1
|
Fraysseix MD, Lewandowski S, Perraud S, Carlotti S, Llevot A. Synthesis of Aldehyde Functional Polydimethylsiloxane as a New Precursor for Aliphatic Imine-Based Self-Healing PDMS. Macromol Rapid Commun 2025:e2500173. [PMID: 40332286 DOI: 10.1002/marc.202500173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/15/2025] [Indexed: 05/08/2025]
Abstract
The development of a simple synthetic route to aldehyde functional poly(dimethylsiloxane) (PDMS) through oxidative C─C bond cleavage of terminal epoxide functions by periodic acid is presented first. Nuclear Magnetic Resonance (NMR) and Infrared spectroscopies revealed the full conversion of the PDMS terminal epoxides to aldehyde groups. This new aldehyde functional PDMS is then used to elaborate aliphatic self-healing materials through imine chemistry by reaction with an amine-terminated PDMS featuring urea moieties in its structure. The reactivity of the aldehyde terminated PDMS is investigated through the preparation of supramolecular networks formed by the hydrogen bonds of ureas. The incorporation of permanent chemical cross-linking points through reaction with a triisocyanate leads to the preparation of covalent adaptable networks (CANs). As a result, materials with a wide range of mechanical properties are obtained, depending on the composition and structure of the PDMS networks. Due to the presence of dynamic covalent imine bonds, the supramolecular networks show excellent scratch recovery at room temperature while the CANs retain their mechanical properties after two cycles of reshaping by heating.
Collapse
Affiliation(s)
- Mickaël Du Fraysseix
- DPHY, ONERA, Université de Toulouse, Toulouse, 31000, France
- CNES-French Aerospace Agency, 18 avenue Edouard Belin, Toulouse, F-31401 Cedex 9, France
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | | | - Sophie Perraud
- CNES-French Aerospace Agency, 18 avenue Edouard Belin, Toulouse, F-31401 Cedex 9, France
| | - Stéphane Carlotti
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Audrey Llevot
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| |
Collapse
|
2
|
Ji YL, Zhang Y, Lu J, Gao F, Lv X, Qu X, Zhu G, Tian T, Pang H, Tian Y, Dong X. Multifunctional Hydrogel Electronics for Synergistic Therapy and Visual Monitoring in Wound Healing. Adv Healthc Mater 2025; 14:e2404723. [PMID: 39924863 DOI: 10.1002/adhm.202404723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/14/2025] [Indexed: 02/11/2025]
Abstract
To overcome the limitations of precise monitoring and inefficient wound exudate management in wound healing, an advanced multifunctional hydrogel electronics (MHE) platform based on MXene@MOF/Fe3O4@C photonic crystal hydrogel is developed. This platform combines optical/electrical sensing, synergistic therapy, and real-time visual monitoring into a single, efficient system, offering a comprehensive solution for wound healing. Under photothermal stimulation, the hydrogel releases metal ions that generate hydroxyl radicals, effectively eliminating antibiotic-resistant bacteria. Beyond its antibacterial efficacy, this system offers unprecedented real-time monitoring through temperature-responsive visualization, while structural color changes upon wound exudate absorption provide a clear indication for dressing replacement. By integrating these functionalities, MHE platform allows for precise control of the therapeutic process, significantly improving wound healing and treatment monitoring. The platform's optical/electrical sensing capabilities further broaden its potential applications across other biomedical fields. This breakthrough technology provides clinicians with a powerful tool to optimize therapeutic outcomes, marking a major advancement in wound care and biomedical applications.
Collapse
Affiliation(s)
- Yun-Liang Ji
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Jingqi Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Fan Gao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xinyu Qu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Tian Tian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yu Tian
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| |
Collapse
|
3
|
Lee Y, Kim Y, Kim M, Kim IS, Moon CW, Hyun JK. Overcoming the Structural Incompatibility Between White, Black, and Vibrant Hues in Dynamic Structural Colors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502181. [PMID: 40123268 DOI: 10.1002/smll.202502181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Nature typically creates white and black structural coloration through disordered, dense assemblies of scatterers and absorbers that scatter and absorb light uniformly across the visible range, respectively. However, this approach conflicts with structural coloration designs for vibrant hues, which use ordered and uniform nanostructures. This structural discrepancy presents a challenge when trying to incorporate white and black alongside other colors in dynamic structural colors. Herein, a dynamic reflective coloration strategy is demonstrated, capable of switching between white, black, and other hues from ordered nanostructures. This is accomplished by exploiting reversible Cu electrodeposition within the slits of a nanograting and observing its cross-polarized reflection, resolving colors from the grating birefringence. By electrochemically modulating the Cu thickness, birefringence is selectively activated, mixed, and eliminated from photonic (Rayleigh-Wood) and near-plasmonic resonances, producing blue, orange, white, and black colors. These results offer a pathway to dynamic white and black structural coloration compatible with ordered nanostructures.
Collapse
Affiliation(s)
- Yumin Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Youngji Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Minji Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - In Soo Kim
- Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Cheon Woo Moon
- Department of Display Materials Engineering, Soonchunhyang University, Asan, 31538, South Korea
| | - Jerome Kartham Hyun
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
4
|
Wang H, Bi D, Yu B, Chen Q, Du S, Xie G, Zhu J, Zhang L. Photonic hydrogels combining the slow photon effect and NO gas therapy for synergetic enhanced photodynamic antibacterial therapy. J Colloid Interface Sci 2025; 682:1185-1194. [PMID: 39671952 DOI: 10.1016/j.jcis.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Photodynamic therapy (PDT) offers potential for combating bacterial infections through the generation of reactive oxygen species (ROS). However, the antibacterial efficiency of PDT is largely impeded by the limited photon absorption of photosensitizers and the short diffusion length and lifespan of ROS. Herein, we present a light-harvesting platform based on l-arginine-modified photonic hydrogels loaded with new indocyanine green (PG@Arg/IR820) for synergizing the slow photon effect with NO gas therapy to enhance PDT antibacterial efficiency. Upon near-infrared (NIR) light irradiation, PG@Arg/IR820 can maximize the utilization of photons via the slow photon effect to generate sufficient ROS, which not only acts as the primary bactericidal agent in PDT but also triggers l-arginine to generate NO. NO exhibits a long diffusion distance and lifespan and can freely diffuse to inhibit distant bacterial growth, demonstrating a vital complementary advantage in bacterial inactivation by ROS. The synergistic effect of the slow photon effect combined with NO gas therapy allows PG@Arg/IR820 to intensify bacterial destruction and enhance PDT antibacterial efficiency. This antibacterial system sheds light on an advisable design principle for efficient antibacterial activities in photodynamic inactivation.
Collapse
Affiliation(s)
- Hui Wang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Duohang Bi
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Bowen Yu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qiang Chen
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Shuo Du
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ge Xie
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Lianbin Zhang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
5
|
Du Y, Zeng J, Sun Q, Yu S, Yang D, Huang S. Polymerization-induced highly brilliant and color-recordable mechanochromic photonic gels for ink-free patterning. J Colloid Interface Sci 2025; 679:883-892. [PMID: 39486227 DOI: 10.1016/j.jcis.2024.10.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Mechanochromic photonic crystals (MPCs) are extremely attractive since they can adjust their structural color by forces. However, the poor color saturation and color-recordability of conventional MPCs significantly limit their practical applications. Herein, a highly brilliant and color-recordable MPC gel (MPCG) has been fabricated by photopolymerizing the liquid photonic crystals with silica particles non-closely packed in acrylate, dichlorobenzene, and oleylamine. Photopolymerization induces elastic gradient non-close-packing structures and thus broad photonic bandgaps (>100 nm), resulting in 1) high color saturation despite possessing a small refractive index contrast (0.06), 2) remarkable mechanochromic properties, including a large wavelength tuning range (228 nm), fast responsiveness (8.8-10.3 nm/ms), and high sensitivity (4.4 nm/kPa), and 3) unconventional color-recordable properties. MPCGs were experimentally proved to be ideal rewritable papers for constructing multicolor and high-resolution patterns in an ink-free way, difficult for traditional MPC-based units. The unique working mechanism of polymerization-induced phase separation and thus continuous swelling and gelation, and precise design of materials and structures are the keys to MPCGs' characteristics. This study paves a new way for constructing advanced stimulus-responsive photonic structures and will promote their applications in printing, display, anti-counterfeiting, etc.
Collapse
Affiliation(s)
- Yijun Du
- Key Laboratory of Green Chemistry and Pharmaceutical Engineering, Yuanpei College, Shaoxing University, Shaoxing 312000, PR China.
| | - Junjian Zeng
- Key Laboratory of Green Chemistry and Pharmaceutical Engineering, Yuanpei College, Shaoxing University, Shaoxing 312000, PR China
| | - Qiuhong Sun
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Siyi Yu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dongpeng Yang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Shaoming Huang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China.
| |
Collapse
|
6
|
Gao Y, Wan L, Song Y, Gao S, Yan N, Wu F, Du Y. Templated self-organization of polymer-tethered gold nanoparticles into freestanding superlattices at the liquid-air interface. Phys Chem Chem Phys 2025; 27:2427-2433. [PMID: 39801325 DOI: 10.1039/d4cp04435e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Programmable organization of uniform organic/inorganic functional building blocks into large-scale ordered superlattices has attracted considerable attention since the bottom-up self-organization strategy opens up a robust and universal route for designing novel and multifunctional materials with advanced applications in memory storage devices, catalysis, photonic crystals, and biotherapy. Despite making great efforts in the construction of superlattice materials, there still remains a challenge in the preparation of organic/inorganic hybrid superlattices with tunable dimensions and exotic configurations. Here, we report the spontaneous self-organization of polystyrene-tethered gold nanoparticles (AuNPs@PS) into freestanding organic/inorganic hybrid superlattices templated at the diethylene glycol-air interface. The resulting multilayer 3D superlattices exhibit hexagonally honeycomb and periodically tetrahedral lattices after the evaporation of AuNPs@PS building blocks at the liquid-air interface. Notably, a particular Moiré pattern originating from the twisted stacking of the adjacent layers is observed when the twist angle is 30°, leading to the exquisite quasi-crystalline packing with 12-fold rotational symmetry. In addition, the interparticle distance and gap within the 2D superlattice can be precisely regulated by adjusting the length of polymer segments, thereby generating distinctive 3D graphene-skeleton configurations in the freestanding superlattice. This finding presents a highly efficient and versatile way to artificially produce multifunctional organic/inorganic hybrid superlattice materials with adjustable dimensions and internal configurations.
Collapse
Affiliation(s)
- Ye Gao
- College of Chemistry, Research Institute for Scientific and Technological Innovation, Changchun Normal University, Changchun 130032, China.
| | - Lingli Wan
- College of Chemistry, Research Institute for Scientific and Technological Innovation, Changchun Normal University, Changchun 130032, China.
| | - Yuqing Song
- College of Chemistry, Research Institute for Scientific and Technological Innovation, Changchun Normal University, Changchun 130032, China.
| | - Shan Gao
- College of Chemistry, Research Institute for Scientific and Technological Innovation, Changchun Normal University, Changchun 130032, China.
| | - Nan Yan
- College of Chemistry, Research Institute for Scientific and Technological Innovation, Changchun Normal University, Changchun 130032, China.
| | - Fan Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yanqiu Du
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
7
|
Xie J, Yue C, Chen S, Jiang Z, Wu S, Yang W, Zhang K, Chen T, Wang Y, Lu W. Electrothermally powered synergistic fluorescence-colour/3D-shape changeable polymer gel systems for rewritable and programmable information display. MATERIALS HORIZONS 2025; 12:487-498. [PMID: 39480658 DOI: 10.1039/d4mh01172d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Intelligent luminescent materials for rewritable and programmable information display have long been expected to be used to address potential environmental concerns stemming from the extensive use of disposable displays. However, most reported luminescence-colour changeable examples are chemically responsive and not well programmed to sequentially deliver different information within a single system. Additionally, they may suffer from residual chemical accumulation caused by the repeated addition of chemical inks and usually have poor rewritability. Herein, we draw inspiration from the bioelectricity-triggered information display mechanism of chameleon skin to report a robust electrothermally powered polymer gel actuator consisting of one soft conductive graphene/PDMS film and one humidity-responsive fluorescence-colour changeable CD-functionalized polymer (PAHCDs) gel layer. Owing to the good electrocaloric effect of the bottom graphene film and excellent hygroscopicity of the top PAHCDs gel layer, the as-designed actuator could be facilely controlled to exhibit reversible and synergistic 3D-shape/fluorescence-colour changeable behaviours in response to alternating electricity and humidity stimuli. On this basis, robust rewritable information display systems are fabricated, which enable not only on-demand delivery of written information, but also facile rewriting of lots of different information by the synergization of electroheat/humidity-triggered local 3D-deformation and fluorescence-colour changes. This work opens new avenues of research into rewritable information display and potentially inspires the future development of intelligent luminescent materials.
Collapse
Affiliation(s)
- Junni Xie
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Chaojun Yue
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Shaohuang Chen
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen 37077, Germany.
| | - Zhenyi Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Shuangshuang Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Weiqing Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen 37077, Germany.
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Yunan Wang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, People's Republic of China.
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| |
Collapse
|
8
|
Li X, Cheng Y, Zhou Y, Shi L, Sun J, Ho GW, Wang R. Programmable Robotic Shape Shifting and Color Morphing Dynamics Through Magneto-Mechano-Chromic Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406714. [PMID: 39520345 DOI: 10.1002/adma.202406714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Recreating natural organisms' dynamic shape-morphing and adaptive color-changing capabilities in a compact structure poses significant challenges but unlocks unprecedented hybridized robotic-visual applications. Overcoming programmability and predictability obstacles is key to achieving real-time, responsive changes in appearance and functionality, enhancing robot-environment-user interactions in ways previously unattainable. Herein, a Soft Magneto-Mechano-Chromic (SoMMeC) structure comprising a magnetic actuating and a synthetic photonic film, mirroring the intricate color-tuning mechanism of chameleons is devised. A model combining numerical simulation and a strain-dependent color evolution map enables precise predictions and controllable shape-color alterations across various geometrical and magnetization profiles. The SoMMeC exhibits rapid (0.1s), broad (full-visible spectrum), tether-free (remote magnetic manipulation), and programmable (model-guided control) color transformations, surpassing traditional limitations with its real-time response, broad and omnidirectional coloration for enhanced visibility, and robustness against external disturbances. The SoMMeC translates into dynamic advertising iridescence, adaptive camouflage, self-sensing, and multi-level encryption, and transcends traditional robotics by seamlessly blending dynamic movement with nuanced visual changes. It opens up a spectrum of applications that redefine robotic functionality through dynamic appearance modulation, making robotic systems more versatile, adaptive, and suitable for unexplored integrative functions.
Collapse
Affiliation(s)
- Xueling Li
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, China
- School of Microelectronics, Shanghai University, Shanghai, 200444, China
| | - Yin Cheng
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, China
| | - Yi Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Liangjing Shi
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, China
| | - Jing Sun
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ranran Wang
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
9
|
Pang Y, Qi Z, Cui L, Huang Z, Hu C, Zhu Z, Liu B. A multifunctional and tough lotus root starch-based bio-photonic hydrogel for stretchable fabric pattern color change and water rewriting. Int J Biol Macromol 2024; 283:137675. [PMID: 39547611 DOI: 10.1016/j.ijbiomac.2024.137675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Photonic crystal hydrogels (PCHs) are innovative materials that translate imperceptible deformations and humidity changes into visible colors, broadening the applications of photonics in bioengineering and smart materials. To overcome poor mechanical properties of traditional PCHs limited by weak intermolecular forces, we designed a PCH with a dual-network framework comprising N-isopropylacrylamide-co-acrylamide (NIPAM-co-AM) and biomass lotus root starch (LR). Since LR is rich in hydroxyl groups, it can undergo molecular linkage entanglement with the NIPAM-co-AM hydrogel matrix, forming hydrogen bonds that significantly enhance the mechanical properties of the PCH. We have prepared PCH films capable of conveying multidimensional information about the extent and distribution of transient deformation by encapsulating magnetic photonic crystal microspheres (MPCMs) within a hydrogel matrix. The PCH films were found to have ultrafast response time (< 10 s), full-color tunable range, high spatial resolution, excellent mechanical toughness (tensile up to 0.17 MPa) and sensitivity (2.52 nm %-1), and were able to sense relative humidity (RH) from 11 % to 98 %. Equipped with a dynamically reconfigurable lattice, this dual-responsive (tensile/humidity) PCH not only facilitates the creation of water-rewritable photonic films but also holds promise for integration into structural color elastic fabrics, thereby presenting novel prospects for smart textile applications.
Collapse
Affiliation(s)
- Yang Pang
- Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, Donghua University, Shanghai 201620, China; Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhichuang Qi
- Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, Donghua University, Shanghai 201620, China; Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Liangliang Cui
- Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, Donghua University, Shanghai 201620, China; Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhangmi Huang
- Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, Donghua University, Shanghai 201620, China; Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, Donghua University, Shanghai 201620, China; Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhijia Zhu
- Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, Donghua University, Shanghai 201620, China; Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| | - Baojiang Liu
- Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, Donghua University, Shanghai 201620, China; Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
10
|
Xing Y, Fei X, Ma J. Ultra-Fast Fabrication of Mechanical-Water-Responsive Color-Changing Photonic Crystals Elastomers and 3D Complex Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405426. [PMID: 39324308 DOI: 10.1002/smll.202405426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Indexed: 09/27/2024]
Abstract
The traditional fabrication of opal-structured photonic crystals is constrained by the rate of solvent evaporation, a process that is not only time-consuming but also labor-intensive. This study introduces a paradigm shift by incorporating silica nanoparticles (SiNPs) with high zeta potentials and hydrogen bonding capabilities into an elastomeric matrix, resulting in a novel non-close-packed structure. This innovation circumvents the limitations of conventional methods by enabling the rapid formation of photonic inks (PI) into vibrant and luminous photonic elastomers (PEs) within seconds. These PEs demonstrate remarkable mechanochromic properties, exhibiting dynamic color changes across the visible spectrum in response to tensile and compressive deformations. Furthermore, the presence of hydroxyl groups endows the PEs with superior water-responsiveness, which can be finely tuned through the ink formulation. The elimination of solvent evaporation dependency facilitates the fabrication of macroscopic photonic crystal devices with complex geometries using digital light processing (DLP)-based 3D printing. This approach ensures exceptional optical performance and high customization potential. The resulting PEs hold significant promise for applications in smart wearables, soft robotics, and advanced human-machine interface technologies.
Collapse
Affiliation(s)
- Yixiao Xing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jinghong Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
11
|
Wang W, Zhang L, Zhao G, Yang X, Zhang W, Meng Y, Tang B, Ding L. Flexible Inverse Opal Structural Color Films with High Strength and Harsh Environment Stability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64065-64073. [PMID: 39503677 DOI: 10.1021/acsami.4c15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Flexible photonic crystals (PCs) constructed by PCs and special polymers are very promising to achieve a combination of vivid structural colors, mechanical robustness, and environment stability. However, PCs that incorporate polymer binders are still susceptible to destruction and subsequent loss of structural color when subjected to significant external forces or harsh environments. Besides, because most of these polymers are highly flammable, crucial fire safety is difficult to be guaranteed in the application of these materials. In this study, we report a poly(m-phenyleneisophthalamide) inverse opal (PMIA IO) structural color film through a SiO2 PC template sacrificing method. Benefiting from the high rigid PMIA molecular structural configuration, the PMIA IO films are able to maintain their structural colors even in harsh conditions, such as large tensile stress, high and low temperatures, potent acids and bases, and ultraviolet radiation. More attractively, the PMIA IO films demonstrate excellent flame retardancy, with the limiting oxygen index (LOI) and flame retardant rating reaching 28 vol % and V0, respectively. We believe that the flexible structural color films with high strength, harsh environment stability, and flame retardancy, which are difficult for other structural color materials to possess simultaneously, have great potential for special applications in fire protection, national defense, aviation, marine, and aerospace fields.
Collapse
Affiliation(s)
- Wentao Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Lin Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Gaochong Zhao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xupei Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Wenzheng Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Yao Meng
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, People's Republic of China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| |
Collapse
|
12
|
Meng Z, Liu Y, Huang H, Wu S. Flexible self-supporting photonic crystals: Fabrications and responsive structural colors. Adv Colloid Interface Sci 2024; 333:103272. [PMID: 39216399 DOI: 10.1016/j.cis.2024.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Photonic crystals (PCs) play an increasingly significant role in anti-counterfeiting, sensors, displays, and other fields due to their tunable structural colors produced by light manipulation of photonic stop bands. Flexible self-supporting photonic crystals (FSPCs) eliminate the requirement for conventional structures to rely on the existence of hard substrates, as well as the problem of poor mechanical qualities caused by the stiffness of the building blocks. Meanwhile, diverse production techniques and materials provide FSPCs with varied stimulus-responsive color-changing capacities, thus they have received an abundance of focus. This review summarizes the preparation strategies and variable structural colors of FSPCs. First, a series of preparation strategies by integrating polymers with PCs are summarized, including assembly of colloidal spheres on flexible substrates, polymer packaging, polymer-based direct assembly, nanoimprinting, and 3D printing. Subsequently, variable structural colors of FSPCs with different stimulations, such as viewing angle, chemical stimulation (solvents, ions, pH, biomolecules, etc.), temperature, mechanical/magnetic stress, and light, are described in detail. Finally, the outlook and challenges regarding FSPCs are presented, and several potential directions for their fabrication and application are discussed. It's believed that FSPCs will be a valuable platform for advancing the practical implementation of optical metamaterials.
Collapse
Affiliation(s)
- Zhipeng Meng
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yukun Liu
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Haofei Huang
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China..
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China..
| |
Collapse
|
13
|
Xu J, Lu P, Zhao J, Zhao X, Tian W, Ming W, Ren L. Surprisingly fast self-healing coatings with anti-fog and antimicrobial activities via host-guest interaction. J Colloid Interface Sci 2024; 680:139-150. [PMID: 39504744 DOI: 10.1016/j.jcis.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Dual functional coatings with anti-fog and antimicrobial performances greatly enhance the safety and reliability of medical detection devices, but are prone to mechanical damage, resulting in reduced performance and a shorter service lifespan. Herein, a semi-interpenetrating polymer network (SIPN) coating, featuring hydrophobic-hydrophilic balanced copolymers as bulk chains and host-guest inclusion compounds (HGICs) as cross-linkers, is reported, which demonstrates particularly effective anti-fog and antibacterial performances, along with a surprisingly fast self-healing capability under various scenarios. This HGIC-based coating displayed remarkable anti-fog capability over a wide temperature range from -20 ℃ to 85 ℃ and exhibited reliable antibacterial activities (≥98 %) against both gram-positive and gram-negative bacteria. Also, this coating showed extremely high self-healing ability (≥92 % recovery rate) within just 20 s, significantly outperforming traditional self-healing systems. These findings support the development of functional coatings that can highly maintain rapid self-healing performance while also providing anti-fog and antibacterial properties in medical detection devices.
Collapse
Affiliation(s)
- Jingyang Xu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Pengpeng Lu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Intelligent Kitchen Appliance and 5G+ Manufacturing Technologies, Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd, Foshan 528311, China.
| | - Weijun Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
| | - Weihua Ming
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, GA 30460, USA
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|
14
|
Parshina EK, Deriabin KV, Kolesnikov IE, Novikov AS, Kocheva AN, Golovenko EA, Islamova RM. Iridium(III)-Incorporating Self-Healing Polysiloxanes as Materials for Light-Emitting Oxygen Sensors. Macromol Rapid Commun 2024; 45:e2400450. [PMID: 39072911 DOI: 10.1002/marc.202400450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Polymer-metal complexes (PMCs) based on poly(2,2'-bipyridine-4,4'-dicarboxamide-co-polydimethylsiloxanes) with cyclometalated di(2-phenylpyridinato-C2,N')iridium(III) fragments and cross-linked by Zn2+ (Zn[Ir]-BipyPDMSs) or Ir3+ (Ir[Ir]-BipyPDMSs) represent flexible, stretchable, phosphorescent, and self-healing molecular oxygen sensors. PMCs provide strong phosphorescence at λem = 595-605 nm. Zn[Ir]-BipyPDMS with PDMS chain length of Mn = 5000 has the highest quantum yield of 9.3% and is a molecular oxygen sensor at different O2 concentrations (0-100 vol%) compared to Ir[Ir]-BipyPDMSs. A Stern-Volmer constant is determined for Zn[Ir]-BipyPDMS as KSV = 0.014%-1, which is similar to the reported oxygen-sensitive iridium(III) complexes. All synthesized PMCs exhibit high elongation at break (up to 1100%) and self-healing efficiency (up to 99%).
Collapse
Affiliation(s)
- Elizaveta K Parshina
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Konstantin V Deriabin
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Ilya E Kolesnikov
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Alexander S Novikov
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Anastasia N Kocheva
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Ekaterina A Golovenko
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Regina M Islamova
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|
15
|
Liu Y, Sun Y, Qi Y, Niu W, Ma W, Wu S, Tang B, Zhang S. Water-Rewritable Structural Color Textiles with Fast Response Speed and Antispreading Capability. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39371033 DOI: 10.1021/acsami.4c10978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The stimuli-responsive textiles, especially water-responsive textiles, have garnered attention owing to their environmental compatibility. Inspired by the hydrochromic behavior of Diphylleia grayi, water-rewritable structural color (WRSC) textiles exhibiting fast response speed and antispreading capability were fabricated by spraying hollow SiO2 (H-SiO2) microspheres and poly(trifluoroethyl methacrylate-butyl acrylate) [P(TFEMA-BA)]. The water-written textiles exhibited structural color changes in 0.6 s via an increase in the refractive index, driven by water penetrating the gaps between H-SiO2 microspheres. The structural color was restored to the initial state after the water evaporated, allowing multiple cycles of the write-erase-write mode. The hydrophobic P(TFEMA-BA) adhesive was used to construct a stable chromogenic array and endow WRSC textiles with antispreading properties, thereby improving structural stability and achieving clear writing patterns. The prepared WRSC textiles demonstrated high flexibility, structural stability, and water-rewritable properties, providing advanced bionic inspiration and valuable design ideas for rewritable materials and smart textiles.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Yudong Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Yong Qi
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
16
|
Zheng Y, Lin G, Zhou W, Wei L, Liu J, Shang S, Zhu P. Bioinspired Polydopamine Modification for Interface Compatibility of PDMS-Based Responsive Structurally Colored Textiles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51748-51756. [PMID: 39259831 DOI: 10.1021/acsami.4c11967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Textiles that can repeatedly change color in the presence of external stimuli have attracted great interest. Effectively designing to produce such functional textiles is essential, yet there remain challenges like producing stable coloration, rapid response, and reverse color changing. Here, the preparation of a magnetic field response (MFR) textile with a fast magnetic field response, brilliant structural coloration, and mechanical robustness is reported. The MFR textile is knitted by incorporating magnetic particles' ethylene glycol (EG) suspension within polydimethylsiloxane (PDMS)-based fibers. A surface modification strategy is designed to prevent EG from seeping out along the PDMS polymer chains. A PDMS fiber is encapsulated in waterborne polyurethane, and a polydopamine joint layer is used. The MFR textile demonstrates magnetic field-triggered structural colors, and the breaking strength and elongation at break of each composite fiber are improved. In addition, multishaped patterns can be printed on the MFR textile with the help of the photo etching technology, which enhances the applications of the new functional textiles.
Collapse
Affiliation(s)
- Yu Zheng
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Guizhen Lin
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Weixian Zhou
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Luyao Wei
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Jie Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Shenglong Shang
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| | - Ping Zhu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
17
|
Shu Z, Sun X, Xu X, Qin M, Li J. Colloidal photonic crystals towards biological applications. J Mater Chem B 2024; 12:8488-8504. [PMID: 39161280 DOI: 10.1039/d4tb01325e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Colloidal photonic crystals (CPCs), fabricated from the assembly of micro-/nano-particles, have attracted considerable interest due to their unique properties, such as structural color, slow-photon effect, and high specific surface area (SSA). Benefiting from these properties, significant progress has been made in the biological applications of CPCs. In this perspective, these properties and relative manipulation strategies are firstly discussed, building bridges between properties and biological applications of CPCs. Structural color endows CPCs with naked-eye sensing capability, which can be applied to physiological state assessment and diagnosis, as well as self-report of CPC-based diagnostic and therapeutic devices. The slow-photon effect contributes to enhanced fluorescence, surface-enhanced Raman scattering, and efficacy of photodynamic/photothermal therapy, when CPCs are combined with corresponding functional materials. High SSA provides CPCs with abundant binding sites and superior capabilities for loading, adsorption, delivery, etc. These properties can be utilized individually or synergistically to grant CPCs superior performance in biological applications. Next, the recent advancements of CPCs towards biological applications are summarized, including biosensors, wound dressings, cells-on-a-chip, and phototherapy. Finally, a perspective on the challenges and future development of CPCs for biological applications is presented.
Collapse
Affiliation(s)
- Zixin Shu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xiaoning Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Cheng Q, Chen J, Cai W, Yu X, Wan C, Wang Y, Xiong B, Huang C, Yang Z. Biomimetic Colored Coating toward Robust Display under Hostile Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48448-48456. [PMID: 39186756 DOI: 10.1021/acsami.4c06889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Structural colors particularly of the angle-independent category stemming from wavelength-dependent light scattering have aroused increasing interest due to their considerable applications spanning displays and sensors to detection. Nevertheless, these colors would be heavily altered and even disappear during practical applications, which is related with the variation of refractive index mismatch by liquid wetting/infiltrating. Inspired by bird feathers, we propose a simple deposition toward the coating with angle-independent structural color and superamphiphobicity. The coating is composed of ∼200 nm-sized channel-type structures between hollow silica and air nanostructures, exhibiting a robust sapphire blue color independent of intense liquid intrusion, which duplicates the characteristics of the back feather of Eastern Bluebird. A high color saturation and superamphiphobicity of the biomimetic coating are optimized by manipulating the coating parameters or adding black substances. Excellent durability under harsh conditions endows the coating with long-term service life in various extreme environments.
Collapse
Affiliation(s)
- Quanyong Cheng
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jingyi Chen
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Wenlong Cai
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xiang Yu
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Chuchu Wan
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yingying Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| | - Bijin Xiong
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Caili Huang
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zhenzhong Yang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Chen Z, Zhang H, Xiao F, Yan S, Ren L, Liu SM, Weng X, Zhou X, Du Y. Ultrasensitive Method Enables Liquid Biopsy for the Precise Detection of Circulating MicroRNAs. Anal Chem 2024; 96:13103-13109. [PMID: 39099088 DOI: 10.1021/acs.analchem.4c01711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Due to invasive and serial examinations of bioactive molecules, liquid biopsy (LB) has emerged as a rapid and reliable solution for early disease detection and monitoring. Developing portable devices with high specificity and sensitivity for LB is highly valuable. To realize a generalized approach to increase the sensitivity of LB, we developed an ultrasensitive diagnostic biochip based on the amplification of miRNA by recombinase polymerase amplification and the significant enhancement of fluorescence signals by photonic crystal (PC) materials. The PCs-RPA biochip has a detection limit as low as 0.24 aM, a wide linear range of 8 orders of magnitude, and excellent specificity. Such advantages realize the accurate detection of circulating miRNAs with very low content in clinical serum samples for the precise diagnosis of nonsmall cell lung cancer.
Collapse
Affiliation(s)
- Zhaoxin Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Key Laboratory of Analytical Chemistry for Biology and Medicine, Wuhan 430072, Hubei Province, China
| | - Hanfei Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, Hubei Province, China
| | - Feng Xiao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Key Laboratory of Analytical Chemistry for Biology and Medicine, Wuhan 430072, Hubei Province, China
| | - Shen Yan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Key Laboratory of Analytical Chemistry for Biology and Medicine, Wuhan 430072, Hubei Province, China
| | - Linao Ren
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Key Laboratory of Analytical Chemistry for Biology and Medicine, Wuhan 430072, Hubei Province, China
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430072, Hubei Province, China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Key Laboratory of Analytical Chemistry for Biology and Medicine, Wuhan 430072, Hubei Province, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Key Laboratory of Analytical Chemistry for Biology and Medicine, Wuhan 430072, Hubei Province, China
| | - Yuhao Du
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Key Laboratory of Analytical Chemistry for Biology and Medicine, Wuhan 430072, Hubei Province, China
| |
Collapse
|
20
|
Zheng W, Wang Z, Zhang M, Niu Y, Wu Y, Guo P, Zhang N, Meng Z, Murtaza G, Qiu L. Bio-Inspired Photoelectric Dual-Mode Sensor Based on Photonic Crystals for Human Motion Sensing and Monitoring. Gels 2024; 10:506. [PMID: 39195035 DOI: 10.3390/gels10080506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Photoelectric dual-mode sensors, which respond to strain signal through photoelectric dual-signals, hold great promise as wearable sensors in human motion monitoring. In this work, a photoelectric dual-mode sensor based on photonic crystals hydrogel was developed for human joint motion detection. The optical signal of the sensor originated from the structural color of photonic crystals, which was achieved by tuning the polymethyl methacrylate (PMMA) microspheres diameter. The reflective peak of the sensor, based on 250 nm PMMA PCs, shifted from 623 nm to 492 nm with 100% strain. Graphene was employed to enhance the electrical signal of the sensor, resulting in a conductivity increase from 9.33 × 10-4 S/m to 2 × 10-3 S/m with an increase in graphene from 0 to 8 mg·mL-1. Concurrently, the resistance of the hydrogel with 8 mg·mL-1 graphene increased from 160 kΩ to 485 kΩ with a gauge factor (GF) = 0.02 under 100% strain, while maintaining a good cyclic stability. The results of the sensing and monitoring of finger joint bending revealed a significant shift in the reflective peak of the photoelectric dual-mode sensor from 624 nm to 526 nm. Additionally, its resistance change rate was measured at 1.72 with a 90° bending angle. These findings suggest that the photoelectric dual-mode sensor had the capability to detect the strain signal with photoelectric dual-mode signals, and indicates its great potential for the sensing and monitoring of joint motion.
Collapse
Affiliation(s)
- Wenxiang Zheng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhibin Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Mengnan Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanxin Niu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuchuan Wu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Pengxin Guo
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology, Beijing 100081, China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ghulam Murtaza
- School of Science, Minzu University of China, Beijing 100074, China
| | - Lili Qiu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
21
|
Bi WL, Tang A, Tian Y, Zhu Z, Chen S. Robust and Durable Photonic Crystal with Liquid-Repellent Property for Self-Cleaning Coatings and Structural Colored Textiles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35639-35650. [PMID: 38916253 DOI: 10.1021/acsami.4c09497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Photonic crystal coatings with unique structural colors and self-cleaning properties have been providing an efficient way for substrate coloration. However, the enhancement of the robustness and durability of structural colored coatings to meet the requirements in diverse environments remains a challenging task. Here, to realize the application of photonic crystal films under various kinds of conditions, we present a poly(fluoroalkyl acrylate)-based colloidal photonic crystal (fCPC) coating. Fluorinated core-interlayer-shell (FCIS) colloidal particles of polystyrene (PS) core, poly(methyl methacrylate) (PMMA) interlayer, and poly(fluoroalkyl acrylate-ethyl acrylate-butyl acrylate) (P(FA-EA-BA)) shell copolymers have been first prepared by a stepwise emulsion polymerization. fCPCs with self-supporting property, reprocessing ability, friction resistance, as well as excellent wettability and liquid-repellent properties are successfully obtained via the bending-induced ordering technique (BIOT). When applied in antifouling applications, the fCPC film exhibits resistance against various oil and inorganic liquids. Furthermore, the fCPC coatings demonstrate their durability under outdoor conditions by maintaining stable color appearances during rainy and sunny conditions. Additionally, an electronic product adhered with the fCPC coatings is presented, which exhibits a surface that remains clean even after prolonged usage in comparison to the conventional CPC coating. Structural colored textiles with enhanced stability and functionalized liquid-repellent properties are achieved through a one-step process using FCIS particles. Therefore, the developed self-cleaning and comprehensive fCPC coatings capable of withstanding diverse conditions may open up new avenues for the advancement of structural coloration in decoration, vehicle, textile, and building.
Collapse
Affiliation(s)
- Wei-Long Bi
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - An Tang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yu Tian
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhijie Zhu
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Nantong, Jiangsu 226007, China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| |
Collapse
|
22
|
Hu Y, Qi C, Ma D, Yang D, Huang S. Multicolor recordable and erasable photonic crystals based on on-off thermoswitchable mechanochromism toward inkless rewritable paper. Nat Commun 2024; 15:5643. [PMID: 38969630 PMCID: PMC11226673 DOI: 10.1038/s41467-024-49860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
Mechanochromic photonic crystals are attractive due to their force-dependent structural colors; however, showing unrecordable color and unsatisfied performances, which significantly limits their development and expansion toward advanced applications. Here, a thermal-responsive mechanochromic photonic crystal with a multicolor recordability-erasability was fabricated by combining non-close-packing mechanochromic photonic crystals and phase-change materials. Multicolor recordability is realized by pressing thermal-responsive mechanochromic photonic crystals to obtain target colors over the phase-change temperature followed by fixing the target colors and deformed configuration at room temperature. The stable recorded color can be erased and reconfigured by simply heating and similar color-recording procedures respectively due to the thermoswitchable on-off mechanochromism of thermal-responsive mechanochromic photonic crystals along with solid-gel phase transition. These thermal-responsive mechanochromic photonic crystals are ideal rewritable papers for ink-freely achieving multicolor patterns with high resolution, difficult for conventional photonic papers. This work offers a perspective for designing color-recordable/erasable and other stimulus-switchable materials with advanced applications.
Collapse
Affiliation(s)
- Yang Hu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Dongpeng Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Shaoming Huang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
23
|
Wang H, Cheng Y, Zhu J, Zhang L. Photon Management Enabled by Opal and Inverse Opal Photonic Crystals: from Photocatalysis to Photoluminescence Regulation. Chempluschem 2024; 89:e202400002. [PMID: 38527947 DOI: 10.1002/cplu.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Light is a promising renewable energy source and can be converted into heat, electricity, and chemical energy. However, the efficiency of light-energy conversion is largely hindered by limited light-absorption coefficients and the low quantum yield of current-generation materials. Photonic crystals (PCs) can adjust the propagation and distribution of photons because of their unique periodic structures, which offers a compelling platform for photon management. The periodicity of materials with an alternating refractive index can be used to manipulate the dispersion of photons to generate the photonic bandgap (PBG), in which light is reflected. The slow photon effect, i. e., photon propagation at a reduced group velocity near the edges of the PBG, is widely regarded as another valuable optical property for manipulating light. Furthermore, multiple light scattering can increase the optical path, which is a vital optical property for PCs. Recently, the light reflected by PBG, the slow photon effect, and multiple light scattering have been exploited to improve light utilization efficiency in photoelectrochemistry, materials chemistry, and biomedicine to enhance light-energy conversion efficiency. In this review, the fabrication of opal or inverse opal PCs and the theory for improving the light utilization efficiency of photocatalysis, solar cells, and photoluminescence regulation are discussed. We envision photon management of opal or inverse opal PCs may provide a promising avenue for light-assisted applications to improve light-energy-conversion efficiency.
Collapse
Affiliation(s)
- Hui Wang
- Key Lab of Material Chemistry for Energy Conversion &, Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yiyan Cheng
- Key Lab of Material Chemistry for Energy Conversion &, Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- Key Lab of Material Chemistry for Energy Conversion &, Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- Key Lab of Material Chemistry for Energy Conversion &, Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
24
|
Lin R, Kou D, Gao L, Li S, Gao Z, Li X, Ma W, Zhang S. Biomimetic Photonic Elastomer Exhibiting Stress/Moisture Reconfigurable Wrinkle-Lattice for Reversible Deformation Information Storage. ACS NANO 2024; 18:13346-13360. [PMID: 38726755 DOI: 10.1021/acsnano.4c03376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Photonic elastomers, capable of converting imperceptible deformations into visible colors, show significant potential in smart materials. However, instantaneous deformation is arduous to record accurately due to the disappearance of optical information after deformation recovery. Herein, inspired by the folding structures of iridocytes in cephalopods, a stress- and moisture-triggered wrinkling and erasure effect is proposed to be introduced in the construction of a photonic elastomer. Implemented in a dual-network polymer framework with modulatable locking, it allows for reversible deformation storage. The photonic elastomer comprises a surface one-dimensional photonic crystal (1DPC) and a poly(dimethylsiloxane) (PDMS) substrate. The deformed 1DPC lattice transforms into a wrinkled state due to a substrate deformation mismatch, preserving strain-induced structural color information through interchain hydrogen bonding and crystalline shape-locking in dual-network polymers. Reading the color provides multidimensional information about the instantaneous deformation degree and distribution. Moreover, the moisture-induced shape-memory feature of the 1DPC can be triggered with a minute amount of water, like fingertip perspiration or humidity change (35% to 80%), to restore the original color. This stress/moisture-responsive photonic elastomer, with its dynamically reconfigurable wrinkle-lattice, holds great promise for applications in mechanical sensing, inkless writing, and anticounterfeiting, significantly enhancing the versatility of photonic materials.
Collapse
Affiliation(s)
- Ruicheng Lin
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Donghui Kou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Lei Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Shi Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Zhaoyong Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Xuefen Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| |
Collapse
|
25
|
Yilmaz D, Du Fraysseix M, Lewandowski S, Perraud S, Ibarboure E, Llevot A, Carlotti S. Self-Healing Transparent Poly(dimethyl)siloxane with Tunable Mechanical Properties: Toward Enhanced Aging Materials for Space Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38613485 DOI: 10.1021/acsami.4c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
When exposed to the geostationary orbit, polymeric materials tend to degrade on their surface due to the appearance of cracks. Implementing the self-healing concept in polymers going to space is a new approach to enhancing the lifespan of materials that cannot be replaced once launched. In this study, the elaboration of autonomous self-healing transparent poly(dimethylsiloxane) (PDMS) materials resistant to proton particles is presented. The PDMS materials are functionalized with various compositions of urea and imine moieties, forming dynamic covalent and/or supramolecular networks. The hydrogen bonds induced by the urea ensure the formation of a supramolecular network, while the dynamic covalent imine bonds are capable of undergoing exchange reactions. Materials with a broad range of mechanical properties were obtained depending on the composition and structure of the PDMS networks. As coating applications in a spatial environment were mainly targeted, the surface properties of the polymer are essential. Thus, percentages of scratch recovery were determined by AFM. From these data, self-healing kinetics were extracted and rationalized based on the polymer structures. The obtained data were in good agreement with the relaxation times determined by rheology in stress relaxation experiments. Moreover, the accelerated aging of materials under proton irradiation, simulating a major part of the geostationary environment, revealed a strong limitation or disappearance of cracks while keeping the transparency of the PDMS. These promising results open routes to prepare new flexible autonomous polymeric materials for space applications.
Collapse
Affiliation(s)
- Dijwar Yilmaz
- ONERA/DPHY, Université de Toulouse, F31055 Toulouse, France
- CNES─French Aerospace Agency, 18 avenue Edouard Belin,F-31401 Toulouse Cedex 9, France
- CNRS, Bordeaux INP, LCPO, UMR 5629, University of Bordeaux, F-33600 Pessac,France
| | - Mickaël Du Fraysseix
- ONERA/DPHY, Université de Toulouse, F31055 Toulouse, France
- CNES─French Aerospace Agency, 18 avenue Edouard Belin,F-31401 Toulouse Cedex 9, France
- CNRS, Bordeaux INP, LCPO, UMR 5629, University of Bordeaux, F-33600 Pessac,France
| | | | - Sophie Perraud
- CNES─French Aerospace Agency, 18 avenue Edouard Belin,F-31401 Toulouse Cedex 9, France
| | - Emmanuel Ibarboure
- CNRS, Bordeaux INP, LCPO, UMR 5629, University of Bordeaux, F-33600 Pessac,France
| | - Audrey Llevot
- CNRS, Bordeaux INP, LCPO, UMR 5629, University of Bordeaux, F-33600 Pessac,France
| | - Stéphane Carlotti
- CNRS, Bordeaux INP, LCPO, UMR 5629, University of Bordeaux, F-33600 Pessac,France
| |
Collapse
|
26
|
Dai W, Tang N, Zhu Y, Wang J, Hu W, Fei F, Chai X, Tian H, Lu W. Sandwich-Type Self-Healing Sensor with Multilevel for Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7927-7938. [PMID: 38289238 DOI: 10.1021/acsami.3c18633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Real-time detection of various parts of the human body is crucial in medical monitoring and human-machine technology. However, existing self-healing flexible sensing materials are limited in real-life applications due to the weak stability of conductive networks and difficulty in balancing stretchability and self-healing properties. Therefore, the development of wearable flexible sensors with high sensitivity and fast response with self-healing properties is of great interest. In this paper, a novel multilevel self-healing polydimethylsiloxane (PDMS) material is proposed for enhanced sensing capabilities. The PDMS was designed to have multiple bonding mechanisms including hydrogen bonding, coordination bonding, disulfide bonding, and local covalent bonding. To further enhance its sensing properties, modified carbon nanotubes (CNTs) were embedded within the PDMS matrix using a solvent etching technique. This created a sandwich-type sensing material with improved stability and sensitivity. This self-healing flexible sensing material (self-healing efficiency = 70.1% at 80 °C and 6 h) has good mechanical properties (stretchability ≈413%, tensile strength ≈0.69 MPa), thermal conductivity, and electrical conductivity. It has ultrahigh sensitivity, which makes it possible to be manufactured as a multifunctional flexible sensor.
Collapse
Affiliation(s)
- Weisen Dai
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Street, Shanghai 201620, China
| | - Nvfan Tang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Street, Shanghai 201620, China
| | - Yiyao Zhu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Street, Shanghai 201620, China
| | - Jincheng Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Street, Shanghai 201620, China
| | - Wanying Hu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Street, Shanghai 201620, China
| | - Fan Fei
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Street, Shanghai 201620, China
| | - Xin Chai
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Street, Shanghai 201620, China
| | - Hao Tian
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Street, Shanghai 201620, China
| | - Wentong Lu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Street, Shanghai 201620, China
| |
Collapse
|
27
|
Nam SK, Amstad E, Kim SH. Hydrogel-Encased Photonic Microspheres with Enhanced Color Saturation and High Suspension Stability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58761-58769. [PMID: 38084724 DOI: 10.1021/acsami.3c14364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Regular arrays of colloidal particles can produce striking structural colors without the need for any chemical pigments. Regular arrays of colloidal particles can be processed into microparticles via emulsion templates for use as structural colorants. Photonic microparticles, however, suffer from intense incoherent scattering and lack of suspension stability. We propose a microfluidic technique to generate hydrogel-shelled photonic microspheres that display enhanced color saturation and suspension stability. We created these microspheres using oil-in-water-in-oil (O/W/O) double-emulsion droplets with well-defined dimensions with a capillary microfluidic device. The inner oil droplet contains silica particles in a photocurable monomer, while the middle water droplet carries the hydrogel precursor. Within the inner oil droplet, silica particles arrange into crystalline arrays due to solvation-layer-induced interparticle repulsion. UV irradiation solidifies the inner photonic core and the outer hydrogel shell. The hydrogel shell reduces white scattering and enhances the suspension stability in water. Notably, the hydrogel precursor in the water droplet aids in maintaining the solvation layer, resulting in enhanced crystallinity and richer colors compared with microspheres from O/W single-emulsion droplets. These hydrogel-encased photonic microspheres show promise as structural colorants in water-based inks and polymer composites.
Collapse
Affiliation(s)
- Seong Kyeong Nam
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Esther Amstad
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
28
|
Li S, Zhang J, He J, Liu W, Wang Y, Huang Z, Pang H, Chen Y. Functional PDMS Elastomers: Bulk Composites, Surface Engineering, and Precision Fabrication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304506. [PMID: 37814364 DOI: 10.1002/advs.202304506] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 10/11/2023]
Abstract
Polydimethylsiloxane (PDMS)-the simplest and most common silicone compound-exemplifies the central characteristics of its class and has attracted tremendous research attention. The development of PDMS-based materials is a vivid reflection of the modern industry. In recent years, PDMS has stood out as the material of choice for various emerging technologies. The rapid improvement in bulk modification strategies and multifunctional surfaces has enabled a whole new generation of PDMS-based materials and devices, facilitating, and even transforming enormous applications, including flexible electronics, superwetting surfaces, soft actuators, wearable and implantable sensors, biomedicals, and autonomous robotics. This paper reviews the latest advances in the field of PDMS-based functional materials, with a focus on the added functionality and their use as programmable materials for smart devices. Recent breakthroughs regarding instant crosslinking and additive manufacturing are featured, and exciting opportunities for future research are highlighted. This review provides a quick entrance to this rapidly evolving field and will help guide the rational design of next-generation soft materials and devices.
Collapse
Affiliation(s)
- Shaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiaqi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jian He
- Yizhi Technology (Shanghai) Co., Ltd, No. 99 Danba Road, Putuo District, Shanghai, 200062, China
| | - Weiping Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Center for Composites, COMAC Shanghai Aircraft Manufacturing Co. Ltd, Shanghai, 201620, China
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
- Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
| | - Zhongjie Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
29
|
Miyake D, He J, Asai F, Hara M, Seki T, Nishimura SN, Tanaka M, Takeoka Y. Optically Transparent and Color-Stable Elastomer with Structural Coloration under Elongation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38033265 DOI: 10.1021/acs.langmuir.3c02442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Optically transparent and colored elastomers with high toughness are expected to play an important role in the construction of advanced medical materials, wearable displays, and soft robots. In this study, we found that composite elastomers consisting of amorphous SiO2 particles homogeneously dispersed in high concentrations within a biocompatible acrylic polymer network exhibit optical transparency and bright structural colors. In the composite elastomers, the system in which the SiO2 particles form a colloidal amorphous array hardly changes its structural color hue despite deformation due to elongation. Furthermore, the composite elastomer of the SiO2 particles with the acrylic polymer network also results in high mechanical toughness. In summary, we have shown that the elastomer that exhibits fade-resistant structural coloration formed from safe materials can combine stable coloration and mechanical strength independent of their shape. This is expected to have new potential in future technologies to support our daily life.
Collapse
Affiliation(s)
- Daiki Miyake
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Nagoya 464-8603, Japan
| | - Jialei He
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Nagoya 464-8603, Japan
| | - Fumio Asai
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Nagoya 464-8603, Japan
- Research & Development Center, UNITIKA LTD., Kyoto 611-0021, Japan
| | - Mitsuo Hara
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Nagoya 464-8603, Japan
| | - Takahiro Seki
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Nagoya 464-8603, Japan
| | - Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Doshisha University, 1-3 Miyakodani, Tatara 610-0394, Kyotanabe, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Nagoya 464-8603, Japan
- Research Center for Crystalline Materials Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Materials Innovation, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
30
|
Wei B, Zhang Z, Yang D, Ma D, Zhang Y, Huang S. Lattice Transformation-Induced Retroreflective Structural Colors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47350-47358. [PMID: 37769291 DOI: 10.1021/acsami.3c07980] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Retroreflective structural colors can usually be achieved based on interference combined with a total internal reflection mechanism or diffraction of a monolayer hexagonal two-dimensional (2D) colloidal array. Here, a novel retroreflective structural color was generated based on a hexagonal-parallelogram lattice transformation by stretching 3D photonic crystals with nonclosely packed long-range order. Compared to previous retroreflective colors, this new retroreflective color exhibits two unique off/on color switches: (1) a strain-dependent off/on color switch along the stretching direction and (2) a sample horizontal rotation angle-dependent off/on color switch under the fixed strain. These strain-responsive retroreflective colors are ideal candidates for visually sensing kinesio tapes' strain in practical applications and anticounterfeiting. This work reveals a new structural color regulation mechanism and will advance potential applications in anticounterfeiting, sensing, displays, etc.
Collapse
Affiliation(s)
- Boru Wei
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zekun Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Dongpeng Yang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, P. R. China
| | - Yuqi Zhang
- R&D Center, CNOOC Gas and Power Group, Beijing 100028, P. R. China
| | - Shaoming Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
31
|
Deriabin KV, Filippova SS, Islamova RM. Self-Healing Silicone Materials: Looking Back and Moving Forward. Biomimetics (Basel) 2023; 8:286. [PMID: 37504174 PMCID: PMC10807480 DOI: 10.3390/biomimetics8030286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
This review is dedicated to self-healing silicone materials, which can partially or entirely restore their original characteristics after mechanical or electrical damage is caused to them, such as formed (micro)cracks, scratches, and cuts. The concept of self-healing materials originated from biomaterials (living tissues) capable of self-healing and regeneration of their functions (plants, human skin and bones, etc.). Silicones are ones of the most promising polymer matrixes to create self-healing materials. Self-healing silicones allow an increase of the service life and durability of materials and devices based on them. In this review, we provide a critical analysis of the current existing types of self-healing silicone materials and their functional properties, which can be used in biomedicine, optoelectronics, nanotechnology, additive manufacturing, soft robotics, skin-inspired electronics, protection of surfaces, etc.
Collapse
Affiliation(s)
- Konstantin V. Deriabin
- Institute of Chemistry, St Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (K.V.D.); (S.S.F.)
- South Ural State University, Chelyabinsk 454080, Russia
| | - Sofia S. Filippova
- Institute of Chemistry, St Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (K.V.D.); (S.S.F.)
| | - Regina M. Islamova
- Institute of Chemistry, St Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (K.V.D.); (S.S.F.)
- South Ural State University, Chelyabinsk 454080, Russia
| |
Collapse
|
32
|
Guo Y, An X, Qian X. Mechanochromic Self-Healing Materials with Good Stretchability, Shape Memory Behavior, Cyclability, and Reversibility Based on Multiple Hydrogen Bonds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19362-19373. [PMID: 37022669 DOI: 10.1021/acsami.2c19919] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
It is challenging to develop materials with room-temperature self-healing ability and mechanochromic response from mechanical stimuli to optical signals by a facile and simple preparation process. Herein, novel mechanochromic self-healing materials were designed by a simple synthesis procedure, balancing the mechanical properties, self-healing, stretchability, and mechanochromic response. Moreover, we designed and prepared the mechanochromic self-healing materials with different soft and hard segments by introducing multiple hydrogen bonds into the network, improving the mechanical properties and self-healing efficiency. In addition, the optimized sample exhibited good shape memory behavior (shape recovery ratio of 94.4%), self-healing properties (healed by pressing during stretching process), high tensile strength (17.6 MPa), superior stretchability (893%), fast mechanochromic response (strain of 272%), and great cyclic stretching-relaxing properties (higher than 10 times at strain of 300%). Above all, mechanochromic self-healing materials have promising potential in various fields, such as stress sensing, inkless writing, damage warning, deformation detection, and damage distribution.
Collapse
Affiliation(s)
- Yuqian Guo
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Xianhui An
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Xueren Qian
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| |
Collapse
|
33
|
Zhao R, He Y, He Y, Li Z, Chen M, Zhou N, Tao G, Hou C. Dual-Mode Fiber Strain Sensor Based on Mechanochromic Photonic Crystal and Transparent Conductive Elastomer for Human Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16063-16071. [PMID: 36917548 DOI: 10.1021/acsami.3c00419] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As an important component of wearable and stretchable strain sensors, dual-mode strain sensors can respond to deformation via optical/electrical dual-signal changes, which have important applications in human motion monitoring. However, realizing a fiber-shaped dual-mode strain sensor that can work stably in real life remains a challenge. Here, we design an interactive dual-mode fiber strain sensor with both mechanochromic and mechanoelectrical functions that can be applied to a variety of different environments. The dual-mode fiber is produced by coating a transparent elastic conductive layer onto photonic fiber composed of silica particles and elastic rubber. The sensor has visualized dynamic color change, a large strain range (0-80%), and a high sensitivity (1.90). Compared to other dual-mode strain sensors based on the photonic elastomer, our sensor exhibits a significant advantage in strain range. Most importantly, it can achieve reversible and stable optical/electrical dual-signal outputs in response to strain under various environmental conditions. As a wearable portable device, the dual-mode fiber strain sensor can be used for real-time monitoring of human motion, realizing the direct interaction between users and devices, and is expected to be used in fields such as smart wearable, human-machine interactions, and health monitoring.
Collapse
Affiliation(s)
- Ruolan Zhao
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue He
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu He
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhangcheng Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Chen
- Sport and Health Initiative, Optical Valley Laboratory and Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ning Zhou
- Sport and Health Initiative, Optical Valley Laboratory and Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangming Tao
- Sport and Health Initiative, Optical Valley Laboratory and Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- The State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chong Hou
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Sport and Health Initiative, Optical Valley Laboratory and Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China
| |
Collapse
|
34
|
Zhang H, Chen H, Lee JH, Kim E, Chan KY, Venkatesan H, Shen X, Yang J, Kim JK. Mechanochromic Optical/Electrical Skin for Ultrasensitive Dual-Signal Sensing. ACS NANO 2023; 17:5921-5934. [PMID: 36920071 DOI: 10.1021/acsnano.3c00015] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Following earlier research efforts dedicated to the realization of multifunctional sensing, recent developments of artificial skins endeavor to go beyond human sensory functions by integrating interactive visualization of strain and pressure stimuli. Inspired by the microcracked structure of spider slit organs and the mechanochromic mechanism of chameleons, this work aims to design a flexible optical/electrical skin (OE-skin) capable of responding to complex stimuli with interactive feedback of human-readable structural colors. The OE-skin consists of an ionic electrode combined with an elastomer dielectric layer, a chromotropic layer containing photonic crystals and a conductive carbon nanotube/MXene layer. The electrode/dielectric layers function as a capacitive pressure sensor. The mechanochromic photonic crystals of ferroferric oxide-carbon magnetic arrays embedded in the gelatin/polyacrylamide stretchable hydrogel film perceive strain and pressure stimuli with bright color switching outputs in the full visible spectrum. The underlying microcracked conductive layer is devoted to ultrasensitive strain sensing with a gauge factor of 191.8. The multilayered OE-skin delivers an ultrafast, accurate response for capacitive pressure sensing with a detection limit of 75 Pa and long-term stability of 5000 cycles, while visualizing complex deformations in the form of high-resolution spatial colors. These findings offer deep insights into the rational design of OE-skins as multifunctional sensing devices.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Haomin Chen
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jeng-Hun Lee
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Eunyoung Kim
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Kit-Ying Chan
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Harun Venkatesan
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Xi Shen
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Jinglei Yang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518048, China
| | - Jang-Kyo Kim
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
35
|
Chi J, Su M, Xue B, Cheng L, Lian Z, Yun Y, Yang X, Wang X, Xie H, Wang H, Wang Y, Du J, Song Y. Fast and Sensitive Detection of Protein Markers Using an All-Printing Photonic Crystal Microarray via Fingertip Blood. ACS Sens 2023; 8:1742-1749. [PMID: 36966508 DOI: 10.1021/acssensors.3c00029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
With the demand for point-of-care testing (POCT) in cardiovascular diseases, the detection of biomarkers in trace blood samples is of great significance in emergency medicine settings. Here, we demonstrated an all-printed photonic crystal microarray for POCT of protein markers (named "P4 microarray"). The paired nanobodies were printed as probes to target the soluble suppression of tumorigenicity 2 (sST2) as a certified cardiovascular protein marker. Benefiting from photonic crystal-enhanced fluorescence and integrated microarrays, quantitative detection of sST2 is 2 orders of magnitude lower than that of a traditional fluorescent immunoassay. The limit of detection is down to 10 pg/mL with the coefficient of variation being less than 8%. Detection of sST2 via fingertip blood is achieved in 10 min. Moreover, the P4 microarray after 180 days of storage at room temperature showed excellent stability for detection. This P4 microarray, as a convenient and reliable immunoassay for rapid and quantitative detection of protein markers in trace blood samples, has high sensitivity and strong storage stability, which hold great potential to advance cardiovascular precision medicine.
Collapse
Affiliation(s)
- Jimei Chi
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bingjie Xue
- Beijing Anzhen Hospital Affiliated to Capital Medical University & Department of Vascular Biology, Beijing Institute of Heart, Lung and Blood Vessel Disease & Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education & Collaborative Innovation Center for Cardiovascular Disorders, Beijing 100029, P. R. China
| | - Lijun Cheng
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zewei Lian
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yang Yun
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xu Yang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue Wang
- Beijing Anzhen Hospital Affiliated to Capital Medical University & Department of Vascular Biology, Beijing Institute of Heart, Lung and Blood Vessel Disease & Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education & Collaborative Innovation Center for Cardiovascular Disorders, Beijing 100029, P. R. China
| | - Hongfei Xie
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuan Wang
- Beijing Anzhen Hospital Affiliated to Capital Medical University & Department of Vascular Biology, Beijing Institute of Heart, Lung and Blood Vessel Disease & Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education & Collaborative Innovation Center for Cardiovascular Disorders, Beijing 100029, P. R. China
| | - Jie Du
- Beijing Anzhen Hospital Affiliated to Capital Medical University & Department of Vascular Biology, Beijing Institute of Heart, Lung and Blood Vessel Disease & Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education & Collaborative Innovation Center for Cardiovascular Disorders, Beijing 100029, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
36
|
Fu Y, Shi Q, Sun J, Li X, Pan C, Tang T, Peng T, Tan H. Construction of Wash-Resistant Photonic Crystal-Coated Fabrics based on Hydrogen Bonds and a Dynamically Cross-Linking Double-Network Structure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8480-8491. [PMID: 36748731 DOI: 10.1021/acsami.2c20581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Structural coloration as the most possible way to realize the ecofriendly dying process for textiles or fabrics has attracted significant attention in the past decades. However, photonic crystals (PCs) are a typical example of materials with structural color usually located on the surface of the fabrics or textiles, which make them not stable when rubbed, bent, or washed due to the weak interaction between the PC coatings and fabrics. Here, double networks were constructed between the PC coatings and the fabrics for the first time via a hydrogen bond by introducing tannic acid (TA) and dynamic cross-linking with 2-formylphenylboronic acid to increase the wash resistance of the structural colored fabrics. On modifying the monodispersed SiO2 nanoparticles, poly(dimethylsiloxane), and the fabrics, the interaction between the PC coatings and the fabrics increased by the formation of double networks. The structural color, wash, and rub resistance of the PC-coated fabrics were systematically studied. The obtained fabrics with the TA content at 0.030% (SiDT30) showed the best wash and rub resistance. The construction of double networks not only improved the wash and rub resistance of PCs but also retained the bright structural color of the PC coatings, facilitating the practical application of structural coloration in the textile industry.
Collapse
Affiliation(s)
- Yin Fu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qingwen Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiuxiao Sun
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xue Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Chen Pan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Tao Tang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Tao Peng
- High-Tech Organic Fibers Key Laboratory of Sichuan Province, Bluestar Chengrand Co., Ltd., Chengdu, Sichuan 610041, China
| | - Haiying Tan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
37
|
Liu H, Xu C, Xia Q, Ying Y, Li Q, Zhao X, Zhang Y, Yang S. Tailorable and Angle-Independent Colors from Synthetic Brochosomes. ACS NANO 2023; 17:2257-2265. [PMID: 36661565 DOI: 10.1021/acsnano.2c08598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although various artificial dyes and pigments have been invented, certain application fields need structural colors because they can last for centuries even under harsh conditions. Here, we report that the antireflective Ag brochosomes (soccer-ball-like microscale granules covered by nanobowls) become colorful when the nanobowls on the Ag brochosomes are filled by polystyrene (PS) nanospheres. The color originates from the enhanced electromagnetic resonances of the PS nanospheres by the surrounding metallic nanobowls, suggested by both the experimental and the simulation results. The color is determined by the size of the PS nanospheres. We can tailor the color simply by reducing the diameter of the PS nanospheres via the plasma etching treatment. The color intensity of the Ag brochosomes filled with PS nanospheres shows weak dependence on the observing angles, benefiting from their spherical shape. Plasma etching treatment of the Ag brochosomes filled with PS nanospheres through different masks can design various structural color patterns. The simple fabrication process and the easy processability make the Ag brochosomes filled with PS nanospheres have promising applications in the structural color fields.
Collapse
Affiliation(s)
- Hong Liu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Chao Xu
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Qundong Xia
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Yunbin Ying
- School of Optical Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Qiang Li
- School of Optical Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Xiaoyu Zhao
- School of Material and Environmental Engineering, Hangzhou Dianzi University, 310018 Hangzhou, China
| | - Yongjun Zhang
- School of Material and Environmental Engineering, Hangzhou Dianzi University, 310018 Hangzhou, China
| | - Shikuan Yang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, 310027 Hangzhou, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- Baotou Research Institute of Rare Earths, Baotou 014030, China
| |
Collapse
|
38
|
Lei Z, Xu W, Zhang G. Bio-inspired ionic skins for smart medicine. SMART MEDICINE 2023; 2:e20220026. [PMID: 39188555 PMCID: PMC11235715 DOI: 10.1002/smmd.20220026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 08/28/2024]
Abstract
Ionic skins are developed to mimic the mechanical properties and functions of natural skins. They have demonstrated substantial advantages to serve as the crucial interface to bridge the gap between humans and machines. The first-generation ionic skin is a stretchable capacitor comprising hydrogels as the ionic conductors and elastomers as the dielectrics, and realizes pressure and strain sensing through the measurement of the capacitance. Subsequent advances have been made to improve the mechanical properties of ionic skins and import diverse functions. For example, ultrahigh stretchability, strong interfacial adhesion, self-healing, moisturizing ability, and various sensing capabilities have been achieved separately or simultaneously. Most ionic skins are attached to natural skins to monitor bio-electrical signals continuously. Ionic skins have also been found with significant potential to serve as a smart drug-containing reservoir, which can release drugs spatially, temporally, and in a controllable way. Herein, this review focuses on the design and fabrication of ionic skins, and their applications related to smart medicine. Moreover, challenges and opportunities are also discussed. It is hoped that the development of bio-inspired ionic skins will provide a paradigm shift for self-diagnosis and healthcare.
Collapse
Affiliation(s)
- Zhouyue Lei
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Wentao Xu
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Guogao Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
39
|
Wang J, Chen W, Yang D, Fang Z, Liu W, Xiang T, Qiu X. Photonic Lignin with Tunable and Stimuli-Responsive Structural Color. ACS NANO 2022; 16:20705-20713. [PMID: 36480448 DOI: 10.1021/acsnano.2c07756] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to the growing sustainability and health requirements, structural color materials fabricated with functional natural polymers have attracted increasing attention in advanced optical and biomedical fields. Lignin has many attractive features such as great biocompatibility, ultraviolet resistance, antioxidant property, and thermostability, making it a promising natural resource to be fabricated as functional structural color materials. However, to date, the utilization of lignin as the building block for structural color materials is still a challenge due to its disordered structure. Herein, we present a strategy to transform disordered lignin into ordered "photonic lignin", in which monodisperse lignin colloidal spheres are prepared via solvent/antisolvent self-assembly, and then the periodic structure is constructed by centrifugal effect. The photonic lignin exhibits structural colors that are tunable by modulating the diameter of lignin colloidal spheres. We further demonstrate the application of photonic lignin as a natural polymer-based coating that shows bright, angle-independent, and stimuli-responsive structural colors. Moreover, the cytotoxicity assay indicates the excellent biocompatibility of photonic lignin with human skin, blood vessels, digestive systems, and other tissues, which demonstrates the great potential of photonic lignin in the applications such as implanted/wearable optical devices, advanced cosmetics, and smart food packaging.
Collapse
Affiliation(s)
- Jingyu Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Wenhao Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Zhiqiang Fang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Ting Xiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| |
Collapse
|
40
|
Li M, Lyu Q, Peng B, Chen X, Zhang L, Zhu J. Bioinspired Colloidal Photonic Composites: Fabrications and Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110488. [PMID: 35263465 DOI: 10.1002/adma.202110488] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Organisms in nature have evolved unique structural colors and stimuli-responsive functions for camouflage, warning, and communication over millions of years, which are essential to their survival in harsh conditions. Inspired by these characteristics, colloidal photonic composites (CPCs) composed of colloidal photonic crystals embedded in the polymeric matrix are artificially prepared and show great promise in applications. This review focuses on the summary of building blocks, i.e., colloidal particles and polymeric matrices, and constructive strategies from the perspective of designing CPCs with robust performance and specific functionality. Furthermore, their state-of-the-art applications are also discussed, including colorful coatings, anti-counterfeiting, and regulation of photoluminescence, especially in the field of visualized sensing. Finally, current challenges and potential for future developments in this field are discussed. The purpose of this review is not only to clarify the design principle for artificial CPCs but also to serve as a roadmap for the exploration of next-generation photonic materials.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Quanqian Lyu
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bolun Peng
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaodong Chen
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
41
|
Ren P, Chen X, Sun L, Lyu Q, Zhang L, Zhu J. Solvent-Responsive Invisible Photonic Patterns with High Contrast for Fluorescence Emission Regulation and Anti-Counterfeiting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50190-50198. [PMID: 36302040 DOI: 10.1021/acsami.2c15305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Invisible photonic patterns (IPPs) are photonic materials that can display hidden patterns under external stimulation and are attractive in anti-counterfeiting devices and information storage. In this work, we report a solvent-responsive invisible photonic pattern (SRIPP) with high contrast by polymerizing two monomers of acrylamide (AAm) and poly(ethylene glycol) methacrylate (PEGMA) with different solubility parameters in different regions of poly(hydroxyethyl methacrylate) photonic gels. The two regions with different solvent responsiveness can shrink and swell in the same environment, thus causing the colors of different regions of photonic gel to shift in opposite directions from the initial state. As a result, the contrast of photonic patterns is significantly improved, increasing naked-eye visualization. In addition, by introducing fluorescent substances into the photonic gel and adjusting the photonic band gap (PBG) of photonic gels, we realize the regulation of fluorescence emission and display of fluorescence patterns by utilizing different PBGs on the SRIPP. Dynamic solvent responsiveness patterns and fluorescence patterns are integrated into a photonic gel, showing great potential in information storage and multiple-mode anti-counterfeiting applications.
Collapse
Affiliation(s)
- Peng Ren
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Xiaodong Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Luetao Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Quanqian Lyu
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Lianbin Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| |
Collapse
|
42
|
Li M, Li ZW, Lyu Q, Peng B, Zhong R, Zhao M, Xiong B, Yi GR, Zhang L, Zhu J. Structure-Tunable Construction of Colloidal Photonic Composites via Kinetically Controlled Supramolecular Crosslinking. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miaomiao Li
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zhan-Wei Li
- State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Quanqian Lyu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Bolun Peng
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Rui Zhong
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Meiru Zhao
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Bijin Xiong
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Lianbin Zhang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
43
|
Shin JH, Park JY, Han SH, Lee YH, Sun J, Choi SS. Color-Tuning Mechanism of Electrically Stretchable Photonic Organogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202897. [PMID: 35798315 PMCID: PMC9443443 DOI: 10.1002/advs.202202897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In contrast to nano-processed rigid photonic crystals with fixed structures, soft photonic organic hydrogel beads with dielectric nanostructures possess advanced capabilities, such as stimuli-responsive deformation and photonic wavelength color changes. Recenlty, advanced from well-investigated mechanochromic method, an electromechanical stress approach is used to demonstrate electrically induced mechanical color shifts in soft organic photonic hydrogel beads. To better understand the electrically stretchable color change functionality in such soft organic photonic hydrogel systems, the electromechanical wavelength-tuning mechanism is comprehensively investigated in this study. By employing controllable electroactive dielectric elastomeric actuators, the discoloration wavelength-tuning process of an electrically stretchable photonic organogel is carefully examined. Based on the experimental in-situ response of electrically stretchable nano-spherical polystyrene hydrogel beads, the color change mechanism is meticulously analyzed. Further, changes in the nanostructure of the symmetrically and electrically stretchable organogel are analytically investigated through simulations of its hexagonal close-packed (HCP) lattice model. Detailed photonic wavelength control factors, such as the refractive index of dielectric materials, lattice diffraction, and bead distance in an organogel lattice, are theoretically studied. Herein, the switcing mechanism of electrically stretchable mechanochromic photonic organogels with photonic stopband-tuning features are suggested for the first time.
Collapse
Affiliation(s)
- Jun Hyuk Shin
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam GuPohangGyeongbuk37673Republic of Korea
| | - Ji Yoon Park
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam GuPohangGyeongbuk37673Republic of Korea
| | - Sang Hyun Han
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam GuPohangGyeongbuk37673Republic of Korea
| | - Yun Hyeok Lee
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong‐Yun Sun
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced MaterialsSeoul National UniversitySeoul08826Korea
| | - Su Seok Choi
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam GuPohangGyeongbuk37673Republic of Korea
| |
Collapse
|
44
|
Liu H, Wang Y, Shi Z, Tan D, Yang X, Xiong L, Li G, Lei Y, Xue L. Fast Self-Assembly of Photonic Crystal Hydrogel for Wearable Strain and Temperature Sensor. SMALL METHODS 2022; 6:e2200461. [PMID: 35521951 DOI: 10.1002/smtd.202200461] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Structural colors from photonic crystals (PCs) have attracted emerging attention in the research area of wearable sensors. Conventional self-assembly of PC takes days to weeks. Here, a fast self-assembly method of PC with horizontal precipitation of silica nanoparticles (NPs) in a polydimethylsiloxane fence, which can be completed within 1-4 h depending on the fence parameters, is introduced. The resultant PC exhibits tunable structural colors in the entire visible spectrum. With infiltration of composite hydrogels containing acrylic acid, acrylamide, chitosan, and carbon nanotubes (CNTs) into the gaps of NPs to form an inverse opal PC, a structural color hydrogel that can quickly respond to different stimuli, including strain and temperature, is obtained. Moreover, with the addition of CNTs, the composite PC hydrogel can also output an electronic signal together with optical color changes. Based on these extraordinary responsive behaviors, the PC hydrogel sensor for quantitative feedback to external stimuli of stretching, bending, pressing, and thermal stimuli, with brilliant color change and electronic signal outputs simultaneously, is demonstrated. This fast-assembled PC hydrogel with excellent responsive properties has great potential for applications in wearable devices, mechanical sensors, temperature sensors, and colorimetric displays.
Collapse
Affiliation(s)
- Haiyang Liu
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Yan Wang
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Zhekun Shi
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Di Tan
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Xichen Yang
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Lingheng Xiong
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Gang Li
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Yifeng Lei
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Longjian Xue
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
45
|
Qin M, Li J, Song Y. Toward High Sensitivity: Perspective on Colorimetric Photonic Crystal Sensors. Anal Chem 2022; 94:9497-9507. [PMID: 35759455 DOI: 10.1021/acs.analchem.2c01804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The sensitivity of colorimetric photonic crystal (PC) sensors have been significantly improved with the advancement of deformable structural color materials, structures design, sensing signal analysis methods, and fabrication strategies. In this perspective, the strategies toward high-sensitivity colorimetric PC sensors are discussed, from the perspectives of molecular design, single sensor construction, and multisensor assembly, which include incorporation of flexible polymer chains, construction of strong sensor-analyte interactions, incorporation of more soft materials, construction of stimuli-angle/orientation relationship, design of colorimetric sensors in series, and assembly of colorimetric PC sensors in parallel. Based on these strategies, progress of high-sensitivity colorimetric PC sensors in recent years is summarized, in terms of mechano-sensors and chemo-/biosensors. Specifically, PC based optical-electrical dual-signal sensing devices are included. Finally, the future development and challenges of high-sensitivity colorimetric PC sensors are presented, in regards to deformable properties, optical properties, analysis methods, and fabrication strategies.
Collapse
Affiliation(s)
- Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
46
|
Li J, Zhang K, Pang C, Zhao Y, Zhou H, Chen H, Lu G, Liu F, Wu A, Du G, Akhmadaliev S, Zhou S, Chen F. Tunable structural colors in all-dielectric photonic crystals using energetic ion beams. OPTICS EXPRESS 2022; 30:23463-23474. [PMID: 36225025 DOI: 10.1364/oe.456129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/30/2022] [Indexed: 06/16/2023]
Abstract
The modulation of structural color through various methods has attracted considerable attention. Herein, a new modulation method for the structural colors in all-dielectric photonic crystals (PCs) using energetic ion beams is proposed. One type of periodic PC and two different defective PCs were experimentally investigated. Under carbon-ion irradiation, the color variation primarily originated from the blue shift of the optical spectra. The varying degrees of both the reflection and transmission structural colors mainly depended on the carbon-ion fluences. Such nanostructures are promising for tunable color filters and double-sided chromatic displays based on PCs.
Collapse
|
47
|
Xin W, Wang J, Xu B, Wu J, Wang J, Ren Z, Cai C, Xue C, Li J, Wang X. Construction of highly efficient carbon dots-based polymer photonic luminescent solar concentrators with sandwich structure. NANOTECHNOLOGY 2022; 33:305601. [PMID: 35395655 DOI: 10.1088/1361-6528/ac659d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The enhancement of photoluminescence (PL) emission and waveguide play a key role in improving the optical efficiency of luminescent solar concentrators (LSCs). In this work, to boosting PL emission and waveguide simultaneously, one photonic crystal (PC) structure (crystalline colloid arrays (CCAs)) was introduced into carbon dots (CDs)-based polymer LSCs. A sandwich-structured CDs-based polymer photonic LSC, comprising glass/CDs-based polymer PC film/glass, was created. First, CDs-based colloidal crystal suspensions were prepared by co-assembly of monodispersed p(MMA-NIPAm) colloids and multicolor-emitting CDs in HEMA monomer induced by the evaporation-driven assembly. The obtained suspensions not only had uniform PL and structural colors, but showed enhanced PL emission. Second, the above suspensions were sandwiched between two glass sheets and finally a photonic polymer LSC with sandwiched structure (25 × 25 × 1.8 mm3) were formed via one-step photopolymerization technique. Remarkably, the optimal CDs-based polymer photonic LSCs with sandwiched structure not only had high transparence at visible range (>60%), but exhibited PL emission enhancement (at least 2 times). Furthermore, the maximum external optical efficiency (ηopt) of 5.84% could be achieved based on yellow-emitting CDs-based polymer photonic LSC. The high external optical efficiency was mainly attributed to the PL emission enhancement and good PC waveguide.
Collapse
Affiliation(s)
- Wei Xin
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Jianying Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Bing Xu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Jun Wu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Jun Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhanpeng Ren
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Chen Cai
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Chenglong Xue
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Jinhua Li
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Xianbao Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| |
Collapse
|
48
|
Li X, Liu J, Guo Q, Zhang X, Tian M. Polymerizable Deep Eutectic Solvent-Based Skin-Like Elastomers with Dynamic Schemochrome and Self-Healing Ability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201012. [PMID: 35403800 DOI: 10.1002/smll.202201012] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Animal skin is a huge source of inspiration when it comes to multifunctional sensing materials. Bioinspired sensors integrated with the intriguing performance of skin-like steady wide-range strain detection, real-time dynamic visual cues, and self-healing ability hold great promise for next-generation electronic skin materials. Here, inspired by the skins of a chameleon, cellulose nanocrystals (CNCs) liquid crystal skeleton is embedded into polymerizable deep eutectic solvent (PDES) via in situ polymerization to develop a skin-like elastomer. Benefiting from the elastic ionic conductive PDES matrix and dynamic interfacial hydrogen bonding, this strategy has broken through the limitations that CNCs-based cholesteric structure is fragile and its helical pitch is non-adjustable, endowing the resulting elastomer with strain-induced wide-range (0-500%) dynamic structural colors and excellent self-healing ability (78.9-90.7%). Furthermore, the resulting materials exhibit high stretch-ability (1163.7%), strain-sensing and self-adhesive abilities, which make them well-suitable for developing widely applicable and highly reliable flexible sensors. The proposed approach of constructing biomimetic skin-like materials with wide-range dynamic schemochrome is expected to extend new possibilities in diverse applications including anti-counterfeit labels, soft foldable displays, and wearable optical devices.
Collapse
Affiliation(s)
- Xinkai Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Quanquan Guo
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
49
|
Meng Z, Wu Y, Ren J, Li X, Zhang S, Wu S. Upconversion Nanoparticle-Integrated Bilayer Inverse Opal Photonic Crystal Film for the Triple Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12562-12570. [PMID: 35230796 DOI: 10.1021/acsami.1c25059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optical anticounterfeiting plays a vital role in information security because it can be recognized by the naked eye and is difficult to imitate. Herein, a hydrophilic modified upconversion nanoparticle (M-UCNP)-integrated bilayer inverse opal photonic crystal (IOPC) film was designed in which the luminescent M-UCNPs were deposited on the surface of the optimized bilayer structure with double photonic stop bands. The structure which can modulate light to produce structural colors can also enhance the upconversion luminescence (UCL) to improve the anticounterfeiting effect synergistically. On the one hand, the reflection colors from green to blue were observed in the specular angles on the front (540-layer) of the film. Meanwhile, the scattering colors under nonspecular angles from red to blue on the back (808-layer) appeared in the natural light. On the other hand, the bilayer structure in which the 808-layer functions as a "secondary excitation source" to improve the intensity of the excitation light on M-UCNPs and the 540-layer reflects the emission light of the M-UCNPs to enhance the UCL intensity endows the film with good night vision ability. Finally, the dual-mode structural colors and enhanced UCL of the patterned film work together to realize triple anticounterfeiting in banknotes.
Collapse
Affiliation(s)
- Zhipeng Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yue Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jie Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
50
|
Hu Y, Wei B, Yang D, Ma D, Huang S. Chameleon-Inspired Brilliant and Sensitive Mechano-Chromic Photonic Skins for Self-Reporting the Strains of Earthworms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11672-11680. [PMID: 35226808 DOI: 10.1021/acsami.2c00561] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The skins of chameleons have attracted growing interest because they have sensitive mechano-chromic properties and bright colors due to the large surface-to-surface distances (Ds-s) between neighboring particles and contrast of the refractive index (Δn), respectively. Inspired by these, artificial mechano-chromic photonic skins (MPSs) mimicking those of chameleons were fabricated by the large Δn and Ds-s. The fabrication is considerably simple and efficient based on the self-assembly strategy using commercial chemicals and materials. The reflectance of MPSs depends on the value of Δn, which can be greatly increased to 70% with a Δn of 0.035, leading to their brilliant colors. Because of the large Ds-s, the MPSs possess outstanding mechano-chromic performances, including a large maximal (Δλ = 205 nm) and effective (Δλe = 184 nm) tuning range of the reflection wavelength, high sensitivity (368), fast responsiveness (2.2 nm/ms), good stabilities (>1 year), and reversibility (>100 times). Based on these advantages, MPSs have been used for self-reporting the strain of earthworms by outputting diverse colors during the peristaltic process, indicating the great potential of the MPSs as visual sensors and optical coatings.
Collapse
Affiliation(s)
- Yang Hu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Boru Wei
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Dongpeng Yang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, PR China
| | - Shaoming Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|