1
|
Liu L, Allard J, Koos E. Enhanced contact flexibility from nanoparticles in capillary suspensions. J Colloid Interface Sci 2024; 665:643-654. [PMID: 38552581 DOI: 10.1016/j.jcis.2024.03.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
HYPOTHESIS Sample-spanning particle networks are used to induce structure and a yield stress, necessary for 3D printing of porous ceramics and paints. In capillary suspensions, a small quantity of immiscible secondary fluid is incorporated into a suspension. By further adding nanoparticles with a range of hydrophobicities, the structure of the bridges and microparticle-microparticle contacts is expected to be modified, resulting in a tunable yield stress and shear moduli. Moreover, the compressibility of these samples, important in many processing and application steps, is expected to be sensitive to these changes. EXPERIMENT The nanoparticle hydrophobicity was altered and their position relative to the microparticles and the bridges was examined using confocal microscopy where the correlation between bridge size and network structure was observed. A step-wise uniaxial compression test on the confocal was conducted to monitor the microparticle movement and structural changes between capillary suspension networks with and without nanoparticles. FINDINGS Our observation suggests that nanoparticles induce the formation of thin liquid films on the surface of the microparticles, mitigating contact line pinning and promoting internal liquid exchange. Additionally, nanoparticles at microparticle contact regions further diminish Hertzian contact, enhancing the capacity for rearrangement. These effects enhance microparticle movement, narrowing the bridge size distribution.
Collapse
Affiliation(s)
- Lingyue Liu
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200J, 3001 Leuven, Belgium.
| | - Jens Allard
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200J, 3001 Leuven, Belgium; Current address: Robert Bosch Produktie N.V., 3300 Tienen, Belgium
| | - Erin Koos
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200J, 3001 Leuven, Belgium.
| |
Collapse
|
2
|
Wen Z, Tang Z, Liu Y, Zhuang L, Yu H, Chu Y. Ultrastrong and High Thermal Insulating Porous High-Entropy Ceramics up to 2000 °C. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311870. [PMID: 38166175 DOI: 10.1002/adma.202311870] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/27/2023] [Indexed: 01/04/2024]
Abstract
High mechanical load-carrying capability and thermal insulating performance are crucial to thermal-insulation materials under extreme conditions. However, these features are often difficult to achieve simultaneously in conventional porous ceramics. Here, for the first time, it is reported a multiscale structure design and fast fabrication of 9-cation porous high-entropy diboride ceramics via an ultrafast high-temperature synthesis technique that can lead to exceptional mechanical load-bearing capability and high thermal insulation performance. With the construction of multiscale structures involving ultrafine pores at the microscale, high-quality interfaces between building blocks at the nanoscale, and severe lattice distortion at the atomic scale, the materials with an ≈50% porosity exhibit an ultrahigh compressive strength of up to ≈337 MPa at room temperature and a thermal conductivity as low as ≈0.76 W m-1 K-1. More importantly, they demonstrate exceptional thermal stability, with merely ≈2.4% volume shrinkage after 2000 °C annealing. They also show an ultrahigh compressive strength of ≈690 MPa up to 2000 °C, displaying a ductile compressive behavior. The excellent mechanical and thermal insulating properties offer an attractive material for reliable thermal insulation under extreme conditions.
Collapse
Affiliation(s)
- Zihao Wen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhongyu Tang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yiwen Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Lei Zhuang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hulei Yu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yanhui Chu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
3
|
Basko A, Pochivalov K. Current State-of-the-Art in Membrane Formation from Ultra-High Molecular Weight Polyethylene. MEMBRANES 2022; 12:membranes12111137. [PMID: 36422129 PMCID: PMC9696610 DOI: 10.3390/membranes12111137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 05/12/2023]
Abstract
One of the materials that attracts attention as a potential material for membrane formation is ultrahigh molecular weight polyethylene (UHMWPE). One potential material for membrane formation is ultrahigh molecular weight polyethylene (UHMWPE). The present review summarizes the results of studies carried out over the last 30 years in the field of preparation, modification and structure and property control of membranes made from ultrahigh molecular weight polyethylene. The review also presents a classification of the methods of membrane formation from this polymer and analyzes the conventional (based on the analysis of incomplete phase diagrams) and alternative (based on the analysis of phase diagrams supplemented by a boundary line reflecting the polymer swelling degree dependence on temperature) physicochemical concepts of the thermally induced phase separation (TIPS) method used to prepare UHMWPE membranes. It also considers the main ways to control the structure and properties of UHMWPE membranes obtained by TIPS and the original variations of this method. This review discusses the current challenges in UHMWPE membrane formation, such as the preparation of a homogeneous solution and membrane shrinkage. Finally, the article speculates about the modification and application of UHMWPE membranes and further development prospects. Thus, this paper summarizes the achievements in all aspects of UHMWPE membrane studies.
Collapse
|
4
|
Allard J, Burgers S, Rodríguez González MC, Zhu Y, De Feyter S, Koos E. Effects of particle roughness on the rheology and structure of capillary suspensions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Interparticle photo-cross-linkable Pickering emulsions for rapid manufacturing of complex-structured porous ceramic materials. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Menne D, Hübner C, Trebbels D, Willenbacher N. Robust Soil Water Potential Sensor to Optimize Irrigation in Agriculture. SENSORS 2022; 22:s22124465. [PMID: 35746247 PMCID: PMC9227105 DOI: 10.3390/s22124465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022]
Abstract
Extreme weather phenomena are on the rise due to ongoing climate change. Therefore, the need for irrigation in agriculture will increase, although it is already the largest consumer of water, a valuable resource. Soil moisture sensors can help to use water efficiently and economically. For this reason, we have recently presented a novel soil moisture sensor with a high sensitivity and broad measuring range. This device does not measure the moisture in the soil but the water available to plants, i.e., the soil water potential (SWP). The sensor consists of two highly porous (>69%) ceramic discs with a broad pore size distribution (0.5 to 200 μm) and a new circuit board system using a transmission line within a time-domain transmission (TDT) circuit. This detects the change in the dielectric response of the ceramic discs with changing water uptake. To prove the concept, a large number of field tests were carried out and comparisons were made with commercial soil water potential sensors. The experiments confirm that the sensor signal is correlated to the soil water potential irrespective of soil composition and is thus suitable for the optimization of irrigation systems.
Collapse
Affiliation(s)
- David Menne
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
- Correspondence:
| | - Christof Hübner
- TRUEBNER GmbH, 67435 Neustadt an der Weinstraße, Germany; (C.H.); (D.T.)
| | - Dennis Trebbels
- TRUEBNER GmbH, 67435 Neustadt an der Weinstraße, Germany; (C.H.); (D.T.)
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
| |
Collapse
|
7
|
Kazama R, Murakami Y, Shono A. Microstructure and rheological behavior of capillary suspension prepared with plate-shaped particles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Hao B, Li B, Yu W. Nonequilibrium Structure Diagram of Pendular Suspensions under Large-Amplitude Oscillatory Shear. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6208-6218. [PMID: 33975432 DOI: 10.1021/acs.langmuir.1c00367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For pendular suspensions with particles in contact with immiscible secondary liquid bridges, the shear field significantly influences particle aggregates and networks. In this work, we study the structure of the pendular network and how the structure changes under large-amplitude-oscillatory shear. Using rheology and optical microscopy, we found unique network destruction followed by reconstruction with increasing strain. Two processes show different shear-field dependencies, strain-rate dependency for destruction and strain dependency for reconstruction. A nonequilibrium state diagram is constructed to show the phase behavior, where the critical particle concentration of sol-gel transition is dependent on the shear history and may depend on shear strain nonmonotonically. Two different mechanisms, shear-induced network breakdown at low strain and shear-induced agglomeration at high strain, are suggested to describe the nonmonotonic critical concentration under the upward strain sweep quantitatively.
Collapse
Affiliation(s)
- Bonan Hao
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Benke Li
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
9
|
Park J, Ahn KH. Controlling Drying Stress and Mechanical Properties of Battery Electrodes Using a Capillary Force-Induced Suspension System. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jieun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| | - Kyung Hyun Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
10
|
Fischer SB, Koos E. Using an added liquid to suppress drying defects in hard particle coatings. J Colloid Interface Sci 2021; 582:1231-1242. [PMID: 32950839 DOI: 10.1016/j.jcis.2020.08.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
HYPOTHESIS Lateral accumulation and film defects during drying of hard particle coatings is a common problem, typically solved using polymeric additives and surface active ingredients, which require further processing of the dried film. Capillary suspensions with their tunable physical properties, devoid of polymers, offer new pathways in producing uniform and defect free particulate coatings. EXPERIMENTS We investigated the effect of small amounts of secondary liquid on the coating's drying behavior. Stress build-up and weight loss in a temperature and humidity controlled drying chamber were simultaneously measured. Changes in the coating's reflectance and height profile over time were related with the weight loss and stress curve. FINDINGS Capillary suspensions dry uniformly without defects. Lateral drying is inhibited by the high yield stress, causing the coating to shrink to an even height. The bridges between particles prevent air invasion and extend the constant drying period. The liquid in the lower layers is transported to the interface via corner flow within surface pores, leading to a partially dry layer near the substrate while the pores above are still saturated. Using capillary suspensions for hard particle coatings results in more uniform, defect free films with better printing characteristics, rendering high additive content obsolete.
Collapse
Affiliation(s)
- Steffen B Fischer
- KU Leuven, Soft Matter, Rheology and Technology, Department of Chemical Engineering, Celestijnenlaan 200f, 3001 Leuven, Belgium; Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Karlsruhe, Germany
| | - Erin Koos
- KU Leuven, Soft Matter, Rheology and Technology, Department of Chemical Engineering, Celestijnenlaan 200f, 3001 Leuven, Belgium.
| |
Collapse
|
11
|
|
12
|
Yang J, Park HS, Kim J, Mok J, Kim T, Shin EK, Kwak C, Lim S, Kim CB, Park JS, Na HB, Choi D, Lee J. Yield Stress Enhancement of a Ternary Colloidal Suspension via the Addition of Minute Amounts of Sodium Alginate to the Interparticle Capillary Bridges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9424-9435. [PMID: 32659098 DOI: 10.1021/acs.langmuir.0c01284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Capillary suspensions are ternary solid-liquid-liquid systems produced via the addition of a small amount of secondary fluid to the bulk fluid that contained the dispersed solid particles. The secondary fluid could exert strong capillary forces between the particles and dramatically change the rheological properties of the suspension. So far, research has focused on capillary suspensions that consist of additive-free fluids, whereas capillary suspensions with additives, particularly those of large molecular weight that are highly relevant for industrial purposes, have been relatively less studied. In this study, we performed a systematic analysis of the properties of capillary suspensions that consist of paraffin oil (bulk phase), water (secondary phase), and α-Al2O3 microparticles (particle phase), in which the aqueous secondary phase contained an important eco-friendly polymeric binder, sodium alginate (SA). It was determined that the yield stress of the suspension increased significantly with the increase in the SA content in the aqueous secondary phase, which was attributed to the synergistic effect of the capillary force and hydrogen bonding force that may be related to the increase in the number of capillary bridges. The amounts of SA used to induce a significant change in the yield stress in this study were very small (<0.02% of the total sample volume). The addition of Ca2+ ions to the SA-containing secondary phase further increased the yield stress with possible gelation of the SA chains-in the presence of excess Ca2+ ions, however, the yield stress decreased because of the microscopic phase separation that occurred in the aqueous secondary phase. The microstructures of the sintered porous materials that were produced by using capillary suspensions as precursors were qualitatively well correlated to the rheological behavior of the precursor suspensions, suggesting a new method for the subtle control of the microstructures of porous materials using the addition of minute amounts of polymeric additives.
Collapse
Affiliation(s)
- Jeewon Yang
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Hyun-Su Park
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Jieun Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Jihye Mok
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Taeyeon Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Eun-Kyung Shin
- Department of Materials Science and Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Chaesu Kwak
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Sehyeong Lim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Chae Bin Kim
- Department of Polymer Science and Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| | - Jong-Sung Park
- Department of Materials Science and Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Hyon Bin Na
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Dalsu Choi
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| | - Joohyung Lee
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea
| |
Collapse
|
13
|
Weiß M, Sälzler P, Willenbacher N, Koos E. 3D-Printed lightweight ceramics using capillary suspensions with incorporated nanoparticles. Ann Ital Chir 2020. [DOI: 10.1016/j.jeurceramsoc.2020.02.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Hu X, Long L, Gong T, Zhang J, Yan J, Xue Y. Enhanced alginate-based microsphere with the pore-forming agent for efficient removal of Cu(Ⅱ). CHEMOSPHERE 2020; 240:124860. [PMID: 31542578 DOI: 10.1016/j.chemosphere.2019.124860] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
In order to increase the adsorption properties of sodium alginate gel beads, a series of SA@PF-beads (sodium alginate-based beads with different amount of pore-forming agent) were prepared with calcium carbonate as the pore forming agent. The experimental results showed that the adsorption capacity of Cu(Ⅱ) increased by at least two times (from 13.69 mg/g to 33.88 mg/g, treated with SA@PF-0 and SA@PF-2.0, respectively) with proper amount of calcium carbonate added, which is economical and effective. In the experiment, SEM was used to measure the morphology of gel beads with different amount of pore-forming agent. FTIR and XPS were used to analyze the variation of functional groups and bond energies in the adsorption process. Adsorption isotherms and kinetics were conducted and showed that the adsorption process was consistent with Langmuir model and Elovich kinetic model. The maximum Langmuir adsorption 229.746 mg/g. The effects of pH, temperature and solid-liquid ratio on adsorption capacity were also investigated. In brief, calcium carbonate is an efficient and convenient pore-forming agent, which can be used to improve the adsorption properties of alginate gel materials.
Collapse
Affiliation(s)
- Xiaolan Hu
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Li Long
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Tengjing Gong
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Jiaqi Zhang
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Jinpeng Yan
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Yingwen Xue
- School of Civil Engineering, Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Sun H, Han Z, Willenbacher N. Ultrastretchable Conductive Elastomers with a Low Percolation Threshold for Printed Soft Electronics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38092-38102. [PMID: 31566949 DOI: 10.1021/acsami.9b11071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stretchable conductors are required for next-generation soft electronics. Achieving both high electrical conductivity and high stretchability in conductors composed of elastomers and conductive fillers, however, is challenging. Here, a generic, versatile strategy is reported for producing ultrastretchable conductors exhibiting both superior electrical conductivity (>103 S/cm) and stretchability (>1600%). This is achieved by adding small amounts of immiscible secondary fluid into silver (Ag)-filled inks. Capillary forces in these ternary systems induce the self-assembly of conductive particle networks at a low percolation threshold (6-7 vol %), cutting silver consumption by more than 2/3 compared to conventional conductive elastomers. Ag-filled polydimethylsiloxane exhibits superior cyclic durability sustaining 100% tensile strain for 1000 cycles with only a minor loss of conductivity. Ag-filled thermoplastic polyurethane displays unprecedented reversibility with nonretarded switching from conductive to nonconductive states during repeated stretching up to 200% strain. Patterned strain sensors and conductive wirings were 3D-printed to demonstrate the technical feasibility.
Collapse
Affiliation(s)
- Hongye Sun
- Institute for Mechanical Process Engineering and Mechanics , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| | - Zongyou Han
- Institute for Mechanical Process Engineering and Mechanics , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| |
Collapse
|
16
|
Park J, Willenbacher N, Ahn KH. How the interaction between styrene-butadiene-rubber (SBR) binder and a secondary fluid affects the rheology, microstructure and adhesive properties of capillary-suspension-type graphite slurries used for Li-ion battery anodes. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Weiß M, Maurath J, Willenbacher N, Koos E. Shrinkage and dimensional accuracy of porous ceramics derived from capillary suspensions. Ann Ital Chir 2019. [DOI: 10.1016/j.jeurceramsoc.2019.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Lightweight Porous Glass Composite Materials Based on Capillary Suspensions. MATERIALS 2019; 12:ma12040619. [PMID: 30791420 PMCID: PMC6416639 DOI: 10.3390/ma12040619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022]
Abstract
In this article, we present a simple, advanced method to produce lightweight tailor-made materials based on capillary suspensions that are made from locally bonded hollow glass spheres with a high total porosity in the range of 70% at apparent densities of 200 kg/m3, having a compressive strength of 0.6 MPa. The amount of added liquid and the particle surface treatment determine the network structure in the pastes and the resulting microstructure of the porous material in a straightforward manner. This structure has a strong impact on the porosity, pore size, and mechanical properties of the final body. The most promising porous materials were made of surface treated hollow glass spheres that create a sample-spanning network in the capillary state, where the added liquid wets the particles worse than the bulk fluid. These samples approach the density of natural balsa wood and they may find application in fields where either weight or structure are important, such as in insulation materials, filters, and membranes, as well as lightweight construction materials for automotive or aerospace engineering.
Collapse
|
19
|
Alison L, Menasce S, Bouville F, Tervoort E, Mattich I, Ofner A, Studart AR. 3D printing of sacrificial templates into hierarchical porous materials. Sci Rep 2019; 9:409. [PMID: 30674930 PMCID: PMC6344549 DOI: 10.1038/s41598-018-36789-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/26/2018] [Indexed: 11/25/2022] Open
Abstract
Hierarchical porous materials are widespread in nature and find an increasing number of applications as catalytic supports, biological scaffolds and lightweight structures. Recent advances in additive manufacturing and 3D printing technologies have enabled the digital fabrication of porous materials in the form of lattices, cellular structures and foams across multiple length scales. However, current approaches do not allow for the fast manufacturing of bulk porous materials featuring pore sizes that span broadly from macroscopic dimensions down to the nanoscale. Here, ink formulations are designed and investigated to enable 3D printing of hierarchical materials displaying porosity at the nano-, micro- and macroscales. Pores are generated upon removal of nanodroplets and microscale templates present in the initial ink. Using particles to stabilize the droplet templates is key to obtain Pickering nanoemulsions that can be 3D printed through direct ink writing. The combination of such self-assembled templates with the spatial control offered by the printing process allows for the digital manufacturing of hierarchical materials exhibiting thus far inaccessible multiscale porosity and complex geometries.
Collapse
Affiliation(s)
- Lauriane Alison
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Stefano Menasce
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Florian Bouville
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Elena Tervoort
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Iacopo Mattich
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Alessandro Ofner
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland.
| |
Collapse
|
20
|
Bulk soldering: Conductive polymer composites filled with copper particles and solder. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Hauf K, Koos E. Structure of capillary suspensions and their versatile applications in the creation of smart materials. MRS COMMUNICATIONS 2018; 8:332-342. [PMID: 30079275 PMCID: PMC6071843 DOI: 10.1557/mrc.2018.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In this article, we review recent research in the field of capillary suspensions and highlight a variety of applications in the field of smart materials. Capillary suspensions are liquid-liquid-solid ternary systems where one liquid is only present in a few percent and induces a strong, capillary-induced particle network. These suspensions have a large potential for exploitation, particularly in the production of porous materials since the paste itself and the properties of the final material can be adapted. We also discuss the rheological properties of the suspension and network structure to highlight the various ways these systems can be tuned.
Collapse
Affiliation(s)
- Katharina Hauf
- Karlsruhe Institute for Technology, Institute for Mechanical Process
Engineering and Mechanics, Karlsruhe, Germany
| | - Erin Koos
- Karlsruhe Institute for Technology, Institute for Mechanical Process
Engineering and Mechanics, Karlsruhe, Germany
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200f,
3001 Leuven, Belgium
| |
Collapse
|
22
|
Hauf K, Riazi K, Willenbacher N, Koos E. Radical polymerization of capillary bridges between micron-sized particles in liquid bulk phase as a low temperature route to produce porous solid materials. Colloid Polym Sci 2018; 295:1773-1785. [PMID: 29503494 DOI: 10.1007/s00396-017-4149-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown.
Collapse
Affiliation(s)
- Katharina Hauf
- KIT - Campus Süd, Institut für Mechanische Verfahrenstechnik und Mechanik, Arbeitsgruppe Angewandte Mechanik, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Tel.: +49 721 608 -43757
| | - Kamran Riazi
- MZE, Geb. 30.48, Raum 217, Am Forum 7, 76131 Karlsruhe, Tel.: +49 721 608 41400
| | - Norbert Willenbacher
- KIT - Campus Süd, Institut für Mechanische Verfahrenstechnik und Mechanik, Arbeitsgruppe Angewandte Mechanik, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Tel.: +49 721 608 -43757
| | - Erin Koos
- Department of Chemical Engineering (CIT), Celestijnenlaan 200f - box 2424, 3001 Leuven, Tel. +32 16 37 63 47
| |
Collapse
|
23
|
Bossler F, Maurath J, Dyhr K, Willenbacher N, Koos E. Fractal approaches to characterize the structure of capillary suspensions using rheology and confocal microscopy. JOURNAL OF RHEOLOGY 2018; 62:183-196. [PMID: 29503485 PMCID: PMC5830082 DOI: 10.1122/1.4997889] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The rheological properties of a particle suspension can be substantially altered by adding a small amount of a secondary fluid that is immiscible with the bulk phase. The drastic change in the strength of these capillary suspensions arises due to the capillary forces, induced by the added liquid, leading to a percolating particle network. Using rheological scaling models, fractal dimensions are deduced from the yield stress and from oscillatory strain amplitude sweep data as function of the solid volume fraction. Exponents obtained using aluminum-oxide-based capillary suspensions, with a preferentially wetting secondary fluid, indicate an increase in the particle gel's fractal dimension with increasing particle size. This may be explained by a corresponding relative reduction in the capillary force compared to other forces. Confocal images using a glass model system show the microstructure to consist of compact particle flocs interconnected by a sparse backbone. Thus, using the rheological models two different fractal dimensionalities are distinguished - a lower network backbone dimension (D = 1.86-2.05) and an intrafloc dimension (D = 2.57-2.74). The latter is higher due to the higher local solid volume fraction inside of the flocs compared to the sparse backbone. Both of these dimensions are compared with values obtained by analysis of spatial particle positions from 3D confocal microscopy images, where dimensions between 2.43 and 2.63 are computed, lying between the two dimension ranges obtained from rheology. The fractal dimensions determined via this method corroborate the increase in structural compactness with increasing particle size.
Collapse
Affiliation(s)
- Frank Bossler
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200f, 3001 Leuven, Belgium
| | - Johannes Maurath
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
| | - Katrin Dyhr
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
| | - Norbert Willenbacher
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
| | - Erin Koos
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200f, 3001 Leuven, Belgium
| |
Collapse
|
24
|
Das AAK, Dunstan TS, Stoyanov SD, Starck P, Paunov VN. Thermally Responsive Capillary Suspensions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44152-44160. [PMID: 29210563 DOI: 10.1021/acsami.7b11358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate that stimulus-responsive capillary-structured materials can be formed from hydrophobized calcium carbonate particles suspended in a non-polar phase (silicone oil) and bridged by very small amounts of a hydrogel as the secondary aqueous phase. Inclusion of thermally responsive polymers into the aqueous phase yielded a capillary-structured suspension whose rheology is controlled by a change in temperature and can increase its complex modulus by several orders of magnitude because of the gelation of the capillary bridges between the solid particles. We demonstrate that the rheology of the capillary suspension and its response upon temperature changes can be controlled by the gelling properties as little as 0.1 w/w % of the secondary aqueous phase containing 2 wt % of the gelling carbohydrate. Doping the secondary (aqueous) phase with methyl cellulose, which gels at elevated temperatures, gave capillary-structured materials whose viscosity and structural strength can increase by several orders of magnitude as the temperature is increased past the gelling temperature of the methyl cellulose solution. Increasing the methyl cellulose concentration from 0 to 2 w/w % in the secondary (aqueous) phase increases the complex modulus and the yield stress of the capillary suspension of 10 w/w % hydrophobized calcium carbonate in silicone oil by 2 orders of magnitude at a fixed temperature. By using an aqueous solution of a low melting point agarose as a secondary liquid phase, which melts as the temperature is raised, we produced capillary-structured materials whose viscosity and structural strength can decrease by several orders of magnitude as the temperature is increased past the melting temperature of the agarose solution. The development of thermally responsive capillary suspensions can find potential applications in structuring of smart home and personal care products as well as in temperature-triggered change in rheology and release of flavors in foods and actives in pharmaceutical formulations.
Collapse
Affiliation(s)
- Anupam A K Das
- School of Mathematics and Physical Sciences (Chemistry), University of Hull , Hull HU6 7RX, U.K
| | - Timothy S Dunstan
- School of Mathematics and Physical Sciences (Chemistry), University of Hull , Hull HU6 7RX, U.K
| | - Simeon D Stoyanov
- Unilever R&D Vlaardingen , Olivier van Noortlaan 120, Vlaardingen 3133 AT, The Netherlands
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University , Wageningen 6703 HB, The Netherlands
- Department of Mechanical Engineering, University College London , Torrington Place, London WC1E 7JE, U.K
| | - Pierre Starck
- Unilever Discover Port Sunlight , Quarry Road East, Bebington CH63 3JW, U.K
| | - Vesselin N Paunov
- School of Mathematics and Physical Sciences (Chemistry), University of Hull , Hull HU6 7RX, U.K
| |
Collapse
|
25
|
Zhang Y, Wang S, Zhou J, Benz G, Tcheimou S, Zhao R, Behrens SH, Meredith JC. Capillary Foams: Formation Stages and Effects of System Parameters. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Zhang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Songcheng Wang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Jiarun Zhou
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Gregory Benz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Stephane Tcheimou
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Ruiyang Zhao
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Sven H. Behrens
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - J. Carson Meredith
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
26
|
Bossler F, Weyrauch L, Schmidt R, Koos E. Influence of mixing conditions on the rheological properties and structure of capillary suspensions. Colloids Surf A Physicochem Eng Asp 2017; 518:85-97. [PMID: 28194044 PMCID: PMC5302188 DOI: 10.1016/j.colsurfa.2017.01.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The rheological properties of a suspension can be dramatically altered by adding a small amount of a secondary fluid that is immiscible with the bulk liquid. These capillary suspensions exist either in the pendular state where the secondary fluid preferentially wets the particles or the capillary state where the bulk fluid is preferentially wetting. The yield stress, as well as storage and loss moduli, depends on the size and distribution of secondary phase droplets created during sample preparation. Enhanced droplet breakup leads to stronger sample structures. In capillary state systems, this can be achieved by increasing the mixing speed and time of turbulent mixing using a dissolver stirrer. In the pendular state, increased mixing speed also leads to better droplet breakup, but spherical agglomeration is favored at longer times decreasing the yield stress. Additional mixing with a ball mill is shown to be beneficial to sample strength. The influence of viscosity variance between the bulk and second fluid on the droplet breakup is excluded by performing experiments with viscosity-matched fluids. These experiments show that the capillary state competes with the formation of Pickering emulsion droplets and is often more difficult to achieve than the pendular state.
Collapse
Affiliation(s)
- Frank Bossler
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Straße am Forum 8, 76131 Karlsruhe, Germany
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200f, 3001 Leuven, Belgium
| | - Lydia Weyrauch
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Straße am Forum 8, 76131 Karlsruhe, Germany
| | - Robert Schmidt
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Straße am Forum 8, 76131 Karlsruhe, Germany
| | - Erin Koos
- Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics, Straße am Forum 8, 76131 Karlsruhe, Germany
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200f, 3001 Leuven, Belgium
| |
Collapse
|
27
|
Schneider M, Maurath J, Fischer SB, Weiß M, Willenbacher N, Koos E. Suppressing Crack Formation in Particulate Systems by Utilizing Capillary Forces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11095-11105. [PMID: 28263554 PMCID: PMC5375100 DOI: 10.1021/acsami.6b13624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cracks, formed during the drying of particulate films, can reduce the effectiveness or even render products useless. We present a novel, generic approach to suppress crack formation in thin films made from hard particle suspensions, which are otherwise highly susceptible to cracking, using the capillary force between particles present when a trace amount of an immiscible liquid is added to a suspension. This secondary liquid preserves the particle cohesion, modifying the structure and increasing the drying rate. Crack-free films can be produced at thicknesses much greater than the critical cracking thickness for a suspension without capillary interactions, and even persists after sintering. This capillary suspension strategy is applicable to a broad range of materials, including suspensions of metals, semiconductive and ceramic oxides, or glassy polymeric particles, and can be easily implemented in many industrial processes since it is based on well-established unit operations. Promising fields of application include ceramic foils and printed electronic devices.
Collapse
Affiliation(s)
- Monica Schneider
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
| | - Johannes Maurath
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
| | - Steffen B. Fischer
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, 3001 Leuven, Belgium
| | - Moritz Weiß
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, 3001 Leuven, Belgium
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
| | - Erin Koos
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Gotthard-Franz-Straße 3, 76131 Karlsruhe, Germany
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, 3001 Leuven, Belgium
- Corresponding Author,
| |
Collapse
|