1
|
Alemayehu DD, Tsai MC, Tsai MH, Yang CC, Chang CC, Chang CY, Moges EA, Lakshmanan K, Nikodimos Y, Su WN, Wang CH, Hwang BJ. Heterogeneous Interfaces of Ni 3Se 4 Nanoclusters Decorated on a Ni 3N Surface Enhance Efficient and Durable Hydrogen Evolution Reactions in Alkaline Electrolyte. J Am Chem Soc 2025; 147:16047-16059. [PMID: 40325798 DOI: 10.1021/jacs.4c17747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Transition metal selenides (TMSes) have been identified as cost-efficient alternatives to platinum (Pt) for the alkaline hydrogen evolution reaction (HER) owing to their distinct electronic properties and excellent conductivity. However, they encounter challenges such as sluggish water dissociation and severe oxidative degradation, requiring further optimizations. In this study, we developed a dual-site heterogeneous catalyst, Ni3Se4-Ni3N, by decorating Ni3Se4 nanoclusters on a Ni3N substrate. This catalyst design promoted significant interfacial electronic interactions, modulated electronic structures, and enhanced the adsorption of the intermediates. Various spectroscopic analyses and theoretical calculations revealed that the nitride surfaces improved water adsorption and dissociation, enriching the surface with adsorbed hydrogen (H*) atoms, while the Se sites facilitated hydrogen coupling and subsequent release of H2. Following a hydrogen spillover mechanism, the surface-adsorbed hydrogen atoms were transferred to nearby electron-dense selenide sites for H2 formation and release. Consequently, the optimized catalyst demonstrated improved HER activity, requiring only an ∼60 mV overpotential at 10 mA cm-2 current density and maintained stability under higher potential conditions.
Collapse
Affiliation(s)
- Dessalew Dagnew Alemayehu
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Meng-Che Tsai
- Department of Greenergy, National University of Tainan, Tainan 700301, Taiwan
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Meng-Hsuan Tsai
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Chueh-Cheng Yang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Chun-Chi Chang
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Chia-Yu Chang
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Endalkachew Asefa Moges
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Keseven Lakshmanan
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yosef Nikodimos
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Wei-Nien Su
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Bing Joe Hwang
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| |
Collapse
|
2
|
Sarfraz S, Khan N, Zahra M, Shah KH, Javed M, Zidan A, Bahadur A, Iqbal S, Mahmood S, Farouk AE, Aloufi S. Toward Efficient Hydrogen Generation Using Nickel-Molybdenum Catalyst and Its Environmental Sustainability. Microsc Res Tech 2025; 88:999-1006. [PMID: 39639459 DOI: 10.1002/jemt.24762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
In this study, a catalyst with Ni-Mo combination was synthesized using the electric heating/reductive tempering method. Nickel (II) nitrate hexahydrate and ammonium molybdate were combined in a ratio of 1.1 in this approach. The mixture was milled into a fine powder. It was heated to 950°C to 1000°C in a seething hood. The disappearance of green shading and emission of brownish-yellow fumes indicated that the reaction was completed. XRD has been used to determine the crystallinity of the combined Ni-Mo amalgam, SEM was used to investigate the surface morphology of the orchestrated Ni-Mo compound, and inductively coupled plasma examinations were carried out to evaluate elemental percentage (%) of the integrated sample of Ni-Mo combination. In addition, an electrical impedance analysis of as-synthesized Ni-Mo alloy was conducted to estimate hydrogen production in an electrochemical reaction. The electrical impedance results indicate that the synthesized Ni-Mo catalyst exhibited an efficient charge-transfer kinetics with a low charge-transfer resistance (5.35 Ω). The onset potential value achieved was 18 mV with overpotential of -100 mV in IM KOH, possessing a turnover frequency of 0.91H2 s-1. These findings underscore Ni-Mo catalyst as a promising catalyst for hydrogen generation studies. The results of this study are anticipated to be of potential significant importance in providing a cost-effective approach towards the synthesis of Ni-bimetallic catalyst, which in the future can serve as a promising candidate for applications involving sustainable hydrogen generation. Additionally, the proposed method's study of its greenness using the Analytical Greenness Calculator (AGREE) can help advance the usage of renewable and environmentally friendly energy sources.
Collapse
Affiliation(s)
- Sadaf Sarfraz
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Nasir Khan
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Manzar Zahra
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | | | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Ammar Zidan
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, Iraq
| | - Ali Bahadur
- Nanomaterials Research Center, Department of Chemistry, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, New Jersey, USA
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Sajid Mahmood
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
- Functional Materials Group, Gulf University for Science and Technology, Mishref, Kuwait
| | - Abd-ElAziem Farouk
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Salman Aloufi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
3
|
Huang S, Yue C, Uvdal K, Hu Z. Recent advances in irradiation-mediated synthesis and tailoring of inorganic nanomaterials for photo-/electrocatalysis. NANOSCALE ADVANCES 2025; 7:384-418. [PMID: 39610792 PMCID: PMC11601122 DOI: 10.1039/d4na00806e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/02/2024] [Indexed: 11/30/2024]
Abstract
Photo-/electrocatalysis serves as a cornerstone in addressing global energy shortages and environmental pollution, where the development of efficient and stable catalysts is essential yet challenging. Despite extensive efforts, it's still a formidable task to develop catalysts with excellent catalytic behaviours, stability, and low cost. Because of its high precision, favorable controllability and repeatability, radiation technology has emerged as a potent and versatile strategy for the synthesis and modification of nanomaterials. Through meticulous control of irradiation parameters, including energy, fluence and ion species, various inorganic photo-/electrocatalysts can be effectively synthesized with tailored properties. It also enables the efficient adjustment of physicochemical characteristics, such as heteroatom-doping, defect generation, heterostructure construction, micro/nanostructure control, and so on, all of which are beneficial for lowering reaction energy barriers and enhancing energy conversion efficiency. This review comprehensively outlines the principles governing radiation effects on inorganic catalysts, followed by an in-depth discussion of recent advancements in irradiation-enhanced catalysts for various photo-/electrocatalytic applications, such as hydrogen and oxygen evolution reactions, oxygen reduction reactions, and photocatalytic applications. Furthermore, the challenges associated with ionizing and non-ionizing radiation are discussed and potential avenues for future development are outlined. By summarizing and articulating these innovative strategies, we aim to inspire further development of sustainable energy and environmental solutions to drive a greener future.
Collapse
Affiliation(s)
- Shoushuang Huang
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University Linköping 58183 Sweden
| | - Can Yue
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Kajsa Uvdal
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University Linköping 58183 Sweden
| | - Zhangjun Hu
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University Linköping 58183 Sweden
| |
Collapse
|
4
|
Liu L, Yang Z, Gao W, Shi J, Ma J, Liu Z, Wang L, Wang Y, Chen Z. Ru incorporated into Se vacancy-containing CoSe 2 as an efficient electrocatalyst for alkaline hydrogen evolution. NANOSCALE 2024; 16:18421-18429. [PMID: 39253762 DOI: 10.1039/d4nr02735c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
In alkaline media, slow water dissociation leads to poor overall hydrogen evolution performance. However, Ru catalysts have a certain water dissociation performance, thus regulating the Ru-H bond through vacancy engineering and accelerating water dissociation. Herein, an excellent Ru-based electrocatalyst for the alkaline HER has been developed by incorporating Ru into Se vacancy-containing CoSe2 (Ru-VSe-CoSe2). The results from X-ray photoelectron spectroscopy, kinetic isotope effect, and cyanide poisoning experiments for four catalysts (namely Ru-VSe-CoSe2, Ru-CoSe2, VSe-CoSe2, and CoSe2) reveal that Ru is the main active site in Ru-VSe-CoSe2 and the presence of Se vacancies greatly facilitates electron transfer from Co to Ru via a bridging Se atom. Thus, electron-rich Ru is formed to optimize the adsorption strength between the active site and H*, and ultimately facilitates the whole alkaline HER process. Consequently, Ru-VSe-CoSe2 exhibits an excellent HER activity with an ultrahigh mass activity of 44.2 A mgRu-1 (20% PtC exhibits only 3 A mgRu-1) and a much lower overpotential (29 mV at 10 mA cm-2) compared to Ru-CoSe2 (75 mV), VSe-CoSe2 (167 mV), CoSe2 (190 mV), and commercial Pt/C (41 mV). In addition, the practical application of Ru-VSe-CoSe2 is illustrated by designing a Zn-H2O alkaline battery with Ru-VSe-CoSe2 as the cathode catalyst, and this battery shows its potential application with a maximum power density of 4.9 mW cm-2 and can work continuously for over 10 h at 10 mA cm-2 without an obvious decay in voltage.
Collapse
Affiliation(s)
- Li Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, Zhejiang 315100, China.
| | - Ziyi Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, Zhejiang 315100, China.
| | - Weibo Gao
- Ningbo Institute of Measurement and Testing (Ningbo Inspection and Testing Center for New Materials), Ningbo, Zhejiang 315048, P. R. China
| | - Jianghuan Shi
- Ningbo Institute of Measurement and Testing (Ningbo Inspection and Testing Center for New Materials), Ningbo, Zhejiang 315048, P. R. China
| | - Jieyun Ma
- School of Nursing and Midwifery, Faculty of Health, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Zongjian Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Lin Wang
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, Zhejiang 315100, China.
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yichao Wang
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | - Zhengfei Chen
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, Zhejiang 315100, China.
| |
Collapse
|
5
|
Chen S, Yue K, Shi J, Zheng Z, He Y, Wan H, Chen G, Zhang N, Liu X, Ma R. Crystal Structure Regulation of CoSe 2 Induced by Fe Dopant for Promoted Surface Reconstitution toward Energetic Oxygen Evolution Reaction. Inorg Chem 2024; 63:7430-7441. [PMID: 38605566 DOI: 10.1021/acs.inorgchem.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Most nonoxide catalysts based on transition metal elements will inevitably change their primitive phases under anodic oxidation conditions in alkaline media. Establishing a relationship between the bulk phase and surface evolution is imperative to reveal the intrinsic catalytic active sites. In this work, it is demonstrated that the introduction of Fe facilitates the phase transition of orthorhombic CoSe2 into its cubic counterpart and then accelerates the Co-Fe hydroxide layer generation on the surface during electrocatalytic oxygen evolution reaction (OER). As a result, the Fe-doped cubic CoSe2 catalyst exhibits a significantly enhanced activity with a considerable overpotential decrease of 79.9 and 66.9 mV to deliver 10 mA·cm-2 accompanied by a Tafel slope of 48.0 mV·dec-1 toward OER when compared to orthorhombic CoSe2 and Fe-doped orthorhombic CoSe2, respectively. Density functional theory (DFT) calculations reveal that the introduction of Fe on the surface hydroxide layers will tune electron density around Co atoms and raise the d-band center. These findings will provide deep insights into the surface reconstitution of the OER electrocatalysts based on transition metal elements.
Collapse
Affiliation(s)
- Shuo Chen
- Zhongyuan Critical Metals Laboratory & School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Kaiqin Yue
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Jiawei Shi
- Zhongyuan Critical Metals Laboratory & School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhicheng Zheng
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Yuanqing He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Hao Wan
- Zhongyuan Critical Metals Laboratory & School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Xiaohe Liu
- Zhongyuan Critical Metals Laboratory & School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
6
|
Yang M, Bao W, Zhang J, Ai T, Han J, Li Y, Liu J, Zhang P, Feng L. Molybdenum/selenium based heterostructure catalyst for efficient hydrogen evolution: Effects of ionic dissolution and repolymerization on catalytic performance. J Colloid Interface Sci 2024; 658:32-42. [PMID: 38091796 DOI: 10.1016/j.jcis.2023.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
Transition metal chalcogenides (TMCs) are recognized as highly efficient electrocatalysts and have wide applications in the field of hydrogen production by electrolysis of water, but the real catalytic substances and catalytic processes of these catalysts are not clear. The species evolution of Mo and Se during alkaline hydrogen evolution was investigated by constructing MoSe2@CoSe2 heterostructure. The real-time evolution of Mo and Se in MoSe2@CoSe2 was monitored using in situ Raman spectroscopy to determine the origin of the activity. Mo and Se in MoSe2@CoSe2 were dissolved in the form of MoO42- and SeO32-, respectively, and subsequently re-adsorbed and polymerized on the electrode surface to form new species Mo2O72- and SeO42-. Theoretical calculations show that adsorption of Mo2O72- and SeO42- can significantly enhance the HER catalytic activity of Co(OH)2. The addition of additional MoO42- and SeO32- to the electrolyte with Co(OH)2 electrodes both enhances its HER activity and promotes its durability. This study helps to deepen our insight into mechanisms involved in the structural changes of catalyst surfaces and offers a logical basis for revealing the mechanism of the influence of species evolution on catalytic performance.
Collapse
Affiliation(s)
- Mameng Yang
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China
| | - Weiwei Bao
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China.
| | - Junjun Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, PR China.
| | - Taotao Ai
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China
| | - Jie Han
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China
| | - Yan Li
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China
| | - Jiangying Liu
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China
| | - Pengfei Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, PR China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Liangliang Feng
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, PR China.
| |
Collapse
|
7
|
Xu X, Wang X, Huo S, Liu X, Ma X, Liu M, Zou J. Modulation of Phase Transition in Cobalt Selenide with Simultaneous Construction of Heterojunctions for Highly-Efficient Oxygen Electrocatalysis in Zinc-Air Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306844. [PMID: 37813107 DOI: 10.1002/adma.202306844] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Indexed: 10/11/2023]
Abstract
Phase transformation of cobalt selenide (CoSe2 ) can effectively modulate its intrinsic electrocatalytic activity. However, enhancing electroconductivity and catalytic activity/stability of CoSe2 still remains challenging. Heterostructure engineering may be feasible to optimize interfacial properties to promote the kinetics of oxygen electrocatalysis on a CoSe2 -based catalyst. Herein, a heterostructure consisting of CoSe2 and cobalt nitride (CoN) embedded in a hollow carbon cage is designed via a simultaneous phase/interface engineering strategy. Notably, the phase transition of orthorhombic-CoSe2 to cubic-CoSe2 (c-CoSe2 ) accompanied by in situ CoN formation is realized to build the c-CoSe2 /CoN heterointerface, which exhibits excellent/highly stable activities for oxygen reduction/evolution reactions (ORR/OER). Notably, heterostructure can modulate the local coordination environment and increase Co-Se/N bond lengths. Theoretical calculations show that Co-site (c-CoSe2 ) with an electronic state near Fermi energy level is the main active site for ORR/OER.Energetical tailoring of the d-orbital electronic structure of the Co atom of c-CoSe2 in heterostructure by in situ CoN incorporation lowers thermodynamic barriers for ORR/OER. Attractively, a zinc-air battery with a c-CoSe2 -CoN cathode displays excellent cycling stability (250 h) and charge/discharge voltage loss (0.953/0.96 V). It highlights that heterointerface engineering provides an option for modulating the bifunctional activity of metal selenides with controlled phase transformation.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xinyu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Sichen Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xiaofeng Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xuena Ma
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Mingyang Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
8
|
Liu S, Song R, Wang S, Shi W, Zhou Q, Zhang Y, Huo C, Deng S, Lin S. Rapid construction of Co/CoO/CoCH nanowire core/shell arrays for highly efficient hydrogen evolution reaction. Chem Commun (Camb) 2023; 59:14181-14184. [PMID: 37961832 DOI: 10.1039/d3cc04591a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The Co/CoO/CoCH (P-CoCH) nanowire core/shell arrays were prepared by a one step hydrothermal method and rapid reduction of cobalt carbonate hydroxide (CoCH) in Ar/H2 plasma for the first time. The rapid reduction process endows the P-CoCH with a unique porous structure, larger electrochemical active surface area and abundant activity sites. Therefore, the as-prepared P-CoCH nanowire core/shell arrays show superior HER performance with a low overpotential of 69 mV and a small Tafel slope of 47 mV dec-1 at a current density of 10 mA cm-2. In addition, the P-CoCH electrocatalyst demonstrates an excellent cycling stability without any obvious decay after 24 h continuous operation at 100 mA cm-2 current density. This study might provide a new insight into the rapidly construction of efficient HER Co-based electrocatalysts and beyond.
Collapse
Affiliation(s)
- Sihan Liu
- School of Materials Science and Engineering, and State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China.
| | - Runwei Song
- School of Materials Science and Engineering, and State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China.
- CNOOC (Hainan) New Energy Co. Ltd, Haikou, 570311, P. R. China
| | - Shuai Wang
- School of Materials Science and Engineering, and State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China.
| | - Weiye Shi
- School of Materials Science and Engineering, and State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China.
| | - Qin Zhou
- School of Materials Science and Engineering, and State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China.
| | - Yan Zhang
- School of Materials Science and Engineering, and State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China.
| | - Chunqing Huo
- School of Materials Science and Engineering, and State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China.
| | - Shengjue Deng
- School of Materials Science and Engineering, and State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China.
| | - Shiwei Lin
- School of Materials Science and Engineering, and State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China.
| |
Collapse
|
9
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
10
|
Wang B, Yang F, Feng L. Recent Advances in Co-Based Electrocatalysts for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302866. [PMID: 37434101 DOI: 10.1002/smll.202302866] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Water splitting is a promising technique in the sustainable "green hydrogen" generation to meet energy demands of modern society. Its industrial application is heavily dependent on the development of novel catalysts with high performance and low cost for hydrogen evolution reaction (HER). As a typical non-precious metal, cobalt-based catalysts have gained tremendous attention in recent years and shown a great prospect of commercialization. However, the complexity of the composition and structure of newly-developed Co-based catalysts make it urgent to comprehensively retrospect and summarize their advance and design strategies. Hence, in this review, the reaction mechanism of HER is first introduced and the possible role of the Co component during electrocatalysis is discussed. Then, various design strategies that could effectively enhance the intrinsic activity are summarized, including surface vacancy engineering, heteroatom doping, phase engineering, facet regulation, heterostructure construction, and the support effect. The recent progress of the advanced Co-based HER electrocatalysts is discussed, emphasizing that the application of the above design strategies can significantly improve performance by regulating the electronic structure and optimizing the binding energy to the crucial intermediates. At last, the prospects and challenges of Co-based catalysts are shown according to the viewpoint from fundamental explorations to industrial applications.
Collapse
Affiliation(s)
- Bin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| |
Collapse
|
11
|
Nam D, Lee G, Kim J. Interface engineering of CeO 2 nanoparticle/Bi 2WO 6 nanosheet nanohybrids with oxygen vacancies for oxygen evolution reactions under alkaline conditions. RSC Adv 2023; 13:8873-8881. [PMID: 36936830 PMCID: PMC10018795 DOI: 10.1039/d2ra08273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/26/2023] [Indexed: 03/18/2023] Open
Abstract
Because of the interactive combination synergy effect, hetero interface engineering is used way for advancing electrocatalytic activity and durability. In this study, we demonstrate that a CeO2/Bi2WO6 heterostructure is synthesized by a hydrothermal method. Electrochemical measurement results indicate that CeO2/Bi2WO6 displays not only more OER catalytic active sites with an overpotential of 390 mV and a Tafel slope of 117 mV dec-1 but also durability for 10 h (97.57%). Such outstanding characteristics are primarily attributed to (1) the considerable activities by CeO2 nanoparticles uniformly distributed on Bi2WO6 nanosheets and (2) the plentiful Bi-O-Ce and W-O-Ce species playing the role of strong couples between CeO2 nanoparticles and Bi2WO6 nanosheets and oxygen vacancy existence in CeO2 nanoparticles, which can improve the electrochemical active surface area (ECSA) and activity, and enhance the conductivity for OERs. This CeO2/Bi2WO6 consists of the heterojunction engineering that can open a modern method of thinking for high effective OER electrocatalysts.
Collapse
Affiliation(s)
- Dukhyun Nam
- School of Chemical Engineering & Materials Science, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul Korea
| | - Geunhyeong Lee
- School of Chemical Engineering & Materials Science, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul Korea
| | - Jooheon Kim
- School of Chemical Engineering & Materials Science, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul Korea
- Department of Advanced Materials Engineering, Chung-Ang University Anseong-si Gyeonggi-do 17546 Republic of Korea
- Department of Intelligent Energy and Industry, Graduate School, Chung-Ang University Seoul 06974 Republic of Korea
| |
Collapse
|
12
|
Chen D, Zhao Z, Chen G, Li T, Chen J, Ye Z, Lu J. Metal selenides for energy storage and conversion: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214984] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Hayat A, Sohail M, Ali H, Taha TA, Qazi HIA, Ur Rahman N, Ajmal Z, Kalam A, Al-Sehemi AG, Wageh S, Amin MA, Palamanit A, Nawawi WI, Newair EF, Orooji Y. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting. CHEM REC 2023; 23:e202200149. [PMID: 36408911 DOI: 10.1002/tcr.202200149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/15/2022] [Indexed: 11/22/2022]
Abstract
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, Zhejiang, P. R. China.,College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, P. R. China
| | - Hamid Ali
- Multiscale Computational Materials Facility, Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, 350100, Fuzhou, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, PO Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - H I A Qazi
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Naveed Ur Rahman
- Department of Physics, Bacha Khan University Charsadda, KP, Pakistan
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, P. R. China
| | - Abul Kalam
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., 90110, Hat Yai, Songkhla, Thailand
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600, Cawangan Perlis, Arau Perlis, Malaysia
| | - Emad F Newair
- Chemistry Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| |
Collapse
|
14
|
Zheng S, Chen M, Chen K, Wu Y, Yu J, Jiang T, Wu M. Solar-Light-Responsive Zinc-Air Battery with Self-Regulated Charge-Discharge Performance based on Photothermal Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2985-2995. [PMID: 36622791 DOI: 10.1021/acsami.2c19663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
It is extremely challenging to significantly increase the voltaic efficiency, power density, and cycle stability of a Zn-air battery by just adjusting the catalytic performance of the cathode with nanometers/atomistic engineering because of the restriction of thermodynamic equilibrium potential. Herein, inspired by solar batteries, the S-atom-bridged FeNi particles and N-doped hollow carbon nanosphere composite configuration (FeNi-S,N-HCS) is presented as a prototype of muti-functional air electrode material (intrinsic electrocatalytic function and additional photothermal function) for designing photoresponsive all-solid-state Zn-air batteries (PR-ZABs) based on the photothermal effect. The local temperature of the FeNi-S,N-HCS electrode can well respond to the stimuli of sunlight irradiation because of their superior photothermal effect. As expected, under illumination, the power density of the as-fabricated PR-ZABs based on the FeNi-S,N-HCS electrode can be improved from 77 mW cm-2 to 126 mW cm-2. Simultaneously, charge voltage can be dramatically reduced, and cycle lifetime is also prolonged under illumination, because of the expedited electrocatalytic kinetics, the increased electrical conductivity, and the accelerated desorption rate of O2 bubbles from the electrode. By exerting the intrinsic electrocatalytic and photothermal efficiency of the electrode materials, this research paves new ways to improve battery performance from kinetic and thermodynamic perspectives.
Collapse
Affiliation(s)
- Shushan Zheng
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P.R. China
- Institute of Energy, Hefei Comprehensive Nation Science Center, Hefei, Anhui 230031, P.R. China
| | - Mengyu Chen
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Kui Chen
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Yongjian Wu
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Jing Yu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, P. R. China
| | - Tongtong Jiang
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Mingzai Wu
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P.R. China
- Institute of Energy, Hefei Comprehensive Nation Science Center, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
15
|
Xiao X, Shen S, Zhang L, Lin Z, Wang Z, Zhang Q, Zhong W, Zhan B. Construction of Cobalt Molybdenum Diselenide Three-phase Heterojunctions for Electrocatalytic Hydrogen Evolution in Acid Medium. Chem Asian J 2023; 18:e202201182. [PMID: 36465037 DOI: 10.1002/asia.202201182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Molybdenum diselenide and cobalt diselenide have been commonly implemented in electrocatalytic hydrogen evolution reaction (HER). However, there have been few research on the creation of their three-phase heterojunctions and the associated HER process. Herein, we constructed a three-phase heterostructure sample consisting of orthorhombic CoSe2 , cubic CoSe2 and MoSe2 and we investigated its HER performance. The sample shows microsphere morphology composed of nanosheets with interfacial interactions between the components. It possesses an overpotential of -136 mV at -10 mA cm-2 in acid medium, which is superior to that of single component and most two-phase heterostructures. Especially, the overpotential at -200 mA cm-2 is smaller than that of Pt/C. The excellent performance can be attributed to the d-orbital upshift of the Co active sites due to charge redistribution between the three-phase heterojunction and the optimization of the hydrogen free energy. This work provides inspiration for exploring the application of other multi-component heterojunctions in electrocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Xu Xiao
- College of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, 330013, P. R. China.,Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, 318000, Zhejiang, P. R. China
| | - Shijie Shen
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, 318000, Zhejiang, P. R. China
| | - LiLi Zhang
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, 318000, Zhejiang, P. R. China
| | - Zhiping Lin
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, 318000, Zhejiang, P. R. China
| | - Zongpeng Wang
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, 318000, Zhejiang, P. R. China
| | - Qinghua Zhang
- Institution of Physics, Chinese Academy of Science, No.8, 3rd South Street, Zhongguancun, Haidian District, 100190, P. R. China
| | - Wenwu Zhong
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, 318000, Zhejiang, P. R. China
| | - Baishao Zhan
- College of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, 330013, P. R. China
| |
Collapse
|
16
|
Wang Y, Du Z, Xu J, Meng Z, Zhang C, Cui Y, Li Y, Jiang C, Zeng Y, Yu S, Tian H. Improved Catalytic Activity and Stability of Co 9S 8 by Se Incorporation for Efficient Oxygen Evolution Reaction. Inorg Chem 2022; 61:21139-21147. [PMID: 36503230 DOI: 10.1021/acs.inorgchem.2c03805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Combining an excellent electrocatalytic activity with the good structural stability of Co9S8 remains challenging for the oxygen evolution reaction (OER). In this study, density functional theory was used to demonstrate the importance of moderate adsorption strength with *O and *OOH intermediate species on Co9S8 for achieving excellent electrocatalytic performances. A novel strategy was proposed to effectively optimize the *O oxidation to *OOH by introducing Se heteroatoms to adjust adsorption of the two intermediates. This process also allowed prediction of the simultaneous enhancement of the structural stability of Co9S8 due to the weak electronegativity of a Se dopant. The experimental results demonstrated that Se doping can regulate the charge density of Co2+ and Co3+ in Co9S8-xSex, leading to a substantially improved OER performance of Co9S8-xSex. As a result, our Co9S6.91Se1.09 electrode exhibited an overpotential of 271 mV at 10 mA cm-2 in a 1.0 M KOH solution. In particular, it also demonstrated an excellent stability (∼120 h) under a current density of 10 mA cm-2, indicating the potential for practical applications. Overall, the proposed strategy looks promising for regulating the electronic structures and improving the electrochemical performances of sulfide materials.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Zhengyan Du
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Jian Xu
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Zeshuo Meng
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chenxu Zhang
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yanan Cui
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yaxin Li
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chao Jiang
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yi Zeng
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Shansheng Yu
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Hongwei Tian
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
17
|
Interfacial Electronic Engineering of NiSe–Anchored Ni–N–C Composite Electrocatalyst for Efficient Hydrogen Evolution. Catalysts 2022. [DOI: 10.3390/catal12121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Rational design and construction of cost–effective electrocatalysts for efficient hydrogen production has attracted extensive research attention worldwide. Herein, we report the construction of a transition metal selenide/carbon composite catalyst featuring uniform NiSe nanoparticles anchored to single Ni atom doped porous carbon structure (NiSe/Ni–N–C) via a facile one–pot pyrolysis of low–cost solid mixtures. NiSe/Ni–N–C exhibits remarkable catalytic performance towards hydrogen evolution reaction (HER) in 1.0 M KOH, requiring a low overpotential of 146 mV to reach a current density of 10 mA cm−2. The unique carbon layer encapsulation derived from the enwrapping of fluid catalytic cracking slurry further renders NiSe/Ni–N–C excellent for long–term durability in electrolyte corrosion and nanostructure aggregation. This work paves the way for the design and synthesis of highly efficient composite HER electrocatalysts.
Collapse
|
18
|
Porous carbon foam loaded CoSe2 nanoparticles based on inkjet-printing technology as self-supporting electrodes for efficient water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Quantitative analysis of temperature-dependent vibrational properties of Cobalt incorporated WSe2 ternary alloy. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Li K, Feng D, Tong Y. Hierarchical Metal Sulfides Heterostructure as Superior Bifunctional Electrode for Overall Water Splitting. CHEMSUSCHEM 2022; 15:e202200590. [PMID: 35590444 DOI: 10.1002/cssc.202200590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The development of highly active bifunctional electrocatalysts for overall water splitting is of significant importance, but huge challenges remain. The key element depends on engineering the electronic structure and surface properties of material to achieve improved catalytic activity. Herein, a hierarchical nanowire array of metal sulfides heterostructure on nickel foam (FeCoNiSx /NF) was designed as a novel type of hybrid electrocatalyst for overall water splitting. The hybrid structure endowed plenty of catalytic active sites, strong electronic interactions, and high interfacial charge transferability, leading to superior bifunctional performance. As a result, the FeCoNiSx /NF catalyst delivered low overpotentials of 97 and 260 mV at the current density of 50 mA cm-2 for hydrogen and oxygen evolution reactions, respectively. Moreover, the FeCoNiSx /NF-based water electrolyzer exhibited a small potential of 1.57 V for a high current density of 50 mA cm-2 . These results indicate the promising application potential of FeCoNiSx /NF electrode for hydrogen generation. This work provides a new approach to develop robust hybrid materials as the highly active electrode for electrocatalytic water splitting.
Collapse
Affiliation(s)
- Kaixun Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Dongmei Feng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Yun Tong
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
21
|
Boron-doped CoSe2 nanowires as high-efficient electrocatalyst for hydrogen evolution reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Das C, Sinha N, Roy P. Transition Metal Non-Oxides as Electrocatalysts: Advantages and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202033. [PMID: 35703063 DOI: 10.1002/smll.202202033] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The identification of hydrogen as green fuel in the near future has stirred global realization toward a sustainable outlook and thus boosted extensive research in the field of water electrolysis focusing on the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). A huge class of compounds consisting of transition metal-based nitrides, carbides, chalcogenides, phosphides, and borides, which can be collectively termed transition metal non-oxides (TMNOs), has emerged recently as an efficient class of electrocatalysts in terms of performance and longevity when compared to transition metal oxides (TMOs). Moreover, the superiority of TMNOs over TMOs to effectively catalyze not only OERs but also HERs and ORRs renders bifunctionality and even trifunctionality in some cases and therefore can replace conventional noble metal electrocatalysts. In this review, the crystal structure and phases of different classes of nanostructured TMNOs are extensively discussed, focusing on recent advances in design strategies by various regulatory synthetic routes, and hence diversified properties of TMNOs are identified to serve as next-generation bi/trifunctional electrocatalysts. The challenges and future perspectives of materials in the field of energy conversion and storage aiding toward a better hydrogen economy are also discussed in this review.
Collapse
Affiliation(s)
- Chandni Das
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nibedita Sinha
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Poulomi Roy
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
23
|
Defect engineering tuning electron structure of biphasic tungsten-based chalcogenide heterostructure improves its catalytic activity for hydrogen evolution and triiodide reduction. J Colloid Interface Sci 2022; 625:800-816. [PMID: 35772208 DOI: 10.1016/j.jcis.2022.06.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 01/07/2023]
Abstract
The design and exploration of high-efficiency and low-cost electrode catalysts are of great significance to the development of novel energy conversion technologies. In this work, metal and nonmetal heteroatoms co-doped biphasic tungsten-based chalcogenide heterostructured catalyst (Co-WS2/P-WO2.9) with rich defects is successfully synthesized by a vulcanization technique. The electrocatalytic performance of WS2/WO3 in the hydrogen evolution reaction (HER) and triiodide reduction reaction is significantly enhanced by modifying and optimizing its electronic structure through a defect engineering strategy. As an electrocatalyst for HER, the optimized Co-WS2/P-WO2.9 exhibits a low overpotential at 10 mA cm-2 of 146 and 120 mV with small Tafel slopes of 86 and 74 mV dec-1 in alkaline and acidic electrolyte, respectively. In addition, a Co-WS2/P-WO2.9 assembled solar cell yields a short circuit current density of 15.85 mA cm-2, an open-circuit voltage of 0.74 V, a fill factor of 0.66, and a competitive power conversion efficiency (7.83%), which is comparable or higher than conventional Pt-based solar cell (16.02 mA cm-2, 0.70 V, 0.63, 7.14%). The formation of a heterostructure in Co-WS2/P-WO2.9 leads to the presence of a built-in electric field in the interfacial region between Co-WS2 and P-WO2.9, which leads to an increased open-circuit voltage from 0.70 V for Pt to 0.74 V for Co-WS2/P-WO2.9. This work can provide a technical support for developing high-performance heterostructured catalysts, which open up a way for improving catalytic performance of heterostructured catalysts in the field of electrocatalysis.
Collapse
|
24
|
Bai J, Wang Y, Wang Y, Zhang T, Dong G, Geng D, Zhao D. Temperature-Induced Structure Transformation from Co 0.85Se to Orthorhombic Phase CoSe 2 Realizing Enhanced Hydrogen Evolution Catalysis. ACS OMEGA 2022; 7:15901-15908. [PMID: 35571852 PMCID: PMC9097193 DOI: 10.1021/acsomega.2c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Transition-metal chalcogenides (TMC) have been widely studied as active electrocatalysts toward the hydrogen evolution reaction due to their suitable d-electron configuration and relatively high electrical conductivity. Herein, we develop a feasible method to synthesize an orthorhombic phase of CoSe2 (o-CoSe2) from the regeneration of Co0.85Se, where the temperature plays a key role in controlling the structure transformation. To the best of our knowledge, this is the first report about this synthetic route for o-CoSe2. The resulting o-CoSe2 catalysts exhibit enhanced hydrogen evolution reaction performance with an overpotential of 220 mV to reach 10 mA cm-2 in 1.0 M KOH. Density functional theory calculations further reveal that the change in the Gibbs free energy of hydrogen, water adsorption energy, and the downshifted d-band center make o-CoSe2 more suitable for accelerating the HER process.
Collapse
Affiliation(s)
- Jing Bai
- Beijing
Advanced Innovation Center for Materials Genome Engineering, School
of Material Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, People’s Republic of China
- Shunde
Graduate School, University of Science and
Technology Beijing, Foshan 528000, People’s Republic
of China
| | - Yechen Wang
- Beijing
Advanced Innovation Center for Materials Genome Engineering, School
of Material Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Yange Wang
- Beijing
Advanced Innovation Center for Materials Genome Engineering, School
of Material Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Tiantian Zhang
- Beijing
Advanced Innovation Center for Materials Genome Engineering, School
of Material Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Gang Dong
- Beijing
Advanced Innovation Center for Materials Genome Engineering, School
of Material Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Dongsheng Geng
- Beijing
Advanced Innovation Center for Materials Genome Engineering, School
of Material Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Dongjie Zhao
- Institute
for Future, School of Automation, Qingdao
University, Qingdao 266071, People’s Republic
of China
| |
Collapse
|
25
|
Shen S, Wang Z, Lin Z, Song K, Zhang Q, Meng F, Gu L, Zhong W. Crystalline-Amorphous Interfaces Coupling of CoSe 2 /CoP with Optimized d-Band Center and Boosted Electrocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110631. [PMID: 35040208 DOI: 10.1002/adma.202110631] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Amorphous and heterojunction materials have been widely used in the field of electrocatalytic hydrogen evolution due to their unique physicochemical properties. However, the current used individual strategy still has limited effects. Hence efficient tailoring tactics with synergistic effect are highly desired. Herein, the authors have realized the deep optimization of catalytic activity by a constructing crystalline-amorphous CoSe2 /CoP heterojunction. Benefiting from the strong electronic coupling at the interfaces, the d-band center of the material moves further down compared to its crystalline-crystalline counterpart, optimizing the valence state and the H adsorption of Co and lowering the kinetic barrier of hydrogen evolution reaction (HER). The heterojunction shows an overpotential of 65 mV to drive a current density of 10 mA cm-2 in the acidic medium. Besides, it also shows competitive properties in both neutral and basic media. This work provides inspiration for optimizing the catalytic activity through combining a crystalline and amorphous heterojunction, which can be implemented for other transition metal compound electrocatalysts.
Collapse
Affiliation(s)
- Shijie Shen
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Zongpeng Wang
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Zhiping Lin
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Kai Song
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Qinghua Zhang
- Institution of Physics, Chinese Academic of Science, No. 8, 3rd South Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Fanqi Meng
- Institution of Physics, Chinese Academic of Science, No. 8, 3rd South Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Lin Gu
- Institution of Physics, Chinese Academic of Science, No. 8, 3rd South Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Wenwu Zhong
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
- School of Material Science and Hydrogen Energy, Foshan Institute of Technology, No. 18, Jiangwanyi Road, Foshan, 528000, China
| |
Collapse
|
26
|
He R, Yang Y, Yang P, Zhao X, Zhu J, Yang R, Huang Q, Yang L. Electrospun nano-Ir anchored mesoporous carbon nanofibers for hydrogen evolution reaction. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Chen SH, Song ZY, Xiao XY, Huang HQ, Yang YF, Li PH, Yang M, Huang XJ. Engineering Electron-Rich Sites on CoSe 2-x Nanosheets for the Enhanced Electroanalysis of As(III): A Study on the Electronic Structure via X-ray Absorption Fine Structure Spectroscopy and Density Functional Theory Calculation. Anal Chem 2022; 94:3211-3218. [PMID: 35104121 DOI: 10.1021/acs.analchem.1c04785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vacancy and doping engineering are promising pathways to improve the electrocatalytic ability of nanomaterials for detecting heavy metal ions. However, the effects of the electronic structure and the local coordination on the catalytic performance are still ambiguous. Herein, cubic selenium vacancy-rich CoSe2 (c-CoSe2-x) and P-doped orthorhombic CoSe2-x (o-CoSe2-x|P) were designed via vacancy and doping engineering. An o-CoSe2-x|P-modified glass carbon electrode (o-CoSe2-x|P/GCE) acquired a high sensitivity of 1.11 μA ppb-1 toward As(III), which is about 40 times higher than that of c-CoSe2-x, outperforming most of the reported nanomaterial-modified glass carbon electrodes. Besides, o-CoSe2-x|P/GCE displayed good selectivity toward As(III) compared with other divalent heavy metal cations, which also exhibited excellent stability, repeatability, and practicality. X-ray absorption fine structure spectroscopy and density functional theory calculation demonstrate that electrons transferred from Co and Se to P sites through Co-P and Se-P bonds in o-CoSe2-x|P. P sites obtained plentiful electrons to form active centers, which also had a strong orbital coupling with As(III). In the detection process, As(III) was bonded with P and reduced by the electron-rich sites in o-CoSe2-x|P, thus acquiring a reinforced electrochemical sensitivity. This work provides an in-depth understanding of the influence of the intrinsic physicochemical properties of sensitive materials on the behavior of electroanalysis, thus offering a direct guideline for creating active sites on sensing interfaces.
Collapse
Affiliation(s)
- Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Yu Xiao
- Key Laboratory of Environmental Optics and Technology, Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hong-Qi Huang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039, China
| | - Yuan-Fan Yang
- Key Laboratory of Environmental Optics and Technology, Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
28
|
Huang J, Hao M, Mao B, Zheng L, Zhu J, Cao M. The Underlying Molecular Mechanism of Fence Engineering to Break the Activity–Stability Trade‐Off in Catalysts for the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jingbin Huang
- Key Laboratory of Cluster Science Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Mengyao Hao
- Key Laboratory of Cluster Science Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Baoguang Mao
- Key Laboratory of Cluster Science Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Laboratory Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jie Zhu
- Key Laboratory of Cluster Science Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
29
|
He X, Han S, Zheng J, Xu J, Yin XB, Zhang M. Facile fabrication of ultrafine CoNi alloy nanoparticles supported on hexagonal N-doped carbon/Al 2O 3 nanosheets for efficient protein adsorption and catalysis. CrystEngComm 2022. [DOI: 10.1039/d2ce00674j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C–CoNi/@Al2O3 nanosheets were well constructed with CoAl-LDH nanosheets as a precursor, and exhibited excellent performance as both a catalyst and an adsorbent.
Collapse
Affiliation(s)
- Xiaoying He
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Suping Han
- Department of Pharmacy, Shandong Medical College, Jinan 250002, China
| | - Jing Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| |
Collapse
|
30
|
Sun R, Huang X, Jiang J, Xu W, Zhou S, Wei Y, Li M, Chen Y, Han S. Recent advances in cobalt-based catalysts for efficient electrochemical hydrogen evolution: a review. Dalton Trans 2022; 51:15205-15226. [DOI: 10.1039/d2dt02189g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen (H2) is a new type of renewable energy that can meet people's growing energy needs and is environmentally friendly. In order to improve the industrial application prospect and electrochemical...
Collapse
|
31
|
Yang B, Huang Z, Wu H, Hu H, Lin H, Nie M, Li Q. Sea Urchin-like CoSe2 Nanoparticles Modified Graphene Oxide as an Efficient and Stable Hydrogen Evolution Catalyst. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Lee MG, Yang JW, Kwon HR, Jang HW. Crystal facet and phase engineering for advanced water splitting. CrystEngComm 2022. [DOI: 10.1039/d2ce00585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the principles and recent advances in facet and phase engineering of catalysts for photocatalytic, photoelectrochemical, and electrochemical water splitting. It suggests the basis of catalyst design for advanced water splitting.
Collapse
Affiliation(s)
- Mi Gyoung Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Jin Wook Yang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Ryeong Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| |
Collapse
|
33
|
Huang J, Hao M, Mao B, Zheng L, Zhu J, Cao M. The Underlying Molecular Mechanism of Fence Engineering to Break the Activity-stability Trade-off of Catalysts. Angew Chem Int Ed Engl 2021; 61:e202114899. [PMID: 34931747 DOI: 10.1002/anie.202114899] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/12/2022]
Abstract
Non-precious-metal (NPM) catalysts often face the formidable challenge of a trade-off between long-term stability and high activity, which has not yet been widely addressed. Here we propose distinct molecule-selective fence as a promising novel concept to solve this activity-stability trade-off. This unique fence has the characteristics of preventing poisonous species from invading catalysts, but allowing catalytic reaction-related species to diffuse freely. We applied this concept to construct CoS2 layer with the function of molecular selectivity on the external surface of highly active Co doped MoS2, achieving a remarkable catalytic stability towards alkaline hydrogen evolution reaction, along with a further optimized activity. In situ spectroscopy technologies uncovered the underlying molecule mechanism of the CoS2 fence for breaking the activity-stability trade-off of the MoS2 catalyst. This work offers valuable guidance for rationally designing efficient and stable NPM catalysts.
Collapse
Affiliation(s)
- Jingbin Huang
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Mengyao Hao
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Baoguang Mao
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Lirong Zheng
- Institute of High Energy Physics Chinese Academy of Sciences, Beijing Synchrotron Radiation Laboratory, CHINA
| | - Jie Zhu
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Minhua Cao
- Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, CHINA
| |
Collapse
|
34
|
Feng J, Zhao Z, Tang R, Zhao Y, Meng T. Interfacial Structural and Electronic Regulation of MoS 2 for Promoting Its Kinetics and Activity of Alkaline Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53262-53270. [PMID: 34705412 DOI: 10.1021/acsami.1c17031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The alkaline hydrogen evolution reaction (HER) of MoS2 is hampered by its sluggish water dissociation kinetics as well as limited edge sites. Herein, Ni3S2/MoS2 is fabricated as a model catalyst to highlight interfacial structural and electronic modulations of MoS2 for realizing its high performance in the alkaline HER. Experiments and density functional theory results demonstrate that the coupled Ni3S2 species can not only promote the adsorption and dissociation of H2O to boost the alkaline HER kinetics but also tailor the inert plane of MoS2 to create abundant unsaturated edge-like active sites, while the interfacial electron interaction can regulate the band gaps and Gibbs free energy of hydrogen adsorption of MoS2 to improve the electron conductivity as well as HER activity. Moreover, field emission scanning electron microscopy, transmission electron microscopy, Raman, ex situ synchrotron radiation X-ray absorption, and X-ray photoelectron spectroscopy results reveal the excellent structural stability of Ni3S2/MoS2 during the HER. As expected, the target Ni3S2/MoS2 achieves an ultralow overpotential of 68 mV at 10 mA cm-2, a fast alkaline HER kinetics, and remarkable durability. The proposed concept of interfacial structural and electronic reorganization could be extended to develop other functional materials.
Collapse
Affiliation(s)
- Jizheng Feng
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Ziqi Zhao
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Ranxiao Tang
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yangyang Zhao
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Tao Meng
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
35
|
Zhang L, Liu W, Ma Q, Xu Y, Liu Z, Wang G. Electrostatic Self‐Assembly of CoSe
2
HBs/Ti
3
C
2
T
x
Composites for Long‐cycle‐life Sodium Ion Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Li Zhang
- Department of Physics School of Science Lanzhou University of Technology Lanzhou 730050 P. R. China
- Laboratory of Clean Energy Chemistry and Materials State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Weizhe Liu
- Department of Physics School of Science Lanzhou University of Technology Lanzhou 730050 P. R. China
| | - Quanhu Ma
- Department of Physics School of Science Lanzhou University of Technology Lanzhou 730050 P. R. China
- Laboratory of Clean Energy Chemistry and Materials State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Yongtai Xu
- Laboratory of Clean Energy Chemistry and Materials State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Ziqiang Liu
- Department of Physics School of Science Lanzhou University of Technology Lanzhou 730050 P. R. China
- Laboratory of Clean Energy Chemistry and Materials State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Gaowei Wang
- Department of Physics School of Science Lanzhou University of Technology Lanzhou 730050 P. R. China
- Laboratory of Clean Energy Chemistry and Materials State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
36
|
Li Y, Zhang Q, Mei Z, Li S, Luo W, Pan F, Liu H, Dou S. Recent Advances and Perspective on Electrochemical Ammonia Synthesis under Ambient Conditions. SMALL METHODS 2021; 5:e2100460. [PMID: 34927956 DOI: 10.1002/smtd.202100460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/15/2021] [Indexed: 06/14/2023]
Abstract
Ammonia is an essential chemical for agriculture and industry. To date, NH3 is mainly supplied by the traditional Haber-Bosch process, which is operated under high-temperature and high-pressure in a centralized way. To achieve ammonia production in an environmentally benign way, electrochemical NH3 synthesis under ambient conditions has become the frontier of energy and chemical conversion schemes, as it can be powered by renewable energy and operates in a decentralized way. The recent progress on developing different strategies for NH3 production, including 1) classic NH3 synthesis pathways over nanomaterials; 2) the Mars-van Krevelen (MvK) mechanism over metal nitrides (MNx ); 3) reducing the nitrate into NH3 over Cu-based nanomaterial; and 4) metal-N2 battery release of NH3 from Lix M. Moreover, the most recent advances in engineering strategies for developing highly active materials and the design of the reaction systems for NH3 synthesis are covered.
Collapse
Affiliation(s)
- Yang Li
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Qi Zhang
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Zongwei Mei
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Wenbin Luo
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Huakun Liu
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
37
|
Sun Y, Li X, Zhang T, Xu K, Yang Y, Chen G, Li C, Xie Y. Nitrogen‐Doped Cobalt Diselenide with Cubic Phase Maintained for Enhanced Alkaline Hydrogen Evolution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yiqiang Sun
- School of Chemistry and Chemical Engineering Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 P. R. China
| | - Xiuling Li
- Department of Physics Nanjing Normal University Nanjing Jiangsu 210023 P. R. China
| | - Tao Zhang
- Hefei National Laboratory for Physical Sciences at Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Kun Xu
- School of Chemistry and Chemical Engineering Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
| | - Yisong Yang
- School of Chemistry and Chemical Engineering Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
| | - Guozhu Chen
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 P. R. China
| | - Cuncheng Li
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
38
|
Dong Y, Ran J, Liu Q, Zhang G, Jiang X, Gao D. Hydrogen-etched CoS 2 to produce a Co 9S 8@CoS 2 heterostructure electrocatalyst for highly efficient oxygen evolution reaction. RSC Adv 2021; 11:30448-30454. [PMID: 35480289 PMCID: PMC9041110 DOI: 10.1039/d1ra05677h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023] Open
Abstract
There is a pressing requirement for developing high-efficiency non-noble metal electrocatalysts in oxygen evolution reactions (OER), where transition metal sulfides are considered to be promising electrocatalysts for the OER in alkaline medium. Herein, we report the outstanding OER performance of Co9S8@CoS2 heterojunctions synthesized by hydrogen etched CoS2, where the optimized heterojunction shows a low η 50 of 396 mV and a small Tafel slope of 181.61 mV dec-1. The excellent electrocatalytic performance of this heterostructure is attributed to the interface electronic effect. Importantly, the post-stage characterization results indicate that the Co9S8@CoS2 heterostructure exhibits a dynamic reconfiguration during the OER with the formation of CoOOH in situ, and thus exhibits a superior electrocatalytic performance.
Collapse
Affiliation(s)
- Yucan Dong
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jiaqi Ran
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Qun Liu
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Guoqiang Zhang
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xingdong Jiang
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Daqiang Gao
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
39
|
Gao G, Yu H, Wang XL, Yao YF. Enhanced hydrogen evolution reaction activity of FeM (M = Pt, Pd, Ru, Rh) nanoparticles with N-doped carbon coatings over a wide-pH environment. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Regulating electronic structure and adsorptivity in molybdenum selenide for boosting electrocatalytic water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Using phosphorus-doped molybdenum sulfide with (1 0 0)-facet-exposed and enlarged interlayer spacing to enhance hydrogen evolution. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Chen G, Li H, Zhou Y, Cai C, Liu K, Hu J, Li H, Fu J, Liu M. CoS 2 needle arrays induced a local pseudo-acidic environment for alkaline hydrogen evolution. NANOSCALE 2021; 13:13604-13609. [PMID: 34477634 DOI: 10.1039/d1nr03221f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The alkaline electrocatalytic hydrogen evolution reaction (HER) is a potential way to realize industrial hydrogen production. However, the sluggish process of H2O dissociation, as well as the accumulation of OH- around the active sites, seriously limit the alkaline HER performance. In this work, we developed a unique CoS2 needle array grown on a carbon cloth (NAs@C) electrode as an alkaline HER catalyst. Finite-element simulations revealed that CoS2 needle arrays (NAs) induce stronger local electric field (LEF) than CoS2 disordered needles (DNs). This LEF can greatly repel the local OH- around the active sites, and then promote the forward H2O dissociation process. The local pH changes of the electrode surface confirmed the lower OH- concentration and stronger local pseudo-acidic environment of NAs@C compared to those of DNs@C. As a result, the NAs@C catalyst exhibited a low HER overpotential of 121 mV at a current density of 10 mA cm-2 in 1 M KOH, with the Tafel slope of 59.87 mV dec-1. This work provides a new insight into nanoneedle arrays for the alkaline HER by electric field-promoted H2O dissociation.
Collapse
Affiliation(s)
- Guozhu Chen
- School of Physics and Electronics, Central South University, Changsha 410083, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sun Y, Li X, Zhang T, Xu K, Yang Y, Chen G, Li C, Xie Y. Nitrogen-Doped Cobalt Diselenide with Cubic Phase Maintained for Enhanced Alkaline Hydrogen Evolution. Angew Chem Int Ed Engl 2021; 60:21575-21582. [PMID: 34355481 DOI: 10.1002/anie.202109116] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/10/2022]
Abstract
The introduction of heteroatoms is one of the most important ways to modulate the intrinsic electronic structure of electrocatalysts to improve their catalytic activity. However, for transition metal chalcogenides with highly symmetric crystal structure (HS-TMC), the introduction of heteroatoms, especially those with large atomic radius, often induces large lattice distortion and vacancy defects, which may lead to structural phase transition of doped materials or structural phase reconstruction during the catalytic reaction. Such unpredictable situations will make it difficult to explore the connection between the intrinsic electronic structure of doped catalysts and catalytic activity. Herein, taking thermodynamically stable cubic CoSe2 phase as an example, we demonstrate that nitrogen incorporation can effectively regulate the intrinsic electronic structure of HS-TMC with structural phase stability and thus promote its electrocatalytic activity for the hydrogen evolution activity (HER). In contrast, the introduction of phosphorus can lead to structural phase transition from cubic CoSe2 to orthorhombic phase, and the structural phase of phosphorus-doped CoSe2 is unstable for HER.
Collapse
Affiliation(s)
- Yiqiang Sun
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Xiuling Li
- Department of Physics, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Tao Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Kun Xu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Yisong Yang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Guozhu Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Cuncheng Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
44
|
Yu ZY, Duan Y, Feng XY, Yu X, Gao MR, Yu SH. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007100. [PMID: 34117808 DOI: 10.1002/adma.202007100] [Citation(s) in RCA: 409] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Hydrogen economy has emerged as a very promising alternative to the current hydrocarbon economy, which involves the process of harvesting renewable energy to split water into hydrogen and oxygen and then further utilization of clean hydrogen fuel. The production of hydrogen by water electrolysis is an essential prerequisite of the hydrogen economy with zero carbon emission. Among various water electrolysis technologies, alkaline water splitting has been commercialized for more than 100 years, representing the most mature and economic technology. Here, the historic development of water electrolysis is overviewed, and several critical electrochemical parameters are discussed. After that, advanced nonprecious metal electrocatalysts that emerged recently for negotiating the alkaline oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are discussed, including transition metal oxides, (oxy)hydroxides, chalcogenides, phosphides, and nitrides for the OER, as well as transition metal alloys, chalcogenides, phosphides, and carbides for the HER. In this section, particular attention is paid to the catalyst synthesis, activity and stability challenges, performance improvement, and industry-relevant developments. Some recent works about scaled-up catalyst synthesis, novel electrode designs, and alkaline seawater electrolysis are also spotlighted. Finally, an outlook on future challenges and opportunities for alkaline water splitting is offered, and potential future directions are speculated.
Collapse
Affiliation(s)
- Zi-You Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Duan
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xing-Yu Feng
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xingxing Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
45
|
Zhang Y, Yun S, Sun M, Wang X, Zhang L, Dang J, Yang C, Yang J, Dang C, Yuan S. Implanted metal-nitrogen active sites enhance the electrocatalytic activity of zeolitic imidazolate zinc framework-derived porous carbon for the hydrogen evolution reaction in acidic and alkaline media. J Colloid Interface Sci 2021; 604:441-457. [PMID: 34273781 DOI: 10.1016/j.jcis.2021.06.152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 11/18/2022]
Abstract
Developing electrocatalysts with excellent catalytic performance and superior durability for hydrogen evolution reaction (HER) remains a challenge. Herein, metal-nitrogen sites (M-Nx, M = Ni and Cu) are successfully implanted into zeolitic imidazolate zinc framework (ZIF-8)-derived nitrogen-doped porous carbon (ZIF/NC) to prepare Ni-ZIF/NC and Cu-ZIF/NC electrocatalysts for the HER. These M-Nx active sites significantly enhanced the electrocatalytic activities of Ni-ZIF/NC and Cu-ZIF/NC. Metal Ni acted as a catalyst for catalysis of Ni-ZIF/NC to form carbon nanotubes-like structures, which provided convenient ion transmission pathways. Owing to its special morphology and an increased number of defects, Ni-ZIF/NC displayed superior electrocatalytic activity in the HER compared to those of Cu-ZIF/NC and ZIF/NC. In an alkaline environment, Ni-ZIF/NC exhibited an overpotential at the current density of 10 mA cm-2 (η10) of 163.0 mV and Tafel slope of 85.0 mV dec-1, demonstrating an electrocatalytic property equivalent to that of Pt/C. In an acidic environment, Ni-ZIF/NC yielded a η10 of 177.4 mV and Tafel slope of 83.9 mV dec-1, which were comparable to those of 20 wt.% Pt/C. Moreover, Ni-ZIF/NC and Cu-ZIF/NC also exhibited superior stabilities in alkaline environments. This work offers a valuable strategy for controlling the morphology and implanting M-Nx active sites into carbon for designing novel catalysts for use in alternative new energy applications.
Collapse
Affiliation(s)
- Yongwei Zhang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Menglong Sun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Xi Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Lishan Zhang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jiaoe Dang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Chao Yang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jingjing Yang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Changwei Dang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Shuangxi Yuan
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
46
|
Zhang L, Chen H, Wei Z. Recent Advances in Nanoparticles Confined in Two‐Dimensional Materials as High‐Performance Electrocatalysts for Energy‐Conversion Technologies. ChemCatChem 2021. [DOI: 10.1002/cctc.202001260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ling Zhang
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Hongmei Chen
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| |
Collapse
|
47
|
Sun Q, Tong Y, Chen P, Chen L, Xi F, Liu J, Dong X. Dual anions engineering on nickel cobalt-based catalyst for optimal hydrogen evolution electrocatalysis. J Colloid Interface Sci 2021; 589:127-134. [DOI: 10.1016/j.jcis.2020.12.098] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022]
|
48
|
Xie Z, Qiu D, Xia J, Wei J, Li M, Wang F, Yang R. Hollow Biphase Cobalt Nickel Perselenide Spheres Derived from Metal Glycerol Alkoxides for High-Performance Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12006-12015. [PMID: 33657794 DOI: 10.1021/acsami.0c23019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transition-metal selenides (TMSe) incorporate reversible multielectron Faradaic reactions that can deliver high specific capacitance. Unfortunately, they usually exhibit actual capacitance lower than their theoretical value and suffer from sluggish kinetics, which do not satisfy the demands of hybrid supercapacitors (HSCs), due to poor electron-transmission capability and inferior ion-transport rate. Herein, a kind of hollow biphase and bimetal cobalt nickel perselenide composed of metastable marcasite-type CoSe2 (m-CoSe2) and stable pyrite-type NiCoSe4 (p-NiCoSe4) is synthesized with metal glycerol alkoxide as precursors by regulating the Ni/Co ratios. This unique hollow biphase structure and bimetallic synergistic effect serves to boost electron-transmission capability and accelerate the ion/electron transfer rate, delivering an excellent specific capacitance of 1008 F g-1 at 0.5 A g-1 and a high discharge rate capability of 859 F g-1 at 20 A g-1. The capacitance remains around 80% of the initial capacitance after 5000 cycles. Consequently, a HSC based on the cobalt nickel perselenide cathode and a hierarchical porous carbon anode reveals a maximum energy density of 34.8 W h kg-1 and a maximum power density of 7272 W kg-1. This polymorphic bimetallic phase engineering provides an advanced and effective guidance for TMSe with high electrochemical properties.
Collapse
Affiliation(s)
- Zhenyu Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, Jiangsu 213000, P. R.China
| | - Daping Qiu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiannian Xia
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, Jiangsu 213000, P. R.China
| | - Jinying Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, Jiangsu 213000, P. R.China
| | - Min Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R.China
| | - Ru Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, Jiangsu 213000, P. R.China
| |
Collapse
|
49
|
Solid–liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction. Nat Catal 2021. [DOI: 10.1038/s41929-021-00576-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Cobalt-Based Electrocatalysts for Water Splitting: An Overview. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09329-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|