1
|
Shi X, Zeng Z, Zhang Q, Du Y. Rare-Earth Ions Regulating Lattice-Softened Bromide Solid Electrolytes for Highly Stable Fast-Charging Solid-State Batteries. NANO LETTERS 2025; 25:7725-7731. [PMID: 40317270 DOI: 10.1021/acs.nanolett.5c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
All-solid-state lithium-based batteries (ASSLBs) with good safety and high energy density are valuable. To realize stable and high-efficiency ASSLBs, high-performance solid-state electrolytes (SEs) with good processability are necessary. Bromide (Br)-based rare-earth halide SEs (RE-HSEs) exhibit good deformability for large radii of RE and Br ions. Here, the influence of RE ions on the crystalline structure and mechanical properties of Br-based RE-HSEs (RE = Y, Gd, Tb, Ho, or Er) was analyzed in detail, and Li3GdBr6 (LGdB) showed the softest lattice and the best deformability due to having the longest RE-Br bond length. Furthermore, LGdB exhibits satisfactory ionic conduction ability (1.4 mS cm-1), and the assembled ASSLBs exhibit a reversible redox process, excellent fast-charging performance, and superior cycling stability for 6000 cycles at 10 C. This study indicates that the relationship between the RE and deformability of Br-based RE-HSEs is significant for the rational design and improvement of HSEs in ASSLBs.
Collapse
Affiliation(s)
- Xiaomeng Shi
- Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Zhichao Zeng
- Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Qian Zhang
- Department of Applied Chemistry, School of Sciences, Xi'an University of Technology, 58 Yanxiang Road, Yanta District, Xi'an City, Shaanxi Province 710048, P. R. China
| | - Yaping Du
- Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
2
|
Liu Y, Xia J, Jiang D, Dong Y, Chen Y, Ma E, Wen Q, Li Q. Optical temperature-sensitive hydrophobic membrane based on Eu(III)-doped yttrium oxide nanosheets. NANOSCALE 2025; 17:9107-9121. [PMID: 40105869 DOI: 10.1039/d5nr00438a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
In this study, Eu(III)-doped yttrium oxide nanosheets were prepared after the dehydration and exfoliation of layered hydroxides. The morphologies of the as-prepared nanosheets were determined using transmission electron microscopy and atomic force microscopy. Positively charged Eu(III)-doped yttrium oxide nanosheets with α-thiophenylacetone trifluoride as antenna uniformly adhered to the surface of glass fiber membranes by layer-by-layer assembly technology with negatively charged polyacrylic acid. Thereafter, an optical temperature-sensitive hydrophobic membrane with a water contact angle of 124.35° ± 0.15° was obtained. In air and water environments, both the lifetime and luminescence intensity of the as-prepared fluorescent temperature-sensing membrane showed good and repeatable responses to temperatures in the range of 283-363 K. The luminescence intensity exhibited high sensitivity to temperature changes, with a relative thermal sensitivity of 7.61% K-1 in air and 5.41% K-1 in pure water. In conclusion, the developed membrane demonstrates potential as a promising candidate for use in fluorescence thermometers in both air and water environments.
Collapse
Affiliation(s)
- Yue Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 Zhongshanbei Road, Shanghai 200062, China
| | - Jinfeng Xia
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Danyu Jiang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Yuchen Dong
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 Zhongshanbei Road, Shanghai 200062, China
| | - Ying Chen
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 Zhongshanbei Road, Shanghai 200062, China
| | - Enhui Ma
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 Zhongshanbei Road, Shanghai 200062, China
| | - Qinian Wen
- The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Qiang Li
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 Zhongshanbei Road, Shanghai 200062, China
| |
Collapse
|
3
|
Maddin M, Terribili L, Rateau R, Szucs AM, Rodriguez-Blanco JD. Nanophase REE phosphate crystallization induced by vivianite oxidation: mechanistic insights and mineralogical implications. RSC Adv 2025; 15:11257-11270. [PMID: 40206358 PMCID: PMC11979900 DOI: 10.1039/d4ra08110b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025] Open
Abstract
Our study investigates the interaction between multi-component rare earth element (REE; La, Ce, Pr, Nd, Dy)-bearing aqueous solutions and vivianite (Fe3 2+(PO4)2·8H2O) grains under hydrothermal conditions (50-165 °C). The results revealed the solution-mediated, progressive oxidation and dissolution of vivianite. This resulted in the formation of iron phosphates, metavivianite [Fe2+Fe2 3+(PO4)2(OH)2·6H2O], and giniite [Fe2+Fe4 3+(PO4)4 (OH)2·2H2O], iron oxide hematite [Fe2O3], and rare earth phosphates, rhabdophane [REE(PO4)·H2O] and monazite [(LREE)PO4]. The extent of the reactions was found to be dependent on temperature, pH, and the concentration and ionic radii of the rare earths in solution. The rate of vivianite oxidation and dissolution increased with increased temperature, with 50% of vivianite transformed after 32 days at 50 °C, and 100% transformed after 28 days and 4 hours at 90 and 165 °C respectively. The pH of the solutions at all three temperatures maintained the stability of rhabdophane, and only at the highest temperature of 165 °C it began to transform to monazite. Understanding the stability of iron phosphates, their transformation products, and their capacity to incorporate REEs is crucial for resource recovery, especially in the extraction of REEs from waste materials.
Collapse
Affiliation(s)
- M Maddin
- Department of Geology, School of Natural Sciences, Trinity College Dublin Dublin 2 Ireland
| | - L Terribili
- Department of Geology, School of Natural Sciences, Trinity College Dublin Dublin 2 Ireland
| | - R Rateau
- Department of Geology, School of Natural Sciences, Trinity College Dublin Dublin 2 Ireland
| | - A M Szucs
- Department of Geology, School of Natural Sciences, Trinity College Dublin Dublin 2 Ireland
| | - J D Rodriguez-Blanco
- iCRAG, Department of Geology, School of Natural Sciences, Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
4
|
Sun J, Fu H, Jing H, Hu X, Chen D, Li F, Liu Y, Qin X, Huang W. Synergistic Integration of Halide Perovskite and Rare-Earth Ions toward Photonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417397. [PMID: 39945051 DOI: 10.1002/adma.202417397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/18/2025] [Indexed: 03/27/2025]
Abstract
Halide perovskites (HPs), emerging as a noteworthy class of semiconductors, hold great promise for an array of optoelectronic applications, including anti-counterfeiting, light-emitting diodes (LEDs), solar cells (SCs), and photodetectors, primarily due to their large absorption cross section, high fluorescence efficiency, tunable emission spectrum within the visible region, and high tolerance for lattice defects, as well as their adaptability for solution-based fabrication processes. Unlike luminescent HPs with band-edge emission, trivalent rare-earth (RE) ions typically emit low-energy light through intra-4f optical transitions, characterized by narrow emission spectra and long emission lifetimes. When fused, the cooperative interactions between HPs and REs endow the resulting binary composites not only with optoelectronic properties inherited from their parent materials but also introduce new attributes unattainable by either component alone. This review begins with the fundamental optoelectronic characteristics of HPs and REs, followed by a particular focus on the impact of REs on the electronic structures of HPs and the associated energy transfer processes. The advanced synthesis methods utilized to prepare HPs, RE-doped compounds, and their binary composites are overviewed. Furthermore, potential applications are summarized across diverse domains, including high-fidelity anticounterfeiting, bioimaging, LEDs, photovoltaics, photodetection, and photocatalysis, and conclude with remaining challenges and future research prospects.
Collapse
Affiliation(s)
- Jiayu Sun
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Hongyang Fu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Haitong Jing
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Xin Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Daqin Chen
- College of Physics and Energy, Fujian Normal University Fuzhou, Fujian, 350117, P. R. China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yang Liu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Xian Qin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| |
Collapse
|
5
|
Xiao L, Jia D, Chen C, Liu T, Zhang X, Huang Q, Ubaidullah M, Sun Y, Huang S, Pu Z. Rare-earth oxide promoted Pd electrocatalyst for formic acid oxidation. Dalton Trans 2025; 54:3478-3485. [PMID: 39869171 DOI: 10.1039/d4dt03296a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The development of Pd-based materials with high activity and long-term stability is crucial for their practical applications as an anode catalyst in direct formic acid fuel cells. Herein, we reveal that the catalytic activity of Pd towards formic acid oxidation can be enhanced by incorporation of a series of rare-earth oxides, including Sc2O3, CeO2, La2O3, and Pr2O3. For example, Pd nanoparticles incorporated with Sc2O3 supported on nitrogen-doped reduced graphene oxide (Pd-Sc2O3/N-rGO-x, x = 1/3, 1/2, 2/3, 1, and 3/2; "x" denotes the molar ratio of Pd : Sc) can be obtained using a sodium borohydride reduction method. When directly used as an electrocatalyst towards formic acid oxidation (FAO), Pd-Sc2O3/N-rGO-2/3 exhibits the highest mass current density of 972.9 mA mgPd-1, surpassing that of the reference catalysts Pd/C (262.6 mA mgPd-1) and Pd/N-rGO (304.9 mA mgPd-1). More importantly, the Pd-Sc2O3/N-rGO-2/3 catalyst demonstrates high CO tolerance and long-term stability in the FAO reaction. The improved electrooxidation activity and stability could be attributed to the synergistic effect between Sc2O3 and Pd nanoparticles. Therefore, this study presents a crucial contribution to the advancement of various rare-earth oxides in enhancing Pd activity towards FAO and beyond.
Collapse
Affiliation(s)
- Lusheng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Danqi Jia
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Chen Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Tingting Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Xiaofeng Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Qiufeng Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yuzhi Sun
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou 341000, P. R. China.
| | - Shengyun Huang
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou 341000, P. R. China.
| | - Zonghua Pu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| |
Collapse
|
6
|
Wei Y. Research Progress and Application of Layered Rare Earth Hydroxides, a Class of Inorganic Layered Compounds with Photoluminescence. ACS OMEGA 2024; 9:45673-45687. [PMID: 39583688 PMCID: PMC11579741 DOI: 10.1021/acsomega.4c07008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
Inorganic layered compounds are an important part of organic-inorganic functional nanocomposites and offer plentiful opportunities and possibilities for synthesizing new-style multifunctional materials because they could be intercalated, exfoliated, and swollen. In recent years, as inorganic layered materials with photoluminescence, layered rare earth hydroxides (LRHs) have been extensively studied. Due to their rich functionalization ways, they have been applied or shown potential application value in many fields such as pollution detection, biomedicine, photoelectric energy storage, and so on. On account of the basic physical and chemical properties, the basic structures of LRHs may be regulated through exfoliation and intercalation, which provides more possibilities for synthesizing new multifunctional composite materials and broadening and updating their application fields. In this paper, LRHs are extracted from inorganic layered compounds, and the structure, synthesis, research progress, and application of LRHs are summarized in detail, which lays a great theoretical foundation for further exploration and optimization of the application as a composite functional material in industry, medicine, detection, optoelectronics, and other fields.
Collapse
Affiliation(s)
- Yiming Wei
- Sinopec Key Laboratory of
Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry
Company, Limited, No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China
| |
Collapse
|
7
|
Cheng F, Lv B, Huang Y, Tang Y, Mei D, Huang B, Zhao X. Facile Synthesis and Characterization of Fluorescent Polystyrene Nanospheres for Homogeneous Light-Initiated Chemiluminescence Immunoassay. J Fluoresc 2024. [DOI: 10.1007/s10895-024-03965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/26/2024] [Indexed: 01/04/2025]
|
8
|
Zheng H, Zi B, Zhou T, Qiu G, Luo Z, Lu Q, Santiago ARP, Zhang Y, Zhao J, Zhang J, He T, Liu Q. Insight into mechanism for remarkable photocatalytic hydrogen evolution of Cu/Pr dual atom co-modified TiO 2. NANOSCALE HORIZONS 2024; 9:1532-1542. [PMID: 38973510 DOI: 10.1039/d4nh00196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The development of high-activity photocatalysts is crucial for the current large-scale development of photocatalytic hydrogen applications. Herein, we have developed a strategy to significantly enhance the hydrogen photocatalytic activity of Cu/Pr di-atom co-modified TiO2 architectures by selectively anchoring Cu single atoms on the oxygen vacancies of the TiO2 surface and replacing a trace of Ti atoms in the bulk with rare earth Pr atoms. Calculation results demonstrated that the synergistic effect between Cu single atoms and Pr atoms regulates the electronic structure of Cu/Pr-TiO2, thus promoting the separation of photogenerated carriers and their directional migration to Cu single atoms for the photocatalytic reaction. Furthermore, the d-band center of Cu/Pr-TiO2, which is located at -4.70 eV, optimizes the adsorption and desorption behavior of H*. Compared to TiO2, Pr-TiO2, and Cu/TiO2, Cu/Pr-TiO2 displays the best H* adsorption Gibbs free energy (-0.047 eV). Furthermore, experimental results confirmed that the photogenerated carrier lifetime of Cu/Pr-TiO2 is not only the longest (2.45 ns), but its hydrogen production rate (34.90 mmol g-1 h-1) also significantly surpasses those of Cu/TiO2 (13.39 mmol g-1 h-1) and Pr-TiO2 (0.89 mmol g-1 h-1). These findings open up a novel atomic perspective for the development of optimal hydrogen activity in dual-atom-modified TiO2 photocatalysts.
Collapse
Affiliation(s)
- Hongshun Zheng
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
- Southwest United Graduate School, Kunming 650091, China
| | - Baoye Zi
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Tong Zhou
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Guoyang Qiu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Zhongge Luo
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Qingjie Lu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Alain Rafael Puente Santiago
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712, USA
- Florida International University (FIU), Department of Chemistry and Biochemistry, Miami, FL, USA
| | - Yumin Zhang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Jianhong Zhao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Jin Zhang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Tianwei He
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Qingju Liu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
- Southwest United Graduate School, Kunming 650091, China
| |
Collapse
|
9
|
Li R, Liu J, Xiao M, Sun Y, Liu F, Gan J, Gao S. Atomic Strain Wave-Featured LaRuIr Nanocrystals: Achieving Simultaneous Enhancement of Catalytic Activity and Stability toward Acidic Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400095. [PMID: 38529761 DOI: 10.1002/smll.202400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/07/2024] [Indexed: 03/27/2024]
Abstract
Rare earth microalloying nanocrystals have gotten widespread attention due to their unprecedented performances with customization-defected nanostructures, divided energy bands, and ensembled surface chemistry, regarded as a class of ideal electrocatalysts for oxygen evolution reaction (OER). Herein, a lanthanide microalloying strategy is proposed to fabricate strain wave-featured LaRuIr nanocrystals with oxide skin through a rapid crystal nucleation, using thermally assisted sodium borohydride reduction in aqueous solution at 60 °C. The atomic strain waves with alternating compressive and tensile strains, resulting from La-stabilized edge dislocations in form of Cottrell atmospheres. In 0.5 m H2SO4, the LaRuIr displays an overpotential of 184 mV at 10 mA cm-2, running at a steadily cell voltage for 60 h at 50 mA cm-2, eightfold enhancement of IrO2||Pt/C assemble in PEMWE. The coupled compressive and tensile profiles boost the OER kinetics via faster AEM and LOM pathways. Moreover, the tensile facilitates surface structure stabilization through dynamic refilling of lattice oxygen vacancies by the adsorbed oxyanions on La, Ru, and Ir sites, eventually achieving a long-term stability. This work contributes to developing advanced catalysts with unique strain to realize simultaneous improvement of activity and durability by breaking the so-called seesaw relationship between them during OER for water splitting.
Collapse
Affiliation(s)
- Rongchao Li
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingjun Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingyue Xiao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanhui Sun
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Liu
- Yunnan Precious Metals Lab, Kunming, 650100, China
| | - Jun Gan
- Yunnan Precious Metals Lab, Kunming, 650100, China
| | - Shixin Gao
- Yunnan Precious Metals Lab, Kunming, 650100, China
| |
Collapse
|
10
|
Jiang Y, Liang Z, Liu JC, Fu H, Yan CH, Du Y. Stimulating Electron Delocalization of Lanthanide Elements through High-Entropy Confinement to Promote Electrocatalytic Water Splitting. ACS NANO 2024; 18:19137-19149. [PMID: 38981052 DOI: 10.1021/acsnano.4c04176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
High-entropy alloys (HEAs) have aroused extensive attention in the field of catalysis. However, due to the integration of multiple active sites in HEA, it exhibits excessive adsorption behavior resulting in difficult desorption of active species from the catalyst surfaces, which hinders the catalytic efficiency. Therefore, adjusting the adsorption strength of the active site in HEA to enhance the catalytic activity is of great importance. By introducing rare-earth (RE) elements into the high-entropy alloy, the delocalization of 4f electrons can be achieved through the interaction between the multimetal active site and RE, which benefits to regulate the adsorption strength of the HEA surface. Herein, the RE Ce-modified hexagonal-close-packed PtRuFeCoNiZn-Ce/C HEAs are synthesized and showed an excellent electrocatalytic activity for hydrogen evolution reaction and oxygen evolution reaction with ultralow overpotentials of 4, 7 and 156, 132 mV, respectively, to reach 10 mA cm-2 in 0.5 M H2SO4 and 1.0 M KOH solutions, and the assembled water electrolysis cell only requires a voltage of 1.43 V to reach 10 mA cm-2, which is much better than the performance of PtRuFeCoNiZn/C. Combined with the results of in situ attenuated total reflection infrared spectroscopy and density functional theory (DFT), the fundamental reasons for the improvement of catalyst activity come from two aspects: (i) local lattice distortion of HEA caused by the introduction of RE with large atomic radius induces 4f orbital electron delocalization of RE elements and enhances electron exchange between RE and active sites. (ii) The electronegativity difference between the RE element and the active site forms a surface dipole in HEA, which optimizes the adsorption of the active intermediate by the HEA surface site. This study provides an insightful idea for the rational design of high-performance HEA- and RE-based electrocatalysts.
Collapse
Affiliation(s)
- Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Jin-Cheng Liu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Chun-Hua Yan
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
11
|
Zhang XY, Xin BJ, Huang ZX, Gu ZY, Wang XT, Zheng SH, Ma MY, Liu Y, Cao JM, Li SY, Wu XL. Rare earth elements induced electronic engineering in Rh cluster toward efficient alkaline hydrogen evolution reaction. J Colloid Interface Sci 2024; 666:346-354. [PMID: 38603877 DOI: 10.1016/j.jcis.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
The unique electronic and crystal structures of rare earth metals (RE) offer promising opportunities for enhancing the hydrogen evolution reaction (HER) properties of materials. In this work, a series of RE (Sm, Nd, Pr and Ho)-doped Rh@NSPC (NSPC stands for N, S co-doped porous carbon nanosheets) with sizes less than 2 nm are prepared, utilizing a simple, rapid and solvent-free joule-heat pyrolysis method for the first time. The optimized Sm-Rh@NSPC achieves HER performance. The high-catalytic performance and stability of Sm-Rh@NSPC are attributed to the synergistic electronic interactions between Sm and Rh clusters, leading to an increase in the electron cloud density of Rh, which promotes the adsorption of H+, the dissociation of Rh-H bonds and the release of H2. Notably, the overpotential of the Sm-Rh@NSPC catalyst is a mere 18.1 mV at current density of 10 mAcm-2, with a Tafel slope of only 15.2 mV dec-1. Furthermore, it exhibits stable operation in a 1.0 M KOH electrolyte at 10 mA cm-2 for more than 100 h. This study provides new insights into the synthesis of composite RE hybrid cluster nanocatalysts and their RE-enhanced electrocatalytic performance. It also introduces fresh perspectives for the development of efficient electrocatalysts.
Collapse
Affiliation(s)
- Xin-Yi Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Ben-Jian Xin
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| | - Zhi-Xiong Huang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| | - Zhen-Yi Gu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| | - Xiao-Tong Wang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| | - Shuo-Hang Zheng
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| | - Ming-Yang Ma
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| | - Yue Liu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| | - Jun-Ming Cao
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| | - Shu-Ying Li
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China.
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun Jilin130024, PR China
| |
Collapse
|
12
|
Li L, Zhang Q, Geng D, Meng H, Hu W. Atomic engineering of two-dimensional materials via liquid metals. Chem Soc Rev 2024; 53:7158-7201. [PMID: 38847021 DOI: 10.1039/d4cs00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Two-dimensional (2D) materials, known for their distinctive electronic, mechanical, and thermal properties, have attracted considerable attention. The precise atomic-scale synthesis of 2D materials opens up new frontiers in nanotechnology, presenting novel opportunities for material design and property control but remains challenging due to the high expense of single-crystal solid metal catalysts. Liquid metals, with their fluidity, ductility, dynamic surface, and isotropy, have significantly enhanced the catalytic processes crucial for synthesizing 2D materials, including decomposition, diffusion, and nucleation, thus presenting an unprecedented precise control over material structures and properties. Besides, the emergence of liquid alloy makes the creation of diverse heterostructures possible, offering a new dimension for atomic engineering. Significant achievements have been made in this field encompassing defect-free preparation, large-area self-aligned array, phase engineering, heterostructures, etc. This review systematically summarizes these contributions from the aspects of fundamental synthesis methods, liquid catalyst selection, resulting 2D materials, and atomic engineering. Moreover, the review sheds light on the outlook and challenges in this evolving field, providing a valuable resource for deeply understanding this field. The emergence of liquid metals has undoubtedly revolutionized the traditional nanotechnology for preparing 2D materials on solid metal catalysts, offering flexible possibilities for the advancement of next-generation electronics.
Collapse
Affiliation(s)
- Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Hong Meng
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
13
|
Averyanov DV, Sokolov IS, Taldenkov AN, Parfenov OE, Larionov KV, Sorokin PB, Kondratev OA, Tokmachev AM, Storchak VG. Engineering of a Layered Ferromagnet via Graphitization: An Overlooked Polymorph of GdAlSi. J Am Chem Soc 2024; 146:15761-15770. [PMID: 38825888 DOI: 10.1021/jacs.4c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Layered magnets are stand-out materials because of their range of functional properties that can be controlled by external stimuli. Regretfully, the class of such compounds is rather narrow, prompting the search for new members. Graphitization─stabilization of layered graphitic structures in the 2D limit─is being discussed for cubic materials. We suggest the phenomenon to extend beyond cubic structures; it can be employed as a viable route to a variety of layered materials. Here, the idea of graphitization is put into practice to produce a new layered magnet, GdAlSi. The honeycomb material, based on graphene-like layers AlSi, is studied both experimentally and theoretically. Epitaxial films of GdAlSi are synthesized on silicon; the critical thickness for the stability of the layered polymorph is around 20 monolayers. Notably, the layered polymorph of GdAlSi demonstrates ferromagnetism, in contrast to the nonlayered, tetragonal polymorph. The ferromagnetism is further supported by electron transport measurements revealing negative magnetoresistance and the anomalous Hall effect. The results show that graphitization can be a powerful tool in the design of functional layered materials.
Collapse
Affiliation(s)
- Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Konstantin V Larionov
- Laboratory of Digital Materials Science, National University of Science and Technology MISIS, Leninskiy prospect 4, 119049 Moscow, Russia
| | - Pavel B Sorokin
- Laboratory of Digital Materials Science, National University of Science and Technology MISIS, Leninskiy prospect 4, 119049 Moscow, Russia
| | - Oleg A Kondratev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| |
Collapse
|
14
|
Huang H, Wu L, Zheng T, Wu J. Reversible Multimode Luminescence Modulations in Photochromic-Translucent Yb 3+/Eu 3+ Codoped K 0.5Na 0.5NbO 3 Ceramics. Inorg Chem 2024; 63:2005-2014. [PMID: 38224459 DOI: 10.1021/acs.inorgchem.3c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Luminescent tunable materials have promising application potential in optical switches, optical information storage, and so on. Although europium (Eu) is a good downconversion red luminescent rare earth element, there are few studies on the upconversion luminescence and photochromism of Eu-doped potassium sodium niobate (KNN) ferroelectrics. In this paper, Eu3+ and Yb3+ codoped KNN translucent ferroelectric ceramics were synthesized and the effect of Yb3+ content on the luminescence and photochromism is studied. Both the up- and downconversion luminescence intensity and decay rate before and after photochromism can be well controlled by Yb3+ content. That is, an upconversion luminescent translucent ceramic that can be completely discolored by 405 nm light illumination for 10 s was obtained. The luminescence modulations are closely related to the evolution of oxygen vacancy and crystal field around the luminescence center, which can be verified by the illumination-induced electron paramagnetic resonance (EPR) signal and local piezoresponse switching behavior variation as well as the discovery of energy level splitting and spectral line shift. We believe that this work shows a paradigm for designing high-performance reversible multimode luminescence modulation ferroelectric ceramics.
Collapse
Affiliation(s)
- Hui Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Lingjie Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Ting Zheng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
15
|
Jiang Y, Fu H, Liang Z, Zhang Q, Du Y. Rare earth oxide based electrocatalysts: synthesis, properties and applications. Chem Soc Rev 2024; 53:714-763. [PMID: 38105711 DOI: 10.1039/d3cs00708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As an important strategic resource, rare earths (REs) constitute 17 elements in the periodic table, namely 15 lanthanides (Ln) (La-Lu, atomic numbers from 57 to 71), scandium (Sc, atomic number 21) and yttrium (Y, atomic number 39). In the field of catalysis, the localization and incomplete filling of 4f electrons endow REs with unique physical and chemical properties, including rich electronic energy level structures, variable coordination numbers, etc., making them have great potential in electrocatalysis. Among various RE catalytic materials, rare earth oxide (REO)-based electrocatalysts exhibit excellent performances in electrocatalytic reactions due to their simple preparation process and strong structural variability. At the same time, the electronic orbital structure of REs exhibits excellent electron transfer ability, which can reduce the band gap and energy barrier values of rate-determining steps, further accelerating the electron transfer in the electrocatalytic reaction process; however, there is a lack of systematic review of recent advances in REO-based electrocatalysis. This review systematically summarizes the synthesis, properties and applications of REO-based nanocatalysts and discusses their applications in electrocatalysis in detail. It includes the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), nitrogen reduction reaction (NRR) and other electrocatalytic reactions and further discusses the catalytic mechanism of REs in the above reactions. This review provides a timely and comprehensive summary of the current progress in the application of RE-based nanomaterials in electrocatalytic reactions and provides reasonable prospects for future electrocatalytic applications of REO-based materials.
Collapse
Affiliation(s)
- Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
16
|
Zhu J, Shao J, Shen BA, Chen J, Yu Y, Song S, Zhang XB, Zhang B, Zhao BH. Formamide Electrosynthesis from Methanol and Ammonia in Water over Pr-Doped MnO 2. JACS AU 2023; 3:2987-2992. [PMID: 38034964 PMCID: PMC10685412 DOI: 10.1021/jacsau.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023]
Abstract
A rare earth element doping strategy is reported to boost the activity and enhance the stability of MnO2 for selective formamide production through electrocatalytic oxidation coupling (EOC) of methanol and ammonia. MnO2 doped with 1% Pr was selected as the best candidate with an optimized formamide yield of 211.32 μmol cm-2 h-1, a Faradaic efficiency of 22.63%, and a stability of more than 50 h. The easier formation of Mn6+ species and the lower dissolution rate of Mn species over Pr-doped MnO2 revealed by in situ Raman spectra were responsible for the boosted formamide production and enhanced stability. In addition, a two-electrode flow electrolyzer was developed to integrate EOC with C2H2 semihydrogenation for simultaneously producing value-added products in both the anode and cathode.
Collapse
Affiliation(s)
- Jiewei Zhu
- Department
of Catalysis Science and Engineering, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, China
| | - Jiang Shao
- Institute
of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Bai-An Shen
- Institute
of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jixiang Chen
- Department
of Catalysis Science and Engineering, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, China
| | - Yifu Yu
- Institute
of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Shuyan Song
- State
Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xin-Bo Zhang
- State
Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bin Zhang
- Department
of Catalysis Science and Engineering, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, China
- Institute
of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Bo-Hang Zhao
- Institute
of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
17
|
Wang T, Li S, Yan W, Jiang S, Xie H, Li G, Jiang L. Infrared spectroscopic study of solvation and size effects on reactions between water molecules and neutral rare-earth metals. NANOSCALE ADVANCES 2023; 5:6626-6634. [PMID: 38024292 PMCID: PMC10662163 DOI: 10.1039/d3na00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Elucidating the solvation and size effects on the reactions between water and neutral metals is crucial for understanding the microscopic mechanism of the catalytic processes but has been proven to be a challenging experimental target due to the difficulty in size selection. Here, MO4H6 and M2O6H7 (M = Sc, Y, La) complexes were synthesized using a laser-vaporization cluster source and characterized by size-specific infrared-vacuum ultraviolet spectroscopy combined with quantum chemical calculations. The MO4H6 and M2O6H7 complexes were found to have H˙M(OH)3(H2O) and M2(μ2-OH)2(η1-OH)3(η1-OH2) structures, respectively. A combination of experiments and theory revealed that the formation of H˙M(OH)3(H2O) and M2(μ2-OH)2(η1-OH)3(η1-OH2) is both thermodynamically exothermic and kinetically facile in the gas phase. The results indicated that upon the addition of water to H˙M(OH)3, the feature of the hydrogen radical is retained. In the processes from mononuclear H˙M(OH)3 to binuclear M2(μ2-OH)2(η1-OH)3(η1-OH2), the active hydrogen atom undergoes the evolution from hydrogen radical → bridging hydrogen → metal hydride → hydrogen bond, which is indicative of a reduced reactivity. The present system serves as a model for clarifying the solvation and size effects on the reactions between water and neutral rare-earth metals and offers a general paradigm for systematic studies on a broad class of the reactions between small molecules and metals at the nanoscale.
Collapse
Affiliation(s)
- Tiantong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shangdong Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenhui Yan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shuai Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Hefei National Laboratory Hefei 230088 China
| |
Collapse
|
18
|
Liu S, Zheng D, Zhao L, Zhao X, Chen X. Rare Earth Metal Anchored into Nitrogen-Doped Graphene for CO 2 Electrocatalytic Reduction to C1 Products. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14748-14757. [PMID: 37787646 DOI: 10.1021/acs.langmuir.3c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Single-atom catalysts (SACs) are attracting global attention due to their 100% atomic utilization rate and unique properties. Rare-earth-based SACs have shown great potential in the field of electrocatalysis in recent years. In this study, the catalytic performance of four rare earth metals (REMs) anchored into N-graphene for the CO2RR is systematically studied by density functional theory. The calculation results of formation energy show that all REM@N6-G compounds have favorable stability. In addition, the Gibbs free energy calculation results of all possible elementary reactions show that the *OCHO pathway is the optimal hydrogenation pathway for all catalysts, and they have the same potential determining step (*OCHO + e- + H+ → *HCOOH). Meanwhile, the products of the CO2RR on these catalysts are different, and the product on REM@N6-G (REM = La, Pr, and Nd) is CH4, while the product on Ce@N6-G is CH3OH. In particular, Nd@N6-G exhibits the best catalytic activity in this work, with a very low limiting potential of -0.38 V. These results may guide the development of rare-earth-based SACs for CO2RR.
Collapse
Affiliation(s)
- Siying Liu
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Desheng Zheng
- School of Computer Science, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Lei Zhao
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Xiuyun Zhao
- Department of Technical Physics, University of Eastern Finland, Kuopio 70211, Finland
| | - Xin Chen
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| |
Collapse
|
19
|
Fan C, Dong W, Saira Y, Tang Y, Fu G, Lee JM. Rare-Earth-Modified Metal-Organic Frameworks and Derivatives for Photo/Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302738. [PMID: 37291982 DOI: 10.1002/smll.202302738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) and their derivatives have attracted much attention in the field of photo/electrocatalysis owing to their ultrahigh porosity, tunable properties, and superior coordination ability. Regulating the valence electronic structure and coordination environment of MOFs is an effective way to enhance their intrinsic catalytic performance. Rare earth (RE) elements with 4f orbital occupancy provide an opportunity to evoke electron rearrangement, accelerate charged carrier transport, and synergize the surface adsorption of catalysts. Therefore, the integration of RE with MOFs makes it possible to optimize their electronic structure and coordination environment, resulting in enhanced catalytic performance. In this review, progress in current research on the use of RE-modified MOFs and their derivatives for photo/electrocatalysis is summarized and discussed. First, the theoretical advantages of RE in MOF modification are introduced, with a focus on the roles of 4f orbital occupancy and RE ion organic coordination ligands. Then, the application of RE-modified MOFs and their derivatives in photo/electrocatalysis is systematically discussed. Finally, research challenges, future opportunities, and prospects for RE-MOFs are also discussed.
Collapse
Affiliation(s)
- Chuang Fan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wenrou Dong
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yousaf Saira
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technology University, Singapore, 637459, Singapore
| |
Collapse
|
20
|
Zhang Z, Dong X, Chen J, Liu Z, Gao Z, Chang X, Du Y, Jia C, Fu H, Luo F, Wu J. Transferred Polymer-Encapsulated Metal Electrodes for Electrical Transport Measurements on Ultrathin Air-Sensitive Crystals. SMALL METHODS 2023; 7:e2300177. [PMID: 37287373 DOI: 10.1002/smtd.202300177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Owing to rapid property degradation after ambient exposure and incompatibility with conventional device fabrication process, electrical transport measurements on air-sensitive 2D materials have always been a big issue. Here, for the first time, a facile one-step polymer-encapsulated electrode transfer (PEET) method applicable for fragile 2D materials is developed, which showed great advantages of damage-free electrodes patterning and in situ polymer encapsulation preventing from H2 O/O2 exposure during the whole electrical measurements process. The ultrathin SmTe2 metals grown by chemical vapor deposition (CVD) are chosen as the prototypical air-sensitive 2D crystals for their poor air-stability, which will become highly insulating when fabricated by conventional lithographic techniques. Nevertheless, the intrinsic electrical properties of CVD-grown SmTe2 nanosheets can be readily investigated by the PEET method instead, showing ultralow contact resistance and high signal/noise ratio. The PEET method can be applicable to other fragile ultrathin magnetic materials, such as (Mn,Cr)Te, to investigate their intrinsic electrical/magnetic properties.
Collapse
Affiliation(s)
- Zheshan Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xinyue Dong
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jiabiao Chen
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhaochao Liu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhansheng Gao
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xinyue Chang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, China
| | - Huixia Fu
- Center of Quantum Materials and Devices & College of Physics, Chongqing University, Chongqing, 401331, China
| | - Feng Luo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jinxiong Wu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
21
|
Ding R, Wang YQ, Zeng FR, Liu BW, Wang YZ, Zhao HB. A One-Step Self-Flowering Method toward Programmable Ultrathin Porous Carbon-Based Materials for Microwave Absorption and Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302132. [PMID: 37127874 DOI: 10.1002/smll.202302132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Ultrathin 2D porous carbon-based materials offer numerous fascinating electrical, catalytic, and mechanical properties, which hold great promise in various applications. However, it remains a formidable challenge to fabricate these materials with tunable morphology and composition by a simple synthesis strategy. Here, a facile one-step self-flowering method without purification and harsh conditions is reported for large-scale fabrication of high-quality ultrathin (≈1.5 nm) N-doped porous carbon nanosheets (NPC) and their composites. It is demonstrated that the layered tannic/oxamide (TA/oxamide) hybrid is spontaneously blown, exfoliated, bloomed, in situ pore-formed, and aromatized during pyrolysis to form flower-like aggregated NPC. This universal one-step self-flowering system is compatible with various precursors to construct multiscale NPC-based composites (Ru@NPC, ZnO@NPC, MoS2 @NPC, Co@NPC, rGO@NPC, etc.). Notably, the programmable architecture enables NPC-based materials with excellent multifunctional performances, such as microwave absorption and hydrogen evolution. This work provides a facile, universal, scalable, and eco-friendly avenue to fabricate functional ultrathin porous carbon-based materials with programmability.
Collapse
Affiliation(s)
- Rong Ding
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yan-Qin Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Fu-Rong Zeng
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Bo-Wen Liu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Hai-Bo Zhao
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
22
|
Yang Z, Zhou S, Feng X, Wang N, Ola O, Zhu Y. Recent Progress in Multifunctional Graphene-Based Nanocomposites for Photocatalysis and Electrocatalysis Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2028. [PMID: 37446544 DOI: 10.3390/nano13132028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The global energy shortage and environmental degradation are two major issues of concern in today's society. The production of renewable energy and the treatment of pollutants are currently the mainstream research directions in the field of photocatalysis. In addition, over the last decade or so, graphene (GR) has been widely used in photocatalysis due to its unique physical and chemical properties, such as its large light-absorption range, high adsorption capacity, large specific surface area, and excellent electronic conductivity. Here, we first introduce the unique properties of graphene, such as its high specific surface area, chemical stability, etc. Then, the basic principles of photocatalytic hydrolysis, pollutant degradation, and the photocatalytic reduction of CO2 are summarized. We then give an overview of the optimization strategies for graphene-based photocatalysis and the latest advances in its application. Finally, we present challenges and perspectives for graphene-based applications in this field in light of recent developments.
Collapse
Affiliation(s)
- Zanhe Yang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Siqi Zhou
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xiangyu Feng
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nannan Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Oluwafunmilola Ola
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Yanqiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
23
|
Li C, An Y. Two-dimensional ferromagnetic semiconductors of rare-earth Janus 2H-GdIBr monolayers with large valley polarization. NANOSCALE 2023; 15:8304-8312. [PMID: 37082903 DOI: 10.1039/d2nr06654h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Based on a rare-earth Gd atom with 4f electrons, through first-principles calculations, we demonstrate that a Janus 2H-GdIBr monolayer exhibits an intrinsic ferromagnetic (FM) semiconductor character with an indirect band gap of 0.75 eV, a high Curie temperature Tc of 260 K, a significant magnetic moment of 8μB per f.u. (f.u. = formula unit), in-plane magnetic anisotropy (IMA) and a large spontaneous valley polarization of 118 meV. The MAE, inter-atomic distance or angle, and Tc can be efficiently modulated by in-plane strains and charge carrier doping. Under a strain range from -5% to 5% and charge carrier doping from -0.3 e to 0.3 e per f.u., the system still retains its FM ordering and the corresponding Tc can be modulated by strains from 233 K to 281 K and by charge carrier doping from 140 K to 245 K. Interestingly, under various strains, the matrix element differences (dz2, dyz), (dx2-y2, dxy) and (px, py) of Gd atoms dominate the MAE behaviors, which originates from the competition between the contributions of the Gd-d orbitals, Gd-p orbitals, and p orbitals of halogen atoms based on the second-order perturbation theory. Inequivalent Dirac valleys are not energetically degenerate due to the time-reversal symmetry breaking in the Janus 2H-GdIBr monolayer. A considerable valley gap between the Berry curvature at the K and K' points provides an opportunity to selectively control the valley freedom and states. External tensile (compressive) strain further increases (decreases) the valley gap up to a maximum (minimum) value of 158 (37) meV, indicating that the valley polarization in the Janus 2H-GdIBr monolayer is robust to external strains. This study provides a novel paradigm and platform to design spintronic devices for next-generation quantum information technology.
Collapse
Affiliation(s)
- Cunquan Li
- Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Yukai An
- Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
24
|
Jia S, Tan X, Wu L, Feng J, Zhang L, Xu L, Wang R, Sun X, Han B. Defective PrOx for Efficient Electrochemical NO2−-to-NH3 in a Wide Potential Range. CHEMISTRY 2023. [DOI: 10.3390/chemistry5020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Electrocatalytic reduction of nitrite (NO2−) is a sustainable and carbon-neutral approach to producing green ammonia (NH3). We herein report the first work on building defects on PrOx for electrochemical NO2− reduction to NH3, and demonstrate a high NH3 yield of 2870 μg h−1 cm−2 at the optimal potential of –0.7 V with a faradaic efficiency (FE) of 97.6% and excellent FEs of >94% at a wide given potential range (−0.5 to −0.8 V). The kinetic isotope effect (KIE) study suggested that the reaction involved promoted hydrogenation. Theoretical calculations clarified that there was an accelerated rate-determining step of NO2− reduction on PrOx. The results also indicated that PrOx could be durable for long-term electrosynthesis and cycling tests.
Collapse
|
25
|
Scarabelli L, Sun M, Zhuo X, Yoo S, Millstone JE, Jones MR, Liz-Marzán LM. Plate-Like Colloidal Metal Nanoparticles. Chem Rev 2023; 123:3493-3542. [PMID: 36948214 PMCID: PMC10103137 DOI: 10.1021/acs.chemrev.3c00033] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures. We additionally highlight representative self-assembly techniques and provide a brief overview on the attractive properties and unique versatility benefiting from the 2D morphology. Finally, we share our opinions on the existing challenges and future perspectives for plate-like metal nanomaterials.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- NANOPTO Group, Institue of Materials Science of Barcelona, Bellaterra, 08193, Spain
| | - Muhua Sun
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Sungjae Yoo
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, Department of Chemical and Petroleum Engineering, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, 43009 Bilbao, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Cinbio, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
26
|
Zhang L, Ma S, Wang T, Li S, Wang L, Li D, Tian Y, Zhang Q. Four-Photon Absorption Iron Complex for Magnetic Resonance/Photoacoustic Dual-Model Imaging and an Enhanced Ferroptosis Process. Anal Chem 2023; 95:1635-1642. [PMID: 36533710 DOI: 10.1021/acs.analchem.2c04763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Four-photon absorption (4PA) multimodal therapeutic agent applied to tumor ferroptosis process tracking is rarely reported. In this paper, two functionalized terpyridine iron complexes (TD-FeCl3, TD-Fe-TD) with four-photon absorption properties were designed and synthesized. The four-photon absorption cross sections of TD-FeCl3 reached 6.87 × 10-74cm8·s3·photon-3. Due to its strong near-infrared absorption, TD-FeCl3 has excellent photoacoustic imaging (PAI) capability for accurate PA imaging. TD-FeCl3 has an efficient longitudinal electron relaxation rate (r1 = 2.26 mM-1 s-1) and high spatial resolution, which can be applied as T1-weighted magnetic resonance imaging (MRI) contrast agent for tumor imaging in vivo. In addition, Fe3+ as a natural ferroptosis tracer, TD-FeCl3, is able to deplete glutathione (GSH) effectively, which can further enhance the ferroptosis process. We found that the series of cheap transition metal complexes has four-photon absorption activity and can be used as multimodal (MRI/PAI) diagnostic agents for tumor tracing processes.
Collapse
Affiliation(s)
- Lidi Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China
| | - Shanheng Ma
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tao Wang
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Shengli Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China
| | - Lianke Wang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Dandan Li
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Yupeng Tian
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Qiong Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
27
|
Cao B, Liu B, Xi Z, Cheng Y, Xu X, Jing P, Cheng R, Feng SP, Zhang J. Rational Design of Porous Nanowall Arrays of Ultrafine Co 4N Nanoparticles Confined in a La 2O 2CN 2 Matrix on Carbon Cloth for a High-Performing Supercapacitor Electrode. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47517-47528. [PMID: 36240119 DOI: 10.1021/acsami.2c09377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transition metal nitrides (TMNs) have received special concern as important energy storage materials, owing to their high conductibility, good mechanical strength, and superior corrosion resistance. However, their insufficient capacitance and poor cycling stability limit their practical applications for supercapacitors. Here, a novel three-dimensional (3D) self-supported integrated electrode consisted of porous nanowall arrays of ultrafine cobalt nitride (Co4N) nanoparticles encapsulated in a lanthanum oxycyanamide (LOC) matrix on carbon cloth (Co4N@LOC/CC) for outstanding electrochemical energy storage is rationally designed and fabricated. The 3D monolithic configuration of porous nanowall arrays facilitates the mass/charge transfer, the exposure of electroactive sites, and the enhancement of electrical conductivity. Meanwhile, the unique core-shell structure of Co4N@LOC can prevent ultrafine Co4N nanoparticles from sintering, agglomeration, and oxidation and promotes electron transfer dynamics during the redox reaction, meanwhile enhancing the stability of the electrode. Additionally, the synergy of Co4N and LOC can result in an efficient electron/ion transport in the process of the charge-discharge. Because of these features, the Co4N@LOC/CC electrode displays superior specific capacitance (895.6 mF cm-2 or 613.4 F g-1 at 1 mA cm-2) and admirable cycling durability (87.9% capacitance reservation after 10 000 cycles), surpassing the majority of nitride-based electrodes reported thus far. Furthermore, after being assembled into an asymmetric supercapacitor using active carbon (AC) as an anode, the obtained Co4N@LOC/CC//AC/CC device displays a high energy density of 41.7 Wh kg-1 at the power density of 875.8 W kg-1 with a high capacitance reservation of 87.6% after 5000 cycles at 2 mA cm-2. This work offers an efficient approach of combining TMNs with rare earth compounds to enhance the capacitance and stability of TMNs for supercapacitor electrodes.
Collapse
Affiliation(s)
- Bo Cao
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Baocang Liu
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Zichao Xi
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Yan Cheng
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Xuan Xu
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Peng Jing
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Rui Cheng
- Department of Mechanical Engineering, The University of Hong Kong, 142 Pok Fu Lam Road, Pok Fu Lam999077, Hong Kong Special Administrative Region of the People's Republic of China
| | - Shien-Ping Feng
- Department of Mechanical Engineering, The University of Hong Kong, 142 Pok Fu Lam Road, Pok Fu Lam999077, Hong Kong Special Administrative Region of the People's Republic of China
| | - Jun Zhang
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
- Inner Mongolia Academy of Science and Technology, 70 Zhaowuda Road, Hohhot010010, People's Republic of China
- Inner Mongolia Guangheyuan Nano High-Tech Company, Limited, Ejin Horo Banner, Ordos017299, People's Republic of China
| |
Collapse
|
28
|
Zhang B, Yun C, Wu H, Zhao Z, Zeng Y, Liang D, Shen T, Zhang J, Huang X, Song J, Xu J, Zhang Q, Tan PH, Gao S, Hou Y. Two-Dimensional Wedge-Shaped Magnetic EuS: Insight into the Substrate Step-Guided Epitaxial Synthesis on Sapphire. J Am Chem Soc 2022; 144:19758-19769. [PMID: 36257067 DOI: 10.1021/jacs.2c06023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rare earth chalcogenides (RECs) with novel luminescence and magnetic properties offer fascinating opportunities for fundamental research and applications. However, controllable synthesis of RECs down to the two-dimensional (2D) limit still has a great challenge. Herein, 2D wedge-shaped ferromagnetic EuS single crystals are successfully synthesized via a facile molten-salt-assisted chemical vapor deposition method on sapphire. Based on the theoretical simulations and experimental measurements, the mechanisms of aligned growth and wedge-shaped growth are systematically proposed. The wedge-shaped growth is driven by a dual-interaction mechanism, where the coupling between EuS and the substrate steps impedes the lateral growth, and the strong bonding of nonlayered EuS itself facilitates the vertical growth. Through temperature-dependent Raman and photoluminescence characterization, the nanoflakes show a large Raman temperature coefficient of -0.030 cm-1 K-1 and uncommon increasing band gap with temperature. More importantly, by low-temperature magnetic force microscopy characterization, thickness variation of the magnetic signal is revealed within one sample, indicating the great potential of the wedge-shaped nanoflake to serve as a platform for highly efficient investigation of thickness-dependent magnetic properties. This work sheds new light on 2D RECs and will offer a deep understanding of 2D wedge-shaped materials.
Collapse
Affiliation(s)
- Biao Zhang
- School of Materials Science and Engineering, Peking University, Beijing100871, China.,Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing100871, China
| | - Chao Yun
- State Key Laboratory for Mesoscopic Physics, School of Physics, Beijing Key Laboratory for Magnetoeletric Materials and Devices, Peking University, Beijing100871, China
| | - Heng Wu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing100083, China
| | - Zijing Zhao
- School of Materials Science and Engineering, Peking University, Beijing100871, China.,Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing100871, China
| | - Yi Zeng
- School of Materials Science and Engineering, Peking University, Beijing100871, China.,Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing100871, China
| | - Dong Liang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Beijing Key Laboratory for Magnetoeletric Materials and Devices, Peking University, Beijing100871, China
| | - Tong Shen
- School of Materials Science and Engineering, Peking University, Beijing100871, China.,Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing100871, China
| | - Jine Zhang
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing100191, China
| | - Xiaoxiao Huang
- School of Materials Science and Engineering, Peking University, Beijing100871, China.,Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing100871, China
| | - Jiepeng Song
- School of Materials Science and Engineering, Peking University, Beijing100871, China
| | - Junjie Xu
- School of Materials Science and Engineering, Peking University, Beijing100871, China.,Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing100871, China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing100871, China
| | - Ping-Heng Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing100083, China
| | - Song Gao
- Institute of Spin-X Science and Technology, South China University of Technology, Guangzhou510641, China
| | - Yanglong Hou
- School of Materials Science and Engineering, Peking University, Beijing100871, China.,Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing100871, China
| |
Collapse
|
29
|
Bian D, Chu X, Xiao J, Tong Z, Huang H, Jia Q, Liu J, Li W, Yu H, He Y, Ma L, Wang X, Li M, Yang T, Huang W, Zhang C, Yao M, Zhang Y, Xu Z, Guan S, Zheng Y. Design of single-phased magnesium alloys with typically high solubility rare earth elements for biomedical applications: Concept and proof. Bioact Mater 2022; 22:180-200. [PMID: 36246664 PMCID: PMC9531051 DOI: 10.1016/j.bioactmat.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Rare earth elements (REEs) have been long applied in magnesium alloys, among which the mischmetal-containing WE43 alloy has already got the CE mark approval for clinical application. A considerable amount of REEs (7 wt%) is needed in that multi-phased alloy to achieve a good combination of mechanical strength and corrosion resistance. However, the high complex RE addition accompanied with multiple second phases may bring the concern of biological hazards. Single-phased Mg-RE alloys with simpler compositions were proposed to improve the overall performance, i.e., “Simpler alloy, better performance”. The single-phased microstructure can be successfully obtained with typical high-solubility REEs (Ho, Er or Lu) through traditional smelting, casting and extrusion in a wide compositional range. A good corrosion resistance with a macroscopically uniform corrosion mode was guaranteed by the homogeneously single-phased microstructure. The bimodal-grained structure with plenty of sub-grain microstructures allow us to minimize the RE addition to <1 wt%, without losing mechanical properties. The single-phased Mg-RE alloys show comparable mechanical properties to the clinically-proven Mg-based implants. They exhibited similar in-vitro and in-vivo performances (without local or systematic toxicity in SD-rats) compared to a high purity magnesium. In addition, metal elements in our single-phased alloys can be gradually excreted through the urinary system and digestive system, showing no consistent accumulation of RE in main organs, i.e., less burden on organs. The novel concept in this study focuses on the simplification of Mg-RE based alloys for biomedical purpose, and other biodegradable metals with single-phased microstructures are expected to be explored. A concept of developing single-phased biodegradable magnesium alloys was proposed. Single-phased magnesium alloys with bimodal-grained structures were obtained. Good strength and corrosion resistance synergy was achieved in the alloys. Significantly reduced rare earth addition is beneficial to the biocompatibility. Simpler alloy helps to lower the possible biological risks of Mg related implants.
Collapse
Affiliation(s)
- Dong Bian
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xiao Chu
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jin Xiao
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhipei Tong
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - He Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Qinggong Jia
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianing Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wenting Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Hui Yu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yue He
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Limin Ma
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xiaolan Wang
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Mei Li
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Tao Yang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Wenhan Huang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Chi Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Mengyu Yao
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Co-corresponding author.
| | - Zhigang Xu
- ERC for Revolutionizing Metallic Biomaterials, North Carolina A&T State University, Greensboro, NC, 27411, USA
- Co-corresponding author.
| | - Shaokang Guan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Corresponding author.
| | - Yufeng Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Corresponding authors. Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
30
|
Wang X, Wang J, Wang P, Li L, Zhang X, Sun D, Li Y, Tang Y, Wang Y, Fu G. Engineering 3d-2p-4f Gradient Orbital Coupling to Enhance Electrocatalytic Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206540. [PMID: 36085436 DOI: 10.1002/adma.202206540] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The development of highly efficient and economical materials for the oxygen reduction reaction (ORR) plays a key role in practical energy conversion technologies. However, the intrinsic scaling relations exert thermodynamic inhibition on realizing highly active ORR electrocatalysts. Herein, a novel and feasible gradient orbital coupling strategy for tuning the ORR performance through the construction of Co 3d-O 2p-Eu 4f unit sites on the Eu2 O3 -Co model is proposed. Through the gradient orbital coupling, the pristine ionic property between Eu and O atoms is assigned with increased covalency, which optimizes the eg occupancy of Co sites, and weakens the OO bond, thus ultimately breaking the scaling relation between *OOH and *OH at Co-O-Eu unit sites. The optimized model catalyst displays onset and half-wave potential of 1.007 and 0.887 V versus reversible hydrogen electrode, respectively, which are higher than those of commercial Pt/C and most Co-based catalysts ever reported. In addition, the catalyst is found to possess superior selectivity and durability. It also reveals better cell performance than commercial noble-metal catalysts in Zn-air batteries in terms of high power/energy densities and long cycle life. This study provides a new perspective for electronic modulation strategy by the construction of gradient 3d-2p-4f orbital coupling.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jingwen Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Pu Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Liangcheng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xinyue Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
31
|
Kumar A, Lee J, Kim MG, Debnath B, Liu X, Hwang Y, Wang Y, Shao X, Jadhav AR, Liu Y, Tüysüz H, Lee H. Efficient Nitrate Conversion to Ammonia on f-Block Single-Atom/Metal Oxide Heterostructure via Local Electron-Deficiency Modulation. ACS NANO 2022; 16:15297-15309. [PMID: 36099061 DOI: 10.1021/acsnano.2c06747] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exploring single-atom catalysts (SACs) for the nitrate reduction reaction (NO3-; NitRR) to value-added ammonia (NH3) offers a sustainable alternative to both the Haber-Bosch process and NO3--rich wastewater treatment. However, due to the insufficient electron deficiency and unfavorable electronic structure of SACs, resulting in poor NO3--adsorption, sluggish proton (H*) transfer kinetics, and preferred hydrogen evolution, their NO3--to-NH3 selectivity and yield rate are far from satisfactory. Herein, a systematic theoretical prediction reveals that the local electron deficiency of an f-block Gd single atom (GdSA) can be significantly regulated upon coordination with oxygen-defect-rich NiO (GdSA-D-NiO400) support. Thus, facilitating stronger NO3- adsorption via strong Gd5d-O2p orbital coupling and further improving the protonation kinetics of adsorption intermediates by rapid H* capture from water dissociation catalyzed by the adjacent oxygen vacancy site along with suppressed H* dimerization synergistically boosts the NH3 selectivity/yield rate. Motivated by DFT prediction, we delicately stabilized electron-deficient (strongly electrophilic) GdSA on D-NiO400 (∼84% strong electrophilic sites), which exhibited excellent alkaline NitRR activity (NH3 Faradaic efficiency ∼97% and yield rate ∼628 μg/(mgcat h)) along with superior structural stability, as revealed by in situ Raman spectroscopy, significantly outperforming weakly electrophilic Gd nanoparticles, defect-free GdSA-P-NiO400, and reported state-of-the-art catalysts.
Collapse
Affiliation(s)
- Ashwani Kumar
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Jinsun Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Bharati Debnath
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology (TCG-CREST), Kolkata 700091, India
| | - Xinghui Liu
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yosep Hwang
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yue Wang
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Xiaodong Shao
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
| | - Amol R Jadhav
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yang Liu
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Hyoyoung Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Creative Research Institute, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
32
|
Wang X, Zhu Y, Li H, Lee JM, Tang Y, Fu G. Rare-Earth Single-Atom Catalysts: A New Frontier in Photo/Electrocatalysis. SMALL METHODS 2022; 6:e2200413. [PMID: 35751459 DOI: 10.1002/smtd.202200413] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Single-atom catalysts (SACs) provide well-defined active sites with 100% atom utilization, and can be prepared using a wide range of support materials. Therefore, they are attracting global attention, especially in the fields of energy conversion and storage. To date, research has focused on transition-metal and precious-metal-based SACs. More recently, rare-earth (RE)-based SACs have emerged as a new frontier in photo/electrocatalysis owing to their unique electronic structure arising from the spin-orbit coupling of the 4f and valence orbitals, unsaturated coordination environment, and unique behavior as charge-transport bridges. However, a systematic review on the role of the RE active sites, catalytic mechanisms, and synthetic methods for RE SACs is lacking. Therefore, in this review, the latest developments in RE SACs having applications in photo/electrocatalysis are summarized and discussed. First, the theoretical advantages of RE SACs for photo/electrocatalysis are briefly introduced, focusing on the roles of the 4f orbitals and coupled energy levels. In addition, the most recent research progress on RE SACs is summarized for several important photo/electrocatalytic reactions and the corresponding catalytic mechanisms are discussed. Further, the synthetic strategies for the production of RE SACs are reported. Finally, challenges for the development of RE SACs are highlighted, along with future research directions and perspectives.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yu Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technology University, Singapore, 637459, Singapore
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
33
|
Jeon WJ, Kim H, Byeon SH. Ce3+ concentration control on the surface of ceria nanoparticles and the stability of surface Ce3+ in aqueous, silica, and PVA media. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Li Y, Zhang X, Zhang Q, Cui J, Liang X, Yan J, Liu J, Tan HH, Yu Y, Wu Y. Layer-by-Layer Assembly of CeO 2-x@C-rGO Nanocomposites and CNTs as a Multifunctional Separator Coating for Highly Stable Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18634-18645. [PMID: 35412801 DOI: 10.1021/acsami.2c03461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Commercialization of high-energy Li-S batteries is greatly restricted by their unsatisfactory cycle retention and poor cycling life originated from the notorious "shuttling effect" of lithium polysulfides. Modification of a commercial separator with a functional coating layer is a facile and efficient strategy beyond nanostructured composite cathodes for suppressing polysulfide shuttling. Herein, a multilayered functional CeO2-x@C-rGO/CNT separator was successfully achieved by alternately depositing conductive carbon nanotubes (CNTs) and synthetic CeO2-x@C-rGO onto the surface of the commercial separator. The cooperation of multiple components including Ce-MOF-derived CeO2-x@C, rGO, and CNTs enables the as-built CeO2-x@C-rGO/CNT separator to perform multifunctions from the separator surface: (i) to hinder the diffusion of polysulfide species through physical blocking or chemical adsorption, (ii) to accelerate the sluggish redox reactions of sulfur species, and (iii) to enhance the conductivity for sulfur re-activation and efficient utilization. Serving as a multilayer and powerful barrier, the CeO2-x@C-rGO/CNT separator greatly constrains and reutilizes the polysulfide species. Thus, the Li-S battery assembled with the CeO2-x@C-rGO/CNT separator demonstrates an excellent combination of capacity, rate capability, and cycling performances (an initial capacity of 1107 mA h g-1 with a low decay rate of 0.060% per cycle over 500 cycles at 1 C, 651 mA h g-1 at 5 C) together with remarkably mitigated self-discharge and anode corrosion. This work provides guidelines for functional separator design as well as rare-earth material applications for Li-S batteries and other energy storage systems.
Collapse
Affiliation(s)
- Yulei Li
- Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials Devices of Anhui Province, Engineering Research Center of Advanced Composite Materials Design; Application of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Xiaofei Zhang
- Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials Devices of Anhui Province, Engineering Research Center of Advanced Composite Materials Design; Application of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Qi Zhang
- Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials Devices of Anhui Province, Engineering Research Center of Advanced Composite Materials Design; Application of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Jiewu Cui
- Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials Devices of Anhui Province, Engineering Research Center of Advanced Composite Materials Design; Application of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Xin Liang
- Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials Devices of Anhui Province, Engineering Research Center of Advanced Composite Materials Design; Application of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Jian Yan
- Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials Devices of Anhui Province, Engineering Research Center of Advanced Composite Materials Design; Application of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Jiaqin Liu
- Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials Devices of Anhui Province, Engineering Research Center of Advanced Composite Materials Design; Application of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Hark Hoe Tan
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, National Synchrotron Radiation Laboratory, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Yucheng Wu
- Institute of Industry & Equipment Technology, School of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials Devices of Anhui Province, Engineering Research Center of Advanced Composite Materials Design; Application of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
35
|
Wang Y, Chen J, Duan R, Gu R, Wang W, Wu J, Lian H, Hu Y, Yuan A. High-Z-Sensitized Radiotherapy Synergizes with the Intervention of the Pentose Phosphate Pathway for In Situ Tumor Vaccination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109726. [PMID: 35102614 DOI: 10.1002/adma.202109726] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Indexed: 06/14/2023]
Abstract
In situ tumor vaccination is preliminarily pursued to strengthen antitumor immune response. Immunogenic tumor cell death spontaneously releases abundant antigens and adjuvants for activation of dendritic cells, providing a paragon opportunity for establishing efficient in situ vaccination. Herein, Phy@PLGdH nanosheets are constructed by integrating physcion (Phy, an inhibitor of the pentose phosphate pathway (PPP)) with layered gadolinium hydroxide (PLGdH) nanosheets to boost radiation-therapy (RT)-induced immunogenic cell death (ICD) for potent in situ tumor vaccination. It is first observed that sheet-like PLGdH can present superior X-ray deposition and tumor penetrability, exhibiting improved radiosensitization in vitro and in vivo. Moreover, the destruction of cellular nicotinamide adenine dinucleotide phosphate (NADPH) and nucleotide homeostasis by Phy-mediated PPP intervention can further amplify PLGdH-sensitized RT-mediated oxidative stress and DNA damage, which correspondingly results in effective ICD and enhance the immunogenicity of irradiated tumor cells. Consequently, Phy@PLGdH-sensitized RT successfully primes robust CD8+ -T-cell-dependent antitumor immunity to potentiate checkpoint blockade immunotherapies against primary and metastatic tumors.
Collapse
Affiliation(s)
- Yuxiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Jing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Rumeng Duan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Rong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Weiran Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Huibo Lian
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
36
|
Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem Rev 2022; 122:5519-5603. [PMID: 34989556 DOI: 10.1021/acs.chemrev.1c00644] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.
Collapse
Affiliation(s)
- Bingzhu Zheng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingyue Fan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
37
|
Liu Z, Liang L, Xiao D, Ji Y, Zhao Z, Xu J, Hou G. 89Y chemical shift anisotropy: a sensitive structural probe of layered yttrium hydroxides revealed by solid-state NMR spectroscopy and DFT calculations. Phys Chem Chem Phys 2021; 23:27244-27252. [PMID: 34859801 DOI: 10.1039/d1cp04247e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anion-exchangeable Y2(OH)5X·nH2O (LYH-X, X = monovalent anions, n ≈ 1.5) materials are an ideal platform for incorporating the unique properties of layered metal hydroxides and rare-earth (RE) ions, and thus have exhibited promising prospects for various applications. To further improve the performance of LYH-X and related functional materials, their structure-property relationships must be explored. However, due to the intrinsic felxibility, extracting the local structural details of these materials is particularly challenging. In this work, we utilized a combined approach of 89Y solid-state NMR (ssNMR) spectroscopy and density functional theory (DFT) calculations to reveal the response of 89Y chemical shift anisotropy (CSA) in LYH-X to the structural changes including a small displacement of cationic yttrium hydroxide layers and intercalated anions. Such subtle structural changes are often associated with dehydration/rehydration, anion-exchange, exfoliation, and the self-assembly process of LYH-X and related functional materials, which are exceedingly difficult to detect using other techniques. The principal components of 89Y CSA show a larger variation range than isotropic chemical shifts, making CSA a more sensitive probe. In addition, it is found that the response of 89Y CSA to structural changes is distinct for Y sites with different local coordination environments, opening great opportunities to analyze each Y site within these materials. All these observations suggest that the strategy involving both experimental (89Y ssNMR) and theoretical (DFT) approaches can be utilized to extract previously unavailable ultrafine structural information of LYH-X and related materials, and provide fruitful insights into their thorough structure-property relationships.
Collapse
Affiliation(s)
- Zhengmao Liu
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Xiao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yi Ji
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jun Xu
- Center for Rare Earth and Inorganic Functional Materials, Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
38
|
Shi X, Zeng Z, Zhang H, Huang B, Sun M, Wong HH, Lu Q, Luo W, Huang Y, Du Y, Yan CH. Gram-Scale Synthesis of Nanosized Li 3 HoBr 6 Solid Electrolyte for All-Solid-State Li-Se Battery. SMALL METHODS 2021; 5:e2101002. [PMID: 34927967 DOI: 10.1002/smtd.202101002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/24/2021] [Indexed: 06/14/2023]
Abstract
Rare earth (RE) based halide solid electrolytes (HEs) are recently considered as research hotspots in the field of all-solid-state batteries (ASSBs). The RE-based HEs possess high ionic conductivity, credible deformability, and good stability, which can bring excellent electrochemical performances for ASSBs. However, the conventional synthetic methods of RE HEs are a mechanochemical process and co-melting strategy, both approaches require expensive raw materials and sophisticated equipment. Therefore, a lot of research work is required to promote the preparation methods for these promising SSEs in ASSBs. Thus, a vacuum evaporation-assisted synthesis method is developed for the massive synthesis of HEs. The as-prepared Li3 HoBr6 (LHB) has a high lithium-ion conductivity close to the mS cm-1 level and the LHB-based Li-Se ASSBs can be assembled by cold pressing. Theoretical calculations have revealed that the Li migrations are highly preferred in Li3 HoBr6 owing to the low energy cost and high tolerance of stable structure. The tetrahedral and octahedral pathways are responsible for Li migrations in short and long ranges, respectively. The results show that the LHB-based Li-Se battery has good stability and rate performance, indicating that LHB has potential application in the field of ASSBs.
Collapse
Affiliation(s)
- Xiaomeng Shi
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Zhichao Zeng
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Hongtu Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Hon Ho Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Qiuyang Lu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Wei Luo
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yunhui Huang
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Chun-Hua Yan
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials, Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
39
|
Balachandran YL, Li X, Jiang X. Biodegradable freestanding rare-earth nanosheets promote multimodal imaging and delivers CRISPR-Cas9 plasmid against tumor. Chem Commun (Camb) 2021; 57:9386-9389. [PMID: 34528946 DOI: 10.1039/d1cc03228c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Designing nanomaterials for bio-imaging and drug delivery for advanced cancer therapy with biodegradability and biocompatibility is a promising but challenging frontier. Herein, we assembled biodegradable and biocompatible ultrathin rare-earth erbium/dysprosium nanosheets that improve contrast in multimodal bio-imaging settings (MRI and X-ray CT) and deliver CRISPR-Cas9 plasmid to treat tumors.
Collapse
Affiliation(s)
- Yekkuni L Balachandran
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| | - Xuanyu Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| |
Collapse
|
40
|
Li L, Lu F, Xiong W, Ding Y, Lu Y, Xiao Y, Tong X, Wang Y, Jia S, Wang J, Mendes RG, Rümmeli MH, Yuan S, Zeng M, Fu L. General synthesis of 2D rare-earth oxide single crystals with tailorable facets. Natl Sci Rev 2021; 9:nwab153. [PMID: 35591917 PMCID: PMC9113103 DOI: 10.1093/nsr/nwab153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 01/12/2023] Open
Abstract
Two-dimensional (2D) rare-earth oxides (REOs) are a large family of materials with various intriguing applications and precise facet control is essential for investigating new properties in the 2D limit. However, a bottleneck remains with regard to obtaining their 2D single crystals with specific facets because of the intrinsic non-layered structure and disparate thermodynamic stability of different facets. Herein, for the first time, we achieve the synthesis of a wide variety of high-quality 2D REO single crystals with tailorable facets via designing a hard-soft-acid-base couple for controlling the 2D nucleation of the predetermined facets and adjusting the growth mode and direction of crystals. Also, the facet-related magnetic properties of 2D REO single crystals were revealed. Our approach provides a foundation for further exploring other facet-dependent properties and various applications of 2D REO, as well as inspiration for the precise growth of other non-layered 2D materials.
Collapse
Affiliation(s)
- Linyang Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fangyun Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wenqi Xiong
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yu Ding
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yangyi Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yao Xiao
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xin Tong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yao Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shuangfeng Jia
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Rafael G Mendes
- College of Physics, Optoelectronics and Energy, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Institute for Complex Materials, IFW Dresden, Dresden 01069, Germany
| | - Mark H Rümmeli
- College of Physics, Optoelectronics and Energy, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Institute for Complex Materials, IFW Dresden, Dresden 01069, Germany
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze 41-819, Poland
- Institute of Environmental Technology, VSB-Technical University of Ostrava, Ostrava 708 33, Czech Republic
| | - Shengjun Yuan
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
41
|
Sun R, Zhou D, Song H. Rare earth doping in perovskite luminescent nanocrystals and photoelectric devices. NANO SELECT 2021. [DOI: 10.1002/nano.202100187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Rui Sun
- State Key Laboratory of Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun P. R. China
| | - Donglei Zhou
- State Key Laboratory of Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun P. R. China
| | - Hongwei Song
- State Key Laboratory of Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun P. R. China
| |
Collapse
|
42
|
Qian W, Xu S, Zhang X, Li C, Yang W, Bowen CR, Yang Y. Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. NANO-MICRO LETTERS 2021; 13:156. [PMID: 34264418 PMCID: PMC8282827 DOI: 10.1007/s40820-021-00681-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/06/2021] [Indexed: 05/22/2023]
Abstract
Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century. Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials. This has led to significant interest in the exploitation of 2D nanomaterials for catalysis. There have been a variety of excellent reviews on 2D nanomaterials for catalysis, but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant. Here, we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials. Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted, which point out the differences and similarities of series issues for photocatalysis and electrocatalysis. In addition, 2D nanocatalysts and their catalytic applications are discussed. Finally, opportunities, challenges and development directions for 2D nanocatalysts are described. The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.
Collapse
Affiliation(s)
- Weiqi Qian
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Suwen Xu
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- Optoelectronics Research Center, School of Science, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China
| | - Xiaoming Zhang
- Optoelectronics Research Center, School of Science, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China
| | - Chuanbo Li
- Optoelectronics Research Center, School of Science, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China.
| | - Weiyou Yang
- Institute of Materials, Ningbo University of Technology, Ningbo, 315016, People's Republic of China.
| | - Chris R Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AK, UK
| | - Ya Yang
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
43
|
Liu Q, Zhong Y, Su Y, Zhao L, Peng J. Real-Time Imaging of Hepatic Inflammation Using Hydrogen Sulfide-Activatable Second Near-Infrared Luminescent Nanoprobes. NANO LETTERS 2021; 21:4606-4614. [PMID: 34014668 DOI: 10.1021/acs.nanolett.1c00548] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The sensing and visualized monitoring of hydrogen sulfide (H2S) in vivo is crucial to understand its physiological and pathological roles in human health and diseases. Common methods for H2S detection require the destruction of the biosamples and are not suitable to be applied in vivo. In this Communication, we report a "turn-on" second near-infrared (NIR-II) luminescent approach for sensitive, real-time, and in situ H2S detection, which is based on the absorption competition between the H2S-responsive chromophores (compound 1) and the NIR-II luminescent lanthanide nanoparticles. Specifically, the luminescence was suppressed by compound 1 due to the competitive absorption of the incident light. In the presence of H2S, the compound 1 was bleached to recover the luminescence. Thanks to the deep tissue penetration depth and the low absorbance/scattering on biological samples of the NIR-II nanoprobes, the monitoring of the endogenous H2S in lipopolysaccharide-induced liver inflammation was achieved, which is unattainable by the conventional histopathological and serological approaches.
Collapse
Affiliation(s)
- Qin Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yang Zhong
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yaoquan Su
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
44
|
Shi X, Cao B, Liu J, Zhang J, Du Y. Rare-Earth-Based Metal-Organic Frameworks as Multifunctional Platforms for Catalytic Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005371. [PMID: 33605028 DOI: 10.1002/smll.202005371] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/30/2020] [Indexed: 06/12/2023]
Abstract
The development of catalytic conversion is very important for human society. In the catalytic process, metal-organic frameworks (MOFs) can be utilized to obtain effective catalysts for their porous structures and adjustable properties. In addition, the introduction of rare-earth (RE) elements with unique properties for catalysts can realize good catalytic performances. Thus, the RE-MOF related catalysts for catalytic conversion are summarized. Due to the cooperation of RE elements and porous MOF structures, the RE-based MOFs can be used as promising catalysts or precursors/supports for other catalysts in the areas of energy conversion, environmental governance, and organic synthesis. These aggregated studies highlight the RE-MOFs as promising candidates for catalytic conversion.
Collapse
Affiliation(s)
- Xiaomeng Shi
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Bo Cao
- School of Chemistry and Chemical Engineering, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao, 028000, P. R. China
| | - Jun Zhang
- School of Chemistry and Chemical Engineering, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
45
|
Zhang S, Saji SE, Yin Z, Zhang H, Du Y, Yan CH. Rare-Earth Incorporated Alloy Catalysts: Synthesis, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005988. [PMID: 33709501 DOI: 10.1002/adma.202005988] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/25/2020] [Indexed: 06/12/2023]
Abstract
To improve the performance of metallic catalysts, alloying provides an efficient methodology to design state-of-the-art materials. As emerging functional materials, rare-earth metal compounds can integrate the unique orbital structure and catalytic behavior of rare earth elements into metallic materials. Such rare-earth containing alloy catalysts proffer an opportunity to tailor electronic properties, tune charged carrier transport, and synergize surface reactivity, which are expected to significantly improve the performance and stability of catalysis. Despite its significance, there are only few reviews on rare earth containing alloys or related topics. This review summarizes the composition, synthesis, and applications of rare earth containing alloys in the field of catalysis. Subsequent to comprehensively summarizing and constructively discussing the existing work, the challenges and possibilities of future research on rare-earth metal compound materials are evaluated.
Collapse
Affiliation(s)
- Shuai Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Sandra Elizabeth Saji
- Research School of Chemistry, Australian National University, Canberra, 2601, Australia
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, 2601, Australia
| | - Hongbo Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Chun-Hua Yan
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
46
|
Ma S, Xie J, Wang L, Zhou Z, Luo X, Yan J, Ran G. Hetero-Core-Shell BiNS-Fe@Fe as a Potential Theranostic Nanoplatform for Multimodal Imaging-Guided Simultaneous Photothermal-Photodynamic and Chemodynamic Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10728-10740. [PMID: 33645960 DOI: 10.1021/acsami.0c21579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal/photodynamic therapy (PTT/PDT) and synergistic therapeutic strategies are often sought after, owing to their low side effects and minimal invasiveness compared to chemotherapy and surgical treatments. However, in spite of the development of the most PTT/PDT materials with good tumor-inhibitory effect, there are some disadvantages of photosensitizers and photothermal agents, such as low stability and low photonic efficiency, which greatly limit their further application. Therefore, in this study, a novel bismuth-based hetero-core-shell semiconductor nanomaterial BiNS-Fe@Fe with good photonic stability and synergistic theranostic functions was designed. On the one hand, BiNS-Fe@Fe with a high atomic number exhibits good X-ray absorption, enhanced magnetic resonance (MR) T2-weighted imaging, and strong photoacoustic imaging (PAI) signals. In addition, the hetero-core-shell provides a strong barrier to decline the recombination of electron-hole pairs, inducing the generation of a large amount of reactive oxygen species (ROS) when irradiated with visible-NIR light. Meanwhile, a Fenton reaction can further increase ROS generation in the tumor microenvironment. Furthermore, an outstanding chemodynamic therapeutic potential was determined for this material. In particular, a high photothermal conversion efficiency (η = 37.9%) is of significance and could be achieved by manipulating surface decoration with Fe, which results in tumor ablation. In summary, BiNS-Fe@Fe could achieve remarkable utilization of ROS, high photothermal conversion law, and good chemodynamic activity, which highlight the multimodal theranostic potential strategies of tumors, providing a potential viewpoint for theranostic applications of tumors.
Collapse
Affiliation(s)
- Sihan Ma
- College of Energy, Xiamen University, Xiamen 361002, Fujian, China
- Fujian Research Center for Nuclear Engineering, Xiamen 361102, Fujian, China
| | - Jun Xie
- School of Medicine, Xiamen University, Xiamen 361002, Fujian, China
| | - Lin Wang
- Department of Oncology, Zhongshan Hospital, Xiamen University, No. 201-209 Hubinnan Road, Xiamen 361004, Fujian, China
| | - Zonglang Zhou
- School of Medicine, Xiamen University, Xiamen 361002, Fujian, China
- 174 Clinical College affiliated to Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xian Luo
- School of Medicine, Xiamen University, Xiamen 361002, Fujian, China
| | - Jianghua Yan
- School of Medicine, Xiamen University, Xiamen 361002, Fujian, China
| | - Guang Ran
- College of Energy, Xiamen University, Xiamen 361002, Fujian, China
| |
Collapse
|
47
|
Hasan MAM, Wang Y, Bowen CR, Yang Y. 2D Nanomaterials for Effective Energy Scavenging. NANO-MICRO LETTERS 2021; 13:82. [PMID: 34138309 PMCID: PMC8006560 DOI: 10.1007/s40820-021-00603-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/29/2020] [Indexed: 05/26/2023]
Abstract
The development of a nation is deeply related to its energy consumption. 2D nanomaterials have become a spotlight for energy harvesting applications from the small-scale of low-power electronics to a large-scale for industry-level applications, such as self-powered sensor devices, environmental monitoring, and large-scale power generation. Scientists from around the world are working to utilize their engrossing properties to overcome the challenges in material selection and fabrication technologies for compact energy scavenging devices to replace batteries and traditional power sources. In this review, the variety of techniques for scavenging energies from sustainable sources such as solar, air, waste heat, and surrounding mechanical forces are discussed that exploit the fascinating properties of 2D nanomaterials. In addition, practical applications of these fabricated power generating devices and their performance as an alternative to conventional power supplies are discussed with the future pertinence to solve the energy problems in various fields and applications.
Collapse
Affiliation(s)
- Md Al Mahadi Hasan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yuanhao Wang
- SUSTech Engineering Innovation Center, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, People's Republic of China.
| | - Chris R Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA27AK, UK
| | - Ya Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
48
|
Wang C, Zhang X, Li J, Qi X, Guo Z, Wei H, Chu H. Gold Nanoparticles on Nanosheets Derived from Layered Rare-Earth Hydroxides for Catalytic Glycerol-to-Lactic Acid Conversion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:522-530. [PMID: 33393772 DOI: 10.1021/acsami.0c17732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layered rare-earth hydroxides (LREHs), as a series of special lamellar compounds having a similar structure to layered double hydroxides (LDHs), are becoming a new type of catalyst materials. In this study, we have prepared a series of uniform LREH (RE = Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm) nanosheets through a reverse-microemulsion method. After deposition-precipitation of HAuCl4 and calcination, supported Au catalysts (denoted as Au/LREO) were subsequently obtained. The catalytic properties of all the derived Au/LREO catalysts were evaluated by aerobic conversion of glycerol to lactic acid under mild conditions (90 °C, 1 atm). Among these catalysts, Au/LPrO displays the best performances, including the highest glycerol conversion, lactic acid, and C3 product selectivity. Both the catalytic activities and the characterizations of the structure of Au/LREO indicate that the kind of rare-earth ions plays a key role in determining the Au particle size and its valence state and reducibility, which are the important factors correlated with the catalytic activities in glycerol conversion. In fact, the three features of gold particles, the extra-small size (∼3 nm), high content of Au0 species, and high reducibility, are the essential prerequisites for achieving the superior catalytic performance of Au/LPrO.
Collapse
Affiliation(s)
- Congying Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Xueqiong Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Jiefei Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Xingyue Qi
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Ziyang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Hang Wei
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Haibin Chu
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
49
|
Wu X, Wei J, Zhang T, Yang Y, Liu Q, Yan X, Tang Y. Novel synthesis of in situ CeO x nanoparticles decorated on CoP nanosheets for highly efficient electrocatalytic oxygen evolution. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00821h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CoP nanosheets decorated by in-situ CeOx nanoparticles were designed through a novel two-step solvothermal-phosphating strategy, which act as an electrode exhibit excellent electrocatalytic performance toward OER in alkaline condition.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiaxu Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tong Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuchen Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qingyi Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xingbin Yan
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Tang
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
50
|
Chang M, Hou Z, Wang M, Li C, Lin J. Recent Advances in Hyperthermia Therapy-Based Synergistic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004788. [PMID: 33289219 DOI: 10.1002/adma.202004788] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Indexed: 06/12/2023]
Abstract
The past decades have witnessed hyperthermia therapy (HTT) as an emerging strategy against malignant tumors. Nanomaterial-based photothermal therapy (PTT) and magnetic hyperthermia (MHT), as highly effective and noninvasive treatment models, offer advantages over other strategies in the treatment of different types of tumors. However, both PTT and MHT cannot completely cure cancer due to recurrence and distal metastasis. In recent years, cancer immunotherapy has attracted widespread attention owing to its capability to activate the body's own natural defense to identify, attack, and eradicate cancer cells. Significant efforts have been devoted to studying the activated immune responses caused by hyperthermia-ablated tumors. In this article, the synergistic mechanism of HTT in immunotherapy, including immunogenic cell death and reversal of the immunosuppressive tumor microenvironment is discussed. The reports of the combination of HTT or HTT-based multimodal therapy with immunotherapy, including immunoadjuvant exploitation, immune checkpoint blockade therapy, and adoptive cellular immunotherapy are summarized. As highlighted, these strategies could achieve synergistically enhanced therapeutic outcomes against both primary tumors and metastatic lesions, prevent cancer recurrence, and prolong the survival period. Finally, current challenges and prospective developments in HTT-synergized immunotherapy are also reviewed.
Collapse
Affiliation(s)
- Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangdong, 511436, P. R. China
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|