs and inspire more new ideas in this field.
Collapse
Affiliation(s)
- Meichun Ding
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chenwei Li
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Chenwei Li,
| |
Collapse
|
19
|
Li H, Liu T, He Y, Song J, Meng A, Sun C, Hu M, Wang L, Li G, Zhang Z, Liu Y, Zhao J, Li Z. Interfacial Engineering and a Low-Crystalline Strategy for High-Performance Supercapacitor Negative Electrodes: Fe 2P 2O 7 Nanoplates Anchored on N/P Co-doped Graphene Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3363-3373. [PMID: 34985247 DOI: 10.1021/acsami.1c17356] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing novel hybrid negative electrode materials with high specific capacity, rate capacitance, and long-term cycle stability is a key factor for pushing large-scale application of supercapacitors. However, construction of robust interfaces and low-crystalline active materials plays a crucial role in realizing the target. In this paper, a one-step phosphorization approach was employed to make low-crystalline Fe2P2O7 nanoplates closely bonded to N/P-co-doped graphene nanotubes (N/P-GNTs@b-Fe2P2O7) through interfacial chemical bonding. The N and P heteroatoms as substitutions for C in GNT skeletons can introduce rich electronic centers, which induces Fe2P2O7 to fix the surface of N/P-GNTs through Fe-N and Fe-P bonds as confirmed by the characterizations. Moreover, the low-crystalline active materials own a disordered internal structure and numerous defects, which not only endows with excellent conductivity but also provides many active sites for redox reactions. Benefiting from the synergistic effects, the prepared N/P-GNTs@b-Fe2P2O7 can not only deliver a high capacity of 257 mA h g-1 (927 F g-1) at 1 A g-1 but also present an excellent rate capability of 184 mA h g-1 (665 F g-1) at 50 A g-1 and outstanding cycle stability (∼90.6% capacity retention over 40,000 cycles). Furthermore, an asymmetric supercapacitor was assembled using the obtained N/P-GNTs@b-Fe2P2O7 as electrode materials, which can present the energy density as high as 83.3 W h kg-1 at 791 W kg-1 and long-term durability. Therefore, this strategy not only offers an effective pathway for achieving high-performance negative electrode materials but also lays a foundation for further industrialization.
Collapse
Affiliation(s)
- Huanyu Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Ting Liu
- Key Laboratory of Polymer Material Advanced Manufacturing Technology of Shandong Provincial, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, P. R. China
| | - Yinna He
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Jiangnan Song
- Key Laboratory of Polymer Material Advanced Manufacturing Technology of Shandong Provincial, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, P. R. China
| | - Alan Meng
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Changlong Sun
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Minmin Hu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Guicun Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Zhenhui Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Yuan Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Jian Zhao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
- Lucida Machinery Co., Ltd., Binzhou 256600, Shandong, P. R. China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| |
Collapse
|
20
|
Gao HL, Wang ZY, Cui C, Bao JZ, Zhu YB, Xia J, Wen SM, Wu HA, Yu SH. A Highly Compressible and Stretchable Carbon Spring for Smart Vibration and Magnetism Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102724. [PMID: 34387379 DOI: 10.1002/adma.202102724] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Porous carbon materials demonstrate extensive applications for their attractive characteristics. Mechanical flexibility is an essential property guaranteeing their durability. After decades of research efforts, compressive brittleness of porous carbon materials is well resolved. However, reversible stretchability remains challenging to achieve due to the intrinsically weak connections and fragile joints of the porous carbon networks. Herein, it is presented that a porous all-carbon material achieving both elastic compressibility and stretchability at large strain from -80% to 80% can be obtained when a unique long-range lamellar multi-arch microstructure is introduced. Impressively, the porous all-carbon material can maintain reliable structural robustness and durability under loading condition of cyclic compressing-stretching process, similar to a real metallic spring. The unique performance renders it as a promising platform for making smart vibration and magnetism sensors, even capable of operating at extreme temperatures. Furthermore, this study provides valuable insights for creating highly stretchable and compressible porous materials from other neat inorganic components for diverse applications in future.
Collapse
Affiliation(s)
- Huai-Ling Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Ze-Yu Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Cui
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Jia-Zheng Bao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Yin-Bo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shao-Meng Wen
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
21
|
Liu S, Lyu M, Wang C. Mechanical Properties and Deformation Mechanisms of Graphene Foams with Bi-Modal Sheet Thickness by Coarse-Grained Molecular Dynamics Simulations. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5622. [PMID: 34640013 PMCID: PMC8509715 DOI: 10.3390/ma14195622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
Graphene foams (GrFs) have been widely used as structural and/or functional materials in many practical applications. They are always assembled by thin and thick graphene sheets with multiple thicknesses; however, the effect of this basic structural feature has been poorly understood by existing theoretical models. Here, we propose a coarse-grained bi-modal GrF model composed of a mixture of 1-layer flexible and 8-layer stiff sheets to study the mechanical properties and deformation mechanisms based on the mesoscopic model of graphene sheets (Model. Simul. Mater. Sci. Eng. 2011, 19, 54003). It is found that the modulus increases almost linearly with an increased proportion of 8-layer sheets, which is well explained by the mixture rule; the strength decreases first and reaches the minimum value at a critical proportion of stiff sheets ~30%, which is well explained by the analysis of structural connectivity and deformation energy of bi-modal GrFs. Furthermore, high-stress regions are mainly dispersed in thick sheets, while large-strain areas mainly locate in thin ones. Both of them have a highly uneven distribution in GrFs due to the intrinsic heterogeneity in both structures and the mechanical properties of sheets. Moreover, the elastic recovery ability of GrFs can be enhanced by adding more thick sheets. These results should be helpful for us to understand and further guide the design of advanced GrF-based materials.
Collapse
Affiliation(s)
- Shenggui Liu
- School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China; (S.L.); (M.L.)
| | - Mindong Lyu
- School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China; (S.L.); (M.L.)
| | - Chao Wang
- LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Lv P, Cheng H, Ji C, Wei W. Graphitized-rGO/Polyimide Aerogel as the Compressible Thermal Interface Material with Both High In-Plane and Through-Plane Thermal Conductivities. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2350. [PMID: 33946600 PMCID: PMC8125293 DOI: 10.3390/ma14092350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/02/2022]
Abstract
Reduced graphene oxide (rGO) aerogels with a three-dimensional (3D) interconnected network provides continuous heat transport paths in multi-directions. However, the high porosity of rGO aerogels commonly leads to very low thermal conductivity (TC), and defects and grain boundaries of rGO sheets result in a high extent of phonon scattering, which is far from satisfying the requirement of thermal interface materials (TIMs). Here, a compressible graphitized-rGO/polyimide (g-rGO/PI) aerogel was prepared by the ice-template method and "molecular welding" strategy. The regular cellular structure and closely packed cell walls bring the g-rGO/PI aerogel high compressibility, which made the aerogel can maintain the continuous thermal transport paths well even in highly compacted status. The rGO sheets in the cell wall surface are welded up by g-PI during imidization and graphitization treatment, providing efficient channels for phonon transportation in the 3D network. The g-rGO/PI aerogel in a compressive strain of 95% has a high TC in the plane of 172.5 W m-1k-1 and a high TC through the plane of 58.1 W m-1k-1, which is superior to other carbon-based TIMs previously reported.
Collapse
Affiliation(s)
- Peng Lv
- Department of Optoelectronic Information Science and Engineering, College of Electronic and Opitical Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (H.C.); (C.J.); (W.W.)
| | | | | | | |
Collapse
|
23
|
Dong J, Zeng J, Wang B, Cheng Z, Xu J, Gao W, Chen K. Mechanically Flexible Carbon Aerogel with Wavy Layers and Springboard Elastic Supporting Structure for Selective Oil/Organic Solvent Recovery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15910-15924. [PMID: 33779136 DOI: 10.1021/acsami.1c02394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Even though compressible carbon aerogels are widely studied for oil/organic solvent recovery, it is challenging to simultaneously achieve excellent mechanical performance and recovery efficiency due to the brittleness of the carbon skeleton. Here a novel strategy is proposed to efficiently fabricate a 3D elastic reduced graphene oxide (RGO)-cross-linked carbon aerogel. Notably, cellulose nanocrystals (CNCs) isolated from plant pulp act as an essential component, and prehydrolysis liquor (PHL), an industrial byproduct in the plant pulping process, serves as the adhesion promoter to achieve enhancement of the strength and flexibility of the carbon aerogel. For the first time, all components (pulp and PHL) of the tree were fully exploited to design a carbon aerogel. The formation of wavy carbon layers with springboard elastic supporting microstructure enables mechanical stretch and shrink as well as avoids interfacial collapse during compression. Benefiting from the unique wavy layer structure and strong interaction, the carbon aerogels are ultralight (4.98 mg cm-3) and exhibit supercompression (undergoing extreme strain of 95%) and superelasticity (about 100% height retention after 500 cycles at a strain of 50%). Particularly, the carbon aerogel can selectively and quickly adsorb various oily contaminants, exhibiting high oil/organic solvents absorption capacity (reaches up to 276 g g-1 for carbon tetrachloride) and good recyclability. Finally, practical applications of the carbon aerogel in oil-cleanup and pollution-remediation devices are exhibited. Hence, this versatile and robust functionalized carbon aerogel has promising potential in oil cleanup and pollution remediation.
Collapse
Affiliation(s)
- Jiran Dong
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN 510640, China
| | - Jinsong Zeng
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN 510640, China
| | - Bin Wang
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN 510640, China
| | - Zheng Cheng
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN 510640, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, CN 510640, China
| | - Jun Xu
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN 510640, China
| | - Wenhua Gao
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN 510640, China
| | - Kefu Chen
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN 510640, China
| |
Collapse
|
24
|
Zhao XF, Wen XH, Sun P, Zeng C, Liu MY, Yang F, Bi H, Li D, Ma RG, Wang JC, Yu XB, Zhang DW, Lu HL. Spider Web-like Flexible Tactile Sensor for Pressure-Strain Simultaneous Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10428-10436. [PMID: 33591176 DOI: 10.1021/acsami.0c21960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multiparameter integrated sensors are required for the next generation of flexible wearable electronics. However, mutual interference between detected signals is a technical bottleneck for a flexible tactile sensor to realize pressure-strain monitoring simultaneously and sensitively. Herein, a flexible dual-parameter pressure-strain sensor based on the three-dimensional (3D) tubular graphene sponge (TGS) and spider web-like stretchable electrodes is designed and fabricated. As the pressure-sensitive module, the unique 3D-TGS with an uninterrupted network of tubular graphene and high graphitic degree demonstrates great robust compressibility, supporting compression to ∼20% without shape collapse. The spider web-like stretchable electrodes as the strain-sensitive module are fabricated by a spray-embedded process based on the hierarchical multiscale hybrid nanocomposite of Ag nanowires (NWs) and carbon nanotubes (CNTs) with an optimal mass ratio. By comparing the output signals of spider web-like flexible electrodes, the magnitude and direction of the applied force can be effectively monitored simultaneously. Moreover, the potential applications of the flexible dual-parameter pressure-strain device in human-machine interaction are also explored, showing great promise in artificial intelligence and wearable systems.
Collapse
Affiliation(s)
- Xue-Feng Zhao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Xiao-Hong Wen
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Peng Sun
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Cheng Zeng
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Meng-Yang Liu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Fan Yang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Hui Bi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Dan Li
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Ru-Guang Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Jia-Cheng Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Xue-Bin Yu
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - David Wei Zhang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| |
Collapse
|
25
|
Feng J, Su BL, Xia H, Zhao S, Gao C, Wang L, Ogbeide O, Feng J, Hasan T. Printed aerogels: chemistry, processing, and applications. Chem Soc Rev 2021; 50:3842-3888. [PMID: 33522550 DOI: 10.1039/c9cs00757a] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As an extraordinarily lightweight and porous functional nanomaterial family, aerogels have attracted considerable interest in academia and industry in recent decades. Despite the application scopes, the modest mechanical durability of aerogels makes their processing and operation challenging, in particular, for situations demanding intricate physical structures. "Bottom-up" additive manufacturing technology has the potential to address this drawback. Indeed, since the first report of 3D printed aerogels in 2015, a new interdisciplinary research area combining aerogel and printing technology has emerged to push the boundaries of structure and performance, further broadening their application scope. This review summarizes the state-of-the-art of printed aerogels and presents a comprehensive view of their developments in the past 5 years, and highlights the key near- and mid-term challenges.
Collapse
Affiliation(s)
- Junzong Feng
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang L, Xiao R, Yang S, Qiu H, Shen Z, Lv P, Zhang C, Hu W, Nakajima M, Jin B, Lu Y. 3D porous graphene-assisted capsulized cholesteric liquid crystals for terahertz power visualization. OPTICS LETTERS 2020; 45:5892-5895. [PMID: 33057312 DOI: 10.1364/ol.405695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate a high-efficiency visualized terahertz (THz) power meter based on the THz-photothermochromism of capsulized cholesteric liquid crystals (CCLCs) embedded in three-dimensional porous graphene (3DPG). The graphene is a broadband perfect absorber for THz radiation and transfers heat efficiently, and its black background is beneficial for color measurement. Quantitative visualization of THz intensity up to 2.8×102mW/cm2 is presented. The minimal detectable THz power is 0.009 mW. With multi-microcapsule analysis, the relationship between THz power and the average hue value of CCLCs achieves linearity. The device can convert THz radiation to visible light and is lightweight, cheap, and easy to use.
Collapse
|
27
|
Huang S, Feng C, Mayes ELH, Yao B, He Z, Asadi S, Alan T, Yang J. In situ synthesis of silver nanowire gel and its super-elastic composite foams. NANOSCALE 2020; 12:19861-19869. [PMID: 32970059 DOI: 10.1039/d0nr03958f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Noble-metal aerogels (NMAs) including silver aerogels have drawn increasing attention because of their highly conductive networks, large surface areas, and abundant optically/catalytically active sites. However, the current approaches of fabricating silver aerogels are tedious and time-consuming. In this regard, it is highly desirable to develop a simple and effective method for preparing silver aerogels. Herein, we report a facile strategy to fabricate silver gels via the in situ synthesis of silver nanowires (AgNWs). The obtained AgNW aerogels show superior electrical conductivity, ultralow density, and good mechanical robustness. AgNW aerogels with a density of 24.3 mg cm-3 display a conductivity of 2.1 × 105 S m-1 and a Young's modulus of 38.7 kPa. Furthermore, using an infiltration-air-drying-crosslinking technique, polydimethylsiloxane (PDMS) was introduced into 3 dimensional (3D) AgNW networks for preparing silver aerogel/elastomer composite materials. The obtained AgNW/PDMS aerogel composite exhibits outstanding elasticity while retaining excellent electrical conductivity. The fast piezoresistive response proves that the aerogel composite has a potential application for vibration sensors.
Collapse
Affiliation(s)
- Shu Huang
- School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia.
| | - Chuang Feng
- School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia.
| | - Edwin L H Mayes
- School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia.
| | - Bicheng Yao
- School of Molecular Sciences, La Trobe University, VIC, Australia
| | - Zijun He
- Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
| | - Sajjad Asadi
- Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
| | - Tuncay Alan
- Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
| | - Jie Yang
- School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia.
| |
Collapse
|
28
|
Sun Z, Fang S, Hu YH. 3D Graphene Materials: From Understanding to Design and Synthesis Control. Chem Rev 2020; 120:10336-10453. [PMID: 32852197 DOI: 10.1021/acs.chemrev.0c00083] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon materials, with their diverse allotropes, have played significant roles in our daily life and the development of material science. Following 0D C60 and 1D carbon nanotube, 2D graphene materials, with their distinctively fascinating properties, have been receiving tremendous attention since 2004. To fulfill the efficient utilization of 2D graphene sheets in applications such as energy storage and conversion, electrochemical catalysis, and environmental remediation, 3D structures constructed by graphene sheets have been attempted over the past decade, giving birth to a new generation of graphene materials called 3D graphene materials. This review starts with the definition, classifications, brief history, and basic synthesis chemistries of 3D graphene materials. Then a critical discussion on the design considerations of 3D graphene materials for diverse applications is provided. Subsequently, after emphasizing the importance of normalized property characterization for the 3D structures, approaches for 3D graphene material synthesis from three major types of carbon sources (GO, hydrocarbons and inorganic carbon compounds) based on GO chemistry, hydrocarbon chemistry, and new alkali-metal chemistry, respectively, are comprehensively reviewed with a focus on their synthesis mechanisms, controllable aspects, and scalability. At last, current challenges and future perspectives for the development of 3D graphene materials are addressed.
Collapse
Affiliation(s)
- Zhuxing Sun
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States
| | - Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States.,School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Zhang S, Zhou Z, Zhong J, Shi Z, Mao Y, Tao TH. Body-Integrated, Enzyme-Triggered Degradable, Silk-Based Mechanical Sensors for Customized Health/Fitness Monitoring and In Situ Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903802. [PMID: 32670755 PMCID: PMC7341100 DOI: 10.1002/advs.201903802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/15/2020] [Indexed: 05/21/2023]
Abstract
Mechanical signals such as pressure and strain reflect important psychological and physiological states of the human body. Body-integrated sensors, including skin-mounted and surgically implanted ones, allow personalized health monitoring for the general population as well as patients. However, the development of such measuring devices has been hindered by the strict requirements for human-biocompatible materials and the need for high performance sensors; most existing devices or sensors do not meet all the desired specifications. Here, a set of flexible, stretchable, wearable, implantable, and degradable mechanical sensors is reported with excellent mechanical robustness and compliance, outstanding biocompatibility, remotely-triggered degradation, and excellent sensing performance, using a conductive silk fibroin hydrogel (CSFH). They can detect multiple mechanical signals such as pressure, strain, and bending angles. Moreover, combined with a drug-loaded silk-based microneedle array, sensor-equipped devices are shown to be effective for real-time monitoring and in situ treatment of epilepsy in a rodent model. These sensors offer potential applications in custom health monitoring wearables, and in situ treatment of chronic clinical disorders.
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
- School of Graduate Study University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
| | - Junjie Zhong
- Department of Neurosurgery Huashan Hospital of Fudan University Shanghai 200040 China
| | - Zhifeng Shi
- Department of Neurosurgery Huashan Hospital of Fudan University Shanghai 200040 China
| | - Ying Mao
- Department of Neurosurgery Huashan Hospital of Fudan University Shanghai 200040 China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
- School of Graduate Study University of Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
- School of Physical Science and Technology ShanghaiTech University Shanghai 200031 China
- Institute of Brain-Intelligence Technology Zhangjiang Laboratory Shanghai 200031 China
- Department of Brain-computer Interface Shanghai Research Center for Brain Science and Brain-Inspired Intelligence Shanghai 200031 China
| |
Collapse
|
30
|
Lu F, Liu J, Xia J, Yang Y, Wang X. Engineering C–N Moieties in Branched Nitrogen-Doped Graphite Tubular Foam toward Stable Li+-Storage at Low Temperature. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fei Lu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Junling Liu
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Jing Xia
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| | - Yijun Yang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, P. R. China
| |
Collapse
|
31
|
Oh MJ, Yoo PJ. Graphene-based 3D lightweight cellular structures: Synthesis and applications. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0437-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Xu X, Guan C, Xu L, Tan YH, Zhang D, Wang Y, Zhang H, Blackwood DJ, Wang J, Li M, Ding J. Three Dimensionally Free-Formable Graphene Foam with Designed Structures for Energy and Environmental Applications. ACS NANO 2020; 14:937-947. [PMID: 31891478 DOI: 10.1021/acsnano.9b08191] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three-dimensional assemblies of graphene have been considered as promising starting materials for many engineering, energy, and environmental applications due to its desirable mechanical properties, high specific area, and superior thermal and electrical transfer ability. However, little has been done to introduce designed shapes into scalable graphene assemblies. In this work, we show here a combination of conventional graphene growing technique-chemical vapor deposition with additive manufacturing. Such synthesis collaboration enables a hierarchically constructed porous 3D graphene foam with large surface area (994.2 m2/g), excellent conductivity (2.39 S/cm), reliable mechanical properties (E = 239.7 kPa), and tunable surface chemistry that can be used as a strain sensor, catalyst support, and solar steam generator.
Collapse
Affiliation(s)
- Xi Xu
- Institute of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics , Northwestern Polytechnical University , Xi'an 710072 , China
- Department of Materials Science and Engineering, Faculty of Engineering , National University of Singapore , Singapore 117575 , Singapore
| | - Cao Guan
- Institute of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Le Xu
- Department of Materials Science and Engineering, Faculty of Engineering , National University of Singapore , Singapore 117575 , Singapore
| | - Yong Hao Tan
- Department of Materials Science and Engineering, Faculty of Engineering , National University of Singapore , Singapore 117575 , Singapore
- NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore , Singapore 119260 , Singapore
| | - Danwei Zhang
- Department of Materials Science and Engineering, Faculty of Engineering , National University of Singapore , Singapore 117575 , Singapore
| | - Yanqing Wang
- Department of Materials Science and Engineering, Faculty of Engineering , National University of Singapore , Singapore 117575 , Singapore
| | - Hong Zhang
- Department of Materials Science and Engineering, Faculty of Engineering , National University of Singapore , Singapore 117575 , Singapore
| | - Daniel John Blackwood
- Department of Materials Science and Engineering, Faculty of Engineering , National University of Singapore , Singapore 117575 , Singapore
| | - John Wang
- Department of Materials Science and Engineering, Faculty of Engineering , National University of Singapore , Singapore 117575 , Singapore
| | - Meng Li
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering , Chongqing University , Chongqing 400044 , China
| | - Jun Ding
- Department of Materials Science and Engineering, Faculty of Engineering , National University of Singapore , Singapore 117575 , Singapore
| |
Collapse
|
33
|
Li Y, Jiang C, Han W. Extending the pressure sensing range of porous polypyrrole with multiscale microstructures. NANOSCALE 2020; 12:2081-2088. [PMID: 31912843 DOI: 10.1039/c9nr08632c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Polymer-based piezoresistive sensors that combine the flexibility and stretchability of organic polymers have received considerable attention in flexible and wearable sensing systems. Generally, highly sensitive pressure sensors have a limited pressure sensing range, while pressure sensors with a wide pressure response range usually have limited pressure resolution. Herein, we used a polypyrrole (PPy) sponge with multiscale porous structures to extend the pressure sensing range of PPy-based piezoresistive sensors. The multiscale microstructures with different sizes will sink in sequence after increasing the external pressure and therefore exhibit a wide pressure response range. Our results show that the piezoresistive composite has a superior sensitivity of 28 kPa-1 and a broad stress range of 0-60 kPa. Moreover, the composite displays a stable, repeatable and durable performance over 16 000 cycles. It can be used to monitor diverse body part motions, including vocalization, pulse beating and joint bending. This work provides an effective strategy to extend the pressure sensing range of polymer-based piezoresistive sensors in the manner of structure design rather than modifying the intrinsic properties of active materials.
Collapse
Affiliation(s)
- Yunxia Li
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | | | | |
Collapse
|
34
|
Rasch F, Schütt F, Saure LM, Kaps S, Strobel J, Polonskyi O, Nia AS, Lohe MR, Mishra YK, Faupel F, Kienle L, Feng X, Adelung R. Wet-Chemical Assembly of 2D Nanomaterials into Lightweight, Microtube-Shaped, and Macroscopic 3D Networks. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44652-44663. [PMID: 31686498 PMCID: PMC7192525 DOI: 10.1021/acsami.9b16565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Despite tremendous efforts toward fabrication of three-dimensional macrostructures of two-dimensional (2D) materials, the existing approaches still lack sufficient control over microscopic (morphology, porosity, pore size) and macroscopic (shape, size) properties of the resulting structures. In this work, a facile fabrication method for the wet-chemical assembly of carbon 2D nanomaterials into macroscopic networks of interconnected, hollow microtubes is introduced. As demonstrated for electrochemically exfoliated graphene, graphene oxide, and reduced graphene oxide, the approach allows for the preparation of highly porous (> 99.9%) and lightweight (<2 mg cm-3) aeromaterials with tailored porosity and pore size as well as tailorable shape and size. The unique tubelike morphology with high aspect ratio enables ultralow-percolation-threshold graphene composites (0.03 S m-1, 0.05 vol%) which even outperform most of the carbon nanotube-based composites, as well as highly conductive aeronetworks (8 S m-1, 4 mg cm-3). On top of that, long-term compression cycling of the aeronetworks demonstrates remarkable mechanical stability over 10 000 cycles, even though no chemical cross-linking is employed. The developed strategy could pave the way for fabrication of various macrostructures of 2D nanomaterials with defined shape, size, as well as micro- and nanostructure, crucial for numerous applications such as batteries, supercapacitors, and filters.
Collapse
Affiliation(s)
- Florian Rasch
- Chair for Functional Nanomaterials, Institute for
Materials Science, Chair for Synthesis
and Real Structure, Institute for Materials Science,
and Chair for Multicomponent
Materials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Fabian Schütt
- Chair for Functional Nanomaterials, Institute for
Materials Science, Chair for Synthesis
and Real Structure, Institute for Materials Science,
and Chair for Multicomponent
Materials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
- E-mail:
| | - Lena M. Saure
- Chair for Functional Nanomaterials, Institute for
Materials Science, Chair for Synthesis
and Real Structure, Institute for Materials Science,
and Chair for Multicomponent
Materials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
- Chair
of Engineering Mechanics, Brandenburg University
of Technology Cottbus-Senftenberg, Großenhainer Straße 57, 01968 Senftenberg, Germany
| | - Sören Kaps
- Chair for Functional Nanomaterials, Institute for
Materials Science, Chair for Synthesis
and Real Structure, Institute for Materials Science,
and Chair for Multicomponent
Materials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Julian Strobel
- Chair for Functional Nanomaterials, Institute for
Materials Science, Chair for Synthesis
and Real Structure, Institute for Materials Science,
and Chair for Multicomponent
Materials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Oleksandr Polonskyi
- Chair for Functional Nanomaterials, Institute for
Materials Science, Chair for Synthesis
and Real Structure, Institute for Materials Science,
and Chair for Multicomponent
Materials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Ali Shaygan Nia
- Department
of Chemistry and Food Chemistry, Center for Advancing Electronics
Dresden (cfaed), Technische Universität
Dresden, 01062 Dresden, Germany
| | - Martin R. Lohe
- Department
of Chemistry and Food Chemistry, Center for Advancing Electronics
Dresden (cfaed), Technische Universität
Dresden, 01062 Dresden, Germany
| | - Yogendra K. Mishra
- NanoSYD,
Mads Clausen Institute, University of Southern
Denmark, Alsion 2, DK-6400 Sønderborg, Denmark
| | - Franz Faupel
- Chair for Functional Nanomaterials, Institute for
Materials Science, Chair for Synthesis
and Real Structure, Institute for Materials Science,
and Chair for Multicomponent
Materials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Lorenz Kienle
- Chair for Functional Nanomaterials, Institute for
Materials Science, Chair for Synthesis
and Real Structure, Institute for Materials Science,
and Chair for Multicomponent
Materials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Xinliang Feng
- Department
of Chemistry and Food Chemistry, Center for Advancing Electronics
Dresden (cfaed), Technische Universität
Dresden, 01062 Dresden, Germany
| | - Rainer Adelung
- Chair for Functional Nanomaterials, Institute for
Materials Science, Chair for Synthesis
and Real Structure, Institute for Materials Science,
and Chair for Multicomponent
Materials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| |
Collapse
|
35
|
Luo Q, Zheng H, Hu Y, Zhuo H, Chen Z, Peng X, Zhong L. Carbon Nanotube/Chitosan-Based Elastic Carbon Aerogel for Pressure Sensing. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02847] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qingsong Luo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Hongzhi Zheng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yijie Hu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Hao Zhuo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Zehong Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
36
|
Yu ZL, Qin B, Ma ZY, Huang J, Li SC, Zhao HY, Li H, Zhu YB, Wu HA, Yu SH. Superelastic Hard Carbon Nanofiber Aerogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900651. [PMID: 30985032 DOI: 10.1002/adma.201900651] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/07/2019] [Indexed: 05/26/2023]
Abstract
Superelastic carbon aerogels have been widely explored by graphitic carbons and soft carbons. These soft aerogels usually have delicate microstructures with good fatigue resistance but ultralow strength. Hard carbon aerogels show great advantages in mechanical strength and structural stability due to the sp3 -C-induced turbostratic "house-of-cards" structure. However, it is still a challenge to fabricate superelastic hard carbon-based aerogels. Through rational nanofibrous structural design, the traditional rigid phenolic resin can be converted into superelastic hard carbon aerogels. The hard carbon nanofibers and abundant welded junctions endow the hard carbon aerogels with robust and stable mechanical performance, including superelasticity, high strength, extremely fast recovery speed (860 mm s-1 ), low energy-loss coefficient (<0.16), long cycle lifespan, and heat/cold-endurance. These emerging hard carbon nanofiber aerogels hold a great promise in the application of piezoresistive stress sensors with high stability and wide detection range (50 kPa), as well as stretchable or bendable conductors.
Collapse
Affiliation(s)
- Zhi-Long Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Bing Qin
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zhi-Yuan Ma
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Huang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Si-Cheng Li
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hao-Yu Zhao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Han Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Yin-Bo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
37
|
|
38
|
Yan S, Zhang G, Li F, Zhang L, Wang S, Zhao H, Ge Q, Li H. Large-area superelastic graphene aerogels based on a room-temperature reduction self-assembly strategy for sensing and particulate matter (PM 2.5 and PM 10) capture. NANOSCALE 2019; 11:10372-10380. [PMID: 31107474 DOI: 10.1039/c9nr02071c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Graphene aerogels are emerging low density and superelasticity macroscopic porous materials with various applications. However, it still remains a challenge to develop a versatile strategy under ambient conditions for fabricating large-area, high-performance graphene aerogels, which is crucial for their practical applications. Here, we report a novel room-temperature reduction self-assembly (RTRS) strategy to fabricate large-area graphene aerogels under ambient conditions. The strategy is based on using unique hydrazine hydrates as reducing agents to generate stable microbubbles beneficial for the formation of macroporous graphene hydrogels. Interestingly, the resultant hydrogel followed by a simple pre-freeze treatment can be naturally dried into graphene aerogels without noticeable volume shrinkage or structure cracking. Benefiting from the mild conditions, a large-area graphene aerogel with a diameter of up to 27 cm was prepared as an example. The as-formed aerogels exhibit a stable honeycomb-like coarse-pores structure, a low density of 3.6 mg cm-3 and superelasticity (rapidly recoverable from 95% compression) which are suitable for pressure/strain sensors. Moreover, the aerogel exhibits superior particulate matter adsorption efficiency (PM2.5: 93.7%, PM10: 96.2%) and good recycling ability. Importantly, the preparation process is cost-effective and easily scalable without the need for any special drying techniques and heating processes, which provides an ideal platform for mass production of graphene aerogels toward practical applications.
Collapse
Affiliation(s)
- Shuang Yan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Feng N, Meng R, Zu L, Feng Y, Peng C, Huang J, Liu G, Chen B, Yang J. A polymer-direct-intercalation strategy for MoS 2/carbon-derived heteroaerogels with ultrahigh pseudocapacitance. Nat Commun 2019; 10:1372. [PMID: 30914649 PMCID: PMC6435689 DOI: 10.1038/s41467-019-09384-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/21/2019] [Indexed: 12/22/2022] Open
Abstract
The intercalation strategy has become crucial for 2D layered materials to achieve desirable properties, however, the intercalated guests are often limited to metal ions or small molecules. Here, we develop a simple, mild and efficient polymer-direct-intercalation strategy that different polymers (polyethyleneimine and polyethylene glycol) can directly intercalate into the MoS2 interlayers, forming MoS2-polymer composites and interlayer-expanded MoS2/carbon heteroaerogels after carbonization. The polymer-direct-intercalation behavior has been investigated by substantial characterizations and molecular dynamic calculations. The resulting composite heteroaerogels possess 3D conductive MoS2/C frameworks, expanded MoS2 interlayers (0.98 nm), high MoS2 contents (up to 74%) and high Mo valence (+6), beneficial to fast and stable charge transport and enhanced pseudocapacitive energy storage. Consequently, the typical MoS2/N-doped carbon heteroaerogels exhibit outstanding supercapacitor performance, such as ultrahigh capacitance, remarkable rate capability and excellent cycling stability. This study offers a new intercalation strategy which may be generally applicable to 2D materials for promising energy applications. Methods to fabricate layered materials are often associated with harsh conditions and complicated manipulations. Here the authors report a polymer-direct-intercalation strategy to synthesize composite heteroaerogels consisting of molybdenum sulfide/carbon nanosheets for high-capacitance supercapacitors.
Collapse
Affiliation(s)
- Nan Feng
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China.,Research Center for Translational Medicine and Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200120, China
| | - Ruijin Meng
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China.,Research Center for Translational Medicine and Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200120, China
| | - Lianhai Zu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yutong Feng
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chengxin Peng
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jimei Huang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guanglei Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bingjie Chen
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jinhu Yang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China. .,Research Center for Translational Medicine and Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
40
|
Tang C, Wang HF, Huang JQ, Qian W, Wei F, Qiao SZ, Zhang Q. 3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion. ELECTROCHEM ENERGY R 2019. [DOI: 10.1007/s41918-019-00033-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Zhang Y, Li Y, Mu X, Huang B, Du J, Zhang S, Liu Y, Fu J, Sheng Y, Zhang Z, Xie E. Nanofoaming to boost electrochemical performance of three-dimensional compressible carbon monoliths for robust supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Kashani H, Ito Y, Han J, Liu P, Chen M. Extraordinary tensile strength and ductility of scalable nanoporous graphene. SCIENCE ADVANCES 2019; 5:eaat6951. [PMID: 30793025 PMCID: PMC6377272 DOI: 10.1126/sciadv.aat6951] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 01/04/2019] [Indexed: 05/25/2023]
Abstract
While the compressive strength-density scaling relationship of ultralight cellular graphene materials has been extensively investigated, high tensile strength and ductility have not been realized in the theoretically strongest carbon materials because of high flaw sensitivity under tension and weak van der Waals interplanar bonding between graphene sheets. In this study, we report that large-scale ultralight nanoporous graphene with three-dimensional bicontinuous nanoarchitecture shows orders of magnitude higher strength and elastic modulus than all reported ultralight carbon materials under both compression and tension. The high-strength nanoporous graphene also exhibits excellent tensile ductility and work hardening, which are comparable to well-designed metamaterials but until now had not been realized in ultralight cellular materials. The excellent mechanical properties of the nanoporous graphene benefit from seamless graphene sheets in the bicontinuous nanoporosity that effectively preserves the intrinsic strength of atomically thick graphene in the three-dimensional cellular nanoarchitecture.
Collapse
Affiliation(s)
- Hamzeh Kashani
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21214, USA
| | - Yoshikazu Ito
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Jiuhui Han
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Pan Liu
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Mingwei Chen
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21214, USA
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
43
|
Hu Y, Zhuo H, Chen Z, Wu K, Luo Q, Liu Q, Jing S, Liu C, Zhong L, Sun R, Peng X. Superelastic Carbon Aerogel with Ultrahigh and Wide-Range Linear Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40641-40650. [PMID: 30380296 DOI: 10.1021/acsami.8b15439] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Compressible and elastic carbon materials offer many advantages and have promising applications in various electronic devices. However, fabricating carbon materials with super elasticity, fatigue resistance, and high and wide-range linear sensitivity for pressure or strain remains a great challenge. Herein, a facile and sustainable route is developed to fabricate a carbon aerogel with not only superior mechanical performances but also exceptionally high and wide-range linear sensitivity by using chitosan as a renewable carbon source and cellulose nanocrystal as a nanoreinforcement or support. The as-prepared carbon aerogel with wave-shaped layers shows high compressibility, super elasticity, stable strain-current response, and excellent fatigue resistance (94% height retention after 50 000 cycles). More importantly, it demonstrates both an ultrahigh sensitivity of 103.5 kPa-1 and a very wide linear range of 0-18 kPa. In addition, the carbon aerogel has a very low detection limit (1.0 Pa for pressure and 0.05% for strain). The carbon aerogel also can be bended to detect a small angle change. These superiorities render its applications in various wearable devices.
Collapse
Affiliation(s)
- Yijie Hu
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Hao Zhuo
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Zehong Chen
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Kunze Wu
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Qingsong Luo
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Qingzhong Liu
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Shuangshuang Jing
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Runcang Sun
- Centre for Lignocellulose Science and Engineering and Liaoning Key Laboratory Pulp and Paper Engineering , Dalian Polytechnic University , Dalian 116034 , China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510641 , China
| |
Collapse
|
44
|
Li C, Ding M, Zhang B, Qiao X, Liu CY. Graphene aerogels that withstand extreme compressive stress and strain. NANOSCALE 2018; 10:18291-18299. [PMID: 30246840 DOI: 10.1039/c8nr04824j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene aerogels combining elastic, lightweight, and robust mechanical properties have been explored for a wide variety of applications. However, graphene aerogels are generally subject to brittle mechanical properties and the irreversible damage of network structures during extreme compressions. Thus, the challenge of finding ways to enhance the strength and resilience of graphene aerogels remains. Herein, superelastic and ultralight aerogels are fabricated through a thermal-treatment of 3D ordered graphene aerogels. The treatments at 400-1000 °C eliminate most of the oxygen-containing functional groups and enhance the π-π stacking interactions between graphene sheets, forming a well-ordered structure of graphene sheets in cell walls. The aerogels can withstand a loading of 100 000 N (109 times their own weight) for 60 min and retain their substantial elastic resilience. This loading corresponds to an ultimate compressive stress of approximately 1000 MPa and a strain of 99.8%, and this ultimate stress is 1-2 orders of magnitude higher than the values for other (carbon-based, polymer-based, inorganic-based, and metal-based) porous materials. The superelastic properties can be attributed to the graphite-like ordered structure of cell walls. The successful fabrication of such superelastic materials opens a new avenue to explore their potential applications in pressure sensors, mechanical shock absorbers, soft robots, and deformable electronic devices.
Collapse
Affiliation(s)
- Chenwei Li
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | |
Collapse
|
45
|
Shielding of Enzymes on the Surface of Graphene-Based Composite Cellular Foams Through Bioinspired Mineralization. Methods Enzymol 2018. [PMID: 30244797 DOI: 10.1016/bs.mie.2018.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Immobilization of enzyme on the surface of graphene-based composite cellular foams (GCCFs) is commonly prone to acquire stable and ultrahigh loading of enzymes and fast transport of substrates during the catalytic process. In this chapter, we reported a method of preparing GCCFs through combination of redox assembly and biomimetic mineralization with in situ enzyme immobilization. Briefly, GCCFs were first prepared through redox assembly of graphene oxide (GO) nanosheets enabled by polyethyleneimine (PEI). The cationic PEI in the resultant reduced GO/PEI (rGO/PEI) cellular foams acted as the mineralization-inducing agent could catalyze the condensation of silicate to form silica (biomimetic silicification) on the reduced graphene oxide (rGO) surface, where enzyme (with penicillin G acylase as model enzyme) is in situ entrapped and shielded within the silica network. Enzymes could be stably resided on the surface of GCCFs without any leaching against a broad range of pH values (3.5-10.0). GCCFs show a three-dimensional (3D) porous structure, which facilitates the fast transfer of substrate and, thereby, leads to desirable catalytic activity. Combined with the monolithic feature, GCCFs exhibit ease of recyclability and superior thermal/recycling stabilities during the catalytic synthesis of 6-aminopenicillanic acid (6-APA, an important pharmaceutical intermediate) compared to free enzyme and enzyme adsorbed on rGO/PEI cellular foams.
Collapse
|
46
|
Liang Y, Liu F, Deng Y, Zhou Q, Cheng Z, Zhang P, Xiao Y, Lv L, Liang H, Han Q, Shao H, Qu L. A Cut-Resistant and Highly Restorable Graphene Foam. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801916. [PMID: 30141574 DOI: 10.1002/smll.201801916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/11/2018] [Indexed: 06/08/2023]
Abstract
High-pressure resistant and multidirectional compressible materials enable various applications but are often hindered by structure-derived collapse and weak elasticity. Here, a super-robust graphene foam with ladder shape microstructure capable of withstanding high pressure is presented. The multioriented ladder arrays architecture of the foam, consisting of thousands of identically sized square spaces, endow it with a great deal of elastic units. It can easily bear an iterative and multidirectional pressure of 44.5 MPa produced by a sharp blade, and may completely recover to its initial state by a load of 180 000 times their own weight even under 95% strain. More importantly, the foam can also maintain structural integrity after experiencing a pressure of 2.8 GPa through siphoning. Computational modeling of the "buckling of shells" mechanism reveals the unique ladder-shaped graphene foam contributes to the superior cut resistance and good resilience. Based on this finding, it can be widely used in cutting resistance sensors, monitoring of sea level, and the detection of oily contaminants in water delivery pipelines.
Collapse
Affiliation(s)
- Yuan Liang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Feng Liu
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yaxi Deng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qinhan Zhou
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhihua Cheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Panpan Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yukun Xiao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lingxiao Lv
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hanxue Liang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qing Han
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huibo Shao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liangti Qu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
47
|
Liu Z, Wang J, Ding H, Chen S, Yu X, Lu B. Carbon Nanoscrolls for Aluminum Battery. ACS NANO 2018; 12:8456-8466. [PMID: 30048113 DOI: 10.1021/acsnano.8b03961] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This design provides a scalable route for in situ synthesizing of special carbon nanoscrolls as the cathode for an aluminum battery. The frizzy architectures are generated by a few graphene layers convoluting into the hollow carbon scroll, possessing rapid electronic transportation channels, superior anion storage capability, and outstanding ability of accommodating a large volume expansion during the cycling process. The electrochemical performance of the carbon nanoscroll cathode is fully tapped, displaying an excellent reversible discharge capacity of 104 mAh g-1 at 1000 mA g-1. After 55 000 cycles, this cathode retains a superior reversible specific capacity of 101.24 mAh g-1 at an ultrafast rate of 50 000 mA g-1, around 100% of the initial capacity, which demonstrates a superior electrochemical performance. In addition, anionic storage capability and structural stability are discussed in detail. The battery capacity under a wide temperature range from -80 to 120 °C is examined. At a low temperature of -25 °C, the battery delivers a discharge capacity of 62.83 mAh g-1 after 10 000 cycles, obtaining a capacity retention near 100%. In addition, it achieves a capacity of 99.5 mAh g-1 after 4000 cycles at a high temperature of 80 °C, with a capacity retention close to 100%. The carbon nanoscrolls possess an outstanding ultrafast charging/variable discharging rate performance surpassing all the batteries previously reported, which are highly promising for being applied in energy storage fields.
Collapse
Affiliation(s)
- Zhaomeng Liu
- School of Physics and Electronics , Hunan University , Changsha 410082 , China
| | - Jue Wang
- School of Physics and Electronics , Hunan University , Changsha 410082 , China
| | - Hongbo Ding
- School of Physics and Electronics , Hunan University , Changsha 410082 , China
| | - Suhua Chen
- School of Physics and Electronics , Hunan University , Changsha 410082 , China
| | - Xinzhi Yu
- School of Physics and Electronics , Hunan University , Changsha 410082 , China
| | - Bingan Lu
- School of Physics and Electronics , Hunan University , Changsha 410082 , China
- Fujian Strait Research Institute of Industrial Graphene Technologies , Jinjang 362200 , China
| |
Collapse
|
48
|
Liu F, Wang C, Tang Q. Conductivity Maximum in 3D Graphene Foams. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801458. [PMID: 30015367 DOI: 10.1002/smll.201801458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/26/2018] [Indexed: 06/08/2023]
Abstract
In conventional foams, electrical properties often play a secondary role. However, this scenario becomes different for 3D graphene foams (GrFs). In fact, one of the motivations for synthesizing 3D GrFs is to inherit the remarkable electrical properties of individual graphene sheets. Despite immense experimental efforts to study and improve the electrical properties of 3D GrFs, lack of theoretical studies and understanding limits further progress. The causes to this embarrassing situation are identified as the multiple freedoms introduced by graphene sheets and multiscale nature of this problem. In this article, combined with transport modeling and coarse-grained molecular dynamic (MD) simulations, a theoretical framework is established to systematically study the electrical conducting properties of 3D GrFs with or without deformation. In particular, through large-scale and massive calculations, a general relation between contact area and conductance for two van der Waals bonded graphene sheets is demonstrated, in terms of which the conductivity maximum phenomenon in GrFs is first theoretically proposed and its competition mechanism is explained. Moreover, the theoretical prediction is consistent with previous experimental observations.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chao Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qiheng Tang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
49
|
Wang C, Chen X, Wang B, Huang M, Wang B, Jiang Y, Ruoff RS. Freeze-Casting Produces a Graphene Oxide Aerogel with a Radial and Centrosymmetric Structure. ACS NANO 2018; 12:5816-5825. [PMID: 29757617 DOI: 10.1021/acsnano.8b01747] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report the assembly of graphene oxide (G-O) building blocks into a vertical and radially aligned structure by a bidirectional freeze-casting approach. The crystallization of water to ice assembles the G-O sheets into a structure, a G-O aerogel whose local structure mimics turbine blades. The centimeter-scale radiating structure in this aerogel has many channels whose width increases with distance from the center. This was achieved by controlling the formation of the ice crystals in the aqueous G-O dispersion that grew radially in the shape of lamellae during freezing. Because the shape and size of ice crystals is influenced by the G-O sheets, different additives (ethanol, cellulose nanofibers, and chitosan) that can form hydrogen bonds with H2O were tested and found to affect the interaction between the G-O and formation of ice crystals, producing ice crystals with different shapes. A G-O/chitosan aerogel with a spiral pattern was also obtained. After chemical reduction of G-O, our aerogel exhibited elasticity and absorption capacity superior to that of graphene aerogels with "traditional" pore structures made by conventional freeze-casting. This methodology can be expanded to many other configurations and should widen the use of G-O (and reduced G-O and "graphenic") aerogels.
Collapse
Affiliation(s)
- Chunhui Wang
- Center for Multidimensional Carbon Materials , Institute for Basic Science (IBS) , Ulsan 44919 , Republic of Korea
| | - Xiong Chen
- Center for Multidimensional Carbon Materials , Institute for Basic Science (IBS) , Ulsan 44919 , Republic of Korea
| | - Bin Wang
- Center for Multidimensional Carbon Materials , Institute for Basic Science (IBS) , Ulsan 44919 , Republic of Korea
| | - Ming Huang
- Center for Multidimensional Carbon Materials , Institute for Basic Science (IBS) , Ulsan 44919 , Republic of Korea
| | - Bo Wang
- Center for Multidimensional Carbon Materials , Institute for Basic Science (IBS) , Ulsan 44919 , Republic of Korea
| | - Yi Jiang
- Center for Multidimensional Carbon Materials , Institute for Basic Science (IBS) , Ulsan 44919 , Republic of Korea
| | - Rodney S Ruoff
- Center for Multidimensional Carbon Materials , Institute for Basic Science (IBS) , Ulsan 44919 , Republic of Korea
| |
Collapse
|
50
|
Zhuo H, Hu Y, Tong X, Chen Z, Zhong L, Lai H, Liu L, Jing S, Liu Q, Liu C, Peng X, Sun R. A Supercompressible, Elastic, and Bendable Carbon Aerogel with Ultrasensitive Detection Limits for Compression Strain, Pressure, and Bending Angle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706705. [PMID: 29577473 DOI: 10.1002/adma.201706705] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/02/2018] [Indexed: 05/21/2023]
Abstract
Ultralight and compressible carbon materials have promising applications in strain and pressure detection. However, it is still difficult to prepare carbon materials with supercompressibility, elasticity, stable strain-electrical signal response, and ultrasensitive detection limits, due to the challenge in structural regulation. Herein, a new strategy to prepare a reduced graphene oxide (rGO)-based lamellar carbon aerogels with unexpected and integrated performances by designing wave-shape rGO layers and enhancing the interaction among the rGO layers is demonstrated. Addition of cellulose nanocrystalline and low-molecular-weight carbon precursors enhances the interaction among rGO layers and thus produces an ultralight, flexible, and superstable structure. The as-prepared carbon aerogel displays a supercompressibility (undergoing an extreme strain of 99%) and elasticity (100% height retention after 10 000 cycles at a strain of 30%), as well as stable strain-current response (at least 10 000 cycles). Particularly, the carbon aerogel is ultrasensitive for detecting tiny change in strain (0.012%) and pressure (0.25 Pa), which are the lowest detection limits for compressible carbon materials reported in the literature. Moreover, the carbon aerogel exhibits excellent bendable performance and can detect an ultralow bending angle of 0.052°. Additionally, the carbon aerogel also demonstrates its promising application as wearable devices.
Collapse
Affiliation(s)
- Hao Zhuo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yijie Hu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xing Tong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zehong Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Haihong Lai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Linxiang Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shuangshuang Jing
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Qingzhong Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Runcang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|