1
|
Chen L, Mu C, Song W, Zhou J, Chen M. SiO x-Rh(111) Interface: Stability and Activation of Small Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40275679 DOI: 10.1021/acs.langmuir.5c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
SiO2 supported Rh-based catalysts have been extensively used in CO hydrogenation reactions. The incorporation of promoters into the Rh/SiO2 catalyst modulates the charge on Rh, subsequently enhancing its activity and selectivity toward C2 oxygenates. Despite this, the structural and electronic properties of the Rh-SiOx interface have not been exhaustively explored. In this study, silicon was evaporated onto the Rh(111) surface, followed by annealing in O2 to form ultrathin SiOx films. The results indicate that SiOx films grow on the Rh(111) surface in a layer-plus-island mode. The stabilities of the SiOx-Rh interface in O2 with an elevated pressure and vacuum annealing were examined. Both O2 and CO can adsorb in the interface of SiOx-Rh in elevated pressures. The binding energies of Si 2p and O 1s shift as oxygen is adsorbed in the interface. The results provide evidence for the activation of small molecules in the metal-oxide interface, and show a passivation effect of an oxide coated metal surface.
Collapse
Affiliation(s)
- Lan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Changle Mu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Wuyang Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Jing Zhou
- Department of Chemistry, College of Engineering and Physical Sciences, University of Wyoming, Laramie, Wyoming 82072, United States
| | - Mingshu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
2
|
Feng Y, Zhang S, Chen M, Zhu L, Pei A, Wu F, Liao X, Gao Q, Wang W, Yang Z, Ye H, Chen BH. Revealing the mechanism of bifunctional PtLa electrocatalyst for highly efficient methanol oxidation, hydrogen evolution, and coupling reaction. J Colloid Interface Sci 2025; 679:918-928. [PMID: 39486230 DOI: 10.1016/j.jcis.2024.10.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
The development of clean energy solutions, such as fuel cells and hydrogen energy, is crucial for addressing the global energy shortage. Platinum (Pt)-based catalysts are widely used in fuel cells and hydrogen energy generation (for example, via water electrolysis). However, reducing the amount of Pt used while maintaining the catalytic performance of such catalysts is essential. Herein, PtLa catalysts (PtxLay/C) doped with rare earth element lanthanum (La) with different Pt/La atomic ratios were synthesized using a simple chemical reduction method, resulting in Pt65La35/C, Pt78La22/C, Pt97La3/C, and Pt100/C. These PtxLay/C catalysts exhibited excellent electrocatalytic activity and stability in methanol oxidation reaction (MOR), hydrogen evolution reaction (HER), and their coupling reaction as MOR||HER under alkaline conditions. The mechanism by which La doping enhances the electrocatalytic properties and stability of Pt-based catalysts was investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), aberration-corrected scanning transmission electron microscopy (AC-STEM), in-situ Fourier transform infrared (FTIR) and operando Raman spectroscopy. For HER, La doping facilitated the adsorption and activation of H2O at Pt sites, improving water dissociation and *OH desorption and reducing Pt poisoning by *OH. This enhances both the catalytic performance and stability of PtxLay/C for HER. Pt78La22/C exhibited a considerably lower overpotential of only 111 mV at 100 mA cm-2 compared to commercial 20 wt% Pt/C (Pt/C-Johnson Matthey (JM)), which requires 153 mV. For MOR, La promotes CO bond cleavage and reduces CO adsorption at the Pt sites, thereby enhancing both the performance and stability of the catalysts. The mass activity (MA) of Pt78La22/C for MOR is 4.44 A mg-1Pt, which is 12.33 times higher than that of Pt/C-JM (0.36 A/mgPt), and surpasses those of Pt65La35/C, Pt97La3/C, and Pt100/C (2.93, 0.24, and 2.91 A mg-1Pt, respectively). Additionally, Pt78La22/C exhibited outstanding catalytic performance for MOR||HER, with a current density of 20 mA cm-2 at 1.030 V, demonstrating good stability with negligible voltage changes after a 15 h chronoamperometry (CA) testing. This study provides a new strategy for synthesizing Pt-based catalysts with enhanced efficiency and low-energy input for HER||MOR.
Collapse
Affiliation(s)
- Yingliang Feng
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Sifan Zhang
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Mingzhi Chen
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Lihua Zhu
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| | - An Pei
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Fengshun Wu
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Xianping Liao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China.
| | | | | | | | - Bing Hui Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Khatun S, Samanta S, Sahoo S, Mukherjee I, Maity S, Pradhan A. Bottom-Up Porous Graphene Synthesis and its Applications. Chemistry 2024; 30:e202403386. [PMID: 39492795 DOI: 10.1002/chem.202403386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
Incorporation of regular order pores/holes/defects into semimetalic graphene sheets can tune the band gap up to 1 eV or more introducing semiconducting property and therefore exhibiting promising applications for organic electronics such as field-effect transistors (FETs), molecular sieve membranes, gas sensing, catalysis devices, etc. In this mini review, we focused on bottom-up approaches to introduce periodic homogeneous pores into graphene and nanographene and graphene nanoribbons along with their characteristics and potential applications in various fields.
Collapse
Affiliation(s)
- Sahina Khatun
- Department of Chemistry, Birla Institute of Technology (BIT)-Mesra, Ranchi, Jharkhand, 835215, India
| | - Siddhartha Samanta
- Department of Chemistry, Birla Institute of Technology (BIT)-Mesra, Ranchi, Jharkhand, 835215, India
| | - Satadal Sahoo
- Department of Chemistry, Birla Institute of Technology (BIT)-Mesra, Ranchi, Jharkhand, 835215, India
| | - Ishita Mukherjee
- Department of Chemistry, Birla Institute of Technology (BIT)-Mesra, Ranchi, Jharkhand, 835215, India
| | - Sanhita Maity
- Department of Applied Sciences, Amity University, Jharkhand, India
| | - Anirban Pradhan
- Department of Chemistry, Birla Institute of Technology (BIT)-Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
4
|
Chen CX, Yang SS, Pang JW, He L, Zang YN, Ding L, Ren NQ, Ding J. Anthraquinones-based photocatalysis: A comprehensive review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100449. [PMID: 39104553 PMCID: PMC11298862 DOI: 10.1016/j.ese.2024.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
In recent years, there has been significant interest in photocatalytic technologies utilizing semiconductors and photosensitizers responsive to solar light, owing to their potential for energy and environmental applications. Current efforts are focused on enhancing existing photocatalysts and developing new ones tailored for environmental uses. Anthraquinones (AQs) serve as redox-active electron transfer mediators and photochemically active organic photosensitizers, effectively addressing common issues such as low light utilization and carrier separation efficiency found in conventional semiconductors. AQs offer advantages such as abundant raw materials, controlled preparation, excellent electron transfer capabilities, and photosensitivity, with applications spanning the energy, medical, and environmental sectors. Despite their utility, comprehensive reviews on AQs-based photocatalytic systems in environmental contexts are lacking. In this review, we thoroughly describe the photochemical properties of AQs and their potential applications in photocatalysis, particularly in addressing key environmental challenges like clean energy production, antibacterial action, and pollutant degradation. However, AQs face limitations in practical photocatalytic applications due to their low electrical conductivity and solubility-related secondary contamination. To mitigate these issues, the design and synthesis of graphene-immobilized AQs are highlighted as a solution to enhance practical photocatalytic applications. Additionally, future research directions are proposed to deepen the understanding of AQs' theoretical mechanisms and to provide practical applications for wastewater treatment. This review aims to facilitate mechanistic studies and practical applications of AQs-based photocatalytic technologies and to improve understanding of these technologies.
Collapse
Affiliation(s)
- Cheng-Xin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, 100096, China
| | - Lei He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ya-Ni Zang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lan Ding
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
5
|
Gao X, Yang H, Qiu J, Liu L, Peng J. Ultrathin Carbon Shell Protecting Copper Sites to Boost Anodic Hydrogen Production via Low-Potential Formaldehyde Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43582-43590. [PMID: 39116300 DOI: 10.1021/acsami.4c08722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The oxidation of aldehydes on a copper-based electrocatalyst within a small potential window can produce hydrogen at the anode, thus offering a bipolar hydrogen production system. However, the inherent activity and stability of Cu-based electrocatalysts for aldehyde oxidation are still not satisfactory in practical application. Herein, by coating an ultrathin carbon shell on the copper sphere, an effective and stable formaldehyde oxidation reaction (FOR) can be realized to produce H2 at a very low potential. FOR needs only a potential of 0.13 V (vs RHE) to reach a current density of 100 mA cm-2. By coupling FOR with hydrogen evolution reaction (HER), hydrogen is generated simultaneously at both the cathode and the anode. The Faraday efficiency of H2 at the bipolar state is close to 100%. In a flow cell, it needs a low cell voltage of 0.1 V to reach a current density of 100 mA cm-2. Moreover, it can be operated steadily for more than 30 h at high current density. The carbon shell acts as an armor to protect the Cu(0) sites, avoid the oxidation of copper, and keep the catalyst activity for a long time in the electrolytic process. Experimental and theoretical calculation results indicate that electron transfer occurs at the interface between the copper core and ultrathin carbon shell. The ultrathin carbon-coated Cu reduces the reaction energy barrier, making the C-H bond more easily fractured and facilitating H coupling to generate H2. This study provides a basic principle for the design of copper-based electrocatalysts with long durability and activity.
Collapse
Affiliation(s)
- Xiafei Gao
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Heng Yang
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Jianghui Qiu
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Limin Liu
- College of Chemistry and Chemical Engineering, Jinggangshan University, Jian 343009, P. R. China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Juan Peng
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| |
Collapse
|
6
|
Olowoyo JO, Gharahshiran VS, Zeng Y, Zhao Y, Zheng Y. Atomic/molecular layer deposition strategies for enhanced CO 2 capture, utilisation and storage materials. Chem Soc Rev 2024; 53:5428-5488. [PMID: 38682880 DOI: 10.1039/d3cs00759f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Elevated levels of carbon dioxide (CO2) in the atmosphere and the diminishing reserves of fossil fuels have raised profound concerns regarding the resulting consequences of global climate change and the future supply of energy. Hence, the reduction and transformation of CO2 not only mitigates environmental pollution but also generates value-added chemicals, providing a dual remedy to address both energy and environmental challenges. Despite notable advancements, the low conversion efficiency of CO2 remains a major obstacle, largely attributed to its inert chemical nature. It is imperative to engineer catalysts/materials that exhibit high conversion efficiency, selectivity, and stability for CO2 transformation. With unparalleled precision at the atomic level, atomic layer deposition (ALD) and molecular layer deposition (MLD) methods utilize various strategies, including ultrathin modification, overcoating, interlayer coating, area-selective deposition, template-assisted deposition, and sacrificial-layer-assisted deposition, to synthesize numerous novel metal-based materials with diverse structures. These materials, functioning as active materials, passive materials or modifiers, have contributed to the enhancement of catalytic activity, selectivity, and stability, effectively addressing the challenges linked to CO2 transformation. Herein, this review focuses on ALD and MLD's role in fabricating materials for electro-, photo-, photoelectro-, and thermal catalytic CO2 reduction, CO2 capture and separation, and electrochemical CO2 sensing. Significant emphasis is dedicated to the ALD and MLD designed materials, their crucial role in enhancing performance, and exploring the relationship between their structures and catalytic activities for CO2 transformation. Finally, this comprehensive review presents the summary, challenges and prospects for ALD and MLD-designed materials for CO2 transformation.
Collapse
Affiliation(s)
- Joshua O Olowoyo
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| | - Vahid Shahed Gharahshiran
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| | - Yimin Zeng
- Natural Resources Canada - CanmetMaterials, Hamilton, Canada
| | - Yang Zhao
- Department of Mechanical and Materials Engineering, Western University, London, ON N6A 5B9, Canada.
| | - Ying Zheng
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| |
Collapse
|
7
|
Ba J, Dong H, Odziomek M, Lai F, Wang R, Han Y, Shu J, Antonietti M, Liu T, Yang W, Tian Z. Red Carbon Mediated Formation of Cu 2O Clusters Dispersed on the Oxocarbon Framework by Fehling's Route and their Use for the Nitrate Electroreduction in Acidic Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400396. [PMID: 38528795 DOI: 10.1002/adma.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The oligomers of carbon suboxide, known as red carbon, exhibit a highly conjugated structure and semiconducting properties. Upon mild heat treatment, it transforms into a carbonaceous framework rich in oxygen surface terminations, called oxocarbon. In this study, the abundant oxygen functionalities are harnessed as anchors to create oxocarbon-supported nanohybrid electrocatalysts. Starting with single atomic Cu (II) strongly coordinated to oxygen atoms on red carbon, the Fehling reaction leads to the formation of Cu2O clusters. Simultaneously, a covalent oxocarbon framework emerges via cross-linking, providing robust support for Cu2O clusters. Notably, the oxocarbon support effectively stabilizes Cu2O clusters of very small size, ensuring their high durability in acidic conditions and the presence of ammonia. The synthesized material exhibits a superior electrocatalytic activity for nitrate reduction under acidic electrolyte conditions, with a high yield rate of ammonium (NH4 +) at 3.31 mmol h-1 mgcat -1 and a Faradaic efficiency of 92.5% at a potential of -0.4 V (vs RHE).
Collapse
Affiliation(s)
- Jingwen Ba
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, P. R. China
| | - Mateusz Odziomek
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Rui Wang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Yandong Han
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Jinfu Shu
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, P. R. China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wensheng Yang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
8
|
Li B, Xie X, Meng T, Guo X, Li Q, Yang Y, Jin H, Jin C, Meng X, Pang H. Recent advance of nanomaterials modified electrochemical sensors in the detection of heavy metal ions in food and water. Food Chem 2024; 440:138213. [PMID: 38134834 DOI: 10.1016/j.foodchem.2023.138213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
As one of the main pollutants, heavy metal ions can accumulate in the human body and cause a cascade of damage. Electrochemical sensors provide great prospects for tracing heavy metal ions because of their properties of high sensitivity, low detection limits and fast response. Electrode surface modification materials play a key role in enhancing the performance of electrochemical sensors. Herein, we summarize in detail the recent work on electrochemical sensors modified by carbon nanomaterials (graphene and its derivatives, carbon nanofibers and carbon nanotubes), metal nanomaterials (gold, silver, bismuth and iron), complexes (MOFs, ZIFs and MXenes) and their composites for the detection of heavy metal ions (mainly include Cd(II), Hg(II), Pb(II), As(III), Cu(II) and Zn(II)) in food and water. The synthetic strategies, mechanisms, innovations, advantages, challenges and prospects of various electrode modification nanomaterials for the detection of heavy metal ions in food and water are discussed.
Collapse
Affiliation(s)
- Bing Li
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China; College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, PR China.
| | - Xiaomei Xie
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Tonghui Meng
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Xiaotian Guo
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Qingzheng Li
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Yuting Yang
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Haixia Jin
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, PR China
| | - Xiangren Meng
- College of Tourism and Culinary Science, Yangzhou University, Jiangsu 225127, PR China.
| | - Huan Pang
- College of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu, 225002, PR China.
| |
Collapse
|
9
|
Zhu Y, Zhang S, Qiu X, Hao Q, Wu Y, Luo Z, Guo Y. Graphdiyne/metal oxide hybrid materials for efficient energy and environmental catalysis. Chem Sci 2024; 15:5061-5081. [PMID: 38577352 PMCID: PMC10988606 DOI: 10.1039/d4sc00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
Graphdiyne (GDY)-based materials, owing to their unique structure and tunable electronic properties, exhibit great potential in the fields of catalysis, energy, environmental science, and beyond. In particular, GDY/metal oxide hybrid materials (GDY/MOs) have attracted extensive attention in energy and environmental catalysis. The interaction between GDY and metal oxides can increase the number of intrinsic active sites, facilitate charge transfer, and regulate the adsorption and desorption of intermediate species. In this review, we summarize the structure, synthesis, advanced characterization, small molecule activation mechanism and applications of GDY/MOs in energy conversion and environmental remediation. The intrinsic structure-activity relationship and corresponding reaction mechanism are highlighted. In particular, the activation mechanisms of reactant molecules (H2O, O2, N2, etc.) on GDY/MOs are systemically discussed. Finally, we outline some new perspectives of opportunities and challenges in developing GDY/MOs for efficient energy and environmental catalysis.
Collapse
Affiliation(s)
- Yuhua Zhu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
- School of Civil Engineering, Wuhan University Wuhan 430072 China
| | - Shuhong Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
| | - Xiaofeng Qiu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
| | - Quanguo Hao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
| | - Yan Wu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
| | - Zhu Luo
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
- Wuhan Institute of Photochemistry and Technology 7 North Bingang Road Wuhan Hubei 430082 China
| | - Yanbing Guo
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
- Wuhan Institute of Photochemistry and Technology 7 North Bingang Road Wuhan Hubei 430082 China
| |
Collapse
|
10
|
Feng Y, Zhu L, Pei A, Zhang S, Liu K, Wu F, Li W. Platinum-palladium-on-reduced graphene oxide as bifunctional electrocatalysts for highly active and stable hydrogen evolution and methanol oxidation reaction. NANOSCALE 2023; 15:16904-16913. [PMID: 37853801 DOI: 10.1039/d3nr04014c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In the context of the gradual depletion of global fossil fuel resources, it is increasingly necessary to explore new alternative energy. Hydrogen energy has attracted great interest from researchers because of its green and pollution-free characteristics. Moreover, the methanol oxidation reaction (MOR) can combine the hydrogen evolution reaction (HER), replacing the anode reaction (oxygen evolution reaction-OER) in overall water splitting and efficiently producing hydrogen. In this study, platinum-palladium nanoparticles on reduced graphene oxide (PtPd/rGO) were successfully synthesized as HER and MOR bifunctional electrocatalysts under alkaline conditions by the stepwise loading of Pt and Pd bimetallic nanoparticles on rGO using a simple liquid-phase reduction method. PtPd/rGO-2 with 0.99 wt% Pt and 2.86 wt% Pd in the HER has the lowest overpotential (87.16 mV at 100 mA cm-2), with the smallest Tafel slope (18.9 mV dec-1). The exceptional mass activity of PtPd/rGO-2 in the MOR reaches 10.75 A mg-1PtPd, which is 18.22 and 53.75 times greater than that of commercial Pt/C (Pt/C) and commercial Pd/C (Pd/C), respectively. PtPd/rGO-2 is 0.935 V lower in the coupling reaction of HER and MOR (MOR ∥ HER) compared to the overall water splitting (OER ∥ HER) without methanol (10 mA cm-2). This is probably because appropriate Pt and Pd loading exposes many more catalytic sites, and the synergistic interaction between Pt, Pd, and Pt-Pd enhances the catalytic performance. This strategy can be used for the synthesis of novel bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Yingliang Feng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| | - Lihua Zhu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| | - An Pei
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| | - Sifan Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| | - Kunming Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| | - Fengshun Wu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| | - Wenqi Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| |
Collapse
|
11
|
Liu L, Ji Y, You W, Liu S, Shao Q, Kong Q, Hu Z, Tao H, Bu L, Huang X. Trace Lattice S Inserted RuO 2 Flexible Nanosheets for Efficient and Long-Term Acidic Oxygen Evolution Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208202. [PMID: 37222629 DOI: 10.1002/smll.202208202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/29/2023] [Indexed: 05/25/2023]
Abstract
Pursuing highly active and long-term stable ruthenium (Ru) based oxygen evolution reaction (OER) catalyst for water electrolysis under acidic conditions is of great significance yet a tremendous challenge to date. To solve the problem of serious Ru corrosion in an acid medium, the trace lattice sulfur (S) inserted RuO2 catalyst is prepared. The optimized catalyst (Ru/S NSs-400) has shown a record stability of 600 h for the solely containing Ru (iridium-free) nanomaterials. In the practical proton exchange membrane device, the Ru/S NSs-400 can even sustain more than 300 h without obvious decay at the high current density of 250 mA cm-2 . The detailed investigations reveal that S doping not only changes the electronic structure of Ru via forming RuS coordination for high adsorption of reaction intermediates but also stabilizes Ru from over-oxidation. This strategy is also effective for improving the stability of commercial Ru/C and homemade Ru-based nanoparticles. This work offers a highly effective strategy to design high-performance OER catalysts for water splitting and beyond.
Collapse
Affiliation(s)
- Liangbin Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Wentao You
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Qingyu Kong
- Synchrotron Soleil, L'Orme des Merisiers, St-Aubin, Gif-sur-Yvette, CEDEX, 91192, France
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Huabing Tao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lingzheng Bu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
12
|
Liu N, Cheng J, Liu L, Gao S, Hou W, Luo M, Zhang H, Ye B, Zhou J. Crosslinking two-dimensional metalloporphyrin (Me-TCPP) nanosheet with poly(ethylene) glycol semi-interpenetrating polymer network for ultrahigh CO2/N2 separation selectivity via “rubber-band” straightening effect. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
13
|
Zhang K, Deng Y, Wu Y, Wang L, Yan L. Prussian-blue-analogue derived FeNi 2S 4/NiS nanoframes supported by N-doped graphene for highly efficient methanol oxidation electrocatalysis. J Colloid Interface Sci 2023; 647:246-254. [PMID: 37253293 DOI: 10.1016/j.jcis.2023.05.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
The design of effective and robust non-noble metal electrocatalysts to enhance catalytic reaction kinetic is critical to promote methanol oxidation catalysis. Herein, hierarchical Prussian blue analogue (PBA)-derived sulfide heterostructures supported by N-doped graphene (FeNi2S4/NiS-NG) as efficient catalysts have been developed for methanol oxidation reaction (MOR). Benefiting from the merits of hollow nanoframes structure and heterogeneous sulfide synergy, FeNi2S4/NiS-NG composite not only possesses abundant active sites to boost the catalytic properties but also alleviates the CO poisoning effect during the process exhibiting favorable kinetic behavior toward MOR. Specifically, the remarkable catalytic activity (97.6 mA cm-2/1544.3 mA mg-1) of FeNi2S4/NiS-NG for methanol oxidation was achieved, superior to most reported non-noble electrocatalysts. Additionally, the catalyst showed competitive electrocatalytic stability, with a current density of over 90% after 2000 consecutive CV cycles. This study offers promising insights into the rational modulation of the morphology and components of precious-metal-free catalysts for fuel cell applications.
Collapse
Affiliation(s)
- Kefu Zhang
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Jinzairoad 96, Hefei 230026, Anhui, China
| | - Yongqi Deng
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Jinzairoad 96, Hefei 230026, Anhui, China
| | - Yihan Wu
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Jinzairoad 96, Hefei 230026, Anhui, China
| | - Lele Wang
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Jinzairoad 96, Hefei 230026, Anhui, China
| | - Lifeng Yan
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Jinzairoad 96, Hefei 230026, Anhui, China.
| |
Collapse
|
14
|
Wang W, Qian Q, Li Y, Zhu Y, Feng Y, Cheng M, Zhang H, Zhang Y, Zhang G. Robust and Highly Efficient Electrochemical Hydrogen Production from Hydrazine-Assisted Water Electrolysis Enabled by the Metal-Support Interaction of Ru/C Composites. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37225429 DOI: 10.1021/acsami.3c04342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hydrazine oxidation-assisted water electrolysis provides a promising way for the energy-efficient electrochemical hydrogen (H2) and synchronous decomposition of hydrazine-rich wastewater, but the development of highly active catalysts still remains a great challenge. Here, we demonstrate the robust and highly active Ru nanoparticles supported on the hollow N-doped carbon microtube (denoted as Ru NPs/H-NCMT) composite structure as HER and HzOR bifunctional electrocatalysts. Thanks to such unique hierarchical architectures, the as-synthesized Ru NPs/H-NCMTs exhibit prominent electrocatalytic activity in the alkaline condition, which needs a low overpotential of 29 mV at 10 mA cm-2 for HER and an ultrasmall working potential of -0.06 V (vs RHE) to attain the same current density for HzOR. In addition, assembling a two-electrode hybrid electrolyzer using as-prepared Ru NPs/H-NCMT catalysts shows a small cell voltage of mere 0.108 V at 100 mA cm-2, as well as the remarkable long-term stability. Density functional theory calculations further reveal that the Ru NPs serve as the active sites for both the HER and HzOR in the nanocomposite, which facilitates the adsorption of H atoms and hydrazine dehydrogenation kinetics, thus enhancing the performances of HER and HzOR. This work paves a novel avenue to develop efficient and stable electrocatalysts toward HER and HzOR that promises energy-saving hybrid water electrolysis electrochemical H2 production.
Collapse
Affiliation(s)
- Wentao Wang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Qizhu Qian
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Yapeng Li
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Yin Zhu
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Yafei Feng
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Mingyu Cheng
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Huaikun Zhang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Yangyang Zhang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
15
|
Wang G, Ma Y, Wang J, Lu P, Wang Y, Fan Z. Metal functionalization of two-dimensional nanomaterials for electrochemical carbon dioxide reduction. NANOSCALE 2023; 15:6456-6475. [PMID: 36951476 DOI: 10.1039/d3nr00484h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the mechanical exfoliation of graphene in 2004, researchers around the world have devoted significant efforts to the study of two-dimensional (2D) nanomaterials. Nowadays, 2D nanomaterials are being developed into a large family with varieties of structures and derivatives. Due to their fascinating electronic, chemical, and physical properties, 2D nanomaterials are becoming an important type of catalyst for the electrochemical carbon dioxide reduction reaction (CO2RR). Here, we review the recent progress in electrochemical CO2RR using 2D nanomaterial-based catalysts. First, we briefly describe the reaction mechanism of electrochemical CO2 reduction to single-carbon (C1) and multi-carbon (C2+) products. Then, we discuss the strategies and principles for applying metal materials to functionalize 2D nanomaterials, such as graphene-based materials, metal-organic frameworks (MOFs), and transition metal dichalcogenides (TMDs), as well as applications of resultant materials in the electrocatalytic CO2RR. Finally, we summarize the present research advances and highlight the current challenges and future opportunities of using metal-functionalized 2D nanomaterials in the electrochemical CO2RR.
Collapse
Affiliation(s)
- Guozhi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Juan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
16
|
Wang R, Shangguan Y, Feng X, Gu X, Dai W, Yang S, Tang H, Liang J, Tian Y, Yang D, Chen H. Interfacial Coordinational Bond Triggered Photoreduction Membrane for Continuous Light-Driven Precious Metals Recovery. NANO LETTERS 2023; 23:2219-2227. [PMID: 36913675 DOI: 10.1021/acs.nanolett.2c04852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chemical/electric energy-driven processes dominate the traditional precious metal (PM) recovery market. The renewable energy-driven selective PM recycling approach crucial for carbon neutrality is under exploration. Herein, via an interfacial structure engineering approach, coordinational-active pyridine groups are covalently integrated onto the photoactive semiconductor SnS2 surface to construct Py-SnS2. Triggered by the preferred coordinational binding force between PMs and pyridine groups, together with the photoreduction capability of SnS2, Py-SnS2 shows significantly enhanced selective PM-capturing performance toward Au3+, Pd4+, and Pt4+ with recycling capacity up to 1769.84, 1103.72, and 617.61 mg/g for Au3+, Pd4+, and Pt4+, respectively. Further integrating the Py-SnS2 membrane into a homemade light-driven flow cell, 96.3% recovery efficiency was achieved for continuous Au recycling from a computer processing unit (CPU) leachate. This study reported a novel strategy to fabricate coordinational bonds triggered photoreductive membranes for continuous PM recovery, which could be expanded to other photocatalysts for broad environmental applications.
Collapse
Affiliation(s)
- Ranhao Wang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Yangzi Shangguan
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Xuezhen Feng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Xiaosong Gu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Wei Dai
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Songhe Yang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Huan Tang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Jiaxin Liang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Yixin Tian
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Dazhong Yang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Hong Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
17
|
Han M, Zhao Z, Zhang X, Wang P, Xing L, Jia D, Wang L, Chen X, Gao H, Wang G. Phosphorus-Doped directly interconnected networks of amorphous Metal-Organic framework nanowires for efficient methanol oxidation. J Colloid Interface Sci 2023; 641:675-684. [PMID: 36965339 DOI: 10.1016/j.jcis.2023.03.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023]
Abstract
Developing high-performance and low-cost electrocatalysts toward methanol oxidation reaction (MOR) is essential for fuel cell applications. Herein, we report a defect engineering strategy integrating amorphization and phosphorization to construct directly interconnected networks of amorphous NiCo-based metal-organic framework nanowires (a-NiCo-MOFNWs) with phosphorus (P) doping. The resulting P-doped a-NiCo-MOFNWs (a-NiCo-MOFNWs-P) network displays superior MOR efficiency and long-term durability over 1000 cyclic voltammetry (CV) measurements. The special structure of directly interconnected networks and the synergistic effect between the amorphous MOFs and dispersed phosphorus species give rise to abundant exposed active sites, accelerated electron transport, and increased porosity for mass transfer, thus boosting the reaction kinetics of MOR. This work provides additional insights into the network assembly and structural evolution of one-dimensional (1D) MOFs, and also opens up new avenues for the design of highly reactive and robust non-precious metal-based electrocatalysts.
Collapse
Affiliation(s)
- Mengyi Han
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Zhiyong Zhao
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Xiaowei Zhang
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China.
| | - Peng Wang
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Liwen Xing
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Jia
- Research Institute of Petroleum Processing, Sinopec, 18 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Linmeng Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Hongyi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School, University of Science and Technology Beijing, Shunde 528399, China
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
18
|
Bekmezci M, Gules GN, Bayat R, Sen F. Modification of multi-walled carbon nanotubes with platinum-osmium to develop stable catalysts for direct methanol fuel cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1223-1229. [PMID: 36804657 DOI: 10.1039/d2ay02002e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the study, a new bimetallic catalyst was synthesized for methanol oxidation using multi-walled carbon nanotube (MWCNT)-supported platinum-osmium (PtOs) nanoparticles (PtOs@MWCNT NPs). The morphological structures of the prepared NPs were examined using different techniques, such as scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical characterization of the synthesized PtOs@MWCNT catalysts, such as chronoamperometry (CA), cyclic voltammetry (CV), scan rate (SR) analysis, cyclic catalytic test, and electrochemical surface area (ECSA) evaluation, were performed in an alkaline medium. From the results obtained, the size of the NPs was found to be 3.12 nm according to the Debye-Schrrer equation, and the MWCNTs were clearly observed by SEM imaging. After the characterization of the prepared nanomaterials, the PtOs@MWCNT catalysts were employed in the methanol oxidation reaction, and a high oxidation current value of 220.86 mA cm-2 was observed. Besides, according to the CA results, the catalyst exhibited high stability for 4000 s, and it was seen that Os metal improved the catalytic activity of the main catalyst. These results show that the PtOs@MWCNT catalyst is highly stable and reusable, and provides high electrocatalytic activity in the methanol oxidation reaction. Moreover, the obtained catalyst gave ideal results in terms of CO tolerance and activity. These data show that the obtained catalyst will provide significant improvement and superior efficiency in fuel-cell applications.
Collapse
Affiliation(s)
- Muhammed Bekmezci
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000 Kutahya, Turkey.
- Department of Materials Science & Engineering, Faculty of Engineering, University of Dumlupinar, Evliya Celebi Campus, 43000, Kutahya, Turkey
| | - Gamze Nur Gules
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000 Kutahya, Turkey.
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, 48000 Mugla, Turkey
| | - Ramazan Bayat
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000 Kutahya, Turkey.
- Department of Materials Science & Engineering, Faculty of Engineering, University of Dumlupinar, Evliya Celebi Campus, 43000, Kutahya, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000 Kutahya, Turkey.
| |
Collapse
|
19
|
Scroccarello A, Álvarez-Diduk R, Della Pelle F, de Carvalho Castro E Silva C, Idili A, Parolo C, Compagnone D, Merkoçi A. One-Step Laser Nanostructuration of Reduced Graphene Oxide Films Embedding Metal Nanoparticles for Sensing Applications. ACS Sens 2023; 8:598-609. [PMID: 36734274 PMCID: PMC9972477 DOI: 10.1021/acssensors.2c01782] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The combination of two-dimensional materials and metal nanoparticles (MNPs) allows the fabrication of novel nanocomposites with unique physical/chemical properties exploitable in high-performance smart devices and biosensing strategies. Current methods to obtain graphene-based films decorated with noble MNPs are cumbersome, poorly reproducible, and difficult to scale up. Herein, we propose a straightforward, versatile, surfactant-free, and single-step technique to produce reduced graphene oxide (rGO) conductive films integrating "naked" noble MNPs. This method relies on the instantaneous laser-induced co-reduction of graphene oxide and metal cations, resulting in highly exfoliated rGO nanosheets embedding gold, silver, and platinum NPs. The production procedure has been optimized, and the obtained nanomaterials are fully characterized; the hybrid nanosheets have been easily transferred onto lab-made screen-printed electrodes preserving their nanoarchitecture. The Au@rGO-, Ag@rGO-, and Pt@rGO-based electrodes have been challenged to detect caffeic acid, nitrite, and hydrogen peroxide in model solutions and real samples. The sensors yielded quantitative responses (R2 ≥ 0.997) with sub-micromolar limits of detections (LODs ≤ 0.6 μM) for all the analytes, allowing accurate quantification in samples (recoveries ≥ 90%; RSD ≤ 14.8%, n = 3). This single-step protocol which requires low cost and minimal equipment will allow the fabrication of free-standing, MNP-embedded rGO films integrable into a variety of scalable smart devices and biosensors.
Collapse
Affiliation(s)
- Annalisa Scroccarello
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.,Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100 Teramo, Italy
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Flavio Della Pelle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100 Teramo, Italy
| | - Cecilia de Carvalho Castro E Silva
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.,MackGraphe─Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, Consolação Street 930, 01302-907 São Paulo, Brazil
| | - Andrea Idili
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.,Department of Chemical Science and Technologies, Tor Vergata University of Rome, Via Ricerca Scientifica snc, 00133 Roma, Italy
| | - Claudio Parolo
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100 Teramo, Italy
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.,ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
20
|
Wang R, Luo S, Zheng R, Shangguan Y, Feng X, Zeng Q, Liang J, Chen Z, Li J, Yang D, Chen H. Interfacial Coordination Bonding-Assisted Redox Mechanism-Driven Highly Selective Precious Metal Recovery on Covalent-Functionalized Ultrathin 1T-MoS 2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9331-9340. [PMID: 36780328 DOI: 10.1021/acsami.2c20802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rational design of functional material interfaces with well-defined physico-chemical-driven forces is crucial for achieving highly efficient interfacial chemical reaction dynamics for resource recovery. Herein, via an interfacial structure engineering strategy, precious metal (PM) coordination-active pyridine groups have been successfully covalently integrated into ultrathin 1T-MoS2 (Py-MoS2). The constructed Py-MoS2 shows highly selective interfacial coordination bonding-assisted redox (ICBAR) functionality toward PM recycling. Py-MoS2 shows state-of-the-art high recovery selectivity toward Au3+ and Pd4+ within 13 metal cation mixture solutions. The related recycling capacity reaches up to 3343.00 and 2330.74 mg/g for Au3+ and Pd4+, respectively. More importantly, above 90% recovery efficiencies have been achieved in representative PMs containing electronic solid waste leachate, such as computer processing units (CPU) and spent catalysts. The ICBAR mechanism developed here paves the way for interface engineering of the well-documented functional materials toward highly efficient PM recovery.
Collapse
Affiliation(s)
- Ranhao Wang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Luo
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Renji Zheng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yangzi Shangguan
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuezhen Feng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang Zeng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaxin Liang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhijie Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Li
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dazhong Yang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
21
|
Gebruers M, Wang C, Saha RA, Xie Y, Aslam I, Sun L, Liao Y, Yang X, Chen T, Yang MQ, Weng B, Roeffaers MBJ. Crystal phase engineering of Ru for simultaneous selective photocatalytic oxidations and H 2 production. NANOSCALE 2023; 15:2417-2424. [PMID: 36651352 DOI: 10.1039/d2nr06447b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Noble metal nanoparticles are often used as cocatalysts to enhance the photocatalytic efficiency. While the effect of cocatalyst nanoparticle size and shape has widely been explored, the effect of the crystal phase is largely overlooked. In this work, we investigate the effect of Ru nanoparticle crystal phase, specifically regular hexagonal close-packed (hcp) and allotropic face-centered cubic (fcc) crystal phases, as cocatalyst decorated onto the surface of TiO2 photocatalysts. As reference photocatalytic reaction the simultaneous photocatalytic production of benzaldehyde (BAD) and H2 from benzyl alcohol was chosen. Both the fcc Ru/TiO2 and hcp Ru/TiO2 composites exhibit enhanced BAD and H2 production rates compared to pristine TiO2 due to the formation of a Schottky barrier promoting the photogenerated charge separation. Moreover, a 1.9-fold photoactivity enhancement of the fcc Ru/TiO2 composite is achieved as compared to the hcp Ru/TiO2 composite, which is attributed to the fact that the fcc Ru NPs are more efficient in facilitating the charge transfer as compared to hcp Ru NPs, thus inhibiting the recombination of electron-hole pairs and enhancing the overall photoactivity.
Collapse
Affiliation(s)
- Michaël Gebruers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Chunhua Wang
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Rafikul A Saha
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Yangshan Xie
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Imran Aslam
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Li Sun
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Yuhe Liao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2, Nengyuan, Road, Tianhe District, Guangzhou 510641, P.R. China
| | - Xuhui Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China
| | - Taoran Chen
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China
| | - Min-Quan Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
22
|
Carnide G, Champouret Y, Valappil D, Vahlas C, Mingotaud A, Clergereaux R, Kahn ML. Secured Nanosynthesis-Deposition Aerosol Process for Composite Thin Films Incorporating Highly Dispersed Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204929. [PMID: 36529954 PMCID: PMC9929256 DOI: 10.1002/advs.202204929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Application of nanocomposites in daily life requires not only small nanoparticles (NPs) well dispersed in a matrix, but also a manufacturing process that is mindful of the operator and the environment. Avoiding any exposure to NPs is one such way, and direct liquid reaction-injection (DLRI) aims to fulfill this need. DLRI is based on the controlled in situ synthesis of NPs from the decomposition of suitable organometallic precursors in conditions that are compatible with a pulsed injection mode of an aerosol into a downstream process. Coupled with low-pressure plasma, DLRI produces nanocomposite with homogeneously well-dispersed small nanoparticles that in the particular case of ZnO-DLC nanocomposite exhibit unique properties. DLRI favorably compares with the direct liquid injection of ex situ formed NPs. The exothermic hydrolysis reaction of the organometallic precursor at the droplet-gas interface leads to the injection of small and highly dispersed NPs and, consequently, the deposition of fine and controlled distribution in the nanocomposite. The scope of DLRI nanosynthesis has been extended to several metal oxides such as zinc, tin, tungsten, and copper to generalize the concept. Hence, DLRI is an attractive method to synthesize, inject, and deposit nanoparticles and meets the prevention and atom economy requirements of green chemistry.
Collapse
Affiliation(s)
- Guillaume Carnide
- LCCCNRS UPR8241Université de Toulouse205 route de NarbonneToulouse31077France
- LAPLACECNRS UMR5213Université de Toulouse118 route de NarbonneToulouse31062France
| | - Yohan Champouret
- LCCCNRS UPR8241Université de Toulouse205 route de NarbonneToulouse31077France
- LAPLACECNRS UMR5213Université de Toulouse118 route de NarbonneToulouse31062France
| | - Divyendu Valappil
- Laboratoire des IMRCPUniversité de ToulouseCNRS UMR 5623, Université Toulouse III – Paul Sabatier, 118 route de NarbonneToulouse31062France
| | - Constantin Vahlas
- CIRIMATCNRS UMR5085Université de Toulouse4 allée Émile Monso, BP‐44362, Toulouse Cedex 4Toulouse31030France
| | - Anne‐Françoise Mingotaud
- Laboratoire des IMRCPUniversité de ToulouseCNRS UMR 5623, Université Toulouse III – Paul Sabatier, 118 route de NarbonneToulouse31062France
| | - Richard Clergereaux
- LAPLACECNRS UMR5213Université de Toulouse118 route de NarbonneToulouse31062France
| | - Myrtil L. Kahn
- LCCCNRS UPR8241Université de Toulouse205 route de NarbonneToulouse31077France
| |
Collapse
|
23
|
Ultrasensitive determination of metronidazole using flower-like cobalt anchored on reduced graphene oxide nanocomposite electrochemical sensor. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Interface engineering of Ni/NiO heterostructures with abundant catalytic active sites for enhanced methanol oxidation electrocatalysis. J Colloid Interface Sci 2023; 630:570-579. [DOI: 10.1016/j.jcis.2022.10.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
25
|
Pan M, Li J, Pan B. Identifying the Active Sites of Heteroatom Graphene as a Conductive Membrane for the Electrochemical Filtration of Organic Contaminants. Int J Mol Sci 2022; 23:ijms232314967. [PMID: 36499294 PMCID: PMC9739727 DOI: 10.3390/ijms232314967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
The dopants of sulfur, nitrogen, or both, serving as the active sites, into the graphitic framework of graphene is an efficient strategy to improve the electrochemical performance of electrochemical membrane filtration. However, the covalent bonds between the doped atoms and the substrate that form different functional groups have a significant role in the specific activity for pollutant degradation. Herein, we found that the singly doped heteroatom graphene (NG and SG) achieved superior removal efficiency of pollutants as compared with that of the double doped heteroatom graphene (SNG). Mechanism studies showed that the doped N of NG presented as graphitic N and substantially increased electron transfer, whereas the doped S of SG posed as -C-SOx-C- provided more adsorption sites to improve electrochemical performance. However, in the case of SNG, the co-doped S and N cannot form the efficient graphitic N and -C-SOx-C- for electrochemical degradation, resulting in a low degradation efficiency. Through the fundamental insights into the bonding of the doped heteroatom on graphene, this work furnishes further directives for the design of desirable heteroatom graphene for membrane filtration.
Collapse
|
26
|
Sekhar MC, Veena E, Kumar NS, Naidu KCB, Mallikarjuna A, Basha DB. A Review on Piezoelectric Materials and Their Applications. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Madunuri Chandra Sekhar
- Department of Physics Chaitanya Bharathi Institute of Technology Hyderabad Telangana 500075 India
| | - Eshwarappa Veena
- Department of Physics PC Jabin Science College Hubbali Hubbali 580031 India
| | - Nagasamudram Suresh Kumar
- Department of Physics JNTUA College of Engineering Anantapur Anantapuramu Andhra Pradesh 515002 India
| | | | - Allam Mallikarjuna
- Department of Physics Audisankara College of Engineering and Technology Gudur Andhra Pradesh 524101 India
| | - Dudekula Baba Basha
- Department of Information SciencesMajmaah University Al'Majmaah 11952Al'MajmaahSaudi Arabia
| |
Collapse
|
27
|
Zhao S, Wang H, Liu X, Cao X, Yang H, Kong X, Bu Q, Liu Q. Enhanced electrocatalytic performance of N-doped Yolk-shell Co3O4 for methanol oxidation in basic solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Yuan Q, Huang LZ, Wang PL, Mai T, Ma MG. Cellulose nanofiber/molybdenum disulfide aerogels for ultrahigh photothermal effect. J Colloid Interface Sci 2022; 624:70-78. [PMID: 35660912 DOI: 10.1016/j.jcis.2022.05.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022]
Abstract
The photothermal materials have a broad range of applications in crude oil spills treatment, desalination, and photothermal therapy. However, the rational construction of aerogels with exceptional photothermal performance is highly desired yet still challenging. Herein, a class of stable aerogels comprised of molybdenum disulfide (MoS2) nanoflowers and cellulose nanofibers (CNFs) was fabricated, affording extraordinary light-to-heat energy conversion capability. Benefiting from the intercalated porous structure, the resultant cellulose nanofibers/molybdenum disulfide (CNF/MoS2) aerogels deliver an ultrahigh temperature output up to 260.4 °C with near infrared (NIR) laser power densities of 0.8 W cm-2. Remarkably, when NIR laser power density increased to 1.0 W cm-2, the aerogels began to burn, achieving the superhigh surface temperature of ∼ 690 °C. The combustion process of CNF/MoS2 composite aerogels was evaluated in detail. Therefore, this work provides experiment evidence and theoretical basis for the rational applications of photothermal materials at high temperature in future.
Collapse
Affiliation(s)
- Qi Yuan
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Ling-Zhi Huang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Pei-Lin Wang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Tian Mai
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Ming-Guo Ma
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China.
| |
Collapse
|
29
|
Nayak S, Parida K. Superlative photoelectrochemical properties of 3D MgCr-LDH nanoparticles influencing towards photoinduced water splitting reactions. Sci Rep 2022; 12:9264. [PMID: 35661140 PMCID: PMC9166737 DOI: 10.1038/s41598-022-13457-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
In the present work, we report the synthesis of single system three-dimensional (3D) open porous structure of MgCr-LDH nanoparticles in a substrate-free path by using one-step formamide assisted hydrothermal reaction followed by visible light irradiation for significant photoelectrochemical (PEC) properties that manifest towards photocatalytic H2 and O2 production. The as-prepared nanostructured materials were characterized by various physico-chemical characterization techniques. Moreover, this unique synthetic approach produces 3D open porous network structure of MgCr-LDH nanoparticles, which were formed by stacking of numerous 2D nanosheets, for effective light harvestation, easy electronic channelization and unveil superlative PEC properties, including high current density (6.9 mA/cm2), small Tafel slope of 82 mV/decade, smallest arc of the Nyquist plot (59.1 Ω cm−2) and photostability of 6000 s for boosting water splitting activity. In addition, such perfectly self-stacked 2D nanosheets in 3D MgCr-LDH possess more surface active defect sites as enriched 50% oxygen vacancy resulting a good contact surface within the structure for effective light absorption along with easy electron and hole separation, which facilitates the adsorption of protons and intermediate for water oxidation. Additionally, the Cr3+ as dopant pull up the electrons from water oxidation intermediates, thereby displaying superior photocatalytic H2 and O2 production activity of 1315 μmol/h and 579 μmol/h, respectively. Therefore, the open 3D morphological aspects of MgCr-LDH nanoparticles with porous network structure and high surface area possess more surface defect sites for electron channelization and identified as distinct novel features of this kind of materials for triggering significant PEC properties, along with robustly enhance the photocatalytic water splitting performances.
Collapse
Affiliation(s)
- Susanginee Nayak
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research (ITER), Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751030, India.
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research (ITER), Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751030, India.
| |
Collapse
|
30
|
Shi X, Huo X, Esan OC, Dai Y, An L, Zhao TS. Manipulation of Electrode Composition for Effective Water Management in Fuel Cells Fed with an Electrically Rechargeable Liquid Fuel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18600-18606. [PMID: 35420776 DOI: 10.1021/acsami.2c03203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The liquid fuel cell, with its high energy density and ease of fuel handling, has attracted great attention worldwide. However, its real application is still being greatly hindered by its limited power density. Hence, the recently proposed and demonstrated fuel cell, using an electrically rechargeable liquid fuel (e-fuel), is believed to be a candidate with great potential due to its significant performance advancement. Unlike the conventional alcoholic liquid fuels, the e-fuel possesses excellent reactivity, even on carbon-based materials, which therefore allows the e-fuel cell to achieve superior performance without any noble metal catalysts. However, it is found that, during the cell operation, the water generated at the cathode following the oxygen reduction reaction could lead to a water flooding problem and further limit the cell performance. To address this issue, in this work, by manipulating the cathode composition, a blended binder cathode using both Nafion and polytetrafluoroethylene as binding agents is fabricated and demonstrated its superiority in the fuel cell to achieve an enhanced water management and cell performance. Furthermore, using the developed cathode, a fuel cell stack is designed and fabricated to power a 3D-printed toy car, presenting this system as a promising device feasible for future study and real applications.
Collapse
Affiliation(s)
- Xingyi Shi
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Xiaoyu Huo
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Oladapo Christopher Esan
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yichen Dai
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Liang An
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - T S Zhao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
31
|
Abstract
Noble-metal nanoparticles (NMNPs), with their outstanding properties, have been arousing the interest of scientists for centuries. Although our knowledge of them is much more significant today, and we can obtain NMNPs in various sizes, shapes, and compositions, our interest in them has not waned. When talking about noble metals, gold, silver, and platinum come to mind first. Still, we cannot forget about elements belonging to the so-called platinum group, such as ruthenium, rhodium, palladium, osmium, and iridium, whose physical and chemical properties are very similar to those of platinum. It makes them highly demanded and widely used in various applications. This review presents current knowledge on the preparation of all noble metals in the form of nanoparticles and their assembling with carbon supports. We focused on the catalytic applications of these materials in the fuel-cell field. Furthermore, the influence of supporting materials on the electrocatalytic activity, stability, and selectivity of noble-metal-based catalysts is discussed.
Collapse
|
32
|
Liu Y, Sun J, Fan L, Xu Q. Pd Clusters on Schiff Base–Imidazole-Functionalized MOFs for Highly Efficient Catalytic Suzuki Coupling Reactions. Front Chem 2022; 10:845274. [PMID: 35300386 PMCID: PMC8921604 DOI: 10.3389/fchem.2022.845274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 11/23/2022] Open
Abstract
Subnanometer noble metal clusters have attracted much attention because of abundant low-coordinated metal atoms that perform excellent catalytic activity in various catalytic processes. However, the surface free energy of metals increases significantly with decreasing size of the metal clusters, which accelerates the aggregation of small clusters. In this work, new Schiff base–imidazole-functionalized MOFs were successfully synthesized via the postsynthetic modification method. Highly dispersed Pd clusters with an average size of 1.5 nm were constructed on this functional MOFs and behaved excellent catalytic activity in the Suzuki coupling of phenyboronic acid and bromobenzene (yield of biaryl >99%) under mild reaction conditions. Moreover, the catalyst can be reused six times without loss of activity. Such catalytic behavior is found to closely related to the surface functional groups that promote the formation of small Pd0 clusters in the metallic state.
Collapse
Affiliation(s)
- Yangqing Liu
- School of Chemistry and Chemical Engineering, Key Laboratory Under Construction for Volatile Organic Compounds Controlling of Jiangsu Province, Yancheng Institute of Technology, Yancheng, China
| | - Jingwen Sun
- School of Chemistry and Chemical Engineering, Key Laboratory Under Construction for Volatile Organic Compounds Controlling of Jiangsu Province, Yancheng Institute of Technology, Yancheng, China
| | - Lan Fan
- Yancheng Lanfeng Environmental Engineering Technology Co., LTD, Yancheng, China
| | - Qi Xu
- School of Chemistry and Chemical Engineering, Key Laboratory Under Construction for Volatile Organic Compounds Controlling of Jiangsu Province, Yancheng Institute of Technology, Yancheng, China
- *Correspondence: Qi Xu,
| |
Collapse
|
33
|
Ji W, Xiao X, Li F, Fan X, Meng Y, Fan M. Theoretical insight into mercury species adsorption on graphene-based Pt single-atom catalysts. RSC Adv 2022; 12:5797-5806. [PMID: 35424583 PMCID: PMC8981981 DOI: 10.1039/d1ra08891b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 01/23/2023] Open
Abstract
Mercury emission from coal-fired flue gases is environmentally crucial. Revealing the interaction between mercury (Hg) and functional materials is significant to controlling emission. We conducted an investigation into the adsorption mechanism of mercury species onto graphene-based Platinum (Pt) single-atom catalysts (SACs). Single-atom Pt is the active center for Hg species chemisorption, with an adsorption energy range of 0.555-3.792 eV. In addition, Hg species adsorbed preferentially at lower temperatures. Pt/3N-GN exhibits a higher adsorption ability than Pt/SV-GN. The strong interaction of Hg0 with Pt SACs contributed to atomic-orbital hybridization between them. Further analysis revealed that s, p orbitals of Hg contribute significantly to orbital hybridization with Pt SACs. Moreover, the charge decomposition analysis confirmed that s, p orbitals of Hg hybridized with d, s orbitals of Pt SACs. The net charge transfer from Hg0 to Pt/SV-GN and Pt/3N-GN are 0.059 and 0.097 e-, respectively. The higher the charge transfers, the more intense the electron and orbital interaction between Hg and the surface. Consequently, Pt/3N-GN is a highly effective catalyst for Hg adsorption.
Collapse
Affiliation(s)
- Wenchao Ji
- College of Resource and Environment, Anhui Science and Technology University Fengyang 233100 China
| | - Xiuhua Xiao
- College of Resource and Environment, Anhui Science and Technology University Fengyang 233100 China
| | - Feiyue Li
- College of Resource and Environment, Anhui Science and Technology University Fengyang 233100 China
| | - Xingjun Fan
- College of Resource and Environment, Anhui Science and Technology University Fengyang 233100 China
| | - Yuanyuan Meng
- College of Chemistry & Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 P. R. China
| | - Maohong Fan
- Departments of Chemical and Petroleum Engineering, University of Wyoming Laramie WY 82071 USA
| |
Collapse
|
34
|
Ma J, Shen L, Jiang Y, Ma H, Lv F, Liu J, Su Y, Zhu N. Wearable Self-Powered Smart Sensors for Portable Nutrition Monitoring. Anal Chem 2022; 94:2333-2340. [PMID: 35043635 DOI: 10.1021/acs.analchem.1c05189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-powered sensors have attracted great attention in the field of analysis owing to the necessity of power resources for the routine use of sensor devices. However, it is still challenging to construct wearable self-powered sensors in a simple and efficient way. Herein, wearable self-powered textile smart sensors based on advanced bifunctional polyaniline/reduced graphene oxide (PANI/RGO) films have been successfully developed for remote real-time detection of vitamin C. Specifically, a pH-assisted oil/water (O/W) self-assembly strategy was proposed to boost the O/W self-assembled PANI/RGO films via proton regulation. The as-obtained PANI/RGO films could be directly loaded on the textile substrate, with good capacitive and biosensing performance due to the multifunctionality of PANI and RGO, respectively. Moreover, both wearable power supply devices and wearable biosensors based on PANI/RGO films possess good electrochemical performance, which paves the way for the actual application of self-powered nutrition monitoring. Significantly, obvious signals have been obtained in the detection of vitamin C beverages, exhibiting promising application values in daily nutrition track necessities. Prospectively, this study would provide an effective and simple strategy for integrating wearable self-powered sensors, and the developed smart sensing system is an ideal choice for the portable detection of nutrition.
Collapse
Affiliation(s)
- Junlin Ma
- Zhang Dayu School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Liuxue Shen
- Zhang Dayu School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yu Jiang
- Zhang Dayu School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hongting Ma
- Zhang Dayu School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fengjuan Lv
- Zhang Dayu School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Junshan Liu
- Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yan Su
- Zhang Dayu School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
35
|
Fu Y, Yin Z, Qin L, Huang D, Yi H, Liu X, Liu S, Zhang M, Li B, Li L, Wang W, Zhou X, Li Y, Zeng G, Lai C. Recent progress of noble metals with tailored features in catalytic oxidation for organic pollutants degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126950. [PMID: 34449327 DOI: 10.1016/j.jhazmat.2021.126950] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 05/23/2023]
Abstract
With the increasing serious water pollutions, an increasing interest has given for the nanocomposites as environmental catalysts. To date, noble metals-based nanocomposites have been extensively studied by researchers in environmental catalysis. In detail, serving as key functional parts, noble metals are usually combined with other nanomaterials for rationally designing nanocomposites, which exhibit enhanced catalytic properties in pollutants removal. Noble metals in the nanocomposites possess tailored properties, thus playing different important roles in catalytic oxidation reactions for pollutants removal. To motivate the research and elaborate the progress of noble metals, this review (i) summarizes advanced characterization techniques and rising technology of theoretical calculation for evaluating noble metal, and (ii) classifies the roles according to their disparate mechanism in different catalytic oxidation reactions. Meanwhile, the enhanced mechanism and influence factors are discussed. (iii) The conclusions, facing challenges and perspectives are proposed for further development of noble metals-based nanocomposites as environmental catalysts.
Collapse
Affiliation(s)
- Yukui Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhuo Yin
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Lei Qin
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xigui Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Bisheng Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Ling Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenjun Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuerong Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yixia Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
36
|
Qiu JZ, Wang LF, Shu XG, Li CJ, Yuan Z, Jiang J. A new 2D layered aluminophosphate |Hada|6[Al6(PO4)8](H2O)11 supported highly uniform Ag nanoparticles for 4-nitrophenol reduction. Inorg Chem Front 2022. [DOI: 10.1039/d1qi00739d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work presents a new 2D aluminophosphate (ZHKU-1) with inorganic sheets containing a 4,6,12-net in AAAA-stacked sequence. Moreover, small Ag clusters supported on ZHKU-1 exhibit excellent catalytic performance in 4-nitrophenol reduction.
Collapse
Affiliation(s)
- Jiang-Zhen Qiu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Long-Fei Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xu-Gang Shu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Cui-Jin Li
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Zhongke Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jiuxing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
37
|
Wu X, Liu X, He Y, Lei L, Hao S, Zhang X. A ternary PdNiMo alloy as a bifunctional nanocatalyst for the oxygen reduction reaction and hydrogen evolution reaction. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01317g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mo0.2Pd3Ni/NC shows superior electrochemical performances for both ORR and HER due to the charge redistribution among Ni, Pd, and Mo, tuning the electronic structure of Pd.
Collapse
Affiliation(s)
- Xiao Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Xiangnan Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Yi He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Shaoyun Hao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
38
|
Zhang Z, Wang Y, Guan J, Zhang T, Li P, Yin H, Duan L, Niu Z, Liu J. Direct Conversion of Solid g-C3N4 into Metal-ended N-doped Carbon Nanotubes for Rechargeable Zn-Air Batteries. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00010e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing low-cost and bifunctional electrocatalysts with activity for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is great desirable for metal-air battery. Herein, we demonstrate an approach to realize...
Collapse
|
39
|
Li Z, Zhao L, Chen H, Liang X, Ai X, Xie Z, Li X, Yang F, Liu H, Zou X. Crystal phase-selective synthesis of intermetallic palladium borides and their phase-regulated (electro)catalytic properties. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02112e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three Pd–B intermetallics, namely, Pd6B, Pd5B2 and Pd2B, are synthesized, and their catalytic activities toward electrochemical water splitting and Suzuki coupling reactions are strongly associated with the Pd(d)–B(s,p) orbital hybridization.
Collapse
Affiliation(s)
- Zhenyu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- College of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Linmin Zhao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xuan Ai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhoubing Xie
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaotian Li
- College of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongyang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
40
|
Tang J, Su C, Shao Z. Covalent Organic Framework (COF)-Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. SMALL METHODS 2021; 5:e2100945. [PMID: 34928017 DOI: 10.1002/smtd.202100945] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/25/2021] [Indexed: 06/14/2023]
Abstract
Developing highly efficient electrocatalysts for renewable energy conversion and environment purification has long been a research priority in the past 15 years. Covalent organic frameworks (COFs) have emerged as a burgeoning family of organic materials internally connected by covalent bonds and have been explored as promising candidates in electrocatalysis. The reticular geometry of COFs can provide an excellent platform for precise incorporation of the active sites in the framework, and the fine-tuning hierarchical porous architectures can enable efficient accessibility of the active sites and mass transportation. Considerable advances are made in rational design and controllable fabrication of COF-based organic-inorganic hybrids, that containing organic frameworks and inorganic electroactive species to induce novel physicochemical properties, and take advantage of the synergistic effect for targeted electrocatalysis with the hybrid system. Branches of COF-based hybrids containing a diversity form of metals, metal compounds, as well as metal-free carbons have come to the fore as highly promising electrocatalysts. This review aims to provide a systematic and profound understanding of the design principles behind the COF-based hybrids for electrocatalysis applications. Particularly, the structure-activity relationship and the synergistic effects in the COF-based hybrid systems are discussed to shed some light on the future design of next-generation electrocatalysts.
Collapse
Affiliation(s)
- Jiayi Tang
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA6102, Australia
| | - Chao Su
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA6102, Australia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
41
|
Bie J, Wang J, Chen S, Fa W. Catalytic Ability Comparison of Five Transition Metal Clusters (Zn, Cu, Fe, Ni, and Ru) for Heat‐Induced Graphene Etching by Ab Initio Molecular Dynamics Simulations. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Bie
- National Laboratory of Solid State Microstructures and Department of Physics Nanjing University Nanjing 210093 China
| | - Jinlan Wang
- School of Physics Southeast University Nanjing 211189 China
| | - Shuang Chen
- KuangYaming Honors School and Institute for Brain Sciences Nanjing University Nanjing 210023 China
| | - Wei Fa
- National Laboratory of Solid State Microstructures and Department of Physics Nanjing University Nanjing 210093 China
| |
Collapse
|
42
|
Mahouche-Chergui S, Oun A, Haddadou I, Hoyez C, Michely L, Ouellet-Plamondon C, Carbonnier B. Efficient and Recyclable Heterogeneous Catalyst Based on PdNPs Stabilized on a Green-Synthesized Graphene-like Nanomaterial: Effect of Surface Functionalization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44673-44685. [PMID: 34506108 DOI: 10.1021/acsami.1c07540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work reports for the first time a straightforward and efficient approach to covalent surface functionalization of a sustainable graphene-like nanomaterial with abundant carboxylic acid groups. This approach results in an efficient and robust chelatant platform for anchoring highly dispersed ultrasmall palladium particles with excellent catalytic activity in the reduction of both cationic (methylene blue, MB) and anionic (eosin-Y, Eo-Y) toxic organic dyes. The large-specific-surface-area (SBET = 266.94 m2/g) graphene-like nanomaterial (GHN) was prepared through a green and cost-effective pyrolysis process from saccharose using layered bentonite clay as a template. To introduce a high density of carboxylic acid functions, GHN was first doubly functionalized by successive grafting reaction using two different strategies: (i) in the first case, GHN was first grafted by (3-glycidyloxypropyl) trimethoxysilane (GPTMS) and then bifunctionalized by chemical grafting of tris(4-hydroxyphenyl)methane triglycidyl ether (TGE). In the second case, the grafting order of the two molecules has been reversed. GHN-GPTMS-TGE provided the highest number of grafted reactive epoxy groups, and it was selected for further functionalization with carboxylic acid functions via a ring-opening reaction through a two-step hydrolysis (H2SO4)/oxidation (KMnO4) approach. The GHN nanomaterial bearing carboxylic acid groups was then treated with sodium hydroxide to produce a deprotonated carboxylic acid-rich platform. Finally, due to a high density of accessible chelatant carboxylic acid groups, GHN-COO- binds strongly a great amount of Pd2+ ions to form stable complexes which after reduction by NaBH4 leads to highly dispersed, densely anchored, and uniformly distributed nanoscale Pd particles (d ∼ 4.5 nm) on the surface of the functionalized GHN. The GHN-COO-@PdNPs nanohybrid proved to be highly efficient for dye reduction by NaBH4 in aqueous solution at room temperature. Moreover, because of the high stability of the as-prepared graphene-like supported PdNPs, it exhibited very good reusability and could be recycled up to eight times without any significant loss in activity.
Collapse
Affiliation(s)
| | - Abdallah Oun
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| | - Imane Haddadou
- Construction Engineering Department, École de Technologie Supérieure, 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
| | - Clémentine Hoyez
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| | - Laurent Michely
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| | - Claudiane Ouellet-Plamondon
- Construction Engineering Department, École de Technologie Supérieure, 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
| | - Benjamin Carbonnier
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| |
Collapse
|
43
|
Li Y, Jiang K, Yang J, Zheng Y, Hübner R, Ou Z, Dong X, He L, Wang H, Li J, Sun Y, Lu X, Zhuang X, Zheng Z, Liu W. Tungsten Oxide/Reduced Graphene Oxide Aerogel with Low-Content Platinum as High-Performance Electrocatalyst for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102159. [PMID: 34331402 DOI: 10.1002/smll.202102159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Designing cost-effective, highly active, and durable platinum (Pt)-based electrocatalysts is a crucial endeavor in electrochemical hydrogen evolution reaction (HER). Herein, the low-content Pt (0.8 wt%)/tungsten oxide/reduced graphene oxide aerogel (LPWGA) electrocatalyst with excellent HER activity and durability is developed by employing a tungsten oxide/reduced graphene oxide aerogel (WGA) obtained from a facile solvothermal process as a support, followed by electrochemical deposition of Pt nanoparticles. The WGA support with abundant oxygen vacancies and hierarchical pores plays the roles of anchoring the Pt nanoparticles, supplying continuous mass transport and electron transfer channels, and modulating the surface electronic state of Pt, which endow the LPWGA with both high HER activity and durability. Even under a low loading of 0.81 μgPt cm-2 , the LPWGA exhibits a high HER activity with an overpotential of 42 mV at 10 mA cm-2 , an excellent stability under 10000-cycle cyclic voltammetry and 40 h chronopotentiometry at 10 mA cm-2 , a low Tafel slope (30 mV dec-1 ), and a high turnover frequency of 29.05 s-1 at η = 50 mV, which is much superior to the commercial Pt/C and the low-content Pt/reduced graphene oxide aerogel. This work provides a new strategy to design high-performance Pt-based electrocatalysts with greatly reduced use of Pt.
Collapse
Affiliation(s)
- Yi Li
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kaiyue Jiang
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jing Yang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yuanyuan Zheng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - René Hübner
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Zhaowei Ou
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xin Dong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Lanqi He
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Honglei Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jian Li
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yujing Sun
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xubing Lu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiaodong Zhuang
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Wei Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
44
|
Decorating MOF-74-derived nanocarbons with a sandwich-type polyoxometalate to enhance their OER activity: Exploring the underestimated bulk-deposition approach. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Teng Y, Guo K, Fan D, Guo H, Han M, Xu D, Bao J. Rapid Aqueous Synthesis of Large-Size and Edge/Defect-Rich Porous Pd and Pd-Alloyed Nanomesh for Electrocatalytic Ethanol Oxidation. Chemistry 2021; 27:11175-11182. [PMID: 34019322 DOI: 10.1002/chem.202101144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/25/2022]
Abstract
In this work, a facile aqueous synthesis strategy was used (complete in 5 min at room temperature) to produce large-size Pd, PdCu, and PdPtCu nanomeshes without additional organic ligands or solvent and the volume restriction of reaction solution. The obtained metallic nanomeshes possess graphene-like morphology and a large size of dozens of microns. Abundant edges (coordinatively unsaturated sites, steps, and corners), defects (twins), and mesopores are seen in the metallic ultrathin structures. The formation mechanism for porous Pd nanomeshes disclosed that they undergo oriented attachment growth along the ⟨111⟩ direction. Owing to structural and compositional advantages, PdCu porous nanomeshes with certain elemental ratios (e. g., Pd87 Cu13 ) presented enhanced electrocatalytic performance (larger mass activity, better CO tolerance and stability) toward ethanol oxidation.
Collapse
Affiliation(s)
- Yuxiang Teng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Ke Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Dongping Fan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Hongyou Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Min Han
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Jianchun Bao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| |
Collapse
|
46
|
Peng D, Wang Y, Lv L, Zhou Z, Wang Y, Lv A, Lin TW, Xin Z, Zhang B, Qian X. Insight into degradation mechanism of Pd nanoparticles on NCNTs catalyst for ethanol electrooxidation: A combined identical-location transmission electron microscopy and X-ray photoelectron spectroscopy study. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Alshehri MH. Investigation of Interaction of Noble Metals (Cu, Ag, Au, Pt and Ir) with Nanosheets. MICROMACHINES 2021; 12:906. [PMID: 34442527 PMCID: PMC8399252 DOI: 10.3390/mi12080906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
Two-dimensional nanomaterials, such as graphene and hexagonal boron nitride nanosheets, have attracted tremendous interest in the research community and as a starting point for the development of nanotechnology. Using classical applied mathematical modeling, we derive explicit analytical expressions to determine the binding energies of noble metals, including copper, silver, gold, platinum and iridium (Cu, Ag, Au, Pt and Ir) atoms, on graphene and hexagonal boron nitride nanosheets. We adopt the 6-12 Lennard-Jones potential function, together with the continuous approach, to determine the preferred minimum energy position of an offset metal atom above the surface of the graphene and hexagonal boron nitride nanosheets. The main results of this study are analytical expressions of the interaction energies, which we then utilize to report the mechanism of adsorption of the metal atoms on graphene and hexagonal boron nitride surfaces. The results show that the minimum binding energy occured when Cu, Ag, Au, Pt and Ir were set at perpendicular distances in the region from 3.302 Å to 3.683 Å above the nanosheet surface, which correspond to adsorption energies in the region ranging from 0.842 to 2.978 (kcal/mol). Our results might assist in providing information on the interaction energies between the metal atoms and the two-dimensional nanomaterials.
Collapse
Affiliation(s)
- Mansoor H Alshehri
- Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
48
|
Zhang S, Zhao Q, Wang D, Deng S, Li D, Liu X, Wu S, Zhang X, Xing B. Turning Waste into Wealth: Remotely NIR Light-Controlled Precious Metal Recovery by Covalently Functionalized Black Phosphorus. CHEMSUSCHEM 2021; 14:2698-2703. [PMID: 33960137 DOI: 10.1002/cssc.202100801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/06/2021] [Indexed: 06/12/2023]
Abstract
It is a great challenge to refine precious metals from e-wastes under mild conditions without hazardous reagents. Herein, black phosphorus (BP) was covalently functionalized with poly(N-isopropylacrylamide) (PNIPAM) to obtain thermo/near-infrared (NIR)-responsive BP-P for precious metal recovery. Precious metals (Au, Ag, and Pd) with higher redox potentials than BP-P could be efficiently recovered by reduction-driven enrichment. Taking Au as an example, the recovery process presented fast kinetics (<15 min), excellent selectivity, and high efficiency (≈98 %). Remote operation with NIR light could generate heat by BP, which induced the hydrophilic-to-hydrophobic transition of PNIPAM, allowing the spontaneous gathering, facile collection, and practical recycle of BP-P following Au extraction. Thanks to the unique features of BP-P, not only could high-quality Au nanoparticles (20-30 nm) be economically extracted (cost: $0.731-1.222 g-1 Au nanoparticles; 5-6 orders of magnitude lower than the market price), but also the formed BP-P-Au nanocomposites have potential application in hydrogen evolution reaction.
Collapse
Affiliation(s)
- Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Dongsheng Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dengyu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Xue Liu
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Shuyao Wu
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
49
|
Chen C, Mao S, Tan C, Wang Z, Ge Y, Ma Q, Zhang X, Qi G, Xu J, Fan Z, Wang Y. General Synthesis of Ordered Mesoporous Carbonaceous Hybrid Nanostructures with Molecularly Dispersed Polyoxometallates. Angew Chem Int Ed Engl 2021; 60:15556-15562. [PMID: 33942452 DOI: 10.1002/anie.202104028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/03/2021] [Indexed: 02/05/2023]
Abstract
Hybrid nanomaterials with controlled dimensions, intriguing components and ordered structures have attracted significant attention in nanoscience and technology. Herein, we report a facile and green polyoxometallate (POM)-assisted hydrothermal carbonization strategy for synthesis of carbonaceous hybrid nanomaterials with molecularly dispersed POMs and ordered mesopores. By using various polyoxometallates such as ammonium phosphomolybdate, silicotungstic acid, and phosphotungstic acid, our approach can be generalized to synthesize ordered mesoporous hybrid nanostructures with diverse compositions and morphologies (nanosheet-assembled hierarchical architectures, nanospheres, and nanorods). Moreover, the ordered mesoporous nanosheet-assembled hierarchical hybrids with molecularly dispersed POMs exhibit remarkable catalytic activity toward the dehydration of tert-butanol with the high isobutene selectivity (100 %) and long-term catalytic durability (80 h).
Collapse
Affiliation(s)
- Chunhong Chen
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China.,Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shanjun Mao
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhe Wang
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Yiyao Ge
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qinglang Ma
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiao Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Guodong Qi
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
50
|
Chen C, Mao S, Tan C, Wang Z, Ge Y, Ma Q, Zhang X, Qi G, Xu J, Fan Z, Wang Y. General Synthesis of Ordered Mesoporous Carbonaceous Hybrid Nanostructures with Molecularly Dispersed Polyoxometallates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chunhong Chen
- Advanced Materials and Catalysis Group Institute of Catalysis Department of Chemistry Zhejiang University Hangzhou 310028 P. R. China
- Center for Programmable Materials School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Shanjun Mao
- Advanced Materials and Catalysis Group Institute of Catalysis Department of Chemistry Zhejiang University Hangzhou 310028 P. R. China
| | - Chaoliang Tan
- Department of Electrical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong China
| | - Zhe Wang
- Advanced Materials and Catalysis Group Institute of Catalysis Department of Chemistry Zhejiang University Hangzhou 310028 P. R. China
| | - Yiyao Ge
- Center for Programmable Materials School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Qinglang Ma
- Center for Programmable Materials School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Xiao Zhang
- Center for Programmable Materials School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Guodong Qi
- National Centre for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Zhanxi Fan
- Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong China
| | - Yong Wang
- Advanced Materials and Catalysis Group Institute of Catalysis Department of Chemistry Zhejiang University Hangzhou 310028 P. R. China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|