1
|
Zhang H, Qiao W, Liu Y, Yao X, Zhai Y, Du L. Addressing the challenges of infectious bone defects: a review of recent advances in bifunctional biomaterials. J Nanobiotechnology 2025; 23:257. [PMID: 40158189 PMCID: PMC11954225 DOI: 10.1186/s12951-025-03295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
Infectious bone defects present a substantial clinical challenge due to the complex interplay between infection control and bone regeneration. These defects often result from trauma, autoimmune diseases, infections, or tumors, requiring a nuanced approach that simultaneously addresses infection and promotes tissue repair. Recent advances in tissue engineering and materials science, particularly in nanomaterials and nano-drug formulations, have led to the development of bifunctional biomaterials with combined osteogenic and antibacterial properties. These materials offer an alternative to traditional bone grafts, minimizing complications such as multiple surgeries, high antibiotic dosages, and lengthy recovery periods. This review examines the repair mechanisms in the infectious microenvironment and highlights various bifunctional biomaterials that foster both anti-infective and osteogenic processes. Emerging design strategies are also discussed to provide a forward-looking perspective on treating infectious bone defects with clinically significant outcomes.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Wenyu Qiao
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yu Liu
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Xizhou Yao
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yonghua Zhai
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Longhai Du
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
2
|
Bian Y, Cai X, Zhou R, Lv Z, Xu Y, Wang Y, Wang H, Zhu W, Sun H, Zhao X, Feng B, Weng X. Advances in meniscus tissue engineering: Towards bridging the gaps from bench to bedside. Biomaterials 2025; 312:122716. [PMID: 39121731 DOI: 10.1016/j.biomaterials.2024.122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Meniscus is vital for maintaining the anatomical and functional integrity of knee. Injuries to meniscus, commonly caused by trauma or degenerative processes, can result in knee joint dysfunction and secondary osteoarthritis, while current conservative and surgical interventions for meniscus injuries bear suboptimal outcomes. In the past decade, there has been a significant focus on advancing meniscus tissue engineering, encompassing isolated scaffold strategies, biological augmentation, physical stimulus, and meniscus organoids, to improve the prognosis of meniscus injuries. Despite noteworthy promising preclinical results, translational gaps and inconsistencies in the therapeutic efficiency between preclinical and clinical studies exist. This review comprehensively outlines the developments in meniscus tissue engineering over the past decade (Scheme 1). Reasons for the discordant results between preclinical and clinical trials, as well as potential strategies to expedite the translation of bench-to-bedside approaches are analyzed and discussed.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xuejie Cai
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Runze Zhou
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Zehui Lv
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yiming Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Han Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Wei Zhu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Hanyang Sun
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Bin Feng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Ehlen Q, Costello JP, Mirsky NA, Slavin BV, Parra M, Ptashnik A, Nayak VV, Coelho PG, Witek L. Treatment of Bone Defects and Nonunion via Novel Delivery Mechanisms, Growth Factors, and Stem Cells: A Review. ACS Biomater Sci Eng 2024; 10:7314-7336. [PMID: 39527574 PMCID: PMC11632667 DOI: 10.1021/acsbiomaterials.4c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Bone nonunion following a fracture represents a significant global healthcare challenge, with an overall incidence ranging between 2 and 10% of all fractures. The management of nonunion is not only financially prohibitive but often necessitates invasive surgical interventions. This comprehensive manuscript aims to provide an extensive review of the published literature involving growth factors, stem cells, and novel delivery mechanisms for the treatment of fracture nonunion. Key growth factors involved in bone healing have been extensively studied, including bone morphogenic protein (BMP), vascular endothelial growth factor (VEGF), and platelet-derived growth factor. This review includes both preclinical and clinical studies that evaluated the role of growth factors in acute and chronic nonunion. Overall, these studies revealed promising bridging and fracture union rates but also elucidated complications such as heterotopic ossification and inferior mechanical properties associated with chronic nonunion. Stem cells, particularly mesenchymal stem cells (MSCs), are an extensively studied topic in the treatment of nonunion. A literature search identified articles that demonstrated improved healing responses, osteogenic capacity, and vascularization of fractures due to the presence of MSCs. Furthermore, this review addresses novel mechanisms and materials being researched to deliver these growth factors and stem cells to nonunion sites, including natural/synthetic polymers and bioceramics. The specific mechanisms explored in this review include BMP-induced osteoblast differentiation, VEGF-mediated angiogenesis, and the role of MSCs in multilineage differentiation and paracrine signaling. While these therapeutic modalities exhibit substantial preclinical promise in treating fracture nonunion, there remains a need for further research, particularly in chronic nonunion and large animal models. This paper seeks to identify such translational hurdles which must be addressed in order to progress the aforementioned treatments from the lab to the clinical setting.
Collapse
Affiliation(s)
- Quinn
T. Ehlen
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Joseph P. Costello
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Nicholas A. Mirsky
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Blaire V. Slavin
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Marcelo Parra
- Center
of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty
of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
- Department
of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| | - Albert Ptashnik
- Biomaterials
Division, NYU Dentistry, New York, New York 10010, United States
| | - Vasudev Vivekanand Nayak
- Department
of Biochemistry and Molecular Biology, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Paulo G. Coelho
- Department
of Biochemistry and Molecular Biology, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
- Division
of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Lukasz Witek
- Biomaterials
Division, NYU Dentistry, New York, New York 10010, United States
- Department
of Biomedical Engineering, NYU Tandon School
of Engineering, Brooklyn, New York 11201, United States
- Hansjörg
Wyss Department of Plastic Surgery, NYU
Grossman School of Medicine, New
York, New York 10016, United States
| |
Collapse
|
4
|
Yang C, Chen R, Chen C, Yang F, Xiao H, Geng B, Xia Y. Tissue engineering strategies hold promise for the repair of articular cartilage injury. Biomed Eng Online 2024; 23:92. [PMID: 39261876 PMCID: PMC11389311 DOI: 10.1186/s12938-024-01260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/18/2024] [Indexed: 09/13/2024] Open
Abstract
Articular cartilage damage and wear can result in cartilage degeneration, ultimately culminating in osteoarthritis. Current surgical interventions offer limited capacity for cartilage tissue regeneration and offer only temporary alleviation of symptoms. Tissue engineering strategies are increasingly recognized as promising modalities for cartilage restoration. Currently, various biological scaffolds utilizing tissue engineering materials are extensively employed in both fundamental and clinical investigations of cartilage repair. In order to optimize the cartilage repair ability of tissue engineering scaffolds, researchers not only optimize the structure and properties of scaffolds from the perspective of materials science and manufacturing technology to enhance their histocompatibility, but also adopt strategies such as loading cells, cytokines, and drugs to promote cartilage formation. This review provides an overview of contemporary tissue engineering strategies employed in cartilage repair, as well as a synthesis of existing preclinical and clinical research. Furthermore, the obstacles faced in the translation of tissue engineering strategies to clinical practice are discussed, offering valuable guidance for researchers seeking to address these challenges.
Collapse
Affiliation(s)
- Chenhui Yang
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
- Department of Orthopedic, Tianshui Hand and Foot Surgery Hospital, Tianshui, 741000, China
| | - Rongjin Chen
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Fei Yang
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Camarero-Espinosa S, Beeren I, Liu H, Gomes DB, Zonderland J, Lourenço AFH, van Beurden D, Peters M, Koper D, Emans P, Kessler P, Rademakers T, Baker MB, Bouvy N, Moroni L. 3D Niche-Inspired Scaffolds as a Stem Cell Delivery System for the Regeneration of the Osteochondral Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310258. [PMID: 38226666 DOI: 10.1002/adma.202310258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/08/2024] [Indexed: 01/17/2024]
Abstract
The regeneration of the osteochondral unit represents a challenge due to the distinct cartilage and bone phases. Current strategies focus on the development of multiphasic scaffolds that recapitulate features of this complex unit and promote the differentiation of implanted bone-marrow derived stem cells (BMSCs). In doing so, challenges remain from the loss of stemness during in vitro expansion of the cells and the low control over stem cell activity at the interface with scaffolds in vitro and in vivo. Here, this work scaffolds inspired by the bone marrow niche that can recapitulate the natural healing process after injury. The construct comprises an internal depot of quiescent BMSCs, mimicking the bone marrow cavity, and an electrospun (ESP) capsule that "activates" the cells to migrate into an outer "differentiation-inducing" 3D printed unit functionalized with TGF-β and BMP-2 peptides. In vitro, niche-inspired scaffolds retained a depot of nonproliferative cells capable of migrating and proliferating through the ESP capsule. Invasion of the 3D printed cavity results in location-specific cell differentiation, mineralization, secretion of alkaline phosphatase (ALP) and glycosaminoglycans (GAGs), and genetic upregulation of collagen II and collagen I. In vivo, niche-inspired scaffolds are biocompatible, promoted tissue formation in rat subcutaneous models, and regeneration of the osteochondral unit in rabbit models.
Collapse
Affiliation(s)
- Sandra Camarero-Espinosa
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia / San, Sebastián 20018, Gipuzkoa, Spain
- IKERBASQUE, Basque Foundation for Science, Euskadi Pl., 5, Bilbao, 48009, Spain
| | - Ivo Beeren
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Hong Liu
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
- Department of General Surgery, Maastricht University Medical Center, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - David B Gomes
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Jip Zonderland
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Ana Filipa H Lourenço
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Denis van Beurden
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Marloes Peters
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
- Department of Orthopaedic Surgery, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - David Koper
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
- Department of Cranio-Maxillofacial Surgery, Maastricht University Medical Center, PO Box 5800, Maastricht, 6202, The Netherlands
| | - Pieter Emans
- Department of Orthopaedic Surgery, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Peter Kessler
- Department of Cranio-Maxillofacial Surgery, Maastricht University Medical Center, PO Box 5800, Maastricht, 6202, The Netherlands
| | - Timo Rademakers
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Matthew B Baker
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Nicole Bouvy
- Department of General Surgery, Maastricht University Medical Center, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| |
Collapse
|
6
|
Liang W, Zhou C, Bai J, Zhang H, Long H, Jiang B, Liu L, Xia L, Jiang C, Zhang H, Zhao J. Nanotechnology-based bone regeneration in orthopedics: a review of recent trends. Nanomedicine (Lond) 2024; 19:255-275. [PMID: 38275154 DOI: 10.2217/nnm-2023-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Nanotechnology has revolutionized the field of bone regeneration, offering innovative solutions to address the challenges associated with conventional therapies. This comprehensive review explores the diverse landscape of nanomaterials - including nanoparticles, nanocomposites and nanofibers - tailored for bone tissue engineering. We delve into the intricate design principles, structural mimicry of native bone and the crucial role of biomaterial selection, encompassing bioceramics, polymers, metals and their hybrids. Furthermore, we analyze the interface between cells and nanostructured materials and their pivotal role in engineering and regenerating bone tissue. In the concluding outlook, we highlight emerging frontiers and potential research directions in harnessing nanomaterials for bone regeneration.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua hospital, Zhoushan, 316000, China
| | - Juqin Bai
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hongwei Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| |
Collapse
|
7
|
Chen R, Pye JS, Li J, Little CB, Li JJ. Multiphasic scaffolds for the repair of osteochondral defects: Outcomes of preclinical studies. Bioact Mater 2023; 27:505-545. [PMID: 37180643 PMCID: PMC10173014 DOI: 10.1016/j.bioactmat.2023.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Osteochondral defects are caused by injury to both the articular cartilage and subchondral bone within skeletal joints. They can lead to irreversible joint damage and increase the risk of progression to osteoarthritis. Current treatments for osteochondral injuries are not curative and only target symptoms, highlighting the need for a tissue engineering solution. Scaffold-based approaches can be used to assist osteochondral tissue regeneration, where biomaterials tailored to the properties of cartilage and bone are used to restore the defect and minimise the risk of further joint degeneration. This review captures original research studies published since 2015, on multiphasic scaffolds used to treat osteochondral defects in animal models. These studies used an extensive range of biomaterials for scaffold fabrication, consisting mainly of natural and synthetic polymers. Different methods were used to create multiphasic scaffold designs, including by integrating or fabricating multiple layers, creating gradients, or through the addition of factors such as minerals, growth factors, and cells. The studies used a variety of animals to model osteochondral defects, where rabbits were the most commonly chosen and the vast majority of studies reported small rather than large animal models. The few available clinical studies reporting cell-free scaffolds have shown promising early-stage results in osteochondral repair, but long-term follow-up is necessary to demonstrate consistency in defect restoration. Overall, preclinical studies of multiphasic scaffolds show favourable results in simultaneously regenerating cartilage and bone in animal models of osteochondral defects, suggesting that biomaterials-based tissue engineering strategies may be a promising solution.
Collapse
Affiliation(s)
- Rouyan Chen
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Electrical and Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, SA, 5005, Australia
| | - Jasmine Sarah Pye
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Jiarong Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Christopher B. Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
| | - Jiao Jiao Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
8
|
Yu L, Cavelier S, Hannon B, Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater 2023; 25:122-159. [PMID: 36817819 PMCID: PMC9931622 DOI: 10.1016/j.bioactmat.2023.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Osteochondral (OC) repair is an extremely challenging topic due to the complex biphasic structure and poor intrinsic regenerative capability of natural osteochondral tissue. In contrast to the current surgical approaches which yield only short-term relief of symptoms, tissue engineering strategy has been shown more promising outcomes in treating OC defects since its emergence in the 1990s. In particular, the use of multizonal scaffolds (MZSs) that mimic the gradient transitions, from cartilage surface to the subchondral bone with either continuous or discontinuous compositions, structures, and properties of natural OC tissue, has been gaining momentum in recent years. Scrutinizing the latest developments in the field, this review offers a comprehensive summary of recent advances, current hurdles, and future perspectives of OC repair, particularly the use of MZSs including bilayered, trilayered, multilayered, and gradient scaffolds, by bringing together onerous demands of architecture designs, material selections, manufacturing techniques as well as the choices of growth factors and cells, each of which possesses its unique challenges and opportunities.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Sacha Cavelier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Brett Hannon
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Mei Wei
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
- Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
9
|
Lyu C, Cheng C, He Y, Qiu L, He Z, Zou D, Li D, Lu J. Graphene Hydrogel as a Porous Scaffold for Cartilage Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54431-54438. [PMID: 36445947 DOI: 10.1021/acsami.2c11307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Porous scaffolds have widely been exploited in cartilage tissue regeneration. However, it is often difficult to understand how the delicate hierarchical structure of the scaffold material affects the regeneration process. Graphene materials are versatile building blocks for robust and biocompatible porous structures, enabling investigation of structural cues on tissue regeneration otherwise challenging to ascertain. Here, we utilize a graphene hydrogel with stable and tunable structure as a model scaffold to examine the effect of porous structure on matrix remodeling associated with ingrowth of chondrocytes on scaffolds. We observe much-accelerated yet balanced cartilage remodeling correlating the ingrowth of chondrocytes into the graphene scaffold with an open pore structure on the surface. Importantly, such an enhanced remodeling selectively promotes the expression of collagen type II fibrils over proteoglycan aggrecan, hence clearly illustrating that chondrocytes maintain a stable phenotype when they migrate into the scaffold while offering new insights into scaffold design for cartilage repair.
Collapse
Affiliation(s)
- Chengqi Lyu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China
| | - Chi Cheng
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - YuShi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ling Qiu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, P. R. China
| | - Zijun He
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Derong Zou
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jiayu Lu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China
| |
Collapse
|
10
|
Chen Z, Du W, Lv Y. Zonally Stratified Decalcified Bone Scaffold with Different Stiffness Modified by Fibrinogen for Osteochondral Regeneration of Knee Joint Defect. ACS Biomater Sci Eng 2022; 8:5257-5272. [PMID: 36335510 DOI: 10.1021/acsbiomaterials.2c00813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Articular cartilage is generally known to be a complex tissue with multiple layers. Each layer has different composition, structure, and mechanical properties, making regeneration after knee joint defects a troubling clinical problem. A novel integrated stratified decalcified bone matrix (SDBM) scaffold with different stiffness to mimic the mechanical properties of articular cartilage is presented herein. This SDBM scaffold was modified using fibrinogen (Fg) (Fg + SDBM) to enhance its vascularization ability and improve its repair efficiency for osteochondral defects of knee joints. A Fg + SDBM scaffold with different elastic modulus in each layer (high-stiffness DBM (HDBM) layer, 174.208 ± 44.330 MPa (Fg + HDBM); medium-stiffness DBM (MDBM) layer, 21.214 ± 6.922 MPa (Fg + MDBM); and low-stiffness DBM (LDBM) layer, 0.678 ± 0.269 MPa (Fg + LDBM)) was constructed by controlling the stratified decalcification time with layered embedding paraffin (0, 3, and 5 days). The low- and medium-stiffness layers of the Fg + SDBM scaffold remarkably promoted the cartilage differentiation of bone marrow mesenchymal stem cells in vitro. Subcutaneous transplantation and rabbit knee joint osteochondral defect repair experiments revealed that the low- and medium-stiffness layers of the Fg + SDBM scaffold exhibited wonderful cartilage capacity, whereas the high-stiffness layer of Fg + SDBM scaffold exhibited good osteogenesis ability. Furthermore, this scaffold could promote blood vessel formation in subchondral bone area. This study presents a feasible strategy for osteochondral regeneration of defective knee joints, which is of great clinical value for tissue repair.
Collapse
Affiliation(s)
- Zhenyin Chen
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Wenjiang Du
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P. R. China
| |
Collapse
|
11
|
Wang Y, Ling C, Chen J, Liu H, Mo Q, Zhang W, Yao Q. 3D-printed composite scaffold with gradient structure and programmed biomolecule delivery to guide stem cell behavior for osteochondral regeneration. BIOMATERIALS ADVANCES 2022; 140:213067. [PMID: 35961187 DOI: 10.1016/j.bioadv.2022.213067] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The fabrication of osteochondral scaffolds with both structural and biochemical cues to regulate endogenous bone marrow-derived mesenchymal stem cells (BMSCs) behavior for cartilage and subchondral bone regeneration is still a challenge. To this end, a composite scaffold (BE-PSA) with gradient structure and programmed biomolecule delivery was prepared by fused deposition modeling (FDM) 3D printing and multi-material-based modification. The 3D-printed polycaprolactone (PCL) scaffold included upper pores of 200 μm for cartilage regeneration and lower pores of 400 μm for bone regeneration. For a sequential modulation of BMSCs behavior, fast-degrading sodium alginate (SA) hydrogel was used to deliver a burst release of E7 peptide to enhance BMSCs migration within 72 h, while a slowly-degrading silk fibroin (SF) porous matrix was used to provide a sustained release of B2A peptide to improve BMSCs dual-lineage differentiation lasting for >300 h, depending on the different degradation rates of SA hydrogel and SF matrix. The BE-PSA scaffold had good biocompatibility and could improve the migration and osteogenic/chondrogenic differentiation of BMSCs. Benefiting from the synergistic effects of spatial structures and programmed biomolecule delivery, the BE-PSA scaffold showed enhanced cartilage and subchondral bone regeneration in rabbit osteochondral defect model. This work not only provides a promising scaffold to guide BMSCs behavior for osteochondral regeneration but also offers a method for the fabrication of tissue engineering biomaterials based on the structural and biochemical modification.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Chen Ling
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China; China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China; China Orthopedic Regenerative Medicine Group (CORMed), China.
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China; China Orthopedic Regenerative Medicine Group (CORMed), China.
| |
Collapse
|
12
|
Ding G, Du J, Hu X, Ao Y. Mesenchymal Stem Cells From Different Sources in Meniscus Repair and Regeneration. Front Bioeng Biotechnol 2022; 10:796367. [PMID: 35573249 PMCID: PMC9091333 DOI: 10.3389/fbioe.2022.796367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/11/2022] [Indexed: 01/22/2023] Open
Abstract
Meniscus damage is a common trauma that often arises from sports injuries or menisci tissue degeneration. Current treatment methods focus on the repair, replacement, and regeneration of the meniscus to restore its original function. The advance of tissue engineering provides a novel approach to restore the unique structure of the meniscus. Recently, mesenchymal stem cells found in tissues including bone marrow, peripheral blood, fat, and articular cavity synovium have shown specific advantages in meniscus repair. Although various studies explore the use of stem cells in repairing meniscal injuries from different sources and demonstrate their potential for chondrogenic differentiation, their meniscal cartilage-forming properties are yet to be systematically compared. Therefore, this review aims to summarize and compare different sources of mesenchymal stem cells for meniscal repair and regeneration.
Collapse
Affiliation(s)
- Guocheng Ding
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jianing Du
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yingfang Ao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
13
|
Seifert A, Tylek T, Blum C, Hemmelmann N, Böttcher B, Gbureck U, Groll J. Calcium phosphate-based biomaterials trigger human macrophages to release extracellular traps. Biomaterials 2022; 285:121521. [PMID: 35523018 DOI: 10.1016/j.biomaterials.2022.121521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023]
Abstract
As central part of the innate immune response, immune cells fight against invaders through various mechanisms, such as the release of extracellular traps (ETs). While this mechanism is mainly known for neutrophils in biomaterial contact, the release of macrophage extracellular traps (METs) in response to biomaterials has not yet been reported. An important application area for biomaterials is bone, where healing of defects of a critical size requires the implantation of grafts, which are often composed of calcium phosphates (CaPs). In this study, the response of human monocyte-derived macrophages in vitro to two different CaPs (α-tricalcium phosphate (α-TCP) and calcium deficient hydroxyapatite (CDHA)) as well as different pore structures was investigated. Scaffolds with anisotropic porosity were prepared by directional freezing, while samples with isotropic pore structure served as reference. It was revealed that ETs are released by human monocyte-derived macrophages in direct or indirect contact with CaP scaffolds. This was caused by mineral nanoparticles formed during incubation of α-TCP samples in culture medium supplemented with human platelet lysate, with an anisotropic pore structure attenuating MET formation. METs were significantly less pronounced or absent in association with CDHA samples. It was furthermore demonstrated that MET formation was accompanied by an increase in pro-inflammatory cytokines. Thus, this study provided the first evidence that macrophages are capable of releasing ETs in response to biomaterials.
Collapse
Affiliation(s)
- Annika Seifert
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, D-97070, Würzburg, Germany
| | - Tina Tylek
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, D-97070, Würzburg, Germany
| | - Carina Blum
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, D-97070, Würzburg, Germany
| | - Naomi Hemmelmann
- Biocenter and Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Bettina Böttcher
- Biocenter and Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Uwe Gbureck
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, D-97070, Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, D-97070, Würzburg, Germany.
| |
Collapse
|
14
|
Luo Z, Tang G, Ravanbakhsh H, Li W, Wang M, Kuang X, Garciamendez‐Mijares CE, Lian L, Yi S, Liao J, Xie M, Guo J, Zhou Z, Zhang YS. Vertical Extrusion Cryo(bio)printing for Anisotropic Tissue Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108931. [PMID: 34935203 DOI: 10.1002/adma.202108931] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/09/2021] [Indexed: 02/05/2023]
Abstract
Due to the poor mechanical properties of many hydrogel bioinks, conventional 3D extrusion bioprinting is usually conducted based on the X-Y plane, where the deposited layers are stacked in the Z-direction with or without the support of prior layers. Herein, a technique is reported, taking advantage of a cryoprotective bioink to enable direct extrusion bioprinting in the vertical direction in the presence of cells, using a freezing plate with precise temperature control. Of interest, vertical 3D cryo-bioprinting concurrently allows the user to create freestanding filamentous constructs containing interconnected, anisotropic microchannels featuring gradient sizes aligned in the vertical direction, also associated with enhanced mechanical performances. Skeletal myoblasts within the 3D-cryo-bioprinted hydrogel constructs show enhanced cell viability, spreading, and alignment, compared to the same cells in the standard hydrogel constructs. This method is further extended to a multimaterial format, finding potential applications in interface tissue engineering, such as creation of the muscle-tendon unit and the muscle-microvascular unit. The unique vertical 3D cryo-bioprinting technique presented here suggests improvements in robustness and versatility to engineer certain tissue types especially those anisotropic in nature, and may extend broad utilities in tissue engineering, regenerative medicine, drug discovery, and personalized therapeutics.
Collapse
Affiliation(s)
- Zeyu Luo
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
- Department of Orthopedics West China Hospital/West China School of Medicine Sichuan University Chengdu 610041 P. R. China
| | - Guosheng Tang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
- NMPA and Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Hossein Ravanbakhsh
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
- Department of Mechanical Engineering McGill University Montreal QC H3A0C3 Canada
| | - Wanlu Li
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Mian Wang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Xiao Kuang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Carlos Ezio Garciamendez‐Mijares
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Liming Lian
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Sili Yi
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Junlong Liao
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Maobin Xie
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Jie Guo
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Zongke Zhou
- Department of Orthopedics West China Hospital/West China School of Medicine Sichuan University Chengdu 610041 P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| |
Collapse
|
15
|
Fan B, Ye J, Xu B, Sun Z, Zhang J, Song S, Wang X, Song Y, Zhang Z, Jiang D, Yu J. Study on feasibility of the partial meniscal allograft transplantation. Clin Transl Med 2022; 12:e701. [PMID: 35088938 PMCID: PMC8796274 DOI: 10.1002/ctm2.701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Since the meniscus is an important stabilizing structure of the knee joint and has a significant role in load-bearing and shock absorption, so the complete structural and functional reconstructions of the teared menisci should be done not only after partial meniscectomy but also post total meniscectomy. So far, animal experiments and good clinical practice have showed that TMAT after total meniscectomy has partially solved the problem of structural and functional reconstructions after total meniscectomy. However, partial meniscectomy will also lead to accelerated knee degeneration, and its proportion is much higher than that of patients with total meniscectomy. Herein, the feasibility of PMAT after partial meniscectomy was investigated for the first time by using the 40% posterior horn meniscectomy model of the medial meniscus in Beagle dogs, and also for the first time, TMAT group and the total meniscectomy group were used as control groups. Compared with the TMAT, the transcriptomics evaluation, scanning electron microscope observation, histological regeneration and structure, biomechanical property, inflammation environment, and the knee function post PMAT were more similar to that of normal meniscus was first reported. This study provides a PMAT scheme with clinical translational value for the complete structural and functional reconstruction of the patients with partial meniscectomy and fills the gap in the field of teared meniscus therapy on the basis of quite well clinical applications of the meniscus repair and the TMAT.
Collapse
Affiliation(s)
- Bao‐Shi Fan
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingChina
- Peking University Institute of Sports Medicine, Peking University Third Hospital, beijing, ChinaBeijingChina
| | - Jing Ye
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingChina
- Peking University Institute of Sports Medicine, Peking University Third Hospital, beijing, ChinaBeijingChina
| | - Bing‐Bing Xu
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingChina
- Peking University Institute of Sports Medicine, Peking University Third Hospital, beijing, ChinaBeijingChina
| | - Ze‐Wen Sun
- Department of Sports MedicineThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Ji‐Ying Zhang
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingChina
- Peking University Institute of Sports Medicine, Peking University Third Hospital, beijing, ChinaBeijingChina
| | - Shi‐Tang Song
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingChina
- Peking University Institute of Sports Medicine, Peking University Third Hospital, beijing, ChinaBeijingChina
| | - Xin‐Jie Wang
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingChina
- Peking University Institute of Sports Medicine, Peking University Third Hospital, beijing, ChinaBeijingChina
| | - Yi‐Fan Song
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingChina
- Peking University Institute of Sports Medicine, Peking University Third Hospital, beijing, ChinaBeijingChina
| | - Zheng‐Zheng Zhang
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Dong Jiang
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingChina
- Peking University Institute of Sports Medicine, Peking University Third Hospital, beijing, ChinaBeijingChina
| | - Jia‐Kuo Yu
- Sports Medicine DepartmentBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijingChina
- Peking University Institute of Sports Medicine, Peking University Third Hospital, beijing, ChinaBeijingChina
| |
Collapse
|
16
|
Maia FR, Bastos AR, Oliveira JM, Correlo VM, Reis RL. Recent approaches towards bone tissue engineering. Bone 2022; 154:116256. [PMID: 34781047 DOI: 10.1016/j.bone.2021.116256] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022]
Abstract
Bone tissue engineering approaches have evolved towards addressing the challenges of tissue mimetic requirements over the years. Different strategies have been combining scaffolds, cells, and biologically active cues using a wide range of fabrication techniques, envisioning the mimicry of bone tissue. On the one hand, biomimetic scaffold-based strategies have been pursuing different biomaterials to produce scaffolds, combining with diverse and innovative fabrication strategies to mimic bone tissue better, surpassing bone grafts. On the other hand, biomimetic scaffold-free approaches mainly foresee replicating endochondral ossification, replacing hyaline cartilage with new bone. Finally, since bone tissue is highly vascularized, new strategies focused on developing pre-vascularized scaffolds or pre-vascularized cellular aggregates have been a motif of study. The recent biomimetic scaffold-based and scaffold-free approaches in bone tissue engineering, focusing on materials and fabrication methods used, are overviewed herein. The biomimetic vascularized approaches are also discussed, namely the development of pre-vascularized scaffolds and pre-vascularized cellular aggregates.
Collapse
Affiliation(s)
- F Raquel Maia
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Ana R Bastos
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Vitor M Correlo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
17
|
Deininger C, Wagner A, Heimel P, Salzer E, Vila XM, Weißenbacher N, Grillari J, Redl H, Wichlas F, Freude T, Tempfer H, Teuschl-Woller AH, Traweger A. Enhanced BMP-2-Mediated Bone Repair Using an Anisotropic Silk Fibroin Scaffold Coated with Bone-like Apatite. Int J Mol Sci 2021; 23:283. [PMID: 35008718 PMCID: PMC8745248 DOI: 10.3390/ijms23010283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
The repair of large bone defects remains challenging and often requires graft material due to limited availability of autologous bone. In clinical settings, collagen sponges loaded with excessive amounts of bone morphogenetic protein 2 (rhBMP-2) are occasionally used for the treatment of bone non-unions, increasing the risk of adverse events. Therefore, strategies to reduce rhBMP-2 dosage are desirable. Silk scaffolds show great promise due to their favorable biocompatibility and their utility for various biofabrication methods. For this study, we generated silk scaffolds with axially aligned pores, which were subsequently treated with 10× simulated body fluid (SBF) to generate an apatitic calcium phosphate coating. Using a rat femoral critical sized defect model (CSD) we evaluated if the resulting scaffold allows the reduction of BMP-2 dosage to promote efficient bone repair by providing appropriate guidance cues. Highly porous, anisotropic silk scaffolds were produced, demonstrating good cytocompatibility in vitro and treatment with 10× SBF resulted in efficient surface coating. In vivo, the coated silk scaffolds loaded with a low dose of rhBMP-2 demonstrated significantly improved bone regeneration when compared to the unmineralized scaffold. Overall, our findings show that this simple and cost-efficient technique yields scaffolds that enhance rhBMP-2 mediated bone healing.
Collapse
Affiliation(s)
- Christian Deininger
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria; (C.D.); (A.W.); (N.W.); (H.T.)
- Department of Orthopedics and Traumatology, Salzburg University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (F.W.); (T.F.)
| | - Andrea Wagner
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria; (C.D.); (A.W.); (N.W.); (H.T.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
| | - Patrick Heimel
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Elias Salzer
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria
| | - Xavier Monforte Vila
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria
| | - Nadja Weißenbacher
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria; (C.D.); (A.W.); (N.W.); (H.T.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
- Department of Biotechnology, Institute of Molecular Biotechnology, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Heinz Redl
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
| | - Florian Wichlas
- Department of Orthopedics and Traumatology, Salzburg University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (F.W.); (T.F.)
| | - Thomas Freude
- Department of Orthopedics and Traumatology, Salzburg University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (F.W.); (T.F.)
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria; (C.D.); (A.W.); (N.W.); (H.T.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
| | - Andreas Herbert Teuschl-Woller
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria; (C.D.); (A.W.); (N.W.); (H.T.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (P.H.); (E.S.); (X.M.V.); (J.G.); (H.R.)
| |
Collapse
|
18
|
Liang W, Dong Y, Shen H, Shao R, Wu X, Huang X, Sun B, Zeng B, Zhang S, Xu F. Materials science and design principles of therapeutic materials in orthopedic and bone tissue engineering. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Yongqiang Dong
- Department of Orthopedics Xinchang People's Hospital Shaoxing China
| | - Hailiang Shen
- Department of Orthopedics Affiliated Hospital of Shaoxing University Shaoxing China
| | - Ruyi Shao
- Department of Orthopedics Zhuji People's Hospital Shaoxing China
| | - Xudong Wu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Xiaogang Huang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Bin Sun
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Bin Zeng
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Songou Zhang
- College of Medicine Shaoxing University Shaoxing China
| | - Fangming Xu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| |
Collapse
|
19
|
Elkhoury K, Morsink M, Sanchez-Gonzalez L, Kahn C, Tamayol A, Arab-Tehrany E. Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications. Bioact Mater 2021; 6:3904-3923. [PMID: 33997485 PMCID: PMC8080408 DOI: 10.1016/j.bioactmat.2021.03.040] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Natural hydrogels are one of the most promising biomaterials for tissue engineering applications, due to their biocompatibility, biodegradability, and extracellular matrix mimicking ability. To surpass the limitations of conventional fabrication techniques and to recapitulate the complex architecture of native tissue structure, natural hydrogels are being constructed using novel biofabrication strategies, such as textile techniques and three-dimensional bioprinting. These innovative techniques play an enormous role in the development of advanced scaffolds for various tissue engineering applications. The progress, advantages, and shortcomings of the emerging biofabrication techniques are highlighted in this review. Additionally, the novel applications of biofabricated natural hydrogels in cardiac, neural, and bone tissue engineering are discussed as well.
Collapse
Affiliation(s)
| | - Margaretha Morsink
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7500AE, the Netherlands
| | | | - Cyril Kahn
- LIBio, Université de Lorraine, Nancy, F-54000, France
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | | |
Collapse
|
20
|
Joukhdar H, Seifert A, Jüngst T, Groll J, Lord MS, Rnjak-Kovacina J. Ice Templating Soft Matter: Fundamental Principles and Fabrication Approaches to Tailor Pore Structure and Morphology and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100091. [PMID: 34236118 DOI: 10.1002/adma.202100091] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/22/2021] [Indexed: 06/13/2023]
Abstract
Porous scaffolds are widely used in biomedical applications where pore size and morphology influence a range of biological processes, including mass transfer of solutes, cellular interactions and organization, immune responses, and tissue vascularization, as well as drug delivery from biomaterials. Ice templating, one of the most widely utilized techniques for the fabrication of porous materials, allows control over pore morphology by controlling ice formation in a suspension of solutes. By fine-tuning freezing and solute parameters, ice templating can be used to incorporate pores with tunable morphological features into a wide range of materials using a simple, accessible, and scalable process. While soft matter is widely ice templated for biomedical applications and includes commercial and clinical products, the principles underpinning its ice templating are not reviewed as well as their inorganic counterparts. This review describes and critically evaluates fundamental principles, fabrication and characterization approaches, and biomedical applications of ice templating in polymer-based biomaterials. It describes the utility of porous scaffolds in biomedical applications, highlighting biological mechanisms impacted by pore features, outlines the physical and thermodynamic mechanisms underpinning ice templating, describes common fabrication setups, critically evaluates complexities of ice templating specific to polymers, and discusses future directions in this field.
Collapse
Affiliation(s)
- Habib Joukhdar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Annika Seifert
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, 97070, Würzburg, Germany
| | - Tomasz Jüngst
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, 97070, Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, 97070, Würzburg, Germany
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
21
|
Contessi Negrini N, Angelova Volponi A, Higgins C, Sharpe P, Celiz A. Scaffold-based developmental tissue engineering strategies for ectodermal organ regeneration. Mater Today Bio 2021; 10:100107. [PMID: 33889838 PMCID: PMC8050778 DOI: 10.1016/j.mtbio.2021.100107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering (TE) is a multidisciplinary research field aiming at the regeneration, restoration, or replacement of damaged tissues and organs. Classical TE approaches combine scaffolds, cells and soluble factors to fabricate constructs mimicking the native tissue to be regenerated. However, to date, limited success in clinical translations has been achieved by classical TE approaches, because of the lack of satisfactory biomorphological and biofunctional features of the obtained constructs. Developmental TE has emerged as a novel TE paradigm to obtain tissues and organs with correct biomorphology and biofunctionality by mimicking the morphogenetic processes leading to the tissue/organ generation in the embryo. Ectodermal appendages, for instance, develop in vivo by sequential interactions between epithelium and mesenchyme, in a process known as secondary induction. A fine artificial replication of these complex interactions can potentially lead to the fabrication of the tissues/organs to be regenerated. Successful developmental TE applications have been reported, in vitro and in vivo, for ectodermal appendages such as teeth, hair follicles and glands. Developmental TE strategies require an accurate selection of cell sources, scaffolds and cell culture configurations to allow for the correct replication of the in vivo morphogenetic cues. Herein, we describe and discuss the emergence of this TE paradigm by reviewing the achievements obtained so far in developmental TE 3D scaffolds for teeth, hair follicles, and salivary and lacrimal glands, with particular focus on the selection of biomaterials and cell culture configurations.
Collapse
Affiliation(s)
| | - A. Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - C.A. Higgins
- Department of Bioengineering, Imperial College London, London, UK
| | - P.T. Sharpe
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - A.D. Celiz
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
22
|
Zhang W, Ling C, Li X, Sheng R, Liu H, Zhang A, Jiang Y, Chen J, Yao Q. Cell-Free Biomimetic Scaffold with Cartilage Extracellular Matrix-Like Architectures for In Situ Inductive Regeneration of Osteochondral Defects. ACS Biomater Sci Eng 2020; 6:6917-6925. [PMID: 33320617 DOI: 10.1021/acsbiomaterials.0c01276] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of a biomimetic scaffold designed to provide a native extracellular matrix (ECM)-like microenvironment is a potential strategy for cartilage repair. The ECM in native articular cartilage is structurally composed of three different architectural zones, i.e., horizontally aligned, randomly arranged, and vertically aligned collagen fibers. However, the effects of scaffolds with these three different ECM-like architectures on in vivo cartilage regeneration are not clear. In this study, we aim to systematically investigate and compare their in situ inductive regenerative efficacy on cartilage defects. ECM-mimetic silk fibroin scaffolds with horizontally aligned, vertically aligned, and random pore architectures are fabricated using the controlled directional freezing technique. All of these scaffolds exhibit similar pore area, swelling ratio, and in vitro degradation behavior. Nevertheless, the aligned scaffolds have a higher pore aspect ratio and hydrophilicity, and increase the proliferation of bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. When implanted into rabbit osteochondral defects, the scaffold with vertically aligned pore architectures provides a more cell-favorable microenvironment conducive to endogenous BMSCs than other scaffolds and supports the simultaneous regeneration of cartilage and subchondral bone. These findings indicate that scaffolds with vertically aligned ECM-like architectures serve as an effective cell-free and growth factor-free scaffold for enhanced endogenous osteochondral regeneration.
Collapse
Affiliation(s)
- Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Chen Ling
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Xiaolong Li
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Renwang Sheng
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Aini Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Yujie Jiang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
23
|
Liu X, Wei Y, Xuan C, Liu L, Lai C, Chai M, Zhang Z, Wang L, Shi X. A Biomimetic Biphasic Osteochondral Scaffold with Layer-Specific Release of Stem Cell Differentiation Inducers for the Reconstruction of Osteochondral Defects. Adv Healthc Mater 2020; 9:e2000076. [PMID: 32338462 DOI: 10.1002/adhm.202000076] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/07/2020] [Accepted: 03/31/2020] [Indexed: 01/19/2023]
Abstract
There is a great challenge in regenerating osteochondral defects because they involve lesions of both cartilage and subchondral bone, which have remarkable differences in their chemical compositions and biological lineages. Thus, considering the complicated requirements in osteochondral reconstruction, a biomimetic biphasic osteochondral scaffold (BBOS) with the layer-specific release of stem cell differentiation inducers are developed. The cartilage regeneration layer (cartilage scaffold, CS) in the BBOS contains a hyaluronic acid hydrogel to mimic the composition of cartilage, which is mechanically enhanced by host-guest supramolecular units to control the release of kartogenin (KGN). Additionally, a 3D-printed hydroxyapatite (HAp) scaffold releasing alendronate (ALN) is employed as the bone-regeneration layer (bone scaffold, BS). The two layers are bound by semi-immersion and could regulate the hierarchical targeted differentiation behavior of the stem cells. Compared to the drug-free scaffold, the MSCs in the BBOS could be promoted to differentiate into both chondrocytes and osteoblasts. The in vivo results demonstrate the strong promotion of cartilage or bone regeneration in their respective layers. It is expected that this BBOS with layer-specific inducer release can become a new strategy for osteochondral regeneration.
Collapse
Affiliation(s)
- Xuemin Liu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yingqi Wei
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Chengkai Xuan
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Lei Liu
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Chen Lai
- Peking University Shenzhen Institute, Peking University, Shenzhen, 518055, China
| | - Muyuan Chai
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Zhaoguo Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
- Peking University Shenzhen Institute, Peking University, Shenzhen, 518055, China
- China Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| |
Collapse
|
24
|
Zhou X, Jin Y, Du J. Functionally Graded Scaffolds with Programmable Pore Size Distribution Based on Triply Periodic Minimal Surface Fabricated by Selective Laser Melting. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5046. [PMID: 33182421 PMCID: PMC7664887 DOI: 10.3390/ma13215046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/24/2022]
Abstract
Functional graded materials are gaining increasing attention in tissue engineering (TE) due to their superior mechanical properties and high biocompatibility. Triply periodic minimal surface (TPMS) has the capability to produce smooth surfaces and interconnectivity, which are very essential for bone scaffolds. To further enhance the versatility of TPMS, a parametric design method for functionally graded scaffold (FGS) with programmable pore size distribution is proposed in this study. Combining the relative density and unit cell size, the effect of design parameters on the pore size was also considered to effectively govern the distribution of pores in generating FGS. We made use of Gyroid to generate different types of FGS, which were then fabricated using selective laser melting (SLM), followed by investigation and comparison of their structural characteristics and mechanical properties. Their morphological features could be effectively controlled, indicating that TPMS was an effective way to achieve functional gradients which had bone-mimicking architectures. In terms of mechanical performance, the proposed FGS could achieve similar mechanical response under compression tests compared to the reference FGS with the same range of density gradient. The proposed method with control over pore size allows for effectively generating porous scaffolds with tailored properties which are potentially adopted in various fields.
Collapse
Affiliation(s)
- Xueyong Zhou
- School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China;
| | - Yuan Jin
- School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China;
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianke Du
- School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
25
|
Abbadessa A, Crecente-Campo J, Alonso MJ. Engineering Anisotropic Meniscus: Zonal Functionality and Spatiotemporal Drug Delivery. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:133-154. [PMID: 32723019 DOI: 10.1089/ten.teb.2020.0096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human meniscus is a fibrocartilaginous structure that is crucial for an adequate performance of the human knee joint. Degeneration of the meniscus is often followed by partial or total meniscectomy, which enhances the risk of developing knee osteoarthritis. The lack of a satisfactory treatment for this condition has triggered a major interest in drug delivery (DD) and tissue engineering (TE) strategies intended to restore a bioactive and fully functional meniscal tissue. The aim of this review is to critically discuss the most relevant studies on spatiotemporal DD and TE, aiming for a multizonal meniscal reconstruction. Indeed, the development of meniscal tissue implants should involve a provision for adequate active molecules and scaffold features that take into account the anisotropic ultrastructure of human meniscus. This zonal differentiation is reflected in the meniscus biochemical composition, collagen fiber arrangement, and cell distribution. In this sense, it is expected that a proper combination of advanced DD and zonal TE strategies will play a key role in the future trends in meniscus regeneration. Impact statement Meniscus degeneration is one of the main causes of knee pain, inflammation, and reduced mobility. Currently used suturing procedures and meniscectomy are far from being ideal solutions to the loss of meniscal function. Therefore, drug delivery (DD) and tissue engineering (TE) strategies are currently under investigation. DD systems aim at an in situ controlled release of growth factors, whereas TE strategies aim at mimicking the anisotropy of native meniscus. The goal of this review is to discuss these two main approaches, as well as synergies between them that are expected to lead to a real breakthrough in the field.
Collapse
Affiliation(s)
- Anna Abbadessa
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
26
|
Tang Y, Chen C, Liu F, Xie S, Qu J, Li M, Li Z, Li X, Shi Q, Li S, Li X, Hu J, Lu H. Structure and ingredient-based biomimetic scaffolds combining with autologous bone marrow-derived mesenchymal stem cell sheets for bone-tendon healing. Biomaterials 2020; 241:119837. [PMID: 32109704 DOI: 10.1016/j.biomaterials.2020.119837] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/10/2020] [Accepted: 01/30/2020] [Indexed: 12/21/2022]
Abstract
Tendon attaches to bone across a robust fibrocartilaginous tissue termed the bone-tendon interface (BTI), commonly injured in the field of sports medicine and orthopedics with poor prognosis. So far, there is still a lack of effective clinical interventions to achieve functional healing post BTI injury. However, tissue-engineering may be a promising treatment strategy. In this study, a gradient book-type triphasic (bone-fibrocartilage-tendon) scaffold is fabricated based on the heterogeneous structure and ingredient of BTI. After decellularization, the scaffold exhibits no residual cells, while the characteristic extracellular matrix of the original bone, fibrocartilage and tendon is well preserved. Meanwhile, the bone, fibrocartilage and tendon regions of the acellular scaffold are superior in osteogenic, chondrogenic and tenogenic inducibility, respectively. Furthermore, autologous bone marrow mesenchymal stem cell (BMSC) sheets (CS) combined with the acellular scaffolds is transplanted into the lesion site of a rabbit BTI injury model to investigate the therapeutic effects. Our results show that the CS modified scaffold not only successfully achieves triple biomimetic of BTI in structure, ingredient and cell distribution, but also effectively accelerates bone-tendon (B-T) healing. In general, this work demonstrates book-type acellular triphasic scaffold combined with autologous BMSCs sheets is a promising graft for repairing BTI injury.
Collapse
Affiliation(s)
- Yifu Tang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Can Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Fei Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, People's Republic of China
| | - Shanshan Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China; Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, People's Republic of China
| | - Jin Qu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Muzhi Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Zan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Xiaoning Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Qiang Shi
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Xing Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Jianzhong Hu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China; Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China; Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, People's Republic of China.
| |
Collapse
|
27
|
Eftekhari A, Maleki Dizaj S, Sharifi S, Salatin S, Rahbar Saadat Y, Zununi Vahed S, Samiei M, Ardalan M, Rameshrad M, Ahmadian E, Cucchiarini M. The Use of Nanomaterials in Tissue Engineering for Cartilage Regeneration; Current Approaches and Future Perspectives. Int J Mol Sci 2020; 21:E536. [PMID: 31947685 PMCID: PMC7014227 DOI: 10.3390/ijms21020536] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/16/2023] Open
Abstract
The repair and regeneration of articular cartilage represent important challenges for orthopedic investigators and surgeons worldwide due to its avascular, aneural structure, cellular arrangement, and dense extracellular structure. Although abundant efforts have been paid to provide tissue-engineered grafts, the use of therapeutically cell-based options for repairing cartilage remains unsolved in the clinic. Merging a clinical perspective with recent progress in nanotechnology can be helpful for developing efficient cartilage replacements. Nanomaterials, < 100 nm structural elements, can control different properties of materials by collecting them at nanometric sizes. The integration of nanomaterials holds promise in developing scaffolds that better simulate the extracellular matrix (ECM) environment of cartilage to enhance the interaction of scaffold with the cells and improve the functionality of the engineered-tissue construct. This technology not only can be used for the healing of focal defects but can also be used for extensive osteoarthritic degenerative alterations in the joint. In this review paper, we will emphasize the recent investigations of articular cartilage repair/regeneration via biomaterials. Also, the application of novel technologies and materials is discussed.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, 5515878151 Maragheh, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Sara Salatin
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Science, 5166614756 Tabriz, Iran
| | - Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Mohammadreza Ardalan
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, 9414975516 Bojnurd, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany
| |
Collapse
|
28
|
Hu X, Xu J, Li W, Li L, Parungao R, Wang Y, Zheng S, Nie Y, Liu T, Song K. Therapeutic "Tool" in Reconstruction and Regeneration of Tissue Engineering for Osteochondral Repair. Appl Biochem Biotechnol 2019; 191:785-809. [PMID: 31863349 DOI: 10.1007/s12010-019-03214-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Repairing osteochondral defects to restore joint function is a major challenge in regenerative medicine. However, with recent advances in tissue engineering, the development of potential treatments is promising. In recent years, in addition to single-layer scaffolds, double-layer or multilayer scaffolds have been prepared to mimic the structure of articular cartilage and subchondral bone for osteochondral repair. Although there are a range of different cells such as umbilical cord stem cells, bone marrow mesenchyml stem cell, and others that can be used, the availability, ease of preparation, and the osteogenic and chondrogenic capacity of these cells are important factors that will influence its selection for tissue engineering. Furthermore, appropriate cell proliferation and differentiation of these cells is also key for the optimal repair of osteochondral defects. The development of bioreactors has enhanced methods to stimulate the proliferation and differentiation of cells. In this review, we summarize the recent advances in tissue engineering, including the development of layered scaffolds, cells, and bioreactors that have changed the approach towards the development of novel treatments for osteochondral repair.
Collapse
Affiliation(s)
- Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenfang Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.,Key Laboratory of Biological Medicines, Universities of Shandong Province Weifang Key Laboratory of Antibody Medicines, School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Liying Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Roxanne Parungao
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Shuangshuang Zheng
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China. .,Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
29
|
Chen YR, Zhou ZX, Zhang JY, Yuan FZ, Xu BB, Guan J, Han C, Jiang D, Yang YY, Yu JK. Low-Molecular-Weight Heparin-Functionalized Chitosan-Chondroitin Sulfate Hydrogels for Controlled Release of TGF-β3 and in vitro Neocartilage Formation. Front Chem 2019; 7:745. [PMID: 31737612 PMCID: PMC6839338 DOI: 10.3389/fchem.2019.00745] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/17/2019] [Indexed: 12/16/2022] Open
Abstract
Repair of hyaline cartilage remains a huge challenge in clinic because of the avascular and aneural characteristics and the paucity of endogenous repair cells. Recently, tissue engineering technique, possessing unique capacity of repairing large tissue defects, avoiding donor complications and two-stage invasive surgical procedures, has been developed a promising therapeutic strategy for cartilage injury. In this study, we incorporated low-molecular-weight heparin (LMWH) into carboxymethyl chitosan-oxidized chondroitin sulfate (CMC-OCS) hydrogel for loading transforming growth factor-β3 (TGF-β3) as matrix of peripheral blood mesenchymal stem cells (PB-MSCs) to construct tissue-engineered cartilage. Meanwhile, three control hydrogels with or without LMWH and/or TGF-β3 were also prepared. The gelling time, microstructures, mechanical properties, degradation rate, cytotoxicity, and the release of TGF-β3 of different hydrogels were investigated. In vitro experiments evaluated the tri-lineage differentiation potential of PB-MSCs, combined with the proliferation, distribution, viability, morphology, and chondrogenic differentiation. Compared with non-LMWH-hydrogels, LMWH-hydrogels (LMWH-CMC-OCS-TGF-β3) have shorter gelling time, higher mechanical strength, slower degradation rate and more stable and lasting release of TGF-β3. After two weeks of culture in vitro, expression of cartilage-specific genes collagen type-2 (COL-2) and aggrecan (AGC), and secretion of glycosaminoglycan (GAG), and COL-2 proteins in LMWH-CMC-OCS-TGF-β3 group were significantly higher than those in other groups. COL-2 immunofluorescence staining showed that the proportion of COL-2 positive cells and immunofluorescence intensity in LMWH-CMC-OCS-TGF-β3 hydrogel were significantly higher than those in other groups. The LMWH-CMC-OCS-TGF-β3 hydrogel can slowly release TGF-β3 in a long term, and meanwhile the hydrogel can provide a biocompatible microenvironment for the growth and chondrogenic differentiation of PB-MSCs. Thus, LMWH functionalized CMC-OCS hydrogels proposed in this work will be beneficial for constructing functional scaffolds for tissue-engineered cartilage.
Collapse
Affiliation(s)
- You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Zhu-Xing Zhou
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Ji-Ying Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Fu-Zhen Yuan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Bing-Bing Xu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jian Guan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Chao Han
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Dong Jiang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yan-Yu Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
30
|
Stuckensen K, Lamo-Espinosa JM, Muiños-López E, Ripalda-Cemboráin P, López-Martínez T, Iglesias E, Abizanda G, Andreu I, Flandes-Iparraguirre M, Pons-Villanueva J, Elizalde R, Nickel J, Ewald A, Gbureck U, Prósper F, Groll J, Granero-Moltó F. Anisotropic Cryostructured Collagen Scaffolds for Efficient Delivery of RhBMP-2 and Enhanced Bone Regeneration. MATERIALS 2019; 12:ma12193105. [PMID: 31554158 PMCID: PMC6804013 DOI: 10.3390/ma12193105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/22/2023]
Abstract
In the treatment of bone non-unions, an alternative to bone autografts is the use of bone morphogenetic proteins (BMPs), e.g., BMP–2, BMP–7, with powerful osteoinductive and osteogenic properties. In clinical settings, these osteogenic factors are applied using absorbable collagen sponges for local controlled delivery. Major side effects of this strategy are derived from the supraphysiological doses of BMPs needed, which may induce ectopic bone formation, chronic inflammation, and excessive bone resorption. In order to increase the efficiency of the delivered BMPs, we designed cryostructured collagen scaffolds functionalized with hydroxyapatite, mimicking the structure of cortical bone (aligned porosity, anisotropic) or trabecular bone (random distributed porosity, isotropic). We hypothesize that an anisotropic structure would enhance the osteoconductive properties of the scaffolds by increasing the regenerative performance of the provided rhBMP–2. In vitro, both scaffolds presented similar mechanical properties, rhBMP–2 retention and delivery capacity, as well as scaffold degradation time. In vivo, anisotropic scaffolds demonstrated better bone regeneration capabilities in a rat femoral critical-size defect model by increasing the defect bridging. In conclusion, anisotropic cryostructured collagen scaffolds improve bone regeneration by increasing the efficiency of rhBMP–2 mediated bone healing.
Collapse
Affiliation(s)
- Kai Stuckensen
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, D-97070 Würzburg, Germany
| | - José M Lamo-Espinosa
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Emma Muiños-López
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Purificación Ripalda-Cemboráin
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | | | - Elena Iglesias
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Gloria Abizanda
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ion Andreu
- Department of Materials CEIT-TECNUN, Universidad de Navarra, 20018 San Sebastian, Spain
| | | | - Juan Pons-Villanueva
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Reyes Elizalde
- Department of Materials CEIT-TECNUN, Universidad de Navarra, 20018 San Sebastian, Spain
| | - Joachim Nickel
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Andrea Ewald
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, D-97070 Würzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, D-97070 Würzburg, Germany
| | - Felipe Prósper
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Department of Haematology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, D-97070 Würzburg, Germany.
| | - Froilán Granero-Moltó
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
31
|
Bahcecioglu G, Bilgen B, Hasirci N, Hasirci V. Anatomical meniscus construct with zone specific biochemical composition and structural organization. Biomaterials 2019; 218:119361. [PMID: 31336280 DOI: 10.1016/j.biomaterials.2019.119361] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/29/2019] [Accepted: 07/14/2019] [Indexed: 12/30/2022]
Abstract
A PCL/hydrogel construct that would mimic the structural organization, biochemistry and anatomy of meniscus was engineered. The compressive (380 ± 40 kPa) and tensile modulus (18.2 ± 0.9 MPa) of the PCL scaffolds were increased significantly when constructs were printed with a shifted design and circumferential strands mimicking the collagen organization in native tissue (p < 0.05). Presence of circumferentially aligned PCL strands also led to elongation and alignment of the human fibrochondrocytes. Gene expression of the cells in agarose (Ag), gelatin methacrylate (GelMA), and GelMA-Ag hydrogels was significantly higher than that of cells on the PCL scaffolds after a 21-day culture. GelMA exhibited the highest level of collagen type I (COL1A2) mRNA expression, while GelMA-Ag exhibited the highest level of aggrecan (AGG) expression (p < 0.001, compared to PCL). GelMA and GelMA-Ag exhibited a high level of collagen type II (COL2A1) expression (p < 0.05, compared to PCL). Anatomical scaffolds with circumferential PCL strands were impregnated with cell-loaded GelMA in the periphery and GelMA-Ag in the inner region. GelMA and GelMA-Ag hydrogels enhanced the production of COL 1 and COL 2 proteins after a 6-week culture (p < 0.05). COL 1 expression increased gradually towards the outer periphery, while COL 2 expression decreased. We were thus able to engineer an anatomical meniscus with a cartilage-like inner region and fibrocartilage-like outer region.
Collapse
Affiliation(s)
- G Bahcecioglu
- Center of Excellence in Biomaterials and Tissue Engineering, BIOMATEN, Middle East Technical University, Ankara, Turkey; Department of Biological Sciences, Middle East Technical University, Ankara, Turkey; Graduate Department of Biotechnology, Middle East Technical University, Ankara, Turkey
| | - B Bilgen
- Providence VA Medical Center, Providence, RI, USA; Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - N Hasirci
- Center of Excellence in Biomaterials and Tissue Engineering, BIOMATEN, Middle East Technical University, Ankara, Turkey; Graduate Department of Biotechnology, Middle East Technical University, Ankara, Turkey; Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - V Hasirci
- Center of Excellence in Biomaterials and Tissue Engineering, BIOMATEN, Middle East Technical University, Ankara, Turkey; Department of Biological Sciences, Middle East Technical University, Ankara, Turkey; Graduate Department of Biotechnology, Middle East Technical University, Ankara, Turkey; Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| |
Collapse
|
32
|
Meininger S, Moseke C, Spatz K, März E, Blum C, Ewald A, Vorndran E. Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1145-1158. [PMID: 30812998 DOI: 10.1016/j.msec.2019.01.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/27/2022]
Abstract
3D powder printing is a versatile method for the fabrication of individual bone implants and was used for the processing of in vivo degradable ceramic scaffolds based on ammonium magnesium phosphate hexahydrate (struvite). In this study, synergetic effects could be achieved by the substitution of magnesium phosphate cements with strontium carbonate. This substitution resulted in 8.2 wt%, 16.4 wt%, and 24.6 wt% Sr2+ doped scaffolds, with a 1.9-3.1 times increased radiopacity compared to pure struvite. The maximal compressive strength of (16.1 ± 1.1) MPa found for strontium substituted magnesium phosphate was in the range of cancelleous bone, which makes these 3D printed structures suitable for medical application in low-load-bearing bone areas. In an ion release study over a course of 18 days, the release of strontium, magnesium, calcium, and phosphate ions from scaffolds was analyzed by means of inductively coupled plasma mass spectrometry. Independent of the scaffold composition the Mg2+ concentrations (83-499 mg/l) continuously increased in the cell media. The Sr2+ release varied between 4.3 μg/day and 15.1 μg/day per g scaffold, corresponding to a Sr2+ concentration in media between 1.14 mg/l and 7.24 mg/l. Moreover, decreasing calcium and phosphate concentrations indicated the precipitation of an amorphous calcium phosphate phase. The superior osteogenic properties of strontium substituted magnesium phosphate, e.g. the increase of osteoblast activity and cell number and the simultaneous suppression of osteoclast differentiation could be verified in vitro by means of WST-assay, TRAP-staining, and SEM imaging.
Collapse
Affiliation(s)
- Susanne Meininger
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - Claus Moseke
- Institute for Biomedical Engineering (IBMT), University of Applied Sciences Mittelhessen (THM), Gießen, Germany
| | - Kerstin Spatz
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - Emilie März
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - Carina Blum
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - Andrea Ewald
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - Elke Vorndran
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany.
| |
Collapse
|
33
|
Rödel M, Baumann K, Groll J, Gbureck U. Simultaneous structuring and mineralization of silk fibroin scaffolds. J Tissue Eng 2018; 9:2041731418788509. [PMID: 30046433 PMCID: PMC6056790 DOI: 10.1177/2041731418788509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/21/2018] [Indexed: 11/22/2022] Open
Abstract
Silk fibroin is commonly used as scaffold material for tissue engineering
applications. In combination with a mineralization with different calcium
phosphate phases, it can also be applied as material for bone regeneration.
Here, we present a study which was performed to produce mineralized silk fibroin
scaffolds with controlled macroporosity. In contrast to former studies, our
approach focused on a simultaneous gelation and mineralization of silk fibroin
by immersion of frozen silk fibroin monoliths in acidic calcium phosphate
solutions. This was achieved by thawing frozen silk fibroin monoliths in acidic
calcium phosphate solution, leading to the precipitation of monocalcium
phosphate within the silk fibroin matrix. In the second approach, a conversion
of incorporated β-tricalcium phosphate particles into brushite was successfully
achieved. Furthermore, a controlled cryostructuring process of silk fibroin
scaffolds was carried out leading to the formation of parallel-oriented pores
with diameters of 30–50 µm.
Collapse
Affiliation(s)
- Michaela Rödel
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Katrin Baumann
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), Julius-Maximilians-University of Würzburg, Würzburg, Germany
| |
Collapse
|