1
|
Velasquez STR, Jang D, Thomas J, Grysan P, Korley LTJ, Bruns N. Advanced mechanical properties of amphiphilic polymer conetworks through hierarchical reinforcement with peptides and cellulose nanocrystals. Polym Chem 2025:d4py01283f. [PMID: 40352405 PMCID: PMC12061020 DOI: 10.1039/d4py01283f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/22/2025] [Indexed: 05/14/2025]
Abstract
Amphiphilic polymer conetworks (APCNs) have been explored for various applications, including soft contact lenses, biomaterials, and membranes. They combine important properties of hydrogels and elastomers, including elasticity, transparency, and the capability to swell in water. Moreover, they also swell in organic solvents. However, their mechanical properties could be improved. We developed a two-level, bio-inspired, hierarchical reinforcement of APCNs using cellulose nanocrystals (CNCs) to reinforce peptide-reinforced APCNs formed from hydrophobic poly-β-benzyl-l-aspartate-block-polydimethylsiloxane-block-poly-β-benzyl-l-aspartate (PBLA-b-PDMS-b-PBLA) triblock copolymer crosslinkers and hydrophilic poly(2-hydroxyethyl acrylate) (PHEA) chain segments. Bio-inspired peptide-polymer hybrids combine the structural hierarchy often found in natural materials with synthetic macromolecules, such as block copolymers with soft and hard segments, to enhance their mechanical properties. On the other hand, CNCs provide an additional means to dissipate mechanical energy in polymeric materials, thereby enhancing reinforcement. The key to homogeneously incorporating CNCs into the APCNs is the combination of hydrophobic CNCs (HCNCs) with peptide-blocks in the APCNs, exploiting the hydrogen bonding capability of the peptides to disperse the HCNCs. The effect of HCNCs on the ability of APCNs to swell in water and organic solvents, as well as on their thermal and mechanical properties, was characterized. Additionally, the nanostructure of the materials was analyzed via small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The swellability of the HCNC-containing APCNs was independent of the HCNC concentration, and all samples were highly transparent. The ideal HCNC concentration, in terms of maximal stress, strain, toughness, and reinforcement, was found to be between 6 and 15 wt%. An increase in Young's modulus of up to 500% and toughness of up to 200% was achieved. The hierarchical reinforcement also greatly strengthened the APCNs when swollen in water or n-hexane. Thus, HCNCs and peptide segments can be used to reinforce APCNs and to tailor their properties.
Collapse
Affiliation(s)
- Sara T R Velasquez
- Department of Pure and Applied Chemistry, University of Strathclyde Thomas Graham Building 295 Cathedral Street Glasgow G1 1XL UK
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Daseul Jang
- Department of Materials Science and Engineering, University of Delaware 127 The Green 209 DuPont Hall Newark DE 19716 USA
| | - Jessica Thomas
- Department of Materials Science and Engineering, University of Delaware 127 The Green 209 DuPont Hall Newark DE 19716 USA
| | - Patrick Grysan
- Materials Research and Technology, Luxembourg Institute of Science and Technology 5 Avenue des Hauts-Fourneaux Esch-sur-Alzette L-4362 Luxembourg
| | - LaShanda T J Korley
- Department of Materials Science and Engineering, University of Delaware 127 The Green 209 DuPont Hall Newark DE 19716 USA
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark DE 19716 USA
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde Thomas Graham Building 295 Cathedral Street Glasgow G1 1XL UK
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| |
Collapse
|
2
|
Petróczy A, Szanka I, Wacha A, Varga Z, Thomann Y, Thomann R, Mülhaupt R, Bereczki L, Hegyesi N, Iván B. Bicontinuous Nanophasic Conetworks of Polystyrene with Poly(dimethylsiloxane) and Divinylbenzene: From Macrocrosslinked to Hypercrosslinked Double-Hydrophobic Conetworks and Their Organogels with Solvent-Selective Swelling. Gels 2025; 11:318. [PMID: 40422338 DOI: 10.3390/gels11050318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Polymer conetworks, which consist of two or more covalently crosslinked polymer chains, not only combine the individual characteristics of their components, but possess various unique structural features and properties as well. In this study, we report on the successful synthesis of a library of polystyrene-l-poly(dimethylsiloxane) (PSt-l-PDMS) ("l" stands for "linked by") and polystyrene-l-poly(dimethylsiloxane)/divinylbenzene (PSt-l-PDMS/DVB) polymer conetworks. These conetworks were prepared via free radical copolymerization of styrene (St) with methacryloxypropyl-telechelic poly(dimethylsiloxane) (MA-PDMS-MA) as macromolecular crosslinker in the absence and presence of DVB with 36:1 and 5:1 St/DVB ratios (m/m), the latter leading to hypercrosslinked conetworks. Macroscopically homogeneous, transparent conetworks with high gel fractions were obtained over a wide range of PDMS contents from 30 to 80 m/m%. The composition of the conetworks determined by elemental analysis was found to be in good agreement with that obtained from the 1H NMR spectra of the extraction residues, as a new method which can be widely used to easily determine the composition of multicomponent networks and gels. DSC, SAXS, and AFM measurements clearly indicate bicontinuous disordered nanophase separated morphology for all the investigated conetworks with domain sizes in the range of 3-30 nm, even for the hypercrosslinked PSt-l-PDMS/DVB conetworks with extremely high crosslinking density. The cocontinuous morphology is also proved by selective, composition-dependent uniform swelling in hexane for the PDMS and in 1-nitropropane for the PSt domains. The Korsmeyer-Peppas type evaluation of the swelling data indicates hindered Fickian diffusion of both solvents in the conetwork organogels. The unique nanophasic bicontinuous morphology and the selective swelling behavior of the PSt-l-PDMS and PSt-l-PDMS/DVB conetworks and their gels offer a range of various potential applications.
Collapse
Affiliation(s)
- Anna Petróczy
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- George Hevesy PhD School of Chemistry, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter Sétány 2, H-1117 Budapest, Hungary
| | - István Szanka
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - András Wacha
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Zoltán Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Yi Thomann
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Ralf Thomann
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Rolf Mülhaupt
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
| | - Laura Bereczki
- Chemical Crystallography Research Laboratory, Centre of Structural Science, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Nóra Hegyesi
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Béla Iván
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
3
|
Oh H, Lopez-Marques H, Wamble NP, Vogler RJ, Dhiman R, Behera H, Smith LA, Yu C, Jogdand A, Hsieh TY, Hernandez J, Mullins CB, Freeman BD, Kumar M. Highly Breathable and Protective Carbon Fabrics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23383-23393. [PMID: 40172424 DOI: 10.1021/acsami.5c01460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Achieving high water vapor transport while maintaining selective barrier properties in a single material is a crucial property desired in various fields. Breathable protective fabrics is one such area. This study specifically investigates the water vapor transport characteristics and barrier performance of carbon molecular sieve (CMS) membranes for potential applications in breathable protective fabrics. CMS membranes were fabricated by pyrolyzing precursor membranes with a focus on exploring the impact of different pyrolysis temperatures, membrane structures, and polymer concentrations on the properties of such membranes. A series of symmetric and asymmetric Matrimid CMS membranes were synthesized and tested. Samples pyrolyzed at 550 °C with 10% polymer concentration exhibited remarkable water vapor transport capability, outperforming commercial breathable fabrics by a factor of 2.6 despite having 3 orders of magnitude smaller pores. Owing to these small pores, they provide 7.5 times higher protective capacity compared to commercial breathable fabrics, which is comparable to that of the standard vapor impermeable protective material─butyl rubber.
Collapse
Affiliation(s)
- Hyeonji Oh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Horacio Lopez-Marques
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Noah P Wamble
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ronald J Vogler
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Raman Dhiman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Harekrushna Behera
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Chanjong Yu
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ankit Jogdand
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Tzu-Yun Hsieh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jorge Hernandez
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Benny D Freeman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Manish Kumar
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Oh H, Tu YM, Samineni L, De Respino S, Mehrafrooz B, Joshi H, Massenburg L, Lopez-Marques H, Elessawy N, Song W, Behera H, Dhiman R, Boorla VS, Kher K, Lin YC, Maranas C, Aksimentiev A, D Freeman B, Kumar M. Dehydrated Biomimetic Membranes with Skinlike Structure and Function. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38598825 DOI: 10.1021/acsami.3c19572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Novel vapor-permeable materials are sought after for applications in protective wear, energy generation, and water treatment. Current impermeable protective materials effectively block harmful agents but trap heat due to poor water vapor transfer. Here we present a new class of materials, vapor permeable dehydrated nanoporous biomimetic membranes (DBMs), based on channel proteins. This application for biomimetic membranes is unexpected as channel proteins and biomimetic membranes were assumed to be unstable under dry conditions. DBMs mimic human skin's structure to offer both high vapor transport and small molecule exclusion under dry conditions. DBMs feature highly organized pores resembling sweat pores in human skin, but at super high densities (>1012 pores/cm2). These DBMs achieved exceptional water vapor transport rates, surpassing commercial breathable fabrics by up to 6.2 times, despite containing >2 orders of magnitude smaller pores (1 nm vs >700 nm). These DBMs effectively excluded model biological agents and harmful chemicals both in liquid and vapor phases, again in contrast with the commercial breathable fabrics. Remarkably, while hydrated biomimetic membranes were highly permeable to liquid water, they exhibited higher water resistances after dehydration at values >38 times that of commercial breathable fabrics. Molecular dynamics simulations support our hypothesis that dehydration induced protein hydrophobicity increases which enhanced DBM performance. DBMs hold promise for various applications, including membrane distillation, dehumidification, and protective barriers for atmospheric water harvesting materials.
Collapse
Affiliation(s)
- Hyeonji Oh
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yu-Ming Tu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Laximicharan Samineni
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sophie De Respino
- Maseeh Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Behzad Mehrafrooz
- Center for Biophysics and Quantitative Biology, The University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics and Beckman Institute for Advanced Science and Technology, The University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Himanshu Joshi
- Department of Biotechnology, Indian Institute of Technology, Hyderabad 502285, India
| | - Lynnicia Massenburg
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Horacio Lopez-Marques
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nada Elessawy
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Woochul Song
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Harekrushna Behera
- Maseeh Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raman Dhiman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Veda Sheersh Boorla
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kartik Kher
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yi-Chih Lin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Costas Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, The University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics and Beckman Institute for Advanced Science and Technology, The University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Benny D Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Maseeh Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Gong X, Ding M, Gao P, Liu X, Yu J, Zhang S, Ding B. High-Performance Liquid-Repellent and Thermal-Wet Comfortable Membranes Using Triboelectric Nanostructured Nanofiber/Meshes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305606. [PMID: 37540196 DOI: 10.1002/adma.202305606] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Skin-like functional membranes with liquid resistance and moisture permeability are in growing demand in various applications. However, the membranes have been facing a long-term dilemma in balancing waterproofness and breathability, as well as resisting internal liquid sweat transport, resulting in poor thermal-wet comfort. Herein, a novel electromeshing technique, based on manipulating the ejection and phase separation of charged liquids, is developed to create triboelectric nanostructured nano-mesh consisting of hydrophobic ferroelectric nanofiber/meshes and hydrophilic nanofiber/meshes. By combining the true nanoscale diameter (≈22 nm), small pore size, and high porosity, high waterproofness (129 kPa) and breathability (3736 g m-2 per day) for the membranes are achieved. Moreover, the membranes can break large water clusters into small water molecules to promote sweat absorption and release by coupling hydrophilic wicking and triboelectric field polarization, exhibiting a satisfactory water evaporation rate (0.64 g h-1 ) and thermal-wet comfort (0.7 °C cooler than the cutting-edge poly(tetrafluoroethylene) protective membranes). This work may shed new light on the design and development of advanced protective textiles.
Collapse
Affiliation(s)
- Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Mingle Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Ping Gao
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Xiaoyan Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| |
Collapse
|
6
|
Gong X, Ding M, Gao P, Ji Y, Wang X, Liu XY, Yu J, Zhang S, Ding B. High-Performance Waterproof, Breathable, and Radiative Cooling Membranes Based on Nanoarchitectured Fiber/Meshworks. NANO LETTERS 2023. [PMID: 37991483 DOI: 10.1021/acs.nanolett.3c03968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Smart membranes with protection and thermal-wet comfort are highly demanded in various fields. Nevertheless, the existing membranes suffer from a tradeoff dilemma of liquid resistance and moisture permeability, as well as poor thermoregulating ability. Herein, a novel strategy, based on the synchronous occurrence of humidity-induced electrospinning and electromeshing, is developed to synthesize a dual-network structured nanofiber/mesh for personal comfort management. Manipulating the ejection, deformation, and phase separation of spinning jets and charged droplets enables the creation of nanofibrous membranes composed of radiative cooling nanofibers and 2D nanostructured meshworks. With a combination of a true-nanoscale fiber (∼70 nm) in 2D meshworks, a small pore size (0.84 μm), and a superhydrophobic surface (151.9°), the smart membranes present high liquid repellency (95.6 kPa), improved breathability (4.05 kg m-2 d-1), and remarkable cooling performance (7.9 °C cooler than commercial cotton fabrics). This strategy opens up a pathway to the design of advanced smart textiles for personal protection.
Collapse
Affiliation(s)
- Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Mingle Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Ping Gao
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Yu Ji
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Xianfeng Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Xiao-Yan Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| |
Collapse
|
7
|
Wang Z, Xie M, Guo Q, Liao Y, Zhang C, Chen Y, Dong Z, Duan H. Hyper-anti-freezing bionic functional surface to -90°C. PNAS NEXUS 2023; 2:pgad177. [PMID: 37293376 PMCID: PMC10246831 DOI: 10.1093/pnasnexus/pgad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Freezing phenomenon has troubled people for centuries, and efforts have been made to lower the liquid freezing temperature, raise the surface temperature, or mechanical deicing. Inspired by the elytra of beetle, we demonstrate a novel functional surface for directional penetration of liquid to reduce icing. The bionic functional surface is fabricated by projection microstereolithography (PµSL) based three dimensional printing technique with the wettability on its two sides tailored by TiO2 nanoparticle sizing agent. A water droplet penetrates from the hydrophobic side to the superhydrophilic side of such a bionic functional surface within 20 ms, but it is blocked in the opposite direction. Most significantly, the penetration time of a water droplet through such a bionic functional surface is much shorter than the freezing time on it, even though the temperature is as low as -90°C. This work opens a gate for the development of functional devices for liquid collection, condensation, especially for hyperantifogging/freezing.
Collapse
Affiliation(s)
- Zhaolong Wang
- To whom correspondence should be addressed: (Z.W.); (Y.C.); (Z.D.); (H.D.)
| | - Mingzhu Xie
- Interdisciplinary Research Center of Low-carbon Technology and Equipment, College of Mechanical and Vehicle Engineering, Hunan University, 1 South Lushan, Changsha 410082, PR China
| | - Qing Guo
- MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical and Power Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yibo Liao
- Interdisciplinary Research Center of Low-carbon Technology and Equipment, College of Mechanical and Vehicle Engineering, Hunan University, 1 South Lushan, Changsha 410082, PR China
| | - Ce Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology (CAST), 104 Youyi Road, Beijing 100094, PR China
| | - Yongping Chen
- To whom correspondence should be addressed: (Z.W.); (Y.C.); (Z.D.); (H.D.)
| | - Zhichao Dong
- To whom correspondence should be addressed: (Z.W.); (Y.C.); (Z.D.); (H.D.)
| | - Huigao Duan
- To whom correspondence should be addressed: (Z.W.); (Y.C.); (Z.D.); (H.D.)
| |
Collapse
|
8
|
Gong X, Jin C, Liu XY, Yu J, Zhang S, Ding B. Scalable Fabrication of Electrospun True-Nanoscale Fiber Membranes for Effective Selective Separation. NANO LETTERS 2023; 23:1044-1051. [PMID: 36655867 DOI: 10.1021/acs.nanolett.2c04667] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrospun fibers have received wide attention in various fields ranging from the environment and healthcare to energy. However, nearly all electrospun fibers suffer from a pseudonanoscale diameter, resulting in fabricated membranes with a large pore size and limited separation performance. Herein, we report a novel strategy based on manipulating the equilibrium of stretch deformation and phase separation of electrospun jets to develop true-nanoscale fibers for effective selective separation. The obtained fibers present true-nanoscale diameters (∼67 nm), 1 order of magnitude less than those of common electrospun fibers, which endows the resultant membranes with remarkable nanostructural characteristics and separation performances in areas of protective textiles (waterproofness of 113 kPa and breathability of 4.1 kg m-2 d-1), air filtration (efficiency of 99.3% and pressure drop of 127.4 Pa), and water purification (flux of 81.5 kg m-2 h-1 and salt rejection of 99.94%). This work may shed light on developing high-performance separation materials for various applications.
Collapse
Affiliation(s)
- Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Chunfeng Jin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Xiao-Yan Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| |
Collapse
|
9
|
Song Y, Peng C, Iqbal Z, Sirkar KK, Peterson GW, Mahle JJ, Buchanan JH. Graphene Oxide and Metal-Organic Framework-Based Breathable Barrier Membranes for Toxic Vapors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31321-31331. [PMID: 35771504 DOI: 10.1021/acsami.2c07989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Garments protective against chemical warfare agents (CWAs) or accidently released toxic chemicals must block the transport of toxic gases/vapors for a substantial time and allow moisture transport for breathability. These demands are challenging: either the barriers block CWAs effectively but have poor breathability or barriers have excellent breathability but cannot block CWAs well. Existing protective garments employ large amounts of active carbon, making them quite heavy. Metal-organic framework (MOF)-based adsorbents are being investigated as sorbents for CWAs. Breathable laminate of graphene oxide (GO) flakes supported on a porous membrane reduces permeation rates of CWA simulants substantially. We developed a multilayered membrane-based flexible barrier: GO laminate-based membrane over a MOF nanocrystal-filled expanded polytetrafluorethylene (ePTFE) membrane having submicrometer pores. The GO laminate-based layer developed a steady breakthrough concentration level almost 2 orders of magnitude below the usual breakthrough level. This highly reduced level of CWA was blocked by the MOF nanocrystal-filled membrane substrate layer over a highly extended period. We demonstrated the blocking of CWAs, mustard (HD), soman (GD), a sarin simulant [dimethyl methyl phosphonate (DMMP)], and ammonia for an extended period while the moisture transmission rate was substantial. The times for complete blockage of ammonia, HD, GD, and DMMP were 2750 min, 1075 min, 176 min, and 7 days, respectively. This remarkable performance resulted from a very low steady-state penetrant permeation through GO-laminate membrane and substantial penetrant sorption by MOF nanocrystals; furthermore, both layers show high moisture vapor transmission.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Cheng Peng
- Materials Science and Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Zafar Iqbal
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Kamalesh K Sirkar
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Gregory W Peterson
- CBR Filtration Branch, R&T Directorate DEVCOM Chemical Biological Center, U.S. Army Futures Command; 8567 Ricketts Point Road, Bldg. E3549, Aberdeen Proving Ground, Maryland 21010, United States
| | - John J Mahle
- CBR Filtration Branch, R&T Directorate DEVCOM Chemical Biological Center, U.S. Army Futures Command; 8567 Ricketts Point Road, Bldg. E3549, Aberdeen Proving Ground, Maryland 21010, United States
| | - James H Buchanan
- CBR Filtration Branch, R&T Directorate DEVCOM Chemical Biological Center, U.S. Army Futures Command; 8567 Ricketts Point Road, Bldg. E3549, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
10
|
Tan X, Zheng J. A Novel Porous PDMS-AgNWs-PDMS (PAP)-Sponge-Based Capacitive Pressure Sensor. Polymers (Basel) 2022; 14:polym14081495. [PMID: 35458245 PMCID: PMC9031670 DOI: 10.3390/polym14081495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
The development of capacitive pressure sensors with low cost, high sensitivity and facile fabrication techniques is desirable for flexible electronics and wearable devices. In this project, a highly sensitive and flexible capacitive pressure sensor was fabricated by sandwiching a porous PAP sponge dielectric layer between two copper electrodes. The porous PAP sponge dielectric layer was fabricated by introducing highly conductive silver nanowires (AgNWs) into the PDMS sponge with 100% sucrose as a template and with a layer of polydimethylsiloxane (PDMS) film coating the surface. The sensitivity of the PAP sponge capacitive pressure sensor was optimized by increasing the load amount of AgNWs. Experimental results demonstrated that when the load amount of AgNWs increased to 150 mg in the PAP sponge, the sensitivity of the sensor was the highest in the low-pressure range of 0–1 kPa, reaching 0.62 kPa−1. At this point, the tensile strength and elongation of sponge were 1.425 MPa and 156.38%, respectively. In addition, the specific surface area of PAP sponge reached 2.0 cm2/g in the range of 0–10 nm pore size, and showed excellent waterproof performance with high elasticity, low hysteresis, light weight, and low density. Furthermore, as an application demonstration, ~110 LED lights were shown to light up when pressed onto the optimized sensor. Hence, this novel porous PAP-sponge-based capacitive pressure sensor has a wide range of potential applications in the field of wearable electronics.
Collapse
|
11
|
Du X, Xu J, Yan Q, Xin B, Wang C. Bio-inspired hierarchically porous membrane with superhydrophobic antifouling surface for solar-driven dehumidifying system. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Li P, Feng Q, Chen L, Zhao J, Lei F, Yu H, Yi N, Gan F, Han S, Wang L, Wang X. Environmentally Friendly, Durably Waterproof, and Highly Breathable Fibrous Fabrics Prepared by One-Step Fluorine-Free Waterborne Coating. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8613-8622. [PMID: 35113511 DOI: 10.1021/acsami.1c23664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Waterproof and breathable membranes (WBMs) have drawn broad attention due to their widespread applications in various scientific and industry fields. However, creating WBMs with environment-friendliness and high performance is still a critical and challenging task. Herein, an environmentally friendly fluorine-free WBM with high performance was prepared through electrospinning and one-step dip-coating technology. The fluorine-free waterborne hydroxyl acrylic resin (HAR) emulsion containing long hydrocarbon chains endowed the electrospun polyacrylonitrile/blocked isocyanate prepolymer (PAN/BIP) fibrous membranes with superior hydrophobicity; meanwhile, crosslinking agent BIP ensured strong chemical binding between hydrocarbon segments and fiber substrate. The as-prepared PAN/BIP@HAR fibrous membranes achieve ideal properties with waterproofness of 112.5 kPa and moisture permeability of 12.7 kg m-2 d-1, which are comparable to the existing high-performance fluorinated WBMs. Besides, the PAN/BIP@HAR membranes also display impressive tensile strength and durability. Significantly, the proposed technology was also applicable to other hydrophilic fiber substrates, such as cellulose acetate and polyamide 6. The successful synthesis of environmentally friendly, durably waterproof, and highly breathable PAN/BIP@HAR membranes not only opens a new avenue to materials design, but also provides promising candidates with tremendous potential in various areas.
Collapse
Affiliation(s)
- Penghui Li
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Qi Feng
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Lixia Chen
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Jing Zhao
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Fuwang Lei
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Hui Yu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Ningbo Yi
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Feng Gan
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Shaobo Han
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Lihuan Wang
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Xianfeng Wang
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
13
|
Yu LP, Xing CY, Fan ST, Liu F, Li BJ, Zhang S. β-Cyclodextrin-Modified Polyacrylonitrile Nanofibrous Scaffolds with Breathability, Moisture-Wicking, and Antistatic Performance. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lu-Ping Yu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| | - Cheng-Yuan Xing
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Shu-Ting Fan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| | - Fan Liu
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Bang-Jing Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
14
|
Biomimetic superhydrophobic membrane with multi-scale porous microstructure for waterproof and breathable application. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Tu YM, Samineni L, Ren T, Schantz AB, Song W, Sharma S, Kumar M. Prospective applications of nanometer-scale pore size biomimetic and bioinspired membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118968] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Zhou W, Yu X, Li Y, Jiao W, Si Y, Yu J, Ding B. Green-Solvent-Processed Fibrous Membranes with Water/Oil/Dust-Resistant and Breathable Performances for Protective Textiles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2081-2090. [PMID: 33351576 DOI: 10.1021/acsami.0c20172] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Waterproof and breathable membranes (WBMs) are highly demanded worldwide due to their promising applications in outdoor protective clothing, medical hygiene, and electronic devices. However, the design of such materials integrated with environmental friendliness and high functionality has been considered a long-standing challenge. Herein, we report the green-solvent-processed polyamide fibrous membranes with amphiphobicity and bonding structure via ethanol-based electrospinning and water-based impregnating techniques, endowing the fibrous membranes with outstanding water/oil/dust-resistant and good breathable properties. The developed green smart fibrous membranes exhibit integrated properties with robust water and oil intrusion pressures of 101.2 and 32.4 kPa, respectively, excellent dust removal efficiency of above 99.9%, good water vapor transmission rate of 11.2 kg m-2 d-1, air permeability of 2.6 mm s-1, tensile strength of 15.6 MPa, and strong toughness of 22.8 MJ m-3, enabling the membranes to protect human beings and electronic devices effectively. This work may shed light on designing the next generation green smart fibrous WBMs for protective textiles.
Collapse
Affiliation(s)
- Wen Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xi Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yang Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Wenling Jiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
17
|
Dzhardimalieva GI, Yadav BC, Lifintseva TV, Uflyand IE. Polymer chemistry underpinning materials for triboelectric nanogenerators (TENGs): Recent trends. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Mugemana C, Martin A, Grysan P, Dieden R, Ruch D, Dubois P. Scratch‐Healing Surface‐Attached Coatings from
Metallo
‐Supramolecular Polymer Conetworks. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Clément Mugemana
- Luxembourg Institute of Science and Technology Materials Research and Technology Department 5 rue Bommel – ZAE Robert Steichen Hautcharage L‐4940 Luxembourg
| | - Anouk Martin
- Luxembourg Institute of Science and Technology Materials Research and Technology Department 5 rue Bommel – ZAE Robert Steichen Hautcharage L‐4940 Luxembourg
| | - Patrick Grysan
- Luxembourg Institute of Science and Technology Materials Research and Technology Department 5 rue Bommel – ZAE Robert Steichen Hautcharage L‐4940 Luxembourg
| | - Reiner Dieden
- Luxembourg Institute of Science and Technology Materials Research and Technology Department 5 rue Bommel – ZAE Robert Steichen Hautcharage L‐4940 Luxembourg
| | - David Ruch
- Luxembourg Institute of Science and Technology Materials Research and Technology Department 5 rue Bommel – ZAE Robert Steichen Hautcharage L‐4940 Luxembourg
| | - Philippe Dubois
- Center of Innovation and Research in Materials Polymers Laboratory of Polymeric and Composite Materials Université de Mons Place du Parc Mons 23B‐7000 Belgium
| |
Collapse
|
19
|
Song Y, Chau J, Sirkar KK, Peterson GW, Beuscher U. Membrane-supported metal organic framework based nanopacked bed for protection against toxic vapors and gases. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Patrickios CS, Matyjaszewski K. Amphiphilic polymer co‐networks: 32 years old and growing stronger – a perspective. POLYM INT 2020. [DOI: 10.1002/pi.6138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh PA USA
| |
Collapse
|
21
|
Ahmed Babar A, Zhao X, Wang X, Yu J, Ding B. One-step fabrication of multi-scaled, inter-connected hierarchical fibrous membranes for directional moisture transport. J Colloid Interface Sci 2020; 577:207-216. [DOI: 10.1016/j.jcis.2020.05.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 01/25/2023]
|
22
|
Zhao J, Wang X, Xu Y, He P, Si Y, Liu L, Yu J, Ding B. Multifunctional, Waterproof, and Breathable Nanofibrous Textiles Based on Fluorine-Free, All-Water-Based Coatings. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15911-15918. [PMID: 32141740 DOI: 10.1021/acsami.0c00846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing environmentally benign, multifunctional waterproof and breathable membranes (WBMs) is of great importance but still faces enormous challenges. Here, an environmentally benign fluorine-free, ultraviolet (UV) blocking, and antibacterial WBM with a high level of waterproofness and breathability is developed on a large scale by combining electrospinning and step-by-step surface coating technology. Fluorine-free water-based alkylacrylates with long hydrocarbon chains were coated onto polyamide 6 fibrous membranes to construct robust hydrophobic surfaces. The subsequent titanium dioxide nanoparticle emulsion coating prominently decreased the maximum pore size, leading to higher water resistance, endowing the membranes with efficient UV-resistant and antibacterial properties. The resulting fibrous membranes possessed excellent waterproofness of 106.2 kPa, exceptional breathability of 10.3 kg m-2 d-1, a significant UV protection factor of 430.5, together with a definite bactericidal efficiency of 99.9%. We expect that this methodology for construction of environmentally benign and multifunctional WBMs will shed light on the material design, and the prepared membranes could implement their promising applications in covering materials, outdoor equipment, protective clothing, and high-altitude garments.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xianfeng Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yuanqiang Xu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Peiwen He
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yang Si
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Lifang Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
23
|
Peng C, Iqbal Z, Sirkar KK, Peterson GW. Graphene Oxide-Based Membrane as a Protective Barrier against Toxic Vapors and Gases. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11094-11103. [PMID: 32078289 DOI: 10.1021/acsami.0c00615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Traditional protective garments loaded with activated carbons to remove toxic gases are very bulky. Novel graphene oxide (GO) flake-based composite lamellar membrane structure is being developed as a potential component of a garment for protection against chemical warfare agents (CWAs) represented here by simulants, dimethyl methyl phosphonate (DMMP) (a sarin-simulant), and 2-chloroethyl ethyl sulfide (CEES) (a simulant for sulfur mustard), yet allowing a high-moisture transmission rate. GO flakes of dimensions 300-800 nm, 0.7-1.2 nm thickness and dispersed in an aqueous suspension were formed into a membrane by vacuum filtration on a porous poly(ether sulfone) (PES) or poly(ether ether ketone) (PEEK) support membrane for noncovalent π-π interactions with GO flakes. After physical compression of such a membrane, upright cup tests indicated that it can block toluene for 3-4 days and DMMP for 5 days while exhibiting excellent water vapor permeation. Further, they display very low permeances for small-molecule gases/vapors. The GO flakes underwent cross-linking later with ethylenediamine (EDA) introduced during the vacuum filtration followed by physical compression and heating. With a further spray coating of polyurethane (PU), these membranes could be bent without losing barrier properties vis-à-vis the CWA simulant DMMP for 5 days; a membrane not subjected to bending blocked DMMP for 15 days. For the PEEK-EDA-GO-PU-compressed membranes after bending, the separation factors of H2O over other species for low gas flow rates in the dynamic moisture permeation cell (DMPC) are: αH2O-He is 42.3; αH2O-N2 is 110; and αH2O-ethane is 1800. At higher gas flow rates in the DMPC, the moisture transmission rate goes up considerably due to reduced boundary layer resistances and exceeds the threshold water vapor flux of 2000 g/(m2·day) that defines a breathable fabric. This membrane displayed considerable resistance to permeation by CEES as well. The PES-EDA-GO-PU-compressed membrane shows good mechanical property under tensile strength tests.
Collapse
Affiliation(s)
| | | | | | - Gregory W Peterson
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, FCDD-CBR-PF, Aberdeen Proving Ground, Maryland 21010-5424, United States
| |
Collapse
|
24
|
Zhao J, Zhu W, Wang X, Liu L, Yu J, Ding B. Fluorine-Free Waterborne Coating for Environmentally Friendly, Robustly Water-Resistant, and Highly Breathable Fibrous Textiles. ACS NANO 2020; 14:1045-1054. [PMID: 31877025 DOI: 10.1021/acsnano.9b08595] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Waterproof and breathable membranes (WBMs) with simultaneous environmental friendliness and high performance are highly desirable in a broad range of applications; however, creating such materials still remains a tough challenge. Herein, we present a facile and scalable strategy to fabricate fluorine-free, efficient, and biodegradable WBMs via step-by-step dip-coating and heat curing technology. The hyperbranched polymer (ECO) coating containing long hydrocarbon chains provided an electrospun cellulose acetate (CA) fibrous matrix with high hydrophobicity; meanwhile, the blocked isocyanate cross-linker (BIC) coating ensured the strong attachment of hydrocarbon segments on CA surfaces. The resulting membranes (TCA) exhibited integrated properties with waterproofness of 102.9 kPa, breathability of 12.3 kg m-2 d-1, and tensile strength of 16.0 MPa, which are much superior to that of previously reported fluorine-free fibrous materials. Furthermore, TCA membranes can sustain hydrophobicity after exposure to various harsh environments. More importantly, the present strategy proved to be universally applicable and effective to several other hydrophilic fibrous substrates. This work not only highlights the material design and preparation but also provides environmentally friendly and high-performance WBMs with great potential application prospects for a variety of fields.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Weixia Zhu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Xianfeng Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Lifang Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| |
Collapse
|
25
|
Mugemana C, Grysan P, Dieden R, Ruch D, Bruns N, Dubois P. Self‐Healing Metallo‐Supramolecular Amphiphilic Polymer Conetworks. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900432] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Clément Mugemana
- Materials Research and Technology DepartmentLuxembourg Institute of Science and Technology 5 rue Bommel–ZAE Robert Steichen L‐4940 Hautcharage Luxembourg
| | - Patrick Grysan
- Materials Research and Technology DepartmentLuxembourg Institute of Science and Technology 5 rue Bommel–ZAE Robert Steichen L‐4940 Hautcharage Luxembourg
| | - Reiner Dieden
- Materials Research and Technology DepartmentLuxembourg Institute of Science and Technology 5 rue Bommel–ZAE Robert Steichen L‐4940 Hautcharage Luxembourg
| | - David Ruch
- Materials Research and Technology DepartmentLuxembourg Institute of Science and Technology 5 rue Bommel–ZAE Robert Steichen L‐4940 Hautcharage Luxembourg
| | - Nico Bruns
- Thomas Graham BuildingDepartment of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1BX UK
| | - Philippe Dubois
- Center of Innovation and Research in Materials PolymersLaboratory of Polymeric and Composite MaterialsUniversité de Mons Place du Parc 23B‐7000 Mons Belgium
| |
Collapse
|
26
|
Xu J, Xin B, Du X, Wang C, Chen Z, Zheng Y, Zhou M. Flexible, portable and heatable non-woven fabric with directional moisture transport functions and ultra-fast evaporation. RSC Adv 2020; 10:27512-27522. [PMID: 35516954 PMCID: PMC9055594 DOI: 10.1039/d0ra03867a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Compared with previous textiles possessing a hierarchical roughness structure for accelerating moisture evaporation, the use of Joule-heating to prepare heatable textiles is a more novel and useful way to achieve ultra-fast evaporation. Herein, we report an assembly strategy to create a functional non-woven (NW) fabric for directional moisture transportation and ultra-fast evaporation, ameliorating previous shortcomings. The resulting functional NW fabric reaches a sheet resistance of 1.116 Ω □−1, and the increased surface temperature (76.1 °C) induced by a low voltage (5 V) further results in an excellent ultra-fast evaporation rate (3.42 g h−1). Also, the moisture is transported to the outer surface of the designed fabric and spreads onto this surface. This desirable property can expand the contact area between sweat and the heatable fabric, further improving the evaporation efficiency, while maintaining the dry state of human skin. Generally, this functional textile with remarkable moisture management capabilities could be applied in winter outdoor sportswear to maintain human comfort. Functional non-woven fabric with directional moisture transport and ultra-fast evaporation properties is demonstrated.![]()
Collapse
Affiliation(s)
- Jinhao Xu
- School of Textiles and Fashion Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Binjie Xin
- School of Textiles and Fashion Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Xuanxuan Du
- School of Textiles and Fashion Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Chun Wang
- School of Textiles and Fashion Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
- State Key Laboratory of Separation Membranes and Membrane Process
| | - Zhuoming Chen
- School of Textiles and Fashion Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Yuansheng Zheng
- School of Textiles and Fashion Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Mengjuan Zhou
- College of Textiles
- Donghua University
- Shanghai 201620
- China
| |
Collapse
|
27
|
Zhang Y, Li TT, Ren HT, Sun F, Lin Q, Lin JH, Lou CW. Tuning the gradient structure of highly breathable, permeable, directional water transport in bi-layered Janus fibrous membranes using electrospinning. RSC Adv 2020; 10:3529-3538. [PMID: 35497713 PMCID: PMC9048997 DOI: 10.1039/c9ra06022g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/05/2019] [Indexed: 12/05/2022] Open
Abstract
In this paper, a novel bi-layered Janus fibrous electrospun membrane with robust moisture permeable, breathable and directional water transport properties is successfully fabricated and reported for the first time. This fibrous membrane consists of a thin inner layer of hydrophobic thermoplastic polyurethane (TPU) and a thick outer layer of super hydrophilic polyacrylonitrile (PAN). The PAN layer is coated with dopamine (PDA) to tailor the wettability. The subsequent TPU–PAN/PDA membrane demonstrates outstanding wettability and thickness gradients, which facilitate directional water transport from the TPU to the PAN/PDA layer and improve the WVT rate to 9065 g m−2 d−1 and the air permeability to 100 mm s−1 (5.0 times higher than a commercial membrane). Furthermore, a plausible mechanism explaining the bi-layered Janus fibrous membrane performance is studied. The fibrous membrane is suggested to be a promising candidate for various applications, especially in moisture-wicking clothing. In this paper, a novel bi-layered Janus fibrous electrospun membrane with robust moisture permeable, breathable and directional water transport properties is successfully fabricated and reported for the first time.![]()
Collapse
Affiliation(s)
- Yue Zhang
- Innovation Platform of Intelligent and Energy-Saving Textiles
- School of Textile Science and Engineering
- Tiangong University
- Tianjin 300387
- China
| | - Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles
- School of Textile Science and Engineering
- Tiangong University
- Tianjin 300387
- China
| | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles
- School of Textile Science and Engineering
- Tiangong University
- Tianjin 300387
- China
| | - Fei Sun
- Innovation Platform of Intelligent and Energy-Saving Textiles
- School of Textile Science and Engineering
- Tiangong University
- Tianjin 300387
- China
| | - Qi Lin
- Ocean College
- Minjiang University
- Fuzhou 350108
- China
- Fujian Engineering Research Center of New Chinese Lacquer Material
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles
- School of Textile Science and Engineering
- Tiangong University
- Tianjin 300387
- China
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles
- School of Textile Science and Engineering
- Tiangong University
- Tianjin 300387
- China
| |
Collapse
|
28
|
Guo Y, Zhou W, Wang L, Dong Y, Yu J, Li X, Ding B. Stretchable PDMS Embedded Fibrous Membranes Based on an Ethanol Solvent System for Waterproof and Breathable Applications. ACS APPLIED BIO MATERIALS 2019; 2:5949-5956. [DOI: 10.1021/acsabm.9b00875] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yuxia Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wen Zhou
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Lihuan Wang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuping Dong
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
29
|
Ulrich S, Osypova A, Panzarasa G, Rossi RM, Bruns N, Boesel LF. Pyranine-Modified Amphiphilic Polymer Conetworks as Fluorescent Ratiometric pH Sensors. Macromol Rapid Commun 2019; 40:e1900360. [PMID: 31523877 DOI: 10.1002/marc.201900360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Indexed: 01/04/2023]
Abstract
The fluorescent dye 8-hydroxypyrene-1,3,6-trisulfonate (pyranine) combines high photostability with ratiometric pH detection in the physiological range, making it a prime candidate for optical sensors in biomedical applications, such as pH-based chronic wound monitoring. However, pyranine's high water solubility and the difficulty of covalent attachment pose severe limitations in terms of leaching from sensor matrices. Herein, pyranine-modified nanophase-separated amphiphilic polymer conetworks (APCNs) are reported as fluorescent ratiometric pH sensors. The thin, freestanding APCN membranes composed of one hydrophilic and one hydrophobic polymer provide an optically transparent, flexible, and stable ideal matrix that enables contact between dye and aqueous environment. An active ester-based conjugation approach results in a highly homogeneous and stable pyranine modification of the APCN's hydrophilic phase. This concept effectively solves the leaching challenge for pyranine without compromising its functionality, which is demonstrated by ratiometric pH detection in the range of pH 5-9.
Collapse
Affiliation(s)
- Sebastian Ulrich
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.,Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Alina Osypova
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Guido Panzarasa
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland.,Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| |
Collapse
|
30
|
Tehrani-Bagha AR. Waterproof breathable layers - A review. Adv Colloid Interface Sci 2019; 268:114-135. [PMID: 31022590 DOI: 10.1016/j.cis.2019.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/25/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
Abstract
Waterproof breathable layers (WPBLs) can be classified into two large groups of hydrophilic nonporous and hydrophobic porous layers. These layers (e.g., fabrics, films, membranes, and meshes) can be produced by various continuous and non-continuous processes such as coating, laminating, film stretching, casting, etc. The most common methods for production, characterization, and testing of WPBLs are presented and discussed in light of recent publications. The materials with high level of waterproofness and breathability are often used in outerwear for winter sports, sailing apparel, raincoats, military/police jackets, backpacks, tents, cargo raps, footwear and etc. WPBLs can also be used for other specialized applications such as membrane distillation, oil-water filtration, and wound dressing. These applications are discussed by presenting several good examples. The main challenge in the production of these layers is to compromise between waterproofness and breathability with opposing nature. The related research gaps, challenges, and future outlook are highlighted to shed more light on the topic.
Collapse
|
31
|
Getachew BA, Guo W, Zhong M, Kim JH. Asymmetric hydrogel-composite membranes with improved water permeability and self-healing property. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Yu X, Wu X, Si Y, Wang X, Yu J, Ding B. Waterproof and Breathable Electrospun Nanofibrous Membranes. Macromol Rapid Commun 2019; 40:e1800931. [PMID: 30725509 DOI: 10.1002/marc.201800931] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/23/2019] [Indexed: 12/20/2022]
Abstract
Waterproof and breathable (W&B) membranes combine fascinating properties of resistance to liquid water penetration and transmitting of water vapor, playing a key role in addressing problems related to health, resources, and energy. Electrospinning is an efficient and advanced way to construct nanofibrous materials with easily tailored wettability and adjustable pore structure, therefore providing an ideal strategy for constructing W&B membranes. In this review, recent progress on electrospun W&B membranes is summarized, involving materials design and fabrication, basic properties of electrospun W&B membranes associated with waterproofness and breathability, as well as their applications. In addition, challenges and future trends of electrospun W&B membranes are discussed.
Collapse
Affiliation(s)
- Xi Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaohui Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Xianfeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
33
|
Jiang G, Luo L, Tan L, Wang J, Zhang S, Zhang F, Jin J. Microsphere-Fiber Interpenetrated Superhydrophobic PVDF Microporous Membranes with Improved Waterproof and Breathable Performance. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28210-28218. [PMID: 30053370 DOI: 10.1021/acsami.8b08191] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Superhydrophobic membranes with extreme liquid water repellency property are good candidates for waterproof and breathable application. Different from the mostly used strategies through either mixing or postmodifying base membranes with perfluorinated compounds, we report in this work a facile methodology to fabricate superhydrophobic microporous membranes made up of pure poly(vinylidene fluoride) (PVDF) via a high-humidity induced electrospinning process. The superhydrophobic property of the PVDF microporous membrane is contributed by its special microsphere-fiber interpenetrated rough structure. The effective pore size and porosity of the PVDF membranes could be well tuned by simply adjusting the PVDF concentrations in polymer solutions. The membrane with optimized superhydrophobicity and porous structure exhibits improved waterproof and breathable performance with hydrostatic pressure up to 62 kPa, water vapor transmission rate (WVT rate) of 10.6 kg m-2 d-1, and simultaneously outstanding windproof performance with air permeability up to 1.3 mm s-1. Our work represents a rather simple and perfluorinated-free strategy for fabricating superhydrophobic microporous membranes, which matches well with the environmentally friendly requirement from the viewpoint of practical application.
Collapse
Affiliation(s)
- Gaoshuo Jiang
- Department of Chemistry , Shanghai University , Shanghai 200444 , P. R. China
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou , 215123 , P. R. China
| | - Liqiang Luo
- Department of Chemistry , Shanghai University , Shanghai 200444 , P. R. China
| | - Lu Tan
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , 215123 , P. R. China
| | - Jinliang Wang
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou , 215123 , P. R. China
| | - Shenxiang Zhang
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou , 215123 , P. R. China
| | - Feng Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , 215123 , P. R. China
| | - Jian Jin
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou , 215123 , P. R. China
| |
Collapse
|
34
|
Ulrich S, Sadeghpour A, Rossi RM, Bruns N, Boesel LF. Wide Range of Functionalized Poly(N-alkyl acrylamide)-Based Amphiphilic Polymer Conetworks via Active Ester Precursors. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sebastian Ulrich
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | | | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | |
Collapse
|
35
|
Babar AA, Miao D, Ali N, Zhao J, Wang X, Yu J, Ding B. Breathable and Colorful Cellulose Acetate-Based Nanofibrous Membranes for Directional Moisture Transport. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22866-22875. [PMID: 29870228 DOI: 10.1021/acsami.8b07393] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Textiles with excellent moisture transport characteristics play key role in regulating comfort of the body, and use of color in textiles helps in developing aesthetically pleasing apparels. Herein, we report an aesthetically pleasing and breathable dual-layer cellulose acetate (CA) based nanofibrous membranes with exceptional directional moisture transport performance. The outer layer was synthesized by subjecting CA nanofibers to hydrolysis and reactive dyeing processes, which converted moderately hydrophobic CA nanofibers into uniformly colored superhydrophilic CA nanofibers with an excellent wettability. In addition to excellent wettability and superhydrophilic nature, dyed CA (DCA) nanofibers also offered high color yield and dye fixation as well as considerable colorfastness performance against washing and light, thus, were used as the outer layer. However, pristine CA nanofibers were chosen as the inner layer for their moderate hydrophobicity. The subsequent CA/DCA nanofiber membrane produced a high wettability gradient, which facilitated directional moisture transport from CA to DCA layers. The resultant dual-layer nanofiber membranes offered a high color yield of 16.33 with ∼82% dye fixation, excellent accumulative one-way transport capacity (919%), remarkable overall moisture management capacity (0.89), and reasonably high water vapor transport rate (12.11 kg d-1 m-2), suggesting them to be a potential substrate for fast sweat-release applications.
Collapse
Affiliation(s)
- Aijaz Ahmed Babar
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620 , China
- Textile Engineering Department , Mehran University of Engineering & Technology , Jamshoro 76060 , Pakistan
| | - Dongyang Miao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620 , China
| | - Nadir Ali
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620 , China
- Textile Engineering Department , Mehran University of Engineering & Technology , Jamshoro 76060 , Pakistan
| | - Jing Zhao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620 , China
| | - Xianfeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620 , China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620 , China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| |
Collapse
|
36
|
Saini S, Kandasubramanian B. Engineered Smart Textiles and Janus Microparticles for Diverse Functional Industrial Applications. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1466177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shubham Saini
- Dr. B.R Ambedkar National Institute of Technology, Jalandhar, India
| | | |
Collapse
|
37
|
|
38
|
Liu MN, Yan X, You MH, Fu J, Nie GD, Yu M, Ning X, Wan Y, Long YZ. Reversible photochromic nanofibrous membranes with excellent water/windproof and breathable performance. J Appl Polym Sci 2018. [DOI: 10.1002/app.46342] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Meng-Nan Liu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics; Qingdao University; Qingdao 266071 China
| | - Xu Yan
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics; Qingdao University; Qingdao 266071 China
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing; Qingdao University; Qingdao 266071 China
| | - Ming-Hao You
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics; Qingdao University; Qingdao 266071 China
| | - Jie Fu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics; Qingdao University; Qingdao 266071 China
| | - Guang-Di Nie
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics; Qingdao University; Qingdao 266071 China
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing; Qingdao University; Qingdao 266071 China
| | - Miao Yu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics; Qingdao University; Qingdao 266071 China
- Department of Mechanical Engineering; Columbia University; New York New York 10027
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing; Qingdao University; Qingdao 266071 China
| | - Yong Wan
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics; Qingdao University; Qingdao 266071 China
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics; Qingdao University; Qingdao 266071 China
| |
Collapse
|
39
|
Song C, Li T, Guo W, Gao Y, Yang C, Zhang Q, An D, Huang W, Yan M, Guo C. Hydrophobic Cu12Sb4S13-deposited photothermal film for interfacial water evaporation and thermal antibacterial activity. NEW J CHEM 2018. [DOI: 10.1039/c7nj04545j] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu12Sb4S13photothermal film realized interfacial water evaporation, simulation of solar salt formation, and thermal antibacterial activity simultaneously.
Collapse
Affiliation(s)
- Chuanqi Song
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology
- Harbin 150080
- China
- Key Lab of Microsystem and Microstructure (Ministry of Education), Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology
- Harbin 150080
| | - Tianchan Li
- Key Lab of Microsystem and Microstructure (Ministry of Education), Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology
- Harbin 150080
- China
| | - Wei Guo
- Key Lab of Microsystem and Microstructure (Ministry of Education), Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology
- Harbin 150080
- China
| | - Yan Gao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology
- Harbin 150080
- China
- Key Lab of Microsystem and Microstructure (Ministry of Education), Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology
- Harbin 150080
| | - Chunyu Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology
- Harbin 150080
- China
| | - Qun Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology
- Harbin 150080
- China
| | - Di An
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology
- Harbin 150080
- China
| | - Weicheng Huang
- Key Lab of Microsystem and Microstructure (Ministry of Education), Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology
- Harbin 150080
- China
| | - Mei Yan
- Key Lab of Microsystem and Microstructure (Ministry of Education), Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology
- Harbin 150080
- China
| | - Chongshen Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology
- Harbin 150080
- China
- Key Lab of Microsystem and Microstructure (Ministry of Education), Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology
- Harbin 150080
| |
Collapse
|
40
|
Functional modification of breathable polyacrylonitrile/polyurethane/TiO2 nanofibrous membranes with robust ultraviolet resistant and waterproof performance. J Colloid Interface Sci 2017; 508:508-516. [DOI: 10.1016/j.jcis.2017.08.055] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/12/2017] [Accepted: 08/16/2017] [Indexed: 02/03/2023]
|
41
|
Zhao J, Li Y, Sheng J, Wang X, Liu L, Yu J, Ding B. Environmentally Friendly and Breathable Fluorinated Polyurethane Fibrous Membranes Exhibiting Robust Waterproof Performance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29302-29310. [PMID: 28796476 DOI: 10.1021/acsami.7b08885] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Waterproof and breathable membranes that provide a high level of protection and comfort are promising core materials for meeting the pressing demand for future upscale protective clothing. However, creating such materials that exhibit environmental protection, high performance, and ease of fabrication has proven to be a great challenge. Herein, we report a novel strategy for synthesizing fluorinated polyurethane (C6FPU) containing short perfluorohexyl (-C6F13) chains and introduced it as hydrophobic agent into a polyurethane (PU) solution for one-step electrospinning. A plausible mechanism about the dynamic behavior of fluorinated chains with an increasing C6FPU concentration was proposed. Benefiting from the utilization of magnesium chloride (MgCl2), the fibrous membranes had dramatically decreased maximum pore sizes. Consequently, the prepared PU/C6FPU/MgCl2 fibrous membranes exhibited an excellent hydrostatic pressure of 104 kPa, a modest water vapor transmission rate of 11.5 kg m-2 d-1, and a desirable tensile strength of 12.4 MPa. The facile fabrication of PU/C6FPU/MgCl2 waterproof and breathable membranes not only matches well with the tendency to be environmentally protective but also fully meets the requirements for high performance in extremely harsh environments.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Yang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| | - Junlu Sheng
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Xianfeng Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Lifang Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Jianyong Yu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University , Shanghai 200051, China
| | - Bin Ding
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University , Shanghai 200051, China
| |
Collapse
|
42
|
Steinberg RS, Cruz M, Mahfouz NGA, Qiu Y, Hurt RH. Breathable Vapor Toxicant Barriers Based on Multilayer Graphene Oxide. ACS NANO 2017; 11:5670-5679. [PMID: 28582974 PMCID: PMC5757311 DOI: 10.1021/acsnano.7b01106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
There is tremendous interest in graphene-based membranes as protective molecular barriers or molecular sieves for separation technologies. Graphene oxide (GO) films in the dry state are known to be effective barriers for molecular transport and to expand in the presence of moisture to create enlarged intersheet gallery spaces that allow rapid water permeation. Here we explore an application for GO membranes as water-breathable barrier layers for personal protective equipment, which are designed to allow outward perspiration while protecting the wearer from chemical toxicants or biochemical agents in the local environment. A device was developed to measure permeation rates of small-molecular toxicants in the presence of counter-current water flow simulating active perspiration. The technique was applied to trichloroethylene (TCE) and benzene, which are important environmental toxicants, and ethanol as a limiting case to model very small, highly water-soluble organic molecules. Submicron GO membranes are shown to be effective TCE barriers, both in the presence and absence of simulated perspiration flux, and to outperform current barrier technologies. A molecular transport model is developed, which suggests the limited toxicant back-permeation observed occurs not by diffusion against the convective perspiration flow in hydrophobic channels, but rather through oxidized domains where hydrogen-bonding produces a near-stagnant water phase. Benzene and ethanol permeation fluxes are higher than those for TCE, likely reflecting the effects of higher water solubility and smaller minimum molecular dimension. Overall, GO films have high water breathability relative to competing technologies and are known to exclude most classes of target toxicants, including particles, bacteria, viruses, and macromolecules. The present results show good barrier performance for some very small-molecule species, but not others, with permeation being favored by high water solubility and small minimum molecular dimension.
Collapse
|
43
|
La Manna P, Musto P, Galli G, Martinelli E. In Situ FT-IR Spectroscopy Investigation of the Water Sorption of Amphiphilic PDMS Crosslinked Networks. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pietro La Manna
- Institute of Chemistry and Technology of Polymers; National Research Council of Italy; 80078 Pozzuoli Naples Italy
| | - Pellegrino Musto
- Institute of Chemistry and Technology of Polymers; National Research Council of Italy; 80078 Pozzuoli Naples Italy
| | - Giancarlo Galli
- Department of Chemistry and Industrial Chemistry; University of Pisa; 56124 Pisa Italy
| | - Elisa Martinelli
- Department of Chemistry and Industrial Chemistry; University of Pisa; 56124 Pisa Italy
| |
Collapse
|
44
|
Ding D, Huang W, Song C, Yan M, Guo C, Liu S. Non-stoichiometric MoO3−x quantum dots as a light-harvesting material for interfacial water evaporation. Chem Commun (Camb) 2017; 53:6744-6747. [DOI: 10.1039/c7cc01427a] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MoO3−x quantum dots possessing strong photoabsorption have been used for interfacial heating for water evaporation.
Collapse
Affiliation(s)
- Dandan Ding
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
- Key Lab of Microsystem and Microstructure (Ministry of Education)
| | - Weicheng Huang
- Condensed Matter Science and Technology Institute
- Department of Physics
- Harbin Institute of Technology
- Harbin
- China
| | - Chuanqi Song
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
- Key Lab of Microsystem and Microstructure (Ministry of Education)
| | - Mei Yan
- Key Lab of Microsystem and Microstructure (Ministry of Education)
- Harbin Institute of Technology
- Harbin
- China
| | - Chongshen Guo
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
- Key Lab of Microsystem and Microstructure (Ministry of Education)
| | - Shaoqin Liu
- Key Lab of Microsystem and Microstructure (Ministry of Education)
- Harbin Institute of Technology
- Harbin
- China
| |
Collapse
|
45
|
Kitiri EN, Patrickios CS, Voutouri C, Stylianopoulos T, Hoffmann I, Schweins R, Gradzielski M. Double-networks based on pH-responsive, amphiphilic “core-first” star first polymer conetworks prepared by sequential RAFT polymerization. Polym Chem 2017. [DOI: 10.1039/c6py01340f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Double-networks based on amphiphilic polymer conetworks synthesized using RAFT polymerization were prepared, exhibiting pH-responsiveness, nanophase separation and enhanced mechanical properties.
Collapse
Affiliation(s)
- Elina N. Kitiri
- Department of Chemistry
- University of Cyprus
- 1678 Nicosia
- Cyprus
| | | | - Chrysovalantis Voutouri
- Department of Mechanical and Manufacturing Engineering
- University of Cyprus
- Nicosia 1678
- Cyprus
| | | | - Ingo Hoffmann
- Stranski Laboratorium für Physikalische und Theoretische Chemie
- Institut für Chemie Technische Universität Berlin
- 10623 Berlin
- Germany
- Institut Max von Laue-Paul Langevin (ILL)
| | - Ralf Schweins
- Institut Max von Laue-Paul Langevin (ILL)
- F-38042 Grenoble Cedex 9
- France
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische und Theoretische Chemie
- Institut für Chemie Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
46
|
|
47
|
Sheng J, Zhang M, Xu Y, Yu J, Ding B. Tailoring Water-Resistant and Breathable Performance of Polyacrylonitrile Nanofibrous Membranes Modified by Polydimethylsiloxane. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27218-27226. [PMID: 27661093 DOI: 10.1021/acsami.6b09392] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The demand of water-resistant and breathable materials applied to a separation medium and protective garments is steadily increasing. Typical approaches to obtain these functional materials are based on hydrophobic agents and porous substrates with small fiber diameter, tiny pore, and high porosity. However, a fluorinated hydrophobic finishing agent usually employed in providing effective waterproofness is limited with respect to their environmental persistence and toxic potential. Herein, with the aim to keep a balance between the water-resistance and breathability as well as mechanical properties, we fabricate a novel fluoride-free functional membrane by electrospun polyacrylonitrile (PAN) nanofibers modified with polydimethylsiloxane (PDMS). As determined by morphological, DSC, and FT-IR analyses, the curing reaction of PDMS macromolecules formed an abundance of hydrophobic adhesive structures, which improved the waterproof performance dramatically and imparted relative good breathability at the same time. By systematically tuning the curing temperature as well as the concentration of PDMS, the modified PAN membranes with 4 wt % PDMS possessed good water-resistance (80.9 kPa), modest vapor permeability (12.5 kg m-2 d-1), and air permeability (9.9 mm s-1). Compared with pristine PAN membranes, the modified membranes were endowed with enhanced tensile stress of 15.7 MPa. The good comprehensive performance of the as-prepared membranes suggested their potential applications in protective clothing, membrane distillation, self-cleaning materials, and other medical products. Furthermore, the proposed relationship between porous structure and waterproof/breathable property as one considerable principle is applicable to designing functional membranes with different levels of protective and comfortable performance.
Collapse
Affiliation(s)
- Junlu Sheng
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Min Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Yue Xu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Jianyong Yu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
- Nanofibers Research Center, Modern Textile Institute, Donghua University , Shanghai 200051, China
| | - Bin Ding
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
- Nanofibers Research Center, Modern Textile Institute, Donghua University , Shanghai 200051, China
| |
Collapse
|
48
|
Bui N, Meshot ER, Kim S, Peña J, Gibson PW, Wu KJ, Fornasiero F. Ultrabreathable and Protective Membranes with Sub-5 nm Carbon Nanotube Pores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5871-7. [PMID: 27159328 DOI: 10.1002/adma.201600740] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/05/2016] [Indexed: 05/16/2023]
Abstract
Small-diameter carbon nanotubes (CNTs) are shown to enable exceptionally fast transport of water vapor under a concentration gradient driving force. Thanks to this property, membranes having sub-5 nm CNTs as conductive pores feature outstanding breathability while maintaining a high degree of protection from biothreats by size exclusion.
Collapse
Affiliation(s)
- Ngoc Bui
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Eric R Meshot
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Sangil Kim
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - José Peña
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Phillip W Gibson
- U.S. Army Natick Soldier Research, Development and Engineering Center, Natick, MA, 01760, USA
| | - Kuang Jen Wu
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Francesco Fornasiero
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| |
Collapse
|