1
|
Liu W, Lan Y, Li H, Liu C, Dufresne A, Fu L, Lin B, Xu C, Huang B. Cationic chitosan enables eutectogels with high ionic conductivity for multifunctional applications in energy harvesting and storage. Int J Biol Macromol 2025; 286:138229. [PMID: 39643177 DOI: 10.1016/j.ijbiomac.2024.138229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Eutectogels are popular as an emerging material in the field of flexible electronics. However, limited mechanical properties and ionic conductivity restrict their multifunctional application expansion. Herein, cationic chitosan quaternary ammonium salt (CQS) was evenly embedded into the three-dimensional porous framework of eutectogel to build ion migration channels. And a simple solvent replacement process enhanced the crystallization of polyvinyl alcohol matrix and hydrogen bonding, preparing composite eutectogels with high toughness, environmental tolerance and conductivity. The prepared gel exhibites excellent mechanical properties (1.72 MPa, 413 %) and conductivity (0.40 S·m-1). Under external force, three-dimensional porous network with cationic polysaccharide distribution can achieve effective piezoionic effect. Moderate CQS significantly enhances the piezoionic voltage output to 270 mV, which is 4.5 times that of the pure eutectogel. Further, the prepared composite eutectogels was used for capacitor energy storage and wearable sensing devices, and has good charge/discharge stability (94 % capacitance retention) and fast response time (292 ms). This design is typically suitable for preparing advanced multifunctional ion conductors using various natural polysaccharides with sustainable application potential.
Collapse
Affiliation(s)
- Wanwan Liu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Yufan Lan
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Honghui Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Chaofan Liu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Alain Dufresne
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Lihua Fu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Chuanhui Xu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Bai Huang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China.
| |
Collapse
|
2
|
Jin Y, Zhou X, Wang C, Sun L, Shen H, Chen L. Multilevel Cu-LIG Tactile Sensing Arrays for 3D Touch Human-Machine Interaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68379-68387. [PMID: 39614803 DOI: 10.1021/acsami.4c15827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
High-performance flexible tactile sensors have attracted significant attention in the domains of human-machine interactions. However, the efficient fabrication of sensors with highly sensitive responses over a broad load range still remains a challenge. Here, we propose a one-step laser writing route to construct a distinctive multilevel piezoresistive structure, consisting of Cu nanoparticle-doped graphene protrusions and surrounding porous Cu sheets. This multilevel structure enables the assembled tactile sensors to exhibit superior sensitivity at both low-pressure (1468 kPa-1 at 0-200 kPa) and high-pressure (1345 kPa-1 at 600-800 kPa) stimulations. Its enhancement mechanism for piezoresistive sensing has been investigated. The programmable laser writing process facilitates the development of human-machine interaction devices that recognize multidimensional gestures such as sliding, clicking, and pressing. This advancement serves to promote the development of high-performance interactive sensing technologies.
Collapse
Affiliation(s)
- Yexi Jin
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China
| | - Xingwen Zhou
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China
| | - Chunju Wang
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China
| | - Lining Sun
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China
| | - Hao Shen
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China
| | - Liguo Chen
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China
| |
Collapse
|
3
|
Sabrin S, Karmokar DK, Karmakar NC, Hong SH, Habibullah H, Szili EJ. Opportunities of Electronic and Optical Sensors in Autonomous Medical Plasma Technologies. ACS Sens 2023; 8:974-993. [PMID: 36897225 DOI: 10.1021/acssensors.2c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Low temperature plasma technology is proving to be at the frontier of emerging medical technologies with real potential to overcome escalating healthcare challenges including antimicrobial and anticancer resistance. However, significant improvements in efficacy, safety, and reproducibility of plasma treatments need to be addressed to realize the full clinical potential of the technology. To improve plasma treatments recent research has focused on integrating automated feedback control systems into medical plasma technologies to maintain optimal performance and safety. However, more advanced diagnostic systems are still needed to provide data into feedback control systems with sufficient levels of sensitivity, accuracy, and reproducibility. These diagnostic systems need to be compatible with the biological target and to also not perturb the plasma treatment. This paper reviews the state-of-the-art electronic and optical sensors that might be suitable to address this unmet technological need, and the steps needed to integrate these sensors into autonomous plasma systems. Realizing this technological gap could facilitate the development of next-generation medical plasma technologies with strong potential to yield superior healthcare outcomes.
Collapse
Affiliation(s)
- Sumyea Sabrin
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Debabrata K Karmokar
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Nemai C Karmakar
- Electrical and Computer Systems Engineering Department, Monash University, Clayton, Victoria 3800, Australia
| | - Sung-Ha Hong
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Habibullah Habibullah
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Endre J Szili
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
4
|
Dai X, Huang LB, Sun Z, Du Y, Xue B, Wong MC, Han J, Liang Q, Wu Y, Dong B, Kong J, Hao J. A phonic Braille recognition system based on a self-powered sensor with self-healing ability, temperature resistance, and stretchability. MATERIALS HORIZONS 2022; 9:2603-2612. [PMID: 35942798 DOI: 10.1039/d2mh00534d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Braille recognition is of great significance for the visually impaired and blind people to achieve convenient communication and learning. A self-powered Braille recognition sensing system with long-term survivability and phonic function could provide those people with greatly enhanced access to information and thus improve their living quality. Herein, we develop a skin-like self-powered Braille recognition sensor with self-healing, temperature-resistant and stretchable properties, which is further connected with the designed audio system to realize real-time conversion from mechanical stimulus to electrical signals and then to audio signals. The sensor is fabricated using dynamic interaction-based self-healing materials, which constitute an imine bond-based cross-linked polymer for the triboelectric layer and a hydrogen bond-based organohydrogel for the electrode layer. Moreover, the conductive organohydrogel-based electrode is provided with stretchable, anti-freezing, and non-drying properties. Consequently, minimized impact on the output performance of the sensor is found under mechanical impact, harsh environments and large deformation, enabling a long lifespan, high durability, and good stability. The self-powered sensor can be applied in a Braille recognition system, in which the Braille characters can be further decoded and read out. This work shows a reliable and flexible device with promising prospects in information technology.
Collapse
Affiliation(s)
- Xingyi Dai
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Long-Biao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Zhenhua Sun
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yuzhang Du
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Boen Xue
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Man-Chung Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Jiancheng Han
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Qihua Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yongpeng Wu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Biqin Dong
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jie Kong
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
5
|
Friebe VM, Barszcz AJ, Jones MR, Frese RN. Stabilisierung von Elektronentransferwegen erlaubt Stabilität von Biohybrid-Photoelektroden über Jahre. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202201148. [PMID: 38504712 PMCID: PMC10947033 DOI: 10.1002/ange.202201148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 11/08/2022]
Abstract
AbstractDie Nutzung natürlicher photosynthetischer Enzyme in biohybriden Anwendungen stellt eine attraktive und potenziell nachhaltige Möglichkeit zur Umwandlung von solarer Energie in Elektrizität und Brennstoffe dar. Jedoch begrenzt die Stabilität von photosynthetisch aktiven Proteinen nach der Implementierung in biohybride Anwendungsdesigns die operative Lebensdauer von Biophotoelektroden auf bisher wenige Stunden. In dieser Publikation demonstrieren wir, wie sich die Stabilität einer mesoporösen Elektrode, welche mit dem Photoprotein RC‐LH1 aus Rhodobacter sphaeroides beschichtet ist, erheblich steigern lässt. Durch die Aufrechterhaltung der Elektronenübertragungswege konnte die operative Lebensdauer unter Dauerlicht auf 33 Tage gesteigert werden und die operative Funktionalität nach einer Lagerung über mehr zwei Jahre hinweg demonstriert werden. Kombiniert mit hohen Photoströmen, die Spitzenwerte von 4.6 mA cm−2 erreichten, erzeugte die optimierte Biophotoelektrode eine kumulative Leistung von 86 C cm−2, die höchste bisher berichtete Leistung für diese Art von Elektroden. Unsere Ergebnisse zeigen, dass der Faktor, welcher die Stabilität einschränkt, die Architektur der Struktur ist, die das Photoprotein umgibt, sowie das entsprechende biohybride Sensoren und photovoltaische Geräte mit einer Betriebsdauer von mehreren Jahren möglich sind.
Collapse
Affiliation(s)
- Vincent M. Friebe
- Fachbereich Physik und AstronomieLaserLaB AmsterdamVU Universität AmsterdamDe Boelelaan 1081Amsterdam1081 HVNiederlande
- Lehrstuhl für ElektrobiotechnologieCampus Straubing für Biotechnologie und NachhaltigkeitTechnische Universität MünchenSchulgasse 2294315StraubingDeutschland
| | - Agata J. Barszcz
- Fachbereich Physik und AstronomieLaserLaB AmsterdamVU Universität AmsterdamDe Boelelaan 1081Amsterdam1081 HVNiederlande
| | - Michael R. Jones
- Fakultät für BiochemieGebäude für biomedizinische WissenschaftenUniversität von BristolUniversity WalkBristolBS8 1TDGroßbritannien
| | - Raoul N. Frese
- Fachbereich Physik und AstronomieLaserLaB AmsterdamVU Universität AmsterdamDe Boelelaan 1081Amsterdam1081 HVNiederlande
| |
Collapse
|
6
|
Friebe VM, Barszcz AJ, Jones MR, Frese RN. Sustaining Electron Transfer Pathways Extends Biohybrid Photoelectrode Stability to Years. Angew Chem Int Ed Engl 2022; 61:e202201148. [PMID: 35302697 PMCID: PMC9324148 DOI: 10.1002/anie.202201148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 11/12/2022]
Abstract
The exploitation of natural photosynthetic enzymes in semi-artificial devices constitutes an attractive and potentially sustainable route for the conversion of solar energy into electricity and solar fuels. However, the stability of photosynthetic proteins after incorporation in a biohybrid architecture typically limits the operational lifetime of biophotoelectrodes to a few hours. Here, we demonstrate ways to greatly enhance the stability of a mesoporous electrode coated with the RC-LH1 photoprotein from Rhodobacter sphaeroides. By preserving electron transfer pathways, we extended operation under continuous high-light to 33 days, and operation after storage to over two years. Coupled with large photocurrents that reached peak values of 4.6 mA cm-2 , the optimized biophotoelectrode produced a cumulative output of 86 C cm-2 , the largest reported performance to date. Our results demonstrate that the factor limiting stability is the architecture surrounding the photoprotein, and that biohybrid sensors and photovoltaic devices with operational lifetimes of years are feasible.
Collapse
Affiliation(s)
- Vincent M. Friebe
- Department of Physics and AstronomyLaserLaB AmsterdamVU University AmsterdamDe Boelelaan 1081Amsterdam1081 HVThe Netherlands
- ElectrobiotechnologyCampus Straubing for Biotechnology and SustainabilityTechnical University of MunichSchulgasse 2294315StraubingGermany
| | - Agata J. Barszcz
- Department of Physics and AstronomyLaserLaB AmsterdamVU University AmsterdamDe Boelelaan 1081Amsterdam1081 HVThe Netherlands
| | - Michael R. Jones
- School of BiochemistryBiomedical Sciences BuildingUniversity of BristolUniversity WalkBristolBS8 1TDUK
| | - Raoul N. Frese
- Department of Physics and AstronomyLaserLaB AmsterdamVU University AmsterdamDe Boelelaan 1081Amsterdam1081 HVThe Netherlands
| |
Collapse
|
7
|
Wearable Near-Field Communication Sensors for Healthcare: Materials, Fabrication and Application. MICROMACHINES 2022; 13:mi13050784. [PMID: 35630251 PMCID: PMC9146494 DOI: 10.3390/mi13050784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023]
Abstract
The wearable device industry is on the rise, with technology applications ranging from wireless communication technologies to the Internet of Things. However, most of the wearable sensors currently on the market are expensive, rigid and bulky, leading to poor data accuracy and uncomfortable wearing experiences. Near-field communication sensors are low-cost, easy-to-manufacture wireless communication technologies that are widely used in many fields, especially in the field of wearable electronic devices. The integration of wireless communication devices and sensors exhibits tremendous potential for these wearable applications by endowing sensors with new features of wireless signal transferring and conferring radio frequency identification or near-field communication devices with a sensing function. Likewise, the development of new materials and intensive research promotes the next generation of ultra-light and soft wearable devices for healthcare. This review begins with an introduction to the different components of near-field communication, with particular emphasis on the antenna design part of near-field communication. We summarize recent advances in different wearable areas of near-field communication sensors, including structural design, material selection, and the state of the art of scenario-based development. The challenges and opportunities relating to wearable near-field communication sensors for healthcare are also discussed.
Collapse
|
8
|
Paul N, Suresh L, Chen Y, Zhang Y, Alzakia FI, Vogt V, Jones MR, Wong ZJ, Tan SC. Plasmonic protein electricity generator. NANOSCALE HORIZONS 2022; 7:220-234. [PMID: 35043802 DOI: 10.1039/d1nh00569c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interest in acquiring green energy from sunlight is driving research into the incorporation of biological photosynthetic materials into biohybrid devices. A potential way to enhance solar energy conversion by photosynthetic proteins is to couple them to plasmonic nanomaterials to enhance absorption of incident radiation. In this work, a variety of plasmonic nanoparticles were used to boost the photocurrent output of a Protein Electricity Generator (PEG). Mixing gold nanoparticles (NPs) of five different architectures into the photoprotein/electrolyte contents of the cell was found to increase device performance, the most effective being ∼120 nm diameter star-shaped clusters that caused a ∼six-fold increase in photocurrent at the optimum dopant level. In addition, high-resolution electrohydrodynamic printing was used to create parallel line and square lattice patterns of silver nanoparticle ink on the tungsten rear electrode of the cells. Patterns with a 700 nm spacing between lines boosted photocurrents by up to three-fold and the effects of the gold and silver nanoparticles were additive, such that the ideal combination produced a ∼19-fold increase in photocurrent and device efficiency. We attribute the elevated performance to plasmonic enhancement of absorbance and scattering effects that increase the path length for photons in the device. Use of rear electrodes with silver nanoparticle lines and grids at 1100 nm spacing did not increase photocurrents, highlighting the importance of precision printing of nanostructures for the enhancement of device performance.
Collapse
Affiliation(s)
- Nikita Paul
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | - Lakshmi Suresh
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | - Yixin Chen
- Department of Aerospace Engineering, Texas A&M University, 701 H.R. Bright Building, College Station, TX 77843, USA.
| | - Yaoxin Zhang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | - Fuad Indra Alzakia
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | - Victor Vogt
- Department of Materials Science and Engineering, Texas A&M University, 207 Reed McDonald Building, College Station, TX 77843, USA
| | - Michael R Jones
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| | - Zi Jing Wong
- Department of Aerospace Engineering, Texas A&M University, 701 H.R. Bright Building, College Station, TX 77843, USA.
- Department of Materials Science and Engineering, Texas A&M University, 207 Reed McDonald Building, College Station, TX 77843, USA
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| |
Collapse
|
9
|
Kim YJ, Hong H, Yun J, Kim SI, Jung HY, Ryu W. Photosynthetic Nanomaterial Hybrids for Bioelectricity and Renewable Energy Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005919. [PMID: 33236450 DOI: 10.1002/adma.202005919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Harvesting solar energy in the form of electricity from the photosynthesis of plants, algal cells, and bacteria has been researched as the most environment-friendly renewable energy technology in the last decade. The primary challenge has been the engineering of electrochemical interfacing with photosynthetic apparatuses, organelles, or whole cells. However, with the aid of low-dimensional nanomaterials, there have been many advances, including enhanced photon absorption, increased generation of photosynthetic electrons (PEs), and more efficient transfer of PEs to electrodes. These advances have demonstrated the possibility for the technology to advance to a new level. In this article, the fundamentals of photosynthesis are introduced. How PE harvesting systems have improved concerning solar energy absorption, PE production, and PE collection by electrodes is discussed. The review focuses on how different kinds of nanomaterials are applied and function in interfacing with photosynthetic materials for enhanced PE harvesting. Finally, the review analyzes how the performance of PE harvesting and stand-alone systems have evolved so far and its future prospects.
Collapse
Affiliation(s)
- Yong Jae Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyeonaug Hong
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - JaeHyoung Yun
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Seon Il Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ho Yun Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - WonHyoung Ryu
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| |
Collapse
|
10
|
Vu CC, Kim SJ, Kim J. Flexible wearable sensors - an update in view of touch-sensing. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:26-36. [PMID: 33854405 PMCID: PMC8018418 DOI: 10.1080/14686996.2020.1862629] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 05/27/2023]
Abstract
Nowadays, much of user interface is based on touch and the touch sensors have been common for displays, Internet of things (IoT) projects, or robotics. They can be found in lamps, touch screens of smartphones, or other wide arrays of applications as well. However, the conventional touch sensors, fabricated from rigid materials, are bulky, inflexible, hard, and hard-to-wear devices. The current IoT trend has made these touch sensors increasingly important when it added in the skin or clothing to affect different aspects of human life flexibly and comfortably. The paper provides an overview of the recent developments in this field. We discuss exciting advances in materials, fabrications, enhancements, and applications of flexible wearable sensors under view of touch-sensing. Therein, the review describes the theoretical principles of touch sensors, including resistive, capacitive, and piezoelectric types. Following that, the conventional and novel materials, as well as manufacturing technologies of flexible sensors are considered to. Especially, this review highlights the multidisciplinary approaches such as e-skins, e-textiles, e-healthcare, and e-control of flexible touch sensors. Finally, we summarize the challenges and opportunities that use is key to widespread development and adoption for future research.
Collapse
Affiliation(s)
- Chi Cuong Vu
- Department of Organic Materials and Fibers Engineering, Soongsil University, Seoul, Republic of Korea
| | - Sang Jin Kim
- Department of Organic Materials and Fibers Engineering, Soongsil University, Seoul, Republic of Korea
| | - Jooyong Kim
- Department of Organic Materials and Fibers Engineering, Soongsil University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Hsieh GW, Ling SR, Hung FT, Kao PH, Liu JB. Enhanced piezocapacitive response in zinc oxide tetrapod-poly(dimethylsiloxane) composite dielectric layer for flexible and ultrasensitive pressure sensor. NANOSCALE 2021; 13:6076-6086. [PMID: 33687415 DOI: 10.1039/d0nr06743a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We demonstrate polymeric piezocapacitive pressure sensors based on a novel composite dielectric film of poly(dimethylsiloxane) elastomeric silicone and zinc oxide tetrapod. With an appropriate loading of zinc oxide tetrapods, composite piezocapacitive pressure sensors show a 75-fold enhancement of pressure sensitivity over pristine devices, achieving a marked value as high as 2.55 kPa-1. The limit of detection was estimated to be about 10 mg, corresponding to a subtle stimulus of only 1.0 Pa. Besides, versatile functionalities such as detection of finger bending/straightening, calligraphy writing, and air flow blowing have been investigated. It is expected that the proposed piezocapacitive pressure sensors incorporating stress-sensitive additives of zinc oxide nanostructures may provide a promising means for potential applications in ultrasensitive wearable, healthcare systems and human-machine interfaces.
Collapse
Affiliation(s)
- Gen-Wen Hsieh
- Institute of Lighting and Energy Photonics, College of Photonics, National Chiao Tung University, 301, Gaofa 3rd Road, Guiren District, Tainan 71150, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
12
|
Gibney S, Hicks JM, Robinson A, Jain A, Sanjuan-Alberte P, Rawson FJ. Toward nanobioelectronic medicine: Unlocking new applications using nanotechnology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1693. [PMID: 33442962 DOI: 10.1002/wnan.1693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/29/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Bioelectronic medicine aims to interface electronic technology with biological components and design more effective therapeutic and diagnostic tools. Advances in nanotechnology have moved the field forward improving the seamless interaction between biological and electronic components. In the lab many of these nanobioelectronic devices have the potential to improve current treatment approaches, including those for cancer, cardiovascular disorders, and disease underpinned by malfunctions in neuronal electrical communication. While promising, many of these devices and technologies require further development before they can be successfully applied in a clinical setting. Here, we highlight recent work which is close to achieving this goal, including discussion of nanoparticles, carbon nanotubes, and nanowires for medical applications. We also look forward toward the next decade to determine how current developments in nanotechnology could shape the growing field of bioelectronic medicine. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Steven Gibney
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jacqueline M Hicks
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Andie Robinson
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Akhil Jain
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Paola Sanjuan-Alberte
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.,Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
13
|
Vu CC, Kim J. Waterproof, thin, high-performance pressure sensors-hand drawing for underwater wearable applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:718-728. [PMID: 34434076 PMCID: PMC8381950 DOI: 10.1080/14686996.2021.1961100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 05/19/2023]
Abstract
Wearable sensors, especially pressure sensors, have become an indispensable part of life when reflecting human interactions and surroundings. However, the difficulties in technology and production-cost still limit their applicability in the field of human monitoring and healthcare. Herein, we propose a fabrication method with flexible, waterproof, thin, and high-performance circuits - based on hand-drawing for pressure sensors. The shape of the sensor is drawn on the pyralux film without assistance from any designing software and the wet-tissues coated by CNTs act as a sensing layer. Such sensor showed a sensitivity (~0.2 kPa-1) while ensuring thinness (~0.26 mm) and flexibility for touch detection or breathing monitoring. More especially, our sensor is waterproof for underwater wearable applications, which is a drawback of conventional paper-based sensors. Its outstanding capability is demonstrated in a real application when detecting touch actions to control a phone, while the sensor is dipped underwater. In addition, by leveraging machine learning technology, these touch actions were processed and classified to achieve highly accurate monitoring (up to 94%). The available materials, easy fabrication techniques, and machine learning algorithms are expected to bring significant contributions to the development of hand-drawing sensors in the future.
Collapse
Affiliation(s)
- Chi Cuong Vu
- Department of Organic Materials and Fibers Engineering, Soongsil University, Seoul, Republic of Korea
| | - Jooyong Kim
- Department of Organic Materials and Fibers Engineering, Soongsil University, Seoul, Republic of Korea
- CONTACT Jooyong Kim Department of Organic Materials and Fibers Engineering, Soongsil University, Seoul, Dongjak-gu, 06978, Korea (The Republic of)
| |
Collapse
|
14
|
Peymani S, Izadyar M, Arkan F. Photovoltaic and spectroscopic properties of bacteriochlorin-based photosensitizer: molecular approach. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04317-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Wang P, Hu M, Wang H, Chen Z, Feng Y, Wang J, Ling W, Huang Y. The Evolution of Flexible Electronics: From Nature, Beyond Nature, and To Nature. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001116. [PMID: 33101851 PMCID: PMC7578875 DOI: 10.1002/advs.202001116] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/24/2020] [Indexed: 05/05/2023]
Abstract
The flourishing development of multifunctional flexible electronics cannot leave the beneficial role of nature, which provides continuous inspiration in their material, structural, and functional designs. During the evolution of flexible electronics, some originated from nature, some were even beyond nature, and others were implantable or biodegradable eventually to nature. Therefore, the relationship between flexible electronics and nature is undoubtedly vital since harmony between nature and technology evolution would promote the sustainable development. Herein, materials selection and functionality design for flexible electronics that are mostly inspired from nature are first introduced with certain functionality even beyond nature. Then, frontier advances on flexible electronics including the main individual components (i.e., energy (the power source) and the sensor (the electric load)) are presented from nature, beyond nature, and to nature with the aim of enlightening the harmonious relationship between the modern electronics technology and nature. Finally, critical issues in next-generation flexible electronics are discussed to provide possible solutions and new insights in prospective exploration directions.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Mengmeng Hu
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Hua Wang
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Zhe Chen
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Yuping Feng
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Jiaqi Wang
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Wei Ling
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Yan Huang
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| |
Collapse
|
16
|
Paul N, Suresh L, Vaghasiya JV, Yang L, Zhang Y, Nandakumar DK, Jones MR, Tan SC. Self-powered all weather sensory systems powered by Rhodobacter sphaeroides protein solar cells. Biosens Bioelectron 2020; 165:112423. [PMID: 32729541 DOI: 10.1016/j.bios.2020.112423] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Natural photosynthetic proteins can convert solar energy into electrical energy with close to 100% quantum efficiency, and there is increasing interest in their use for sustainable photoelectrochemical devices. The primary processes of photosynthesis remain operational and efficient down to extremely low temperatures, and natural photosystems exhibit a variety of self-healing mechanisms. Herein we demonstrate the use of an amphiphilic triblock copolymer, Pluronic F127, to fabricate a self-healing photosynthetic protein photoelectrochemical cell that operates optimally at sub-zero temperatures. A concentration of 30% (w/w) Pluronic F127 depressed the freezing point of an electrolyte comprising 50 mM ubiquinone-0 in aqueous buffer such that optimal device solar energy conversion was seen at -12 °C rather than at room temperature. Fabrication of the protein photoelectrochemical cells with flexible electrodes enabled the demonstration of self-healing of damage caused by repeated mechanical deformation. Multiple bending cycles caused a marked deterioration of the photocurrent response to around a third of initial levels due to damage to the gel phase of the electrolyte, but this could be restored to ~95% by simply cooling and rewarming the device. This self-recoverability of the electrolyte extended the operational life of the protein cell through a process that increased its photoelectrochemical output during the repair. Utility of the cells as components of a touch sensor operational across a wide temperature range, including freezing conditions, is demonstrated.
Collapse
Affiliation(s)
- Nikita Paul
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Lakshmi Suresh
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Jayraj V Vaghasiya
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Lin Yang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Yaoxin Zhang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Dilip Krishna Nandakumar
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Michael R Jones
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore.
| |
Collapse
|
17
|
Shin N, Lee SH, Cho Y, Park TH, Hong S. Bioelectronic Skin Based on Nociceptive Ion Channel for Human-Like Perception of Cold Pains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001469. [PMID: 32578398 DOI: 10.1002/smll.202001469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/28/2020] [Indexed: 06/11/2023]
Abstract
A bioelectronic skin device based on nociceptive ion channels in nanovesicles is developed for the detection of chemical cold-pain stimuli and cold environments just like human somesthetic sensory systems. The human transient receptor potential ankyrin 1 (hTRPA1) is involved in transmission and modulation of cold-pain sensations. In the bioelectronic skin, the nanovesicles containing the hTRPA1 nociceptive ion channel protein reacts to cold-pain stimuli, and it is electrically monitored through carbon nanotube transistor devices based on floating electrodes. The bioelectronic skin devices sensitively detect chemical cold-pain stimuli like cinnamaldehyde at 10 fm, and selectively discriminate cinnamaldehyde among other chemical stimuli. Further, the bioelectronic skin is used to evaluate the effect of cold environments on the response of the hTRPA1, finding that the nociceptive ion channel responds more sensitively to cinnamaldehyde at lower temperatures than at higher temperatures. The bioelectronic skin device could be useful for a basic study on somesthetic systems such as cold-pain sensation, and should be used for versatile applications such as screening of foods and drugs.
Collapse
Affiliation(s)
- Narae Shin
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Seung Hwan Lee
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Youngtak Cho
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
18
|
Liu J, Mantell J, Jones MR. Minding the Gap between Plant and Bacterial Photosynthesis within a Self-Assembling Biohybrid Photosystem. ACS NANO 2020; 14:4536-4549. [PMID: 32227861 DOI: 10.1021/acsnano.0c00058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many strategies for meeting mankind's future energy demands through the exploitation of plentiful solar energy have been influenced by the efficient and sustainable processes of natural photosynthesis. A limitation affecting solar energy conversion based on photosynthetic proteins is the selective spectral coverage that is the consequence of their particular natural pigmentation. Here we demonstrate the bottom-up formation of semisynthetic, polychromatic photosystems in mixtures of the chlorophyll-based LHCII major light harvesting complex from the oxygenic green plant Arabidopsis thaliana, the bacteriochlorophyll-based photochemical reaction center (RC) from the anoxygenic purple bacterium Rhodobacter sphaeroides and synthetic quantum dots (QDs). Polyhistidine tag adaptation of LHCII and the RC enabled predictable self-assembly of LHCII/RC/QD nanoconjugates, the thermodynamics of which could be accurately modeled and parametrized. The tricomponent biohybrid photosystems displayed enhanced solar energy conversion via either direct chlorophyll-to-bacteriochlorophyll energy transfer or an indirect pathway enabled by the QD, with an overall energy transfer efficiency comparable to that seen in natural photosystems.
Collapse
Affiliation(s)
- Juntai Liu
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Judith Mantell
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
- Wolfson Bioimaging Facility, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Michael R Jones
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
19
|
Liao X, Song W, Zhang X, Yan C, Li T, Ren H, Liu C, Wang Y, Zheng Y. A bioinspired analogous nerve towards artificial intelligence. Nat Commun 2020; 11:268. [PMID: 31937777 PMCID: PMC6959309 DOI: 10.1038/s41467-019-14214-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
A bionic artificial device commonly integrates various distributed functional units to mimic the functions of biological sensory neural system, bringing intricate interconnections, complicated structure, and interference in signal transmission. Here we show an all-in-one bionic artificial nerve based on a separate electrical double-layers structure that integrates the functions of perception, recognition, and transmission. The bionic artificial nerve features flexibility, rapid response (<21 ms), high robustness, excellent durability (>10,000 tests), personalized cutability, and no energy consumption when no mechanical stimulation is being applied. The response signals are highly regionally differentiated for the mechanical stimulations, which enables the bionic artificial nerve to mimic the spatiotemporally dynamic logic of a biological neural network. Multifunctional touch interactions demonstrate the enormous potential of the bionic artificial nerve for human-machine hybrid perceptual enhancement. By incorporating the spatiotemporal resolution function and algorithmic analysis, we hope that bionic artificial nerves will promote further development of sophisticated neuroprosthetics and intelligent robotics.
Collapse
Affiliation(s)
- Xinqin Liao
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Weitao Song
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiangyu Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chaoqun Yan
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Hai Yun Cang on the 5th Zip, Beijing, 100700, China
| | - Tianliang Li
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Hongliang Ren
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Cunzhi Liu
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Hai Yun Cang on the 5th Zip, Beijing, 100700, China
| | - Yongtian Wang
- Beijing Engineering Research Centre of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing, 100081, China
- AICFVE of Beijing Film Academy, 4 Xitucheng Road, Beijing, 100088, China
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
20
|
Wan Z, Chen C, Meng T, Mojtaba M, Teng Y, Feng Q, Li D. Multifunctional Wet-Spun Filaments through Robust Nanocellulose Networks Wrapping to Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42808-42817. [PMID: 31625715 DOI: 10.1021/acsami.9b15153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cellulose nanofibrils (CNFs) and single-walled carbon nanotubes (SWNTs) hold potential for fabricating multifunctional composites with remarkable performance. However, it is technically tough to fabricate materials by CNFs and SWNTs with their intact properties, mainly because of the weakly synergistic interaction. Hence, constructing sturdy interfaces and sequential connectivity not only can enhance mechanical strength but also are capable of improving the electrical conductivity. In that way, we report CNF/SWNT filaments composed of axially oriented building blocks with robust CNF networks wrapping to SWNTs. The composite filaments obtained through the combination of three-mill-roll and wet-spinning strategy display high strength up to ∼472.17 MPa and a strain of ∼11.77%, exceeding most results of CNF/SWNT composites investigated in the previous literature. Meanwhile, the filaments possess an electrical conductivity of ∼86.43 S/cm, which is also positively dependent on temperature changes. The multifunctional filaments are further manufactured as a strain sensor to measure mass variation and survey muscular movements, leading to becoming optimistic incentives in the fields of portable gauge measuring and wearable bioelectronic therapeutics.
Collapse
Affiliation(s)
- Zhangmin Wan
- College of Material Science and Engineering , Nanjing Forestry University , Nanjing , Jiangsu Province 210037 , P.R. China
| | - Chuchu Chen
- College of Material Science and Engineering , Nanjing Forestry University , Nanjing , Jiangsu Province 210037 , P.R. China
| | - Taotao Meng
- College of Material Science and Engineering , Nanjing Forestry University , Nanjing , Jiangsu Province 210037 , P.R. China
| | - Mansoorianfar Mojtaba
- College of Material Science and Engineering , Nanjing Forestry University , Nanjing , Jiangsu Province 210037 , P.R. China
| | - Youchao Teng
- College of Material Science and Engineering , Nanjing Forestry University , Nanjing , Jiangsu Province 210037 , P.R. China
| | - Qian Feng
- College of Material Science and Engineering , Nanjing Forestry University , Nanjing , Jiangsu Province 210037 , P.R. China
| | - Dagang Li
- College of Material Science and Engineering , Nanjing Forestry University , Nanjing , Jiangsu Province 210037 , P.R. China
| |
Collapse
|
21
|
Andraos S, Wake M, Saffery R, Burgner D, Kussmann M, O'Sullivan J. Perspective: Advancing Understanding of Population Nutrient-Health Relations via Metabolomics and Precision Phenotypes. Adv Nutr 2019; 10:944-952. [PMID: 31098626 PMCID: PMC6855971 DOI: 10.1093/advances/nmz045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023] Open
Abstract
Diet and lifestyle are vital to population health, but their true contribution is difficult to quantify using traditional methods. Nutrient-health relations are typically based on epidemiological associations that are assessed at the population level, traditionally using self-reported dietary and lifestyle data. Unfortunately, such measures are inherently inaccurate. New technologies such as metabolomics can measure nutritional and micronutrient profiles in body fluids, providing objective evaluation of nutritional status. A critical step toward accurate health prediction models would be the building of integrated repositories of nutritional measures combining subjective methods of reporting with objective metabolomics profiles and precise phenotypic data. Here we outline a roadmap to achieve this goal and discuss both the advantages and risks of this approach. We also highlight the uncertain associations between the complexity of high-dimensional data generated in 'omics research (along with the public confusion this may engender) and the rapid adoption of 'omics approaches by nutrition and health companies to develop nutritional products and services.
Collapse
Affiliation(s)
| | - Melissa Wake
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Richard Saffery
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - David Burgner
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Martin Kussmann
- Liggins Institute, Auckland, New Zealand,New Zealand National Science Challenge, High-Value Nutrition, The University of Auckland, Auckland, New Zealand,Frontiers Media SA, Lausanne, Switzerland
| | - Justin O'Sullivan
- Liggins Institute, Auckland, New Zealand,New Zealand National Science Challenge, High-Value Nutrition, The University of Auckland, Auckland, New Zealand,Address correspondence to JO (e-mail: )
| |
Collapse
|
22
|
Zhou X, Gai P, Zhang P, Sun H, Lv F, Liu L, Wang S. Conjugated Polymer Enhanced Photoelectric Response of Self-Circulating Photosynthetic Bioelectrochemical Cell. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38993-39000. [PMID: 31556586 DOI: 10.1021/acsami.9b12560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A water-oxygen-water photosynthetic bioelectrochemical cell (PBEC) comprising hybrid poly(fluorene-alt-phenylene) (PFP)/PSII-enriched membranes (BBY) photoanode and bilirubin oxidase (BOD) biocathode has been designed and fabricated. In the PBEC, water is split into oxygen, protons, and electrons through light-dependent reaction of PSII at the photoanode, and oxygen is converted into water catalyzed by BOD at the biocathode, forming the electronic circuit and generating current. At the photoanode, PFP can simultaneously accelerate the photosynthetic water oxidation and the electron transfer between BBY and electrode. Interestingly, the photocurrent density produced by PBEC after the introduction of PFP reaches 1.05 ± 0.01 μA/cm2, which is 2.5 times more than that of the BBY electrode, indicating that conjugated polymer can enhance the photoelectric response of PBEC.
Collapse
Affiliation(s)
- Xin Zhou
- Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- College of Chemistry , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Panpan Gai
- Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , P. R. China
| | - Pengbo Zhang
- Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- College of Chemistry , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Han Sun
- Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- College of Chemistry , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Fengting Lv
- Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- College of Chemistry , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Libing Liu
- Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- College of Chemistry , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Shu Wang
- Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- College of Chemistry , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
23
|
Huang F, Kim SY, Rao Z, Lee SJ, Yoon J, Park JH, Hong WK. Protein Biophotosensitizer-Based IGZO Photo-thin Film Transistors for Monitoring Harmful Ultraviolet Light. ACS APPLIED BIO MATERIALS 2019; 2:3030-3037. [PMID: 35030795 DOI: 10.1021/acsabm.9b00341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of health monitoring devices to prevent skin cancers or various diseases arising from exposure to harmful light has attracted increasing scientific interest and has led to the exploration of hybrid inorganic-biological systems through the incorporation of biomolecules. Here, ultraviolet (UV) photodetectors based on transistors incorporating green fluorescent protein (GFP) molecules on multilayer-stacked indium-gallium-zinc-oxide (IGZO) thin films are studied, where the top layer of the IGZO films has different surface properties. Light-sensitive GFP can play a role as a biophotosensitizer due to light-induced electron transfer during photoexcitation. Intriguingly, the IGZO photo-thin film transistors (TFTs) with GFP molecules on a relatively more hydrophilic surface (less defective surface) have better device performance and exhibit a dramatic decrease in the photocurrent after turning the UV light off compared to the cases without GFP molecules on the more hydrophilic surface and on the less hydrophilic surface (more defective surface). A physical mechanism based on energy band diagrams is proposed, and the light-induced threshold voltage shift in the IGZO photo-TFTs is estimated and explained in terms of oxygen-related vacancy sites and trap/interface conditions in the IGZO film and light-induced electron transfer from the GFP molecules.
Collapse
Affiliation(s)
- Fu Huang
- Division of Biotechnology, College of Environmental and Bioresources Sciences, Chonbuk National University, Iksan 54596, Republic of Korea.,Jeonju Center, Korea Basic Science Institute, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - So Young Kim
- Division of Biotechnology, College of Environmental and Bioresources Sciences, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Zhili Rao
- Division of Biotechnology, College of Environmental and Bioresources Sciences, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Sei-Jin Lee
- Jeonju Center, Korea Basic Science Institute, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Jongwon Yoon
- Jeonju Center, Korea Basic Science Institute, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Jung Hee Park
- Division of Biotechnology, College of Environmental and Bioresources Sciences, Chonbuk National University, Iksan 54596, Republic of Korea.,Safety, Environmental and Life Science Institute, College of Environmental and Bioresources Sciences, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Woong-Ki Hong
- Jeonju Center, Korea Basic Science Institute, Jeonju, Jeollabuk-do 54907, Republic of Korea
| |
Collapse
|
24
|
Almansoori MT, Li X, Zheng L. A Brief Review on E-skin and its Multifunctional Sensing Applications. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2405465804666190313154903] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Electronic skin (e-skin) is an artificial skin that mimics the sensing capabilities of human
skin, which brings many potential applications in robotics, artificial intelligence, prosthetics, and
health monitoring technologies. Many attempts associated with various mechanisms/approaches and
materials/structures have been developed to match the e-skins to the particular functions of specific
applications. Along the time, high sensitivity, mechanical flexibility/stretchability, multifunction, and
large area are common driving forces in the research area. New materials, with a variety of structures
and unique properties, offer a plenty of freedoms in designing and fabricating e-skins. Significant
progress has been made in recently years. This paper firstly reviews the most recent progress on nanomaterial-
based e-skins according to four major sensing mechanisms, with an emphasis on the effects
of various materials on the sensitivity and stretchability of e-skins. Then the paper updates the
progress and effort with respect to multifunctional e-skins and organic-thin-film-transistor based
large-area e-skins. Further development possibilities are also briefly discussed.
Collapse
Affiliation(s)
- Mariam Turki Almansoori
- Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Xuan Li
- Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Lianxi Zheng
- Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
25
|
Suresh L, Vaghasiya JV, Nandakumar DK, Wu T, Jones MR, Tan SC. High-Performance UV Enhancer Molecules Coupled with Photosynthetic Proteins for Ultra-Low-Intensity UV Detection. Chem 2019. [DOI: 10.1016/j.chempr.2019.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Cai S, Xu X, Yang W, Chen J, Fang X. Materials and Designs for Wearable Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808138. [PMID: 30785644 DOI: 10.1002/adma.201808138] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/20/2019] [Indexed: 05/14/2023]
Abstract
Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next-generation wearable electronics. Unfortunately, no in-depth reviews on the design strategies, material exploration, and potential applications of wearable photodetectors are found in literature to date. Thus, this progress report first summarizes the fundamental design principles of turning "hard" photodetectors "soft," including 2D (polymer and paper substrate-based devices) and 1D PDs (fiber shaped devices). In short, the flexibility of PDs is realized through elaborate substrate modification, material selection, and device layout. More importantly, this report presents the current progress and specific requirements for wearable PDs according to the application: monitoring, imaging, and optical communication. Challenges and future research directions in these fields are proposed at the end. The purpose of this progress report is not only to shed light on the basic design principles of wearable PDs, but also serve as the roadmap for future exploration in wearable PDs in various applications, including health monitoring and Internet of Things.
Collapse
Affiliation(s)
- Sa Cai
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaojie Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Yang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jiaxin Chen
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
27
|
Photosynthetic apparatus of Rhodobacter sphaeroides exhibits prolonged charge storage. Nat Commun 2019; 10:902. [PMID: 30796237 PMCID: PMC6385238 DOI: 10.1038/s41467-019-08817-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
Photosynthetic proteins have been extensively researched for solar energy harvesting. Though the light-harvesting and charge-separation functions of these proteins have been studied in depth, their potential as charge storage systems has not been investigated to the best of our knowledge. Here, we report prolonged storage of electrical charge in multilayers of photoproteins isolated from Rhodobacter sphaeroides. Direct evidence for charge build-up within protein multilayers upon photoexcitation and external injection is obtained by Kelvin-probe and scanning-capacitance microscopies. Use of these proteins is key to realizing a 'self-charging biophotonic device' that not only harvests light and photo-generates charges but also stores them. In strong correlation with the microscopic evidence, the phenomenon of prolonged charge storage is also observed in primitive power cells constructed from the purple bacterial photoproteins. The proof-of-concept power cells generated a photovoltage as high as 0.45 V, and stored charge effectively for tens of minutes with a capacitance ranging from 0.1 to 0.2 F m-2.
Collapse
|