1
|
Mule AR, Ramulu B, Gudal CC, Yu JS, Chung CH. Prussian blue analogue-derived hollow structured CoP/Fe 2P nanocubes on Co 9S 8 nanoarrays as an advanced battery-type electrode material for high-performance hybrid supercapacitors. J Colloid Interface Sci 2025; 688:288-297. [PMID: 40010093 DOI: 10.1016/j.jcis.2025.02.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
A rationally intended electrode material with evolved structure and composition enrichment is highly essential for optimizing the electrochemical performance for the superior charge storage demand of supercapacitors. In this report, we designed and synthesized cobalt-iron phosphide (CFP) hollow/porous nanocubes anchored on cobalt sulfide (CS) nanosheets (NSs) (i.e., CS@CFP) on nickel foam by a hydrothermal process, followed phosphorylation process, as well as a facile wet chemical route. The hollow/porous nanocube (three-dimensional (3D))-on-NS (2D) hybrid array structure and phosphorous incorporation in CS@CFP could significantly enhance the accessibility of electrolyte ions and the electrochemical kinetics of charge as well as redox-active sites.The resultant CS@CFP electrode demonstrated superior charge storage properties with an areal capacity value of 828.6µAhcm-2 at 8 mAcm-2 and a better rate performance than the other electrodes. Moreover, its practicability was also verified by fabricating a hybrid electrochemical cell (HEC).The fabricated HECdisplayed a notable areal capacity value of 681.4µAhcm-2 at 10 mAcm-2 with a superior rate performance of 74.6 % even at 70 mAcm-2. Besides, the HEC displayed maximum energy and power density values of 0.528mWhcm-2 and 60.4mWcm-2, respectively. Also, the HEC confirmed its charge storage ability by energizing different portable electronic devices.
Collapse
Affiliation(s)
- Anki Reddy Mule
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Bhimanaboina Ramulu
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Chandan Chandru Gudal
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jae Su Yu
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Chan-Hwa Chung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
2
|
Li W, Wang Y, Li Y. Cobalt-Doped MnFe 2O 4 Spinel Coupled with Nitrogen-Doped Reduced Graphene Oxide: Enhanced Oxygen Electrocatalytic Activity for Zinc-Air Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5981-5995. [PMID: 40025763 DOI: 10.1021/acs.langmuir.4c04716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
MFCO spinel anchored on N-rGO is synthesized by a two-step hydrothermal method as a bifunctional electrocatalyst. Its physicochemical properties have been characterized and tested, and it is applied to zinc-air batteries. The experimental and theoretical calculations show that the MFCO is uniformly distributed on the surface of N-rGO. When MFCO is anchored on the conducting N-rGO, a synergistic effect occurs between the Co-N bonds, which changes the arrangement of the C-N bonds from the sp2 orientation to the sp3 form. The ORR catalytic pathway of the MFCO/N-rGO electrocatalyst is dominated by 4-electron transfer, with a half-wave potential of 0.8003 V, an overpotential value of 352 mV, and a small potential difference (ΔE = 0.78 V). With a charge/discharge voltage difference of about 0.88 V, the voltage gap remains almost unchanged for a long period after 650 h, showing excellent stability. The improved catalytic performance is attributed to Co acting as an active site, and the doping of Co induces the Jahn-Teller effect, which alters the electronic structure of spinel, shifts the d-band center upward, enhances the adsorption of oxygen intermediates, and promotes the oxygen electrocatalytic reaction. This study provides a low-cost and promising bifunctional oxygen electrocatalyst for zinc-air batteries.
Collapse
Affiliation(s)
- Wolong Li
- Sanya Offshore Oil&Gas Research Institute of Northeast Petroleum University, Sanya, Hainan 572025, China
- School of Mechanical Science and Engineering, Northeast Petroleum University, 199 Fazhan Road, Daqing 163318, P. R. China
| | - Yong Wang
- Sanya Offshore Oil&Gas Research Institute of Northeast Petroleum University, Sanya, Hainan 572025, China
- School of Mechanical Science and Engineering, Northeast Petroleum University, 199 Fazhan Road, Daqing 163318, P. R. China
- Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing, Heilongjiang 163318, China
| | - Yongcun Li
- Sanya Offshore Oil&Gas Research Institute of Northeast Petroleum University, Sanya, Hainan 572025, China
- School of Mechanical Science and Engineering, Northeast Petroleum University, 199 Fazhan Road, Daqing 163318, P. R. China
- Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing, Heilongjiang 163318, China
| |
Collapse
|
3
|
Xie Y, Feng Y, Zhu S, Yu Y, Bao H, Liu Q, Luo F, Yang Z. Modulation in Spin State of Co 3O 4 Decorated Fe Single Atom Enables a Superior Rechargeable Zinc-Air Battery Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414801. [PMID: 39629528 DOI: 10.1002/adma.202414801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/26/2024] [Indexed: 02/06/2025]
Abstract
High-performance bifunctional electrocatalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is the keystone for the industrialization of rechargeable zinc-air battery (ZAB). In this work, the modulation in the spin state of Fe single atom on nitrogen doped carbon (Fe1-NC) is devised by Co3O4 (Co3O4@Fe1-NC), and a mediate spin state is recorded. Besides, the d band center of Fe is downshifted associated with the increment in eg filling revealing the weakened interaction with OH* moiety, resulting in a boosted ORR performance. The ORR kinetic current density of Co3O4@Fe1-NC is 2.0- and 5.6 times higher than Fe1-NC and commercial Pt/C, respectively. Moreover, high spin state is found for Co in Co3O4@Fe1-NC contributing to the accelerated surface reconstruction of Co3O4 witnessed by operando Raman and electrochemical impedance spectroscopies. A robust OER activity with overpotential of 352 mV at 50 mA cm-2 is achieved, decreased by 18 and 60 mV by comparison with Co3O4@NC and IrO2. The operando Raman reveals a balanced adsorption of OH* species and its deprotonation leading to robust stability. The ZAB performance of Co3O4@Fe1-NC is 193.2 mW cm-2 and maintains for 200 h. Furthermore, the all-solid-state ZAB shows a promising battery performance of 163.1 mW cm-2.
Collapse
Affiliation(s)
- Yuhua Xie
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, China
| | - Yumei Feng
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, China
| | - Shiao Zhu
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, China
| | - Yingjie Yu
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Haifeng Bao
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Qingting Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, 430068, China
| | - Fang Luo
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Zehui Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, China
| |
Collapse
|
4
|
Zhao Y, Hu S, Yuan Q, Wang A, Sun K, Wang Z, Fan M, Jiang J. Copper cluster regulated by N, B atoms for enhanced CO 2 electroreduction to formate. J Colloid Interface Sci 2025; 678:456-464. [PMID: 39255602 DOI: 10.1016/j.jcis.2024.08.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Electrochemical CO2 conversion into formate by intermittent renewable electricity, presents a captivating prospect for both the storage of renewable electrical energy and the utilization of emitted CO2. Typically, Cu-based catalysts in CO2 reduction reactions favor the production of CO and other by-products. However, we have shifted this selectivity by incorporating B, N co-doped carbon (BNC) in the fabrication of Cu clusters. These Cu clusters are regulated with B, N atoms in a porous carbon matrix (Cu/BN-C), and Zn2+ ions were added to achieve Cu clusters with the diameter size of ∼1.0 nm. The obtained Cu/BN-C possesses a significantly improved catalytic performance in CO2 reduction to formate with a Faradaic efficiency (FE) of up to 70 % and partial current density (jformate) surpassing 20.8 mA cm-2 at -1.0 V vs RHE. The high FE and jformate are maintained over a 12-hour. The overall catalytic performance of Cu/BN-C outperforms those of the other investigated catalysts. Based on the density functional theory (DFT) calculation, the exceptional catalytic behavior is attributed to the synergistic effect between Cu clusters and N, B atoms by modulating the electronic structure and enhancing the charge transfer properties, which promoted a preferential adsorption of HCOO* over COOH*, favoring formate formation.
Collapse
Affiliation(s)
- Yuying Zhao
- Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Shandong Provincial Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Shengchun Hu
- Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Qixin Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ao Wang
- Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Kang Sun
- Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Ziyun Wang
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand.
| | - Mengmeng Fan
- Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jianchun Jiang
- Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Huang YK, Li T, Feng H, Lv LT, Tang TX, Lin Z, Ye KH, Wang YQ. High-Valence Co Stabilized by In-Situ Growth of ZIF-67 on NiCo-LDH for Enhanced Performance in Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407443. [PMID: 39544157 DOI: 10.1002/smll.202407443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/07/2024] [Indexed: 11/17/2024]
Abstract
The application of metal-organic frameworks (MOFs) in the electro-catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy-hydroxides to obtain ZIF-67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co4+ by ZIF-67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η100) of 293 mV, a Tafel slope of 25.8 mV dec-1, and a charge transfer resistance of 3.9 Ω, with long-term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm-2. This work on binder-free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost-effective and controllable production of MOF-based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials.
Collapse
Affiliation(s)
- Yan-Kai Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tong Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Han Feng
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Luo-Tian Lv
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tong-Xin Tang
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhan Lin
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kai-Hang Ye
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Chemical Engineering Guangdong Laboratory, Jieyang Branch of Chemistry, Jieyang, 515200, China
| | - Yong-Qing Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
6
|
Kubińska L, Szkoda M, Skorupska M, Grabowska P, Gajewska M, Lukaszewicz JP, Ilnicka A. Combined effect of nitrogen-doped carbon and NiCo 2O 4 for electrochemical water splitting. Sci Rep 2024; 14:26930. [PMID: 39505972 PMCID: PMC11541751 DOI: 10.1038/s41598-024-74031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
Electrocatalytic water splitting for green hydrogen production necessitates effective electrocatalysts. Currently, commercial catalysts are primarily platinum-based. Therefore, finding catalysts with comparable catalytic activity but lower cost is essential. This paper describes spinel-structured catalysts containing nickel cobaltite NiCo2O4, graphene, and additionally doped with heteroatoms. The structure and elemental composition of the obtained materials were analyzed by research methods such as TEM, SEM-EDX, XRD, XPS, and Raman spectroscopy. The electrochemical measurements showed that hybrid materials containing nickel cobaltite NiCo2O4 doped with graphene are highly active catalysts in the hydrogen evolution reaction (Tafel slopes = 91 mV dec-1, overpotential = 468 mV and onset potential = -339 mV), while in the oxygen evolution reaction (Tafel slopes = 51 mV dec-1, overpotential = 1752 mV and onset potential = 370 mV), bare NiCo2O4 without the addition of carbon has a worse activity (for HER: Tafel slopes = 120 mV dec-1, overpotential - does not achieve and onset potential = -404 mV, for OER: Tafel slopes = 54 mV dec-1, overpotential = 1796 mV and onset potential = 410 mV). In terms of stability, comparable results were obtained for each synthesized compound for both the HER and OER reactions.
Collapse
Affiliation(s)
- Laura Kubińska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Mariusz Szkoda
- Faculty of Chemistry, Department of Chemistry and Technology of Functional Materials, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Malgorzata Skorupska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Patrycja Grabowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059, Kraków, Poland
| | - Jerzy P Lukaszewicz
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100, Torun, Poland
| | - Anna Ilnicka
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland.
| |
Collapse
|
7
|
Hao X, Sun Q, Hu K, He Y, Zhang T, Zhang D, Huang X, Liu X. Enhancing electrochemical water-splitting efficiency with superaerophobic nickel-coated catalysts on Chinese rice paper. J Colloid Interface Sci 2024; 673:874-882. [PMID: 38908286 DOI: 10.1016/j.jcis.2024.06.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
The quest for efficient hydrogen production highlights the need for cost-effective and high-performance catalysts to enhance the electrochemical water-splitting process. A significant challenge in developing self-supporting catalysts lies in the high cost and complex modification of traditional substrates. In this study, we developed catalysts featuring superaerophobic microstructures engineered on microspherical nickel-coated Chinese rice paper (Ni-RP), chosen for its affordability and exceptional ductility. These catalysts, due to their microspherical morphology and textured surface, exhibited significant superaerophobic properties, substantially reducing bubble adhesion. The nickel oxy-hydroxide (NiOxHy) and phosphorus-doped nickel (PNi) catalysts on Ni-RP demonstrated effective roles in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), achieving overpotentials of 250 mV at 20 mA cm-2 and 87 mV at -10 mA cm-2 in 1 M KOH, respectively. Moreover, a custom water-splitting cell using PNi/Ni-RP and NiOxHy/Ni-RP electrodes reached an impressive average voltage of 1.55 V at 10 mA cm-2, with stable performance over 100 h in 1 M KOH. Our findings present a cost-effective, sustainable, and easily modifiable substrate that utilizes superaerophobic structures to create efficient and durable catalysts for water splitting. This work serves as a compelling example of designing high-performance self-supporting catalysts for electrocatalytic applications.
Collapse
Affiliation(s)
- Xiaoyu Hao
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Qian Sun
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Kui Hu
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Yibo He
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tianyi Zhang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Dina Zhang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaolei Huang
- Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
| | - Xuqing Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China.
| |
Collapse
|
8
|
Zhu Q, Wang Y, Cao L, Fan L, Gu F, Wang S, Xiong S, Gu Y, Yu A. Tailored interface engineering of Co 3Fe 7/Fe 3C heterojunctions for enhancing oxygen reduction reaction in zinc-air batteries. J Colloid Interface Sci 2024; 672:279-286. [PMID: 38843680 DOI: 10.1016/j.jcis.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
The rational construction of highly active and robust non-precious metal oxygen reduction electrocatalysts is a vital factor to facilitate commercial applications of Zn-air batteries. In this study, a precise and stable heterostructure, comprised of a coupling of Co3Fe7 and Fe3C, was constructed through an interface engineering-induced strategy. The coordination polymerization of the resin with the bimetallic components was meticulously regulated to control the interfacial characteristics of the heterostructure. The synergistic interfacial effects of the heterostructure successfully facilitated electron coupling and rapid charge transfer. Consequently, the optimized CST-FeCo displayed superb oxygen reduction catalytic activity with a positive half-wave potential of 0.855 V vs. RHE. Furthermore, the CST-FeCo air electrode of the liquid zinc-air battery revealed a large specific capacity of 805.6 mAh gZn-1, corresponding to a remarkable peak power density of 162.7 mW cm-2, and a long charge/discharge cycle stability of 220 h, surpassing that of the commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Qian Zhu
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Yu Wang
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Lei Cao
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China.
| | - Lanlan Fan
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Feng Gu
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China; Aobo Particle Science and Technology Research Institute, Nanchang, 330000, China
| | - Shufen Wang
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China; Aobo Particle Science and Technology Research Institute, Nanchang, 330000, China
| | - Shixian Xiong
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Yu Gu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| | - Aibing Yu
- Centre for Simulation and Modelling of Particulate Systems, Southeast University - Monash University Joint Research Institute, Suzhou 215123, China
| |
Collapse
|
9
|
García-Rodríguez M, Flores-Lasluisa JX, Cazorla-Amorós D, Morallón E. Enhancing Interaction between Lanthanum Manganese Cobalt Oxide and Carbon Black through Different Approaches for Primary Zn-Air Batteries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2309. [PMID: 38793376 PMCID: PMC11123494 DOI: 10.3390/ma17102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Due to the need for decarbonization in energy generation, it is necessary to develop electrocatalysts for the oxygen reduction reaction (ORR), a key process in energy generation systems such as fuel cells and metal-air batteries. Perovskite-carbon material composites have emerged as active and stable electrocatalysts for the ORR, and the interaction between both components is a crucial aspect for electrocatalytic activity. This work explores different mixing methods for composite preparation, including mortar mixing, ball milling, and hydrothermal and thermal treatments. Hydrothermal treatment combined with ball milling resulted in the most favorable electrocatalytic performance, promoting intimate and extensive contact between the perovskite and carbon material and improving electrocatalytic activity. Employing X-ray photoelectron spectroscopy (XPS), an increase in the number of M-O-C species was observed, indicating enhanced interaction between the perovskite and the carbon material due to the adopted mixing methods. This finding was further corroborated by temperature-programmed reduction (TPR) and temperature-programmed desorption (TPD) techniques. Interestingly, the ball milling method results in similar performance to the hydrothermal method in the zinc-air battery and, thus, is preferable because of the ease and straightforward scalability of the preparation process.
Collapse
Affiliation(s)
- Mario García-Rodríguez
- Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.-R.)
| | - Jhony X. Flores-Lasluisa
- Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.-R.)
| | - Diego Cazorla-Amorós
- Departamento Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain;
| | - Emilia Morallón
- Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.-R.)
| |
Collapse
|
10
|
Wang X, Singh H, Nath M, Lagemann K, Page K. Excellent Bifunctional Oxygen Evolution and Reduction Electrocatalysts (5A 1/5)Co 2O 4 and Their Tunability. ACS MATERIALS AU 2024; 4:274-285. [PMID: 38737119 PMCID: PMC11083111 DOI: 10.1021/acsmaterialsau.3c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 05/14/2024]
Abstract
Hastening the progress of rechargeable metal-air batteries and hydrogen fuel cells necessitates the advancement of economically feasible, earth-abundant, inexpensive, and efficient electrocatalysts facilitating both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Herein, a recently reported family of nano (5A1/5)Co2O4 (A = combinations of transition metals, Mg, Mn, Fe, Ni, Cu, and Zn) compositionally complex oxides (CCOs) [Wang et al., Chemistry of Materials, 2023,35 (17), 7283-7291.] are studied as bifunctional OER and ORR electrocatalysts. Among the different low-temperature soft-templating samples, those subjected to 600 °C postannealing heat treatment exhibit superior performance in alkaline media. One specific composition (Mn0.2Fe0.2Ni0.2Cu0.2Zn0.2)Co2O4 exhibited an exceptional overpotential (260 mV at 10 mA cm-2) for the OER, a favorable Tafel slope of 68 mV dec-1, excellent onset potential (0.9 V) for the ORR, and lower than 6% H2O2 yields over a potential range of 0.2 to 0.8 V vs the reversible hydrogen electrode. Furthermore, this catalyst displayed stability over a 22 h chronoamperometry measurement, as confirmed by X-ray photoelectron spectroscopy analysis. Considering the outstanding performance, the low cost and scalability of the synthesis method, and the demonstrated tunability through chemical substitutions and processing variables, CCO ACo2O4 spinel oxides are highly promising candidates for future sustainable electrocatalytic applications.
Collapse
Affiliation(s)
- Xin Wang
- Department
of Materials Science and Engineering, Institute for Advanced Materials
and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Harish Singh
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Manashi Nath
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Kurt Lagemann
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Katharine Page
- Department
of Materials Science and Engineering, Institute for Advanced Materials
and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
11
|
Yan Y, Zhu Q, Cao L, Gu F, Liu S, Luo Y, Liu F, Wang S, Fan L, Xiong S. Ceria nanoclusters coupled with Ce-Nx sites for efficient oxygen reduction in Zn-air batteries. J Colloid Interface Sci 2024; 659:31-39. [PMID: 38157724 DOI: 10.1016/j.jcis.2023.12.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Rational construction of efficient carbon-supported rare earth cerium nanoclusters as oxygen reduction reaction (ORR) is of great significance to promote the practical application of zinc-air batteries (ZABs). Herein, N doped conductive carbon black anchored CeO2 nanoclusters (CeO2 Clusters/NC) for the ORR is reported. The volatile cerium species vaporized by CeO2 nanoclusters at high temperatures are captured by nitrogen-rich carbon carriers to form highly dispersed Ce-Nx active sites. Benefiting from the coupling effect between oxygen vacancies-enriched CeO2 nanoclusters and highly dispersed Ce-Nx sites, the prepared 2CeO2 Clusters/NC catalyst possesses an ORR half-wave potential of 0.88 V, superior electrochemical stability, and better methanol tolerance compared to commercial Pt/C catalysts. Moreover, the 2CeO2 Clusters/NC involved liquid ZABs show excellent energy efficiency, superior stability, and a high energy density of 982 Wh kg-1 at 10 mA cm-2.
Collapse
Affiliation(s)
- Yueming Yan
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Qian Zhu
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Lei Cao
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China.
| | - Feng Gu
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China; Alber Particle Science and Technology Research Institute, Nanchang, 330000, China
| | - Shiji Liu
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Yuhao Luo
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Feng Liu
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Shufen Wang
- Alber Particle Science and Technology Research Institute, Nanchang, 330000, China
| | - Lanlan Fan
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China.
| | - Shixian Xiong
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China.
| |
Collapse
|
12
|
Nazir G, Rehman A, Lee JH, Kim CH, Gautam J, Heo K, Hussain S, Ikram M, AlObaid AA, Lee SY, Park SJ. A Review of Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives. NANO-MICRO LETTERS 2024; 16:138. [PMID: 38421464 PMCID: PMC10904712 DOI: 10.1007/s40820-024-01328-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024]
Abstract
Zinc-air batteries (ZABs) are gaining attention as an ideal option for various applications requiring high-capacity batteries, such as portable electronics, electric vehicles, and renewable energy storage. ZABs offer advantages such as low environmental impact, enhanced safety compared to Li-ion batteries, and cost-effectiveness due to the abundance of zinc. However, early research faced challenges due to parasitic reactions at the zinc anode and slow oxygen redox kinetics. Recent advancements in restructuring the anode, utilizing alternative electrolytes, and developing bifunctional oxygen catalysts have significantly improved ZABs. Scientists have achieved battery reversibility over thousands of cycles, introduced new electrolytes, and achieved energy efficiency records surpassing 70%. Despite these achievements, there are challenges related to lower power density, shorter lifespan, and air electrode corrosion leading to performance degradation. This review paper discusses different battery configurations, and reaction mechanisms for electrically and mechanically rechargeable ZABs, and proposes remedies to enhance overall battery performance. The paper also explores recent advancements, applications, and the future prospects of electrically/mechanically rechargeable ZABs.
Collapse
Affiliation(s)
- Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| | - Adeela Rehman
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Choong-Hee Kim
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Jagadis Gautam
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Kwang Heo
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea.
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan
| | - Abeer A AlObaid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
13
|
Guo L, Wan X, Liu J, Guo X, Liu X, Shang J, Yu R, Shui J. Revealing Distance-Dependent Synergy between MnCo 2O 4 and Co-N-C in Boosting the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3388-3395. [PMID: 38214267 DOI: 10.1021/acsami.3c15627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Synergistic effects have been applied to a variety of hybrid electrocatalysts to improve their activity and selectivity. Understanding the synergistic mechanism is crucial for the rational design of these types of catalysts. Here, we synthesize a MnCo2O4/Co-N-C hybrid electrocatalyst for the oxygen reduction reaction (ORR) and systematically investigate the synergy between MnCo2O4 nanoparticles and Co-N-C support. Theoretical simulations reveal that the synergy is closely related to the distance between active sites. For a pair of remote active sites, the ORR proceeds through the known 2e- + 2e- relay catalysis while the direct 4e- ORR occurs on a pair of adjacent active sites. Therefore, the formation of the undesired byproduct (H2O2) is inhibited at the interface region between MnCo2O4 and Co-N-C. This synergistic effect is further verified on an anion-exchange membrane fuel cell. The findings deepen the understanding of synergistic catalysis and will provide guidance for the rational design of hybrid electrocatalysts.
Collapse
Affiliation(s)
- Liming Guo
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, China
| | - Xin Wan
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, China
| | - Jieyuan Liu
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, China
| | - Xu Guo
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, China
| | - Xiaofang Liu
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, China
| | - Jiaxiang Shang
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, China
| | - Ronghai Yu
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, China
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, China
- Tianmushan Laboratory, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| |
Collapse
|
14
|
Bari GAKMR, Jeong JH. Comprehensive Insights and Advancements in Gel Catalysts for Electrochemical Energy Conversion. Gels 2024; 10:63. [PMID: 38247786 PMCID: PMC10815738 DOI: 10.3390/gels10010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Continuous worldwide demands for more clean energy urge researchers and engineers to seek various energy applications, including electrocatalytic processes. Traditional energy-active materials, when combined with conducting materials and non-active polymeric materials, inadvertently leading to reduced interaction between their active and conducting components. This results in a drop in active catalytic sites, sluggish kinetics, and compromised mass and electronic transport properties. Furthermore, interaction between these materials could increase degradation products, impeding the efficiency of the catalytic process. Gels appears to be promising candidates to solve these challenges due to their larger specific surface area, three-dimensional hierarchical accommodative porous frameworks for active particles, self-catalytic properties, tunable electronic and electrochemical properties, as well as their inherent stability and cost-effectiveness. This review delves into the strategic design of catalytic gel materials, focusing on their potential in advanced energy conversion and storage technologies. Specific attention is given to catalytic gel material design strategies, exploring fundamental catalytic approaches for energy conversion processes such as the CO2 reduction reaction (CO2RR), oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and more. This comprehensive review not only addresses current developments but also outlines future research strategies and challenges in the field. Moreover, it provides guidance on overcoming these challenges, ensuring a holistic understanding of catalytic gel materials and their role in advancing energy conversion and storage technologies.
Collapse
Affiliation(s)
- Gazi A. K. M. Rafiqul Bari
- School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Jae-Ho Jeong
- School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
15
|
Lv Y, Deng X, Ding J, Zhou Y. In-situ fabrication of Cr doped FeNi LDH on commercial stainless steel for oxygen evolution reaction. Sci Rep 2024; 14:902. [PMID: 38195596 PMCID: PMC10776782 DOI: 10.1038/s41598-023-50361-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Commercial stainless steel has attracted increasing interest due to their rich content in transition metal elements and corrosion resistance properties. In this work, we design a facile and rapid route to in-situ fabricate the Cr doped FeNi layered double hydroxides nanosheets (LDHs) on modified stainless steel (Cr-FeNi LDH @ ESS) under ambient condition.The ultra small scaled 2D structure only around 20 nm diameter and metal ions with multivalent oxidation state were observed on the in situ fabricated LDHs, which provides high active area and active sites and thus promote excellent oxygen evolution reaction (OER). The Cr-FeNi LDH @ESS electrocatalysts exhibit an over potential of 280 mV at 10 mA cm-2 and achieves a Tafel slope of 44 mV dec-1 for OER in the 1.0 M KOH aqueous solution. We anticipate that the operating strategy of our system may promote the development of commercial non-precious productions as the efficient electrocatalysts for energy storage and conversion.
Collapse
Affiliation(s)
- Yanhong Lv
- School of Physical and Chemistry, Hunan First Normal University, Changsha, 410205, Hunan, China.
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China.
| | - Xinrong Deng
- School of Physical and Chemistry, Hunan First Normal University, Changsha, 410205, Hunan, China
| | - Jingjing Ding
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Yang Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| |
Collapse
|
16
|
Liu W, Ni C, Gao M, Zhao X, Zhang W, Li R, Zhou K. Metal-Organic-Framework-Based Nanoarrays for Oxygen Evolution Electrocatalysis. ACS NANO 2023; 17:24564-24592. [PMID: 38048137 DOI: 10.1021/acsnano.3c09261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The development of highly active and stable electrode materials for the oxygen evolution reaction (OER) is essential for the widespread application of electrochemical energy conversion systems. In recent years, various metal-organic frameworks (MOFs) with self-supporting array structures have been extensively studied because of their high porosity, abundant metal sites, and flexible and adjustable structures. This review provides an overview of the recent progress in the design, preparation, and applications of MOF-based nanoarrays for the OER, beginning with the introduction of the architectural advantages of the nanoarrays and the characteristics of MOFs. Subsequently, the design principles of robust and efficient MOF-based nanoarrays as OER electrodes are highlighted. Furthermore, detailed discussions focus on the composition, structure, and performance of pristine MOF nanoarrays (MOFNAs) and MOF-based composite nanoarrays. On the one hand, the effects of the two components of MOFs and several modification methods are discussed in detail for MOFNAs. On the other hand, the review emphasizes the use of MOF-based composite nanoarrays composed of MOFs and other nanomaterials, such as oxides, hydroxides, oxyhydroxides, chalcogenides, MOFs, and metal nanoparticles, to guide the rational design of efficient OER electrodes. Finally, perspectives on current challenges, opportunities, and future directions in this research field are provided.
Collapse
Affiliation(s)
| | | | - Ming Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | | | | | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
17
|
Feng S, Zhang H, Wang H, Zhao R, Ding X, Su H, Zhai F, Li T, Ma M, Ma Y. Fabrication of cobalt-zinc bimetallic oxides@polypyrrole composites for high-performance electromagnetic wave absorption. J Colloid Interface Sci 2023; 652:1631-1644. [PMID: 37666195 DOI: 10.1016/j.jcis.2023.08.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Composite materials that combine magnetic and dielectric losses offer a potential solution to enhance impedance match and significantly improve microwave absorption. In this study, Co3O4/ZnCo2O4 and ZnCo2O4/ZnO with varying metal oxide compositions are successfully synthesized, which are achieved by modifying the ratios of Co2+ and Zn2+ ions in the CoZn bimetallic metal-organic framework (MOF) precursor, followed by a high-temperature oxidative calcination process. Subsequently, a layer of polypyrrole (PPy) is coated onto the composite surfaces, resulting in the formation of core-shell structures known as Co3O4/ZnCo2O4@PPy (CZCP) and ZnCo2O4/ZnO@PPy (ZCZP) composites. The proposed method allows for rapid adjustments to the metal oxide composition within the inner shell, enabling the creation of composites with varying degrees of magnetic losses. The inclusion of PPy in the outer shell serves to enhance the bonding strength of the entire composite structure while contributing to conductive and dielectric losses. In specific experimental conditions, when the loading is set at 50 wt%, the CZCP composite exhibits an effective absorption bandwidth (EAB) of 5.58 GHz (12.42 GHz-18 GHz) at a thickness of 1.53 mm. Meanwhile, the ZCZP composite demonstrates an impressive minimum reflection loss (RLmin) of -71.2 dB at 13.04 GHz, with a thickness of 1.84 mm. This study offers a synthesis strategy for designing absorbent composites that possess light weight and excellent absorptive properties, thereby contributing to the advancement of electromagnetic wave absorbing materials.
Collapse
Affiliation(s)
- Shixuan Feng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Hao Zhang
- Technical Center, Xi'an Aerospace Sunvalor Chemical Co., Ltd, Xi'an 710086, PR China
| | - Haowen Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Rui Zhao
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Xuan Ding
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Huahua Su
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Futian Zhai
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
18
|
Yang X, Liu M, Cui F, Ma Q, Cui T. Ni/NiO@NC as a highly efficient and durable HER electrocatalyst derived from nickel(II) complexes: importance of polydentate amino-acid ligands. NANOSCALE 2023. [PMID: 38050429 DOI: 10.1039/d3nr04768g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Research on Ni/NiO electrocatalysts has advanced significantly, but the main obstacles to their use and commercialization remain their relatively ordinary activity and stability. In this paper, a chelating structure based on the coordination of multidentate ligands and Ni(II) is proposed to limit the growth of Ni and Ni oxide grains. These features reduce the particle size of Ni/NiO, increase particle dispersion, and maintain the high activity and stability of the catalyst. Aspartic acid, as a polydentate ligand, could coordinate with Ni2+ to form structurally stable chelate rings. The latter can limit grain growth, but also coat the active core with thin carbon layers after calcination to further achieve the confinement and protection of nanoparticles. The hydrogen evolution overpotential of prepared nitrogen-doped graphitized carbon shells (Ni/NiO@NC) nanoparticles was 100 mV (vs. RHE) when the current density was 10 mA cm-2 in 1 M KOH. The hydrogen evolution overpotential increased by only 4 mV after 6000 continuous cyclic-voltammetry scans. Moreover, when coated on different conductive substrates, the overpotential of this catalyst dropped to 34.6 mV (vs. RHE) at a current density of 10 mV cm-2. The lowest overpotential of the composite was only 194.9 mV at a current density of 100 mA cm-2, which is comparable with that of noble metal-based electrocatalysts. This work provides a plausible method for designing high-performance electrocatalysts of small size.
Collapse
Affiliation(s)
- Xu Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China.
| | - Mengxue Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China.
| | - Fang Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China.
| | - Qinghai Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China.
| | - Tieyu Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China.
| |
Collapse
|
19
|
Niu Y, Jiang G, Gong S, Liu X, Shangguan E, Li L, Chen Z. Engineering of heterointerface of ultrathin carbon nanosheet-supported CoN/MnO enhances oxygen electrocatalysis for rechargeable Zn-air batteries. J Colloid Interface Sci 2023; 656:346-357. [PMID: 37995404 DOI: 10.1016/j.jcis.2023.11.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Designing bifunctional electrocatalysts with outstanding reactivity and durability towards the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has remained a long-term aim for metal-air batteries. Achieving the high level of fusion between two distinct metal components to form bifunctional catalysts with optimized heterointerfaces and well-defined morphology holds noteworthy implications in the enhancement of electrocatalytic activity yet challenging. Herein, the fabrication of numerous heterointerfaces of CoN/MnO is successfully realized within ultrathin carbon nanosheets via a feasible self-templating synthesis strategy. Experimental results and theoretic calculations verify that the interfacial electron transfer from CoN to MnO at the heterointerface engenders an ameliorated charge transfer velocity, finely tuned energy barriers concerning reaction intermediates and ultimately accelerated reaction kinetics. The as-prepared CoN/MnO@NC demonstrates exceptional bifunctional catalytic performance, excelling in both OER and ORR showcasing a low reversible overpotential of 0.69 V. Furthermore, rechargeable liquid and quasi-solid-state flexible Zn-air batteries employing CoN/MnO@NC as the air-cathode deliver remarkable endurance and elevated power density, registering values of 153 and 116 mW cm-2 respectively and exceeding Pt/C + RuO2 counterparts and those reported in literature. Deeply exploring the effect of electron-accumulated heterointerfaces on catalytic activity would contribute wisdom to the development of bifunctional electrocatalysts for rechargeable metal-air batteries.
Collapse
Affiliation(s)
- Yanli Niu
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China; School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Gang Jiang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shuaiqi Gong
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuan Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Enbo Shangguan
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Linpo Li
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Zuofeng Chen
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
20
|
Liu J, Ji X, Wang C, Wang L, Jian P. Beneficial Synergistic Intermetallic Effect in ZnCo 2O 4 for Enhancing the Limonene Oxidation Catalysis. Inorg Chem 2023; 62:18750-18757. [PMID: 37919248 DOI: 10.1021/acs.inorgchem.3c03245] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Utilization of naturally occurring limonene from renewable biomass as a key starting material for the synthesis of valuable chemicals is a promising avenue to reduce both the dependence on nonrenewable fossil fuels and global CO2 emission. Herein, we report a highly active tremella-like ZnCo2O4 catalyst for the selective oxidation of limonene with molecular oxygen under mild reaction conditions. The developed ZnCo2O4 catalyst exhibits an appealing reaction performance with a limonene conversion of 93.5% (reaction rate of 0.0823 mmol gcat-1 h-1) and selectivity of 75.8% for 1,2-limonene oxide (LO), far outperforming the monometallic oxides of ZnO and Co3O4. Detained experimental characterizations and analyses manifest that the substitution of Zn into the Co3O4 framework can facilitate the formation of more unsaturated coordination sites and oxygen vacancies due to the modified chemical environment of Co atoms, inducing a beneficial synergistic intermetallic effect for the limonene oxidation catalysis.
Collapse
Affiliation(s)
- Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xingyang Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Chennan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Lixia Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Panming Jian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
21
|
Jaimes-Paez CD, García-Mateos FJ, Ruiz-Rosas R, Rodríguez-Mirasol J, Cordero T, Morallón E, Cazorla-Amorós D. Sustainable Synthesis of Metal-Doped Lignin-Derived Electrospun Carbon Fibers for the Development of ORR Electrocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2921. [PMID: 37999275 PMCID: PMC10674835 DOI: 10.3390/nano13222921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
The aim of this work is to establish the Oxygen Reduction Reaction (ORR) activity of self-standing electrospun carbon fiber catalysts obtained from different metallic salt/lignin solutions. Through a single-step electrospinning technique, freestanding carbon fiber (CF) electrodes embedded with various metal nanoparticles (Co, Fe, Pt, and Pd), with 8-16 wt% loadings, were prepared using organosolv lignin as the initial material. These fibers were formed from a solution of lignin and ethanol, into which the metallic salt precursors were introduced, without additives or the use of toxic reagents. The resulting non-woven cloths were thermostabilized in air and then carbonized at 900 °C. The presence of metals led to varying degrees of porosity development during carbonization, improving the accessibility of the electrolyte to active sites. The obtained Pt and Pd metal-loaded carbon fibers showed high nanoparticle dispersion. The performance of the electrocatalyst for the oxygen reduction reaction was assessed in alkaline and acidic electrolytes and compared to establish which metals were the most suitable for producing carbon fibers with the highest electrocatalytic activity. In accordance with their superior dispersion and balanced pore size distribution, the carbon fibers loaded with 8 wt% palladium showed the best ORR activity, with onset potentials of 0.97 and 0.95 V in alkaline and acid media, respectively. In addition, this electrocatalyst exhibits good stability and selectivity for the four-electron energy pathway while using lower metal loadings compared to commercial catalysts.
Collapse
Affiliation(s)
- Cristian Daniel Jaimes-Paez
- Departamento de Química Física, Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Ap. 99, 03080 Alicante, Spain; (C.D.J.-P.); (E.M.)
| | - Francisco José García-Mateos
- Departamento de Ingeniería Química, Andalucía Tech, University of Malaga, Campus de Teatinos s/n, 29010 Malaga, Spain; (F.J.G.-M.); (J.R.-M.); (T.C.)
| | - Ramiro Ruiz-Rosas
- Departamento de Ingeniería Química, Andalucía Tech, University of Malaga, Campus de Teatinos s/n, 29010 Malaga, Spain; (F.J.G.-M.); (J.R.-M.); (T.C.)
| | - José Rodríguez-Mirasol
- Departamento de Ingeniería Química, Andalucía Tech, University of Malaga, Campus de Teatinos s/n, 29010 Malaga, Spain; (F.J.G.-M.); (J.R.-M.); (T.C.)
| | - Tomás Cordero
- Departamento de Ingeniería Química, Andalucía Tech, University of Malaga, Campus de Teatinos s/n, 29010 Malaga, Spain; (F.J.G.-M.); (J.R.-M.); (T.C.)
| | - Emilia Morallón
- Departamento de Química Física, Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Ap. 99, 03080 Alicante, Spain; (C.D.J.-P.); (E.M.)
| | - Diego Cazorla-Amorós
- Departamento de Química Inorgánica, Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Ap. 99, 03080 Alicante, Spain
| |
Collapse
|
22
|
Wang H, Pei Y, Wang K, Zuo Y, Wei M, Xiong J, Zhang P, Chen Z, Shang N, Zhong D, Pei P. First-Row Transition Metals for Catalyzing Oxygen Redox. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304863. [PMID: 37469215 DOI: 10.1002/smll.202304863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Rechargeable zinc-air batteries are widely recognized as a highly promising technology for energy conversion and storage, offering a cost-effective and viable alternative to commercial lithium-ion batteries due to their unique advantages. However, the practical application and commercialization of zinc-air batteries are hindered by the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Recently, extensive research has focused on the potential of first-row transition metals (Mn, Fe, Co, Ni, and Cu) as promising alternatives to noble metals in bifunctional ORR/OER electrocatalysts, leveraging their high-efficiency electrocatalytic activity and excellent durability. This review provides a comprehensive summary of the recent advancements in the mechanisms of ORR/OER, the performance of bifunctional electrocatalysts, and the preparation strategies employed for electrocatalysts based on first-row transition metals in alkaline media for zinc-air batteries. The paper concludes by proposing several challenges and highlighting emerging research trends for the future development of bifunctional electrocatalysts based on first-row transition metals.
Collapse
Affiliation(s)
- Hengwei Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Pei
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Keliang Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
| | - Yayu Zuo
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Manhui Wei
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Pengfei Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhuo Chen
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Nuo Shang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Daiyuan Zhong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Pucheng Pei
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
23
|
Hu X, Ma Y, Qu W, Qian J, Li Y, Chen Y, Zhou A, Wang H, Zhang F, Hu Z, Huang Y, Li L, Wu F, Chen R. Large Interlayer Distance and Heteroatom-Doping of Graphite Provide New Insights into the Dual-Ion Storage Mechanism in Dual-Carbon Batteries. Angew Chem Int Ed Engl 2023; 62:e202307083. [PMID: 37489757 DOI: 10.1002/anie.202307083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Dual-ion batteries (DIBs) is a promising technology for large-scale energy storage. However, it is still questionable how material structures affect the anion storage behavior. In this paper, we synthesis graphite with an ultra-large interlayer distance and heteroatomic doping to systematically investigate the combined effects on DIBs. The large interlayer distance of 0.51 nm provides more space for anion storage, while the doping of the heteroatoms reduces the energy barriers for anion intercalation and migration and enhances rapid ionic storage at interfaces simultaneously. Based on the synergistic effects, the DIBs composed of carbon cathode and lithium anode afford ultra-high capacity of 240 mAh g-1 at current density of 100 mA g-1 . Dual-carbon batteries (DCBs) using the graphite as both of cathode and anode steadily cycle 2400 times at current density of 1 A g-1 . Hence, this work provides a reference to the strategy of material designs of DIBs and DCBs.
Collapse
Affiliation(s)
- Xin Hu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yitian Ma
- School of Materials, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Wenjie Qu
- Shanghai Institute of Space Power-Sources, Shanghai, 200245, China
| | - Ji Qian
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
| | - Yuetong Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yi Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Anbin Zhou
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Huirong Wang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fengling Zhang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhengqiang Hu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongxin Huang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| |
Collapse
|
24
|
Alimohammadi M, Sharifi H, Tashkhourian J, Shamsipur M, Hemmateenejad B. A paper-based chemical tongue based on the charge transfer complex of ninhydrin with an array of metal-doped carbon dots discriminates natural amino acids and several of their enantiomers. LAB ON A CHIP 2023; 23:3837-3849. [PMID: 37501627 DOI: 10.1039/d3lc00424d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Simultaneous detection of multiple amino acids (AAs) instead of individual AAs is inherently worthwhile for improving diagnostic accuracy in clinical applications. Here, a facile and reliable colorimetric microfluidic paper-based analytical device (μPAD) using carbon dots doped with transition metals (Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+) has been provided to detect and discriminate 20 natural amino acids. To make the colourless metal-doped carbon dots suitable for colorimetric assays, they were mixed with ninhydrin to form a charge transfer complex. This optical tongue system, which was constructed by dropping mixtures of ninhydrin with a series of metal-doped carbon dots on a paper substrate in an array format, represented obvious but different colorimetric signatures for every examined amino acid. Since bovine serum albumin was used as a chiral selector reagent for synthesizing the CDs, the sensor device represented excellent selectivity to identify enantiomeric species of AAs. This is the first optical array device that can simultaneously discriminate AAs and several of their enantiomers. We employed various statistical and chemometric methods to analyze the digital data library collected by Image J software, including principal component analysis (PCA), linear discriminant analysis (LDA), and hierarchical cluster analysis (HCA). Twenty AAs could be well distinguished at various concentrations (10.00, 5.00, 2.50, and 1.25 mM). The colorimetric patterns were highly repeatable and were characteristic of individual AAs. Besides qualitative analysis, the designed μPAD-based optical tongue represented quantitative analysis ability, e.g., for lysine in the concentration ranges of 0.005-20.0 mM with a detection limit of 1.0 × 10-6 M and for arginine in the concentration range of 0.12-20.00 mM with a detection limit of 80.0 × 10-6 M. In addition, the binary, ternary, and quaternary mixtures of AAs could also be well recognized with this sensor.
Collapse
Affiliation(s)
| | - Hoda Sharifi
- Chemistry Department, Shiraz University, Shiraz, 71454, Iran.
| | | | | | - Bahram Hemmateenejad
- Chemistry Department, Shiraz University, Shiraz, 71454, Iran.
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Ashoori A, Noori A, Rahmanifar MS, Morsali A, Hassani N, Neek-Amal M, Ghasempour H, Xia X, Zhang Y, El-Kady MF, Kaner RB, Mousavi MF. Tailoring Metal-Organic Frameworks and Derived Materials for High-Performance Zinc-Air and Alkaline Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37311056 DOI: 10.1021/acsami.3c04454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing multifunctional materials from earth-abundant elements is urgently needed to satisfy the demand for sustainable energy. Herein, we demonstrate a facile approach for the preparation of a metal-organic framework (MOF)-derived Fe2O3/C, composited with N-doped reduced graphene oxide (MO-rGO). MO-rGO exhibits excellent bifunctional electrocatalytic activities toward the oxygen evolution reaction (ηj=10 = 273 mV) and the oxygen reduction reaction (half-wave potential = 0.77 V vs reversible hydrogen electrode) with a low ΔEOER-ORR of 0.88 V in alkaline solutions. A Zn-air battery based on the MO-rGO cathode displays a high specific energy of over 903 W h kgZn-1 (∼290 mW h cm-2), an excellent power density of 148 mW cm-2, and an open-circuit voltage of 1.430 V, outperforming the benchmark Pt/C + RuO2 catalyst. We also hydrothermally synthesized a Ni-MOF that was partially transformed into a Ni-Co-layered double hydroxide (MOF-LDH). A MO-rGO||MOF-LDH alkaline battery exhibits a specific energy of 42.6 W h kgtotal mass-1 (106.5 μW h cm-2) and an outstanding specific power of 9.8 kW kgtotal mass-1 (24.5 mW cm-2). This work demonstrates the potential of MOFs and MOF-derived compounds for designing innovative multifunctional materials for catalysis, electrochemical energy storage, and beyond.
Collapse
Affiliation(s)
- Atefeh Ashoori
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Abolhassan Noori
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | | | - Ali Morsali
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Nasim Hassani
- Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran, P.O. Box: 16875-163, Iran
| | - Mehdi Neek-Amal
- Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran, P.O. Box: 16875-163, Iran
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Hosein Ghasempour
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Xinhui Xia
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yongqi Zhang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 611371, China
| | - Maher F El-Kady
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Richard B Kaner
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Mir F Mousavi
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| |
Collapse
|
26
|
Zeng T, Jin S, Jin Z, Li S, Zou R, Zhang X, Song S, Liu M. Ultrafine ZnCo 2O 4 QD-incorporated carbon nitride mediated peroxymonosulfate activation for norfloxacin oxidation: performance, mechanisms and pathways. RSC Adv 2023; 13:14048-14059. [PMID: 37181504 PMCID: PMC10167798 DOI: 10.1039/d3ra02364h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023] Open
Abstract
Recently, peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) are being actively investigated as a potential technology for water decontamination and many efforts have been made to improve the activation efficiency of PMS. Herein, a 0D metal oxide quantum dot (QD)-2D ultrathin g-C3N4 nanosheet (ZnCo2O4/g-C3N4) hybrid was facilely fabricated through a one-pot hydrothermal process and used as an efficient PMS activator. Benefiting from the restricted growth effect of the g-C3N4 support, ultrafine ZnCo2O4 QDs (∼3-5 nm) are uniformly and stably anchored onto the surface. The ultrafine ZnCo2O4 possesses high specific surface areas and shortened mass/electron transport route so that the internal static electric field (Einternal) formed in the interface between p-type ZnCo2O4 and the n-type g-C3N4 semiconductor could speed up the electron transfer during the catalytic reaction. This thereby induces the high-efficiency PMS activation for rapid organic pollutant removal. As expected, the ZnCo2O4/g-C3N4 hybrid catalysts significantly outperformed individual ZnCo2O4 and g-C3N4 in catalytic oxidative degradation of norfloxacin (NOR) in the presence of PMS (95.3% removal of 20 mg L-1 of NOR in 120 min). Furthermore, the ZnCo2O4/g-C3N4-mediated PMS activation system was systematically studied in terms of the identification of reactive radicals, the impact of control factors, and the recyclability of the catalyst. The results of this study demonstrated the great potential of a built-in electric field-driven catalyst as a novel PMS activator for the remediation of contaminated water.
Collapse
Affiliation(s)
- Tao Zeng
- College of Architecture and Environment, Sichuan University Sichuan 610065 China +86-571-88320726
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology Hangzhou Zhejiang 310032 P. R. China
| | - Sijia Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology Hangzhou Zhejiang 310032 P. R. China
| | - Zhiquan Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology Hangzhou Zhejiang 310032 P. R. China
| | - Shuqi Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology Hangzhou Zhejiang 310032 P. R. China
- Hangzhou Vocational & Technical College, Ecology and Health Institute Hangzhou 310018 P. R. China
| | - Rui Zou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology Hangzhou Zhejiang 310032 P. R. China
| | - Xiaole Zhang
- College of Life Science, North China University of Science and Technology Tangshan Hebei 063000 China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology Hangzhou Zhejiang 310032 P. R. China
| | - Min Liu
- College of Architecture and Environment, Sichuan University Sichuan 610065 China +86-571-88320726
| |
Collapse
|
27
|
Qi Y, Liu B, Qiu X, Zeng X, Luo Z, Wu W, Liu Y, Chen L, Zu X, Dong H, Lin X, Qin Y. Simultaneous Oxidative Cleavage of Lignin and Reduction of Furfural via Efficient Electrocatalysis by P-Doped CoMoO 4. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208284. [PMID: 36689338 DOI: 10.1002/adma.202208284] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Electrochemical oxidative lignin cleavage and coupled 2-furaldehyde reduction provide a promising approach for producing high-value added products. However, developing efficient bifunctional electrocatalysts with noble-metal-like activity still remains a challenge. Here, an efficient electrochemical strategy is reported for the selective oxidative cleavage of Cα -Cβ bonds in lignin into aromatic monomers by tailoring the electronic structure through P-doped CoMoO4 spinels (99% conversion, highest monomer selectivity of 56%). Additionally, the conversion and selectivity of 2-furaldehyde reduction to 2-methyl furan reach 87% and 73%, respectively. In situ Fourier transform infrared and density functional theory analysis reveal that an upward shift of the Ed upon P-doping leads to an increase in the antibonding level, which facilitates the Cα -Cβ adsorption of the lignin model compounds, thereby enhancing the bifunctional electrocatalytic activity of the active site. This work explores the potential of a spinel as a bifunctional electrocatalyst for the oxidative cracking of lignin and the reductive conversion of small organic molecules to high-value added chemicals via P-anion modulation.
Collapse
Affiliation(s)
- Yi Qi
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Bowen Liu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Xueqing Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Xuezhi Zeng
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhicheng Luo
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Weidong Wu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yingchun Liu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Liheng Chen
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Xihong Zu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Huafeng Dong
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Xuliang Lin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yanlin Qin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| |
Collapse
|
28
|
Yan X, Xia M, Liu H, Zhang B, Chang C, Wang L, Yang G. An electron-hole rich dual-site nickel catalyst for efficient photocatalytic overall water splitting. Nat Commun 2023; 14:1741. [PMID: 36990992 DOI: 10.1038/s41467-023-37358-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Photocatalysis offers an attractive strategy to upgrade H2O to renewable fuel H2. However, current photocatalytic hydrogen production technology often relies on additional sacrificial agents and noble metal cocatalysts, and there are limited photocatalysts possessing overall water splitting performance on their own. Here, we successfully construct an efficient catalytic system to realize overall water splitting, where hole-rich nickel phosphides (Ni2P) with polymeric carbon-oxygen semiconductor (PCOS) is the site for oxygen generation and electron-rich Ni2P with nickel sulfide (NiS) serves as the other site for producing H2. The electron-hole rich Ni2P based photocatalyst exhibits fast kinetics and a low thermodynamic energy barrier for overall water splitting with stoichiometric 2:1 hydrogen to oxygen ratio (150.7 μmol h-1 H2 and 70.2 μmol h-1 O2 produced per 100 mg photocatalyst) in a neutral solution. Density functional theory calculations show that the co-loading in Ni2P and its hybridization with PCOS or NiS can effectively regulate the electronic structures of the surface active sites, alter the reaction pathway, reduce the reaction energy barrier, boost the overall water splitting activity. In comparison with reported literatures, such photocatalyst represents the excellent performance among all reported transition-metal oxides and/or transition-metal sulfides and is even superior to noble metal catalyst.
Collapse
Affiliation(s)
- Xiaoqing Yan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, P.R., China
| | - Mengyang Xia
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, P.R., China
| | - Hanxuan Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, P.R., China
| | - Bin Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, P.R., China
| | - Chunran Chang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, P.R., China
| | - Lianzhou Wang
- School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guidong Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, P.R., China.
| |
Collapse
|
29
|
Dual morphology ZnCo2O4 coupled graphitic carbon nitride: An efficient electro-catalyst for electrochemical H2O2 production and methanol oxidation reaction. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
30
|
Recent Advances and Challenges of Cobalt-Based Materials as Air Cathodes in Rechargeable Zn–Air Batteries. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
|
31
|
Mesoporous Surface-Sulfurized Fe-Co 3O 4 Nanosheets Integrated with N/S Co-Doped Graphene as a Robust Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reactions. Molecules 2023; 28:molecules28052221. [PMID: 36903464 PMCID: PMC10005318 DOI: 10.3390/molecules28052221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Playing a significant role in electrochemical energy conversion and storage systems, heteroatom-doped transition metal oxides are key materials for oxygen-involving reactions. Herein, mesoporous surface-sulfurized Fe-Co3O4 nanosheets integrated with N/S co-doped graphene (Fe-Co3O4-S/NSG) were designed as composite bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). Compared with the Co3O4-S/NSG catalyst, it exhibited superior activity in the alkaline electrolytes by delivering an OER overpotential of 289 mV at 10 mA cm-2 and an ORR half-wave potential of 0.77 V vs. RHE. Additionally, Fe-Co3O4-S/NSG kept stable at 4.2 mA cm-2 for 12 h without significant attenuation to render robust durability. This work not only demonstrates the satisfactory effect of the transition-metal cationic modification represented by iron doping on the electrocatalytic performance of Co3O4, but it also provides a new insight on the design of OER/ORR bifunctional electrocatalysts for efficient energy conversion.
Collapse
|
32
|
Dong X, Yao Z, Li Y, Wang J, Zhong Q. Facile Fabrication of NiFe Double Hydroxide on Carbon Matrix Composites as an Efficient Oxygen Electrocatalyst for Rechargeable Zn‐air Batteries. ChemistrySelect 2023. [DOI: 10.1002/slct.202203929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Xinyao Dong
- School of Chemistry and Chemical Engineering Nanjing University of Science and Technology 210094 Nanjing Jiangsu P. R. China
| | - Zhihui Yao
- School of Chemistry and Chemical Engineering Nanjing University of Science and Technology 210094 Nanjing Jiangsu P. R. China
| | - Yuting Li
- School of Chemistry and Chemical Engineering Nanjing University of Science and Technology 210094 Nanjing Jiangsu P. R. China
| | - Juan Wang
- School of Chemistry and Chemical Engineering Nanjing University of Science and Technology 210094 Nanjing Jiangsu P. R. China
| | - Qin Zhong
- School of Chemistry and Chemical Engineering Nanjing University of Science and Technology 210094 Nanjing Jiangsu P. R. China
| |
Collapse
|
33
|
Fu Y, Han L, Zheng P, Xian X, Zeng X, Dong P, Feng J, Zhang Y. Hierarchical porous VN/NC/C nanocomposites with synergistic coupling for oxygen reduction. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
Dong J, Wen L, Liu H, Yang H, Zhao J, Luo X, Hou C, Huo D. Simultaneous detection of dihydroxybenzene isomers in the environment by a free-standing flexible ZnCo 2O 4 nanoplate arrays/carbon fiber cloth electrode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158878. [PMID: 36152851 DOI: 10.1016/j.scitotenv.2022.158878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The simultaneous determination of dihydroxybenzene isomers is highly valuable for early environmental monitoring, but it is still a challenge. In this work, a free-standing flexible electrode was prepared for the simultaneous detection of hydroquinone (HQ), catechol (CC), and resorcinol (RC). The bimetallic zinc/cobalt zeolitic imidazolate frameworks nanoplate arrays (Zn/Co-ZIF NPAs) grown in situ on the carbon fiber cloth (CFC) was fabricated by a facile static synthesis method, and the porous ternary ZnCo2O4 NPAs derived from Zn/Co-ZIF NPAs were formed by annealing in air. Due to the fast electron transmission, abundant active sites and excellent electrocatalytic properties with enzyme-like kinetic performance of the ZnCo2O4/CFC electrode, the as-proposed sensor showed a wilder linear response (2-500 μM), a lower detection limits (0.03 μM HQ, 0.06 μM CC and 0.15 μM RC) and a higher sensitivity (23.58 μA μM-1 cm-2 HQ, 17.72 μA μM-1 cm-2 CC, and 15.18 μA μM-1 cm-2 RC), respectively. More importantly, the proposed electrochemical sensor exhibited excellent detection performance in complex water samples, providing a strategy for the detection of other toxic substances in the ecological environment.
Collapse
Affiliation(s)
- Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Li Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Huisi Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Jiaying Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Xiaogang Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
35
|
He X, Chang L, Han P, Li K, Wu H, Tang Y, Gao F, Zhang Y, Zhou A. High-performance Co-N-C catalyst derived from PS@ZIF-8@ZIF-67 for improved oxygen reduction reaction. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Hu Z, Zhao P, Li J, Chen Y, Yang H, Zhao J, Dong J, Qi N, Yang M, Huo D, Hou C. Metal-organic framework-derived porous ternary ZnCo 2O 4 nanoplate arrays grown on carbon cloth for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4330-4337. [PMID: 36260019 DOI: 10.1039/d2ay01058e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal-organic frameworks derived from ternary metal oxide directly grown on the conductive substrate have attracted great interest in electrochemical sensing. In this work, metal-organic framework-derived ternary ZnCo2O4 nanoplate arrays that were grown on carbon cloth (ZnCo2O4 NA/CC) are fabricated and applied for the electrochemical determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). Field emission scanning electron microscope (FESEM) reveals that a network-like CC substrate is covered with considerable nanoplate arrays, presenting a large specific area. X-ray photoelectron spectroscopy (XPS) demonstrates the nanoplate arrays to be composed of ZnCo2O4. Benefiting from the unique array morphology and ternary element composition, the ZnCo2O4 NA/CC shows desirable performances for simultaneous detection of AA, DA, and UA. The individual detection limits are 7.14 μM for AA, 0.25 μM for DA, and 0.33 μM for UA. Additionally, the ZnCo2O4 NA/CC is successfully applied for the quantitative determination of AA, DA, and UA in spiked serum samples, showing its great application potential.
Collapse
Affiliation(s)
- Zhikun Hu
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Peng Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Jiawei Li
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China
| | - Yuanyuan Chen
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Huisi Yang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Jiaying Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Na Qi
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China
| |
Collapse
|
37
|
Bezerra LS, Mooste M, Fortunato GV, S. F. Cardoso E, R. V. Lanza M, Tammeveski K, Maia G. Tuning NiCo2O4 bifunctionality with nitrogen-doped graphene nanoribbons in oxygen electrocatalysis for zinc-air battery application. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Zhang C, Zhang Y, Liu J, Ye Y, Chen Q, Liang C. Laser irradiation synthesized carbon encapsulating ultrafine transition metal nanoparticles for highly efficient oxygen evolution. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Enhanced catalytic activity and ignition characteristics of three-dimensional ordered macroporous FeCo2O4 through controlled synthesis. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Olowoyo JO, Kriek RJ. Recent Progress on Bimetallic-Based Spinels as Electrocatalysts for the Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203125. [PMID: 35996806 DOI: 10.1002/smll.202203125] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Electrocatalytic water splitting is a promising and viable technology to produce clean, sustainable, and storable hydrogen as an energy carrier. However, to meet the ever-increasing global energy demand, it is imperative to develop high-performance non-precious metal-based electrocatalysts for the oxygen evolution reaction (OER), as the OER is considered the bottleneck for electrocatalytic water splitting. Spinels, in particular, are considered promising OER electrocatalysts due to their unique properties, precise structures, and compositions. Herein, the recent progress on the application of bimetallic-based spinels (AFe2 O4 , ACo2 O4 , and AMn2 O4 ; where A = Ni, Co, Cu, Mn, and Zn) as electrocatalysts for the OER is presented. The fundamental concepts of the OER are highlighted after which the family of spinels, their general formula, and classifications are introduced. This is followed by an overview of the various classifications of bimetallic-based spinels and their recent developments and applications as OER electrocatalysts, with special emphasis on enhancing strategies that have been formulated to improve the OER performance of these spinels. In conclusion, this review summarizes all studies mentioned therein and provides the challenges and future perspectives for bimetallic-based spinel OER electrocatalysts.
Collapse
Affiliation(s)
- Joshua O Olowoyo
- Electrochemistry for Energy & Environment Group, Research Focus Area: Chemical Resource Beneficiation (CRB), Private Bag X6001, North-West University, Potchefstroom, 2520, South Africa
| | - Roelof J Kriek
- Electrochemistry for Energy & Environment Group, Research Focus Area: Chemical Resource Beneficiation (CRB), Private Bag X6001, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
41
|
Ramachandran R, Chen TW, Veerakumar P, Anushya G, Chen SM, Kannan R, Mariyappan V, Chitra S, Ponmurugaraj N, Boominathan M. Recent development and challenges in fuel cells and water electrolyzer reactions: an overview. RSC Adv 2022; 12:28227-28244. [PMID: 36320254 PMCID: PMC9531000 DOI: 10.1039/d2ra04853a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022] Open
Abstract
Water electrolysis is the most promising method for the production of large scalable hydrogen (H2), which can fulfill the global energy demand of modern society. H2-based fuel cell transportation has been operating with zero greenhouse emission to improve both indoor and outdoor air quality, in addition to the development of economically viable sustainable green energy for widespread electrochemical applications. Many countries have been eagerly focusing on the development of renewable as well as H2-based energy storage infrastructure to fulfill their growing energy demands and sustainable goals. This review article mainly discusses the development of different kinds of fuel cell electrocatalysts, and their application in H2 production through various processes (chemical, refining, and electrochemical). The fuel cell parameters such as redox properties, cost-effectiveness, ecofriendlyness, conductivity, and better electrode stability have also been highlighted. In particular, a detailed discussion has been carried out with sufficient insights into the sustainable development of future green energy economy.
Collapse
Affiliation(s)
- Rasu Ramachandran
- Department of Chemistry, The Madura College (Madurai Kamaraj University) Vidhya Nagar, T.P.K. Road Madurai 625011 India
| | - Tse-Wei Chen
- Department of Materials, Imperial College London London SW7 2AZ UK
| | | | - Ganesan Anushya
- Department of Physics, St. Joseph College of Engineering Sriperumbudur Chennai 602117 India
| | - Shen-Ming Chen
- Electroanalysis and Bio-electrochemistry Laboratory, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology Taipei 106 Taiwan
| | - Ramanjam Kannan
- Department of Chemistry, Sri KumaraguruparaSwamigal Arts College Srivaikuntam Thoothukudi-628619 India
| | - Vinitha Mariyappan
- Electroanalysis and Bio-electrochemistry Laboratory, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology Taipei 106 Taiwan
| | - Selvam Chitra
- Department of Chemistry, Alagappa Government Arts College Karaikudi 630003 India
| | | | - Muthusamy Boominathan
- Department of Chemistry, The Madura College (Madurai Kamaraj University) Vidhya Nagar, T.P.K. Road Madurai 625011 India
| |
Collapse
|
42
|
Li F, Jiang M, Lai C, Xu H, Zhang K, Jin Z. Yttrium- and Cerium-Codoped Ultrathin Metal-Organic Framework Nanosheet Arrays for High-Efficiency Electrocatalytic Overall Water Splitting. NANO LETTERS 2022; 22:7238-7245. [PMID: 36040824 DOI: 10.1021/acs.nanolett.2c02755] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The construction of low-cost, highly efficient, and stable electrocatalysts is a significant challenge for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we report a facile strategy to fabricate ultrathin metal-organic framework (MOF) nanosheet arrays doped with two rare-earth elements, Y and Ce, and self-supported on nickel foam (NF) to enhance the HER and OER performance by constructing abundant active sites and bimetallic synergistic effects. The NiYCe-MOF/NF features an ultrathin nanosheet array structure and is uniformly and richly codoped by Y and Ce. When it was explored as both the anode and cathode electrocatalysts for overall water splitting, it achieved 10 mA cm-2 at 136 and 245 mV for the HER and OER in an alkaline electrolyte, respectively. Notably, an extremely low cell voltage of 1.54 V was required to achieve 100 mA cm-2 in 1.0 M KOH solution, making it a promising substitute for noble-metal catalysts.
Collapse
Affiliation(s)
- Fajun Li
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China
| | - Minghang Jiang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
- Nanjing Tieming Energy Technology Co. Ltd., Nanjing, Jiangsu 210093, People's Republic of China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, Jiangsu 215228, People's Republic of China
| | - Changgan Lai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing Jiangsu 211189, People's Republic of China
| | - Haifeng Xu
- School of Information Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China
| | - Keying Zhang
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China
| | - Zhong Jin
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
- Nanjing Tieming Energy Technology Co. Ltd., Nanjing, Jiangsu 210093, People's Republic of China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, Jiangsu 215228, People's Republic of China
| |
Collapse
|
43
|
Interfacial Electron Redistribution of FeCo2S4/N-S-rGO Boosting Bifunctional Oxygen Electrocatalysis Performance. Catalysts 2022. [DOI: 10.3390/catal12091002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Developing bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is essential for the development of zinc–air batteries (ZABs), but several challenges remain in terms of bifunctional activity. FeCo2S4/N-S-rGO was prepared by in situ homogeneous growth of bimetallic sulfide FeCo2S4 on N, S-doped reduced graphene oxide. FeCo2S4/N-S-rGO exhibits a half-wave potential of 0.89 V for ORR and an overpotential of 0.26 V at 10 mA cm−2 for OER, showing significantly bifunctional activity superior to Pt/C (0.85 V) and RuO2 (0.41 V). Moreover, the FeCo2S4/N-S-rGO assembled ZAB shows a superior specific capacity and a power density of 259.13 mW cm−2. It is demonstrated that the interfacial electron redistribution between FeCo2S4 nanoparticles and heteroatom-doped rGO matrix can efficiently improve the electrochemical performance of the catalyst. The results provide new insights into the preparation of high-capability composite catalysts combining transition metal sulfides with carbon materials for applications in ZABs.
Collapse
|
44
|
McGlynn RJ, Moghaieb HS, Brunet P, Chakrabarti S, Maguire P, Mariotti D. Hybrid Plasma-Liquid Functionalisation for the Enhanced Stability of CNT Nanofluids for Application in Solar Energy Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2705. [PMID: 35957139 PMCID: PMC9370158 DOI: 10.3390/nano12152705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Macroscopic ribbon-like assemblies of carbon nanotubes (CNTs) are functionalised using a simple direct-current-based plasma-liquid system, with oxygen and nitrogen functional groups being added. These modifications have been shown to reduce the contact angle of the ribbons, with the greatest reduction being from 84° to 35°. The ability to improve the wettability of the CNTs is of paramount importance for producing nanofluids, with relevance for a number of applications. Here, in particular, we investigate the efficacy of these samples as nanofluid additives for solar-thermal harvesting. Surface treatments by plasma-induced non-equilibrium electrochemistry are shown to enhance the stability of the nanofluids, allowing for full redispersion under simulated operating conditions. Furthermore, the enhanced dispersibility results in both a larger absorption coefficient and an improved thermal profile under solar simulation.
Collapse
Affiliation(s)
- Ruairi J. McGlynn
- Correspondence: (R.J.M.); (D.M.); Tel.: +44-7548493594 (R.J.M.); +44-28-9536-5266 (D.M.)
| | | | | | | | | | - Davide Mariotti
- Correspondence: (R.J.M.); (D.M.); Tel.: +44-7548493594 (R.J.M.); +44-28-9536-5266 (D.M.)
| |
Collapse
|
45
|
Wang W, Song F, Du C, Su Y. Durable and eco-friendly peroxymonosulfate activation over cobalt/tin oxides-based heterostructures for antibiotics removal: Insight to mechanism, degradation pathway. J Colloid Interface Sci 2022; 625:479-492. [PMID: 35738045 DOI: 10.1016/j.jcis.2022.06.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 02/06/2023]
Abstract
Potential leaching of Co ions could decrease the catalytic activity and cause secondary pollution of water, thereby threatening ecological safety and human health. In response, the in-situ generation of well-dispersed Co2SnO4 and SnO2 with fine interfacial feature was constructed for PMS activation toward efficient tetracycline degradation and lower cobalt ion leaching feature. The synergistic effect of Co2SnO4 and SnO2 endowed Co2SnO4-SnO2 an outstanding catalytic performance for tetracycline degradation in alkaline condition. Meanwhile, the catalysts can effectively degrade the quinolones, dyes and mixture pollutant solution. The excellent performance can attributed to the in-situ introduction of SnO2, which stabilizes the microstructure and provides an effective electronic pathway to enhance the activity of Co2SnO4 in the Co2SnO4-SnO2. In optimized condition, the tetracycline degradation efficiency was enhanced to 94.9% within 20 min and maintained the stability at least four cycles. The degradation rate constant of Co2SnO4-SnO2 was 0.149 min-1, which was about 1.93, 2.98, 11.5 times higher than of Co2SnO4, Co3O4 and SnO2, respectively. Notably, the leaching performance of Co2SnO4-SnO2 was greatly suppressed to be 7.45 ug/L, which was lower than that of Co2SnO4 (6.41 mg/L) and Co3O4 (1.12 mg/L). Radical quenching and EPR experiments showed that singlet oxygen (1O2), rather than hydroxyl active species and sulfate radicals, played a predominating role for PMS activation in the Co2SnO4-SnO2/PMS system. The intermediates and degradation routes for tetracycline degradation were characterized by liquid chromatograph-tandem mass spectrometry. This study expected to provide a novel strategy to construct heterostructural catalysts with lower cobalt ion leaching for the activation of PMS.
Collapse
Affiliation(s)
- Weihong Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Fanyue Song
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Chunfang Du
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Yiguo Su
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
46
|
Gao Y, Zhao J, Lian J, Chen X, Zhu Q, Wang X. Co‐N as a Promoter towards Modulation Surface Chemistry of PtCo Alloy on 2D Thin Layer Hierarchical Porous Nitrogen‐Carbon for the Efficient Oxygen Reduction Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202201212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Gao
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Jinyu Zhao
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Jie Lian
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Xu Chen
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Qijia Zhu
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Xiaomin Wang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| |
Collapse
|
47
|
Wang M, Lian X, Wu M, Zheng F, Niu H. In‐situ Electrochemical Activation Enhances the OER Catalytic Performance of Ag NWs@ZIF‐67 in Alkaline Simulated Seawater. ChemistrySelect 2022. [DOI: 10.1002/slct.202201305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mengzhen Wang
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials School of Chemistry and Chemical Engineering Anhui University Hefei 230601 AnHui Province People's Republic of China
| | - Xiao Lian
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials School of Chemistry and Chemical Engineering Anhui University Hefei 230601 AnHui Province People's Republic of China
| | - Mingzai Wu
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education School of Physics and Materials Science Anhui University Hefei 230601 AnHui Province People's Republic of China
| | - Fangcai Zheng
- Institutes of Physical Science and information Technology School of Physics and Materials Science Anhui University Hefei 230039 AnHui Province People's Republic of China
| | - Helin Niu
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials School of Chemistry and Chemical Engineering Anhui University Hefei 230601 AnHui Province People's Republic of China
| |
Collapse
|
48
|
Gebreslase GA, Martínez-Huerta MV, Sebastián D, Lázaro MJ. Transformation of CoFe 2O 4 spinel structure into active and robust CoFe alloy/N-doped carbon electrocatalyst for oxygen evolution reaction. J Colloid Interface Sci 2022; 625:70-82. [PMID: 35714410 DOI: 10.1016/j.jcis.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 12/26/2022]
Abstract
Electrochemical water splitting is an environmentally benign technology employed for H2 production; however, it is critically hampered by the sluggish kinetics of the oxygen evolution reaction (OER) at the positive electrode. In this work, nitrogen-doped carbon-coated CoFe electrocatalysts were synthesized via a three-step route comprising (1) hydrothermal reaction, (2) in-situ polymerization of dopamine and (3) carbonization. The effect of carbonized polydopamine on the overall physicochemical properties and electrochemical activity of CoFe catalysts was systematically studied. By controlling and optimizing the ratio of CoFe2O4 and dopamine contents, a transformation of the CoFe2O4 structure to CoFe alloy was observed. It was found that CoFe/NC30% (prepared with 30% dopamine) exhibits an excellent catalytic activity towards OER. A small overpotential of 340 mV was required to generate a current density of 10 mA cm-2 in a 1.0 M KOH electrolyte. More importantly, the CoFe/NC30% catalyst reflected exceptional durability for at least 24 h. This research sheds light on the development of affordable, highly efficient, and durable electrocatalysts for OER.
Collapse
Affiliation(s)
| | | | - David Sebastián
- Instituto de Carboquímica, CSIC. Miguel Luesma, Castán 4, 50018 Zaragoza, Spain
| | - María Jesús Lázaro
- Instituto de Carboquímica, CSIC. Miguel Luesma, Castán 4, 50018 Zaragoza, Spain.
| |
Collapse
|
49
|
Shi F, Wang Z, Zhu K, Zhu X, Yang W. Enhancing activity and stability of Co-MOF-74 for oxygen evolution reaction by wrapping polydopamine. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
50
|
He Y, Yin Z, Wang Z, Wang H, Xiong W, Song B, Qin H, Xu P, Zeng G. Metal-organic frameworks as a good platform for the fabrication of multi-metal nanomaterials: design strategies, electrocatalytic applications and prospective. Adv Colloid Interface Sci 2022; 304:102668. [PMID: 35489143 DOI: 10.1016/j.cis.2022.102668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/01/2022]
Abstract
MOF-derived multi-metal nanomaterials are attracting numerous attentions in widespread applications such as catalysis, sensors, energy storage and conversion, and environmental remediation. Compared to the monometallic counterparts, the presence of foreign metal is expected to bring new physicochemical properties, thus exhibiting synergistic effect for enhanced performance. MOFs have been proved as a good platform for the fabrication of polymetallic nanomaterials with requisite features. Herein, various design strategies related to constructing multi-metallic nanomaterials from MOFs are summarized for the first time, involving metal nodal substitution, seed epitaxial growth, ion-exchange strategy, guest species encapsulation, solution impregnation and combination with extraneous substrate. Afterwards, the recent advances of multi-metallic nanomaterials for electrocatalytic applications, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), are systematically discussed. Finally, a personal outlook on the future trends and challenges are also presented with hope to enlighten deeper understanding and new thoughts for the development of multi-metal nanomaterials from MOFs.
Collapse
|