• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4596319)   Today's Articles (5332)   Subscriber (49340)
For: Lee H, Oh P, Kim J, Cha H, Chae S, Lee S, Cho J. Advances and Prospects of Sulfide All-Solid-State Lithium Batteries via One-to-One Comparison with Conventional Liquid Lithium Ion Batteries. Adv Mater 2019;31:e1900376. [PMID: 31140636 DOI: 10.1002/adma.201900376] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/18/2019] [Indexed: 06/09/2023]
Number Cited by Other Article(s)
1
Yu Z, Xu Y, Kindle M, Marty D, Deng G, Wang C, Xiao J, Liu J, Lu D. Regenerative Solid Interfaces Enhance High-Performance All-Solid-State Lithium Batteries. ACS NANO 2024;18:11955-11963. [PMID: 38656985 DOI: 10.1021/acsnano.4c02197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
2
Kong WJ, Zhao CZ, Sun S, Shen L, Huang XY, Xu P, Lu Y, Huang WZ, Huang JQ, Zhang Q. From Liquid to Solid-State Batteries: Li-Rich Mn-Based Layered Oxides as Emerging Cathodes with High Energy Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;36:e2310738. [PMID: 38054396 DOI: 10.1002/adma.202310738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/16/2023] [Indexed: 12/07/2023]
3
Park Y, Chang JH, Oh G, Kim AY, Chang H, Uenal M, Nam S, Kwon O. Enhanced Electrochemical Stability and Extended Cycle Life in Sulfide-Based All-Solid-State Batteries: The Role of Li10 SnP2 S12 Coating on Ni-Rich NCM Cathode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024;20:e2305758. [PMID: 37936297 DOI: 10.1002/smll.202305758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Indexed: 11/09/2023]
4
Rajagopal R, Subramanian Y, Jung YJ, Kang S, Ryu KS. Preparation of Metal-Oxide-Doped Li7P2S8Br0.25I0.75 Solid Electrolytes for All-Solid-State Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2023;15:21016-21026. [PMID: 37083374 DOI: 10.1021/acsami.3c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
5
Su Y, Xu F, Zhang X, Qiu Y, Wang H. Rational Design of High-Performance PEO/Ceramic Composite Solid Electrolytes for Lithium Metal Batteries. NANO-MICRO LETTERS 2023;15:82. [PMID: 37002362 PMCID: PMC10066058 DOI: 10.1007/s40820-023-01055-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
6
Choi JH, Hwang J, Embleton TJ, Ko K, Jo M, Lee C, Yun J, Park S, Son Y, Oh P. Selective outer surface modification of polycrystalline Ni-rich cathode for sulfide all-solid-state lithium-ion battery. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
7
Chang X, Zhao YM, Yuan B, Fan M, Meng Q, Guo YG, Wan LJ. Solid-state lithium-ion batteries for grid energy storage: opportunities and challenges. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
8
Xing J, Bliznakov S, Bonville L, Oljaca M, Maric R. A Review of Nonaqueous Electrolytes, Binders, and Separators for Lithium-Ion Batteries. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
9
Miao X, Guan S, Ma C, Li L, Nan CW. Role of Interfaces in Solid-State Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206402. [PMID: 36062873 DOI: 10.1002/adma.202206402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/14/2022] [Indexed: 06/15/2023]
10
Muruganantham R, Lin CY, Wu HW, Gregory DH, Liu WR. Interface design strategy in combined materials of lithium thiophosphate electrolyte for solid-state lithium-ion batteries applications. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
11
Zhong Y, Cao C, Tadé MO, Shao Z. Ionically and Electronically Conductive Phases in a Composite Anode for High-Rate and Stable Lithium Stripping and Plating for Solid-State Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2022;14:38786-38794. [PMID: 35973161 DOI: 10.1021/acsami.2c09801] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
12
Oh P, Yun J, Choi JH, Saqib KS, Embleton TJ, Park S, Lee C, Ali J, Ko K, Cho J. Development of High-Energy Anodes for All-Solid-State Lithium Batteries Based on Sulfide Electrolytes. Angew Chem Int Ed Engl 2022;61:e202201249. [PMID: 35419922 DOI: 10.1002/anie.202201249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 11/11/2022]
13
Oh P, Yun J, Choi JH, Saqib KS, Embleton TJ, Park S, Lee C, Ali J, Ko K, Cho J. Development of High Energy A node s for All‐Solid‐State L ithium Batteries Based on Sulfide Electrolytes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
14
Strauss F, Lin J, Karger L, Weber D, Brezesinski T. Probing the Lithium Substructure and Ionic Conductivity of the Solid Electrolyte Li4PS4I. Inorg Chem 2022;61:5885-5890. [PMID: 35384653 DOI: 10.1021/acs.inorgchem.2c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
15
Gao J, Sun X, Wang C, Zhang Y, Yang L, Song D, Wu Y, Yang Z, Ohsaka T, Matsumotoc F, Wu J. Sb, O cosubstituted Li10SnP2S12 with high electrochemical stability and air stability for all‐solid‐state lithium batteries. ChemElectroChem 2022. [DOI: 10.1002/celc.202200156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
16
Yang Q, Wang A, Luo J, Tang W. Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
17
Lee JM, Park YS, Moon JW, Hwang H. Ionic and Electronic Conductivities of Lithium Argyrodite Li6PS5Cl Electrolytes Prepared via Wet Milling and Post-Annealing. Front Chem 2022;9:778057. [PMID: 34976950 PMCID: PMC8717468 DOI: 10.3389/fchem.2021.778057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022]  Open
18
Jiang M, Fan W, Liu G, Weng W, Cai L, Yao X. One‐dimensional NiS‐CNT@Li7P3S11 nanocomposites as ionic/electronic additives for LiCoO2 based all‐solid‐state lithium batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
19
Ning Z, Jolly DS, Li G, De Meyere R, Pu SD, Chen Y, Kasemchainan J, Ihli J, Gong C, Liu B, Melvin DLR, Bonnin A, Magdysyuk O, Adamson P, Hartley GO, Monroe CW, Marrow TJ, Bruce PG. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. NATURE MATERIALS 2021;20:1121-1129. [PMID: 33888903 DOI: 10.1038/s41563-021-00967-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/22/2021] [Indexed: 05/15/2023]
20
Dunkin MR, King ST, Takeuchi KJ, Takeuchi ES, Wang L, Marschilok AC. Improved ionic conductivity and battery function in a lithium iodide solid electrolyte via particle size modification. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
21
Tan F, An H, Li N, Du J, Peng Z. A study on Li0.33La0.55TiO3 solid electrolyte with high ionic conductivity and its application in flexible all-solid-state batteries. NANOSCALE 2021;13:11518-11524. [PMID: 34169958 DOI: 10.1039/d1nr02427b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
22
Kozawa T. Combined wet milling and heat treatment in water vapor for producing amorphous to crystalline ultrafine Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte particles. RSC Adv 2021;11:14796-14804. [PMID: 35423957 PMCID: PMC8697808 DOI: 10.1039/d1ra02039k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022]  Open
23
Kim YJ, Rajagopal R, Kang S, Ryu KS. NiCo2S4 Bi-metal Sulfide Coating on LiNi0.6Co0.2Mn0.2O2 Cathode for High-Performance All-Solid-State Lithium Batteries. ACS OMEGA 2021;6:6824-6835. [PMID: 33748596 PMCID: PMC7970466 DOI: 10.1021/acsomega.0c05942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
24
Kim AY, Strauss F, Bartsch T, Teo JH, Janek J, Brezesinski T. Effect of surface carbonates on the cyclability of LiNbO3-coated NCM622 in all-solid-state batteries with lithium thiophosphate electrolytes. Sci Rep 2021;11:5367. [PMID: 33686168 PMCID: PMC7940408 DOI: 10.1038/s41598-021-84799-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023]  Open
25
Zhao F, Alahakoon SH, Adair K, Zhang S, Xia W, Li W, Yu C, Feng R, Hu Y, Liang J, Lin X, Zhao Y, Yang X, Sham TK, Huang H, Zhang L, Zhao S, Lu S, Huang Y, Sun X. An Air-Stable and Li-Metal-Compatible Glass-Ceramic Electrolyte enabling High-Performance All-Solid-State Li Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021;33:e2006577. [PMID: 33470466 DOI: 10.1002/adma.202006577] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/19/2020] [Indexed: 06/12/2023]
26
Revisiting Classical Rocking Chair Lithium-Ion Battery. Macromol Res 2021. [DOI: 10.1007/s13233-020-8175-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
27
Strauss F, Teo JH, Maibach J, Kim AY, Mazilkin A, Janek J, Brezesinski T. Li2ZrO3-Coated NCM622 for Application in Inorganic Solid-State Batteries: Role of Surface Carbonates in the Cycling Performance. ACS APPLIED MATERIALS & INTERFACES 2020;12:57146-57154. [PMID: 33302618 DOI: 10.1021/acsami.0c18590] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
28
Su Y, Li L, Chen G, Chen L, Li N, Lu Y, Bao L, Chen S, Wu F. Strategies of Removing Residual Lithium Compounds on the Surface of Ni‐Rich Cathode Materials †. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000386] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
29
Yang Y, Han J, DeVita M, Lee SS, Kim JC. Lithium and Chlorine-Rich Preparation of Mechanochemically Activated Antiperovskite Composites for Solid-State Batteries. Front Chem 2020;8:562549. [PMID: 33134271 PMCID: PMC7550776 DOI: 10.3389/fchem.2020.562549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/31/2020] [Indexed: 11/28/2022]  Open
30
Strauss F, Zinkevich T, Indris S, Brezesinski T. Li7GeS5Br-An Argyrodite Li-Ion Conductor Prepared by Mechanochemical Synthesis. Inorg Chem 2020;59:12954-12959. [PMID: 32794736 DOI: 10.1021/acs.inorgchem.0c02094] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
31
Nagata H, Akimoto J. Ionic Conductivity of Low‐Crystalline Li4P2S6 and Li4P2S6–LiX (X=Cl, Br, and I) Systems and Their Role in Improved Positive Electrode Performance in All‐Solid‐State LiS Battery. ChemistrySelect 2020. [DOI: 10.1002/slct.202002308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
32
Mo F, Ruan J, Fu W, Fu B, Hu J, Lian Z, Li S, Song Y, Zhou YN, Fang F, Sun G, Peng S, Sun D. Revealing the Role of Liquid Metals at the Anode-Electrolyte Interface for All Solid-State Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020;12:38232-38240. [PMID: 32799453 DOI: 10.1021/acsami.0c11001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
33
Reddy MV, Julien CM, Mauger A, Zaghib K. Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020;10:E1606. [PMID: 32824170 PMCID: PMC7466729 DOI: 10.3390/nano10081606] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022]
34
Wei Z, Ren Y, Wang M, He J, Huo W, Tang H. Improving the Conductivity of Solid Polymer Electrolyte by Grain Reforming. NANOSCALE RESEARCH LETTERS 2020;15:122. [PMID: 32458218 PMCID: PMC7251041 DOI: 10.1186/s11671-020-03355-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/17/2020] [Indexed: 06/01/2023]
35
Toward Practical All-solid-state Batteries with Sulfide Electrolyte: A Review. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0103-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
36
Shi J, Liu G, Weng W, Cai L, Zhang Q, Wu J, Xu X, Yao X. Co3S4@Li7P3S11 Hexagonal Platelets as Cathodes with Superior Interfacial Contact for All-Solid-State Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2020;12:14079-14086. [PMID: 32125817 DOI: 10.1021/acsami.0c02085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
37
Strauss F, Stepien D, Maibach J, Pfaffmann L, Indris S, Hartmann P, Brezesinski T. Influence of electronically conductive additives on the cycling performance of argyrodite-based all-solid-state batteries. RSC Adv 2020;10:1114-1119. [PMID: 35494436 PMCID: PMC9046990 DOI: 10.1039/c9ra10253a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/17/2019] [Indexed: 01/19/2023]  Open
38
Mauger A, Julien CM, Paolella A, Armand M, Zaghib K. Building Better Batteries in the Solid State: A Review. MATERIALS (BASEL, SWITZERLAND) 2019;12:E3892. [PMID: 31775348 PMCID: PMC6926585 DOI: 10.3390/ma12233892] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
39
Chen T, Zhang L, Zhang Z, Li P, Wang H, Yu C, Yan X, Wang L, Xu B. Argyrodite Solid Electrolyte with a Stable Interface and Superior Dendrite Suppression Capability Realized by ZnO Co-Doping. ACS APPLIED MATERIALS & INTERFACES 2019;11:40808-40816. [PMID: 31596066 DOI: 10.1021/acsami.9b13313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA