1
|
de Carvalho DM, Lahtinen MH, Figueiredo P, Hirvonen SP, Hietala S, Mikkonen KS. Modulating the Spontaneous Adsorption of Lignin Nanoparticle at Oil-Water Interfaces. Macromol Rapid Commun 2025:e2500120. [PMID: 40366256 DOI: 10.1002/marc.202500120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/01/2025] [Indexed: 05/15/2025]
Abstract
The performance of (nano)particles in the stabilization of Pickering emulsions depends on their physicochemical features. Therefore, synthetic particles are commonly applied in Pickering stabilization, despite the environmental issues their use raises. Recently, lignin nanoparticles (LNPs) derived from industrial side streams have been investigated as biobased alternatives to replace synthetic stabilizers. Having a well-defined surface chemistry, monodisperse morphology, and a unique core-shell composition, LNPs are hypothesized to show diverse functionality and adsorption capacity at the oil-water interface that affects the long-term Pickering emulsion stability. To gain an understanding on the effect of various colloidal parameters, i.e., type of LNP, type of oil-water system, pH, LNP concentration, and ionic strength, on the adsorption LNPs at hexadecane-water and rapeseed oil-water interfaces, a fundamental study using dynamic interfacial tension analysis is performed. Condition optimized for Pickering stabilization is defined and applied for preparing emulsions. Findings indicated that LNPs adsorbed spontaneously at oil-water interfaces, which is a unique trait compared to known particles' adsorption, usually requiring the application of high forces. LNP adsorption at interfaces is affected by conditions of colloidal parameters, with increasing of pH ensuring the greatest LNP adsorption. Emulsions stabilized with LNPs at the optimized pH 8.0 remained stable after subsequent adjustment to pH 5.0.
Collapse
Affiliation(s)
- Danila M de Carvalho
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki, FI-00014, Finland
| | - Maarit H Lahtinen
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki, FI-00014, Finland
| | - Patrícia Figueiredo
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki, FI-00014, Finland
| | - Sami P Hirvonen
- Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki, FI-00014, Finland
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki, FI-00014, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki, FI-00014, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland
| |
Collapse
|
2
|
Lei P, Bai J, Zhou P, Tian K, Liang Y, Zhao Q, Yang L, Zhang J, Shen W, Zhong M, Guo S. Spent NCM111 Cathode Material as a Catalyst for Oxidative Cleavage of β-O-4 Linkage in Lignin. CHEMSUSCHEM 2025:e2500633. [PMID: 40269447 DOI: 10.1002/cssc.202500633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 04/25/2025]
Abstract
The recovery and reuse of electrode materials of spent lithium-ion batteries (LIBs) are important for the sustainable development of the LIB industry. Herein, NCM111 (LiNi0.33Co0.33Mn0.33O2) cathode material from spent LIBs is recovered and its catalytic activity for the oxidative cleavage of β-O-4 linkages in model compounds and organosolv lignin is explored. The spent NCM111 is rich in oxygen vacancies (OVs) accumulated during the long-term charge-discharge cycling. The reactive oxygen species trapping experiments and density functional theroy (DFT) calculation indicate that the abundant OVs can adsorb and activate the oxygen molecules, which afford the NCM111 with the catalytic activity. It is found that besides the catalytic activity in oxidative cleavage of the β-O-4 linkage in lignin model compounds, the spent NCM111 can also catalyze the depolymerization of organosolv lignin, yielding 17.5% aromatics, such as vanillin, benzoic acid, and phthalic acid, indicating the potential economic value of spent NCM materials.
Collapse
Affiliation(s)
- Puyi Lei
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiaxi Bai
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peng Zhou
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kuangjia Tian
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yi Liang
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qian Zhao
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lili Yang
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiali Zhang
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wenzhuo Shen
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Min Zhong
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shouwu Guo
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
3
|
Wang C, Lu Y, Wei Y, Xu Z, Huang Y, Zhang Y, Li K, Lu Q. Mechanistic insights into the role of deep eutectic solvent toward enhanced production of monophenols from bagasse lignin. Int J Biol Macromol 2025; 304:140768. [PMID: 39924019 DOI: 10.1016/j.ijbiomac.2025.140768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
The production of monophenols from lignin has been considered as an attractive strategy to produce high value-added biofuel. In the present study, the selective valorization of bagasse lignin to monophenols was implemented through deep eutectic solvent (DES) pretreatment and catalytic fast pyrolysis (CFP). The bagasse lignin was isolated by DES based on Choline chloride/lactic acid (ChCl/LA), and the yield of lignin reached 86.63 % when ChCl/LA molar ratio was 1: 10. The extracted lignin exhibited the favorable structures of high purity, high uniformity, moderated β-O-4 linkage and less condensed structure. During the following CFP, the lignin was converted into monophenols with a total yield of 14.68 wt% under optimal conditions. The 4-ethyl phenol (9.27 wt%), 4-ethyl guaiacol (1.57 wt%), 4-propyl guaiacol (1.69 wt%), and 2,6-dimethoxyl phenol (0.43 wt%) were the major products, accounting for 72.82 % of the detected products. Moreover, a detailed understanding of the role of DES in enhancing the monophenols production was comprehensively investigated through quantum chemistry (QC) calculations and reactive molecular dynamics (RMD) simulations. The strong hydrogen bonds were formed between the chloride ion of DES and the hydroxyl groups in lignin, allowing the DES to break both the hydrogen bonding interactions and ether linkages in lignin. The RMD simulations demonstrated that the α-acylated lignin structure was generated during the pretreatment, thereby inhibiting the condensation reaction to some extent. Such results are paramount for effectively valorizing biomass to produce high-value monophenols using the fast pyrolysis technology.
Collapse
Affiliation(s)
- Chenzhou Wang
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing 102206, China
| | - Yiye Lu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing 102206, China
| | - Yangyue Wei
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing 102206, China
| | - Zijian Xu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing 102206, China
| | - Yanqin Huang
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing 102206, China.
| | - Yiwei Zhang
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing 102206, China
| | - Kai Li
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing 102206, China
| | - Qiang Lu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
4
|
Chowdari RK, Ganji P, Likozar B. Solvent-Free Catalytic Hydrotreatment of Lignin to Biobased Aromatics: Current Trends, Industrial Approach, and Future Perspectives. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2025; 39:2943-2985. [PMID: 39967748 PMCID: PMC11831597 DOI: 10.1021/acs.energyfuels.4c05174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/20/2025]
Abstract
Lignin is the only naturally occurring, renewable biopolymer and an alternative for the production of six-membered aromatic chemicals. The utilization of lignin can increase the additional revenue of biorefineries and reduce the dependence on crude oil for the production of aromatic chemicals. Therefore, the development of technologies for the production of valuable chemicals from lignin waste in biorefineries is of great importance. Catalytic hydrotreatment of lignin is considered one of the most promising technologies for the production of biobased aromatic chemicals and fuels. Among the various hydrotreatment routes, the solvent-free hydrotreatment approach is advantageous because this process reduces production costs and is similar to petroleum refinery processes such as cracking and heteroatom removal. This review addresses recent developments in solvent-free catalytic hydrotreatment of various lignins such as sulfur-containing, sulfur-free, and pyrolytic lignins to produce low oxygen-containing aromatics such as alkylphenolics in batch, semicontinuous, and continuous reactors. Special emphasis is given to the various noble and non-noble metal catalysts, the best route between single and two-stage processing, key factors in solvent-free depolymerization of lignin, techno-economic evaluation, crude oil vs lignin oil refining, challenges and future prospects, etc.
Collapse
Affiliation(s)
- Ramesh Kumar Chowdari
- Institute
of Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Styria, Austria
- Department
of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova Ulica 19, 1001 Ljubljana, Slovenia
| | - Parameswaram Ganji
- Department
of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova Ulica 19, 1001 Ljubljana, Slovenia
- Jozef
Stefan Institute, Department of Surface
Engineering, Jamova Cesta
39, 1000 Ljubljana, Slovenia
| | - Blaž Likozar
- Department
of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova Ulica 19, 1001 Ljubljana, Slovenia
| |
Collapse
|
5
|
Yu Z, Huang Z, Jiang L, Li W. Enhancing selectivity of β-O-4 bond cleavage for lignin depolymerization via a sacrificial anode. Chem Commun (Camb) 2025; 61:2985-2988. [PMID: 39846730 DOI: 10.1039/d4cc06313a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Herein, we report a novel electrochemical hydrogenolysis method for β-O-4 bond cleavage by using carbon foam as the cathode and waste aluminum as the anode. The reaction takes place at the cathode, producing ketones and phenolic compounds. Employing waste aluminum as the anode could avoid anodic excessive oxidation of phenols.
Collapse
Affiliation(s)
- Zihan Yu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, P. R. China.
| | - Zhenghui Huang
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, 430079 Wuhan, P. R. China.
| | - Linbin Jiang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, P. R. China.
| | - Wei Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640 Guangzhou, P. R. China
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, 430079 Wuhan, P. R. China.
| |
Collapse
|
6
|
Kumar S, Choudhary P, Sharma D, Sajwan D, Kumar V, Krishnan V. Tailored Engineering of Layered Double Hydroxide Catalysts for Biomass Valorization: A Way Towards Waste to Wealth. CHEMSUSCHEM 2024; 17:e202400737. [PMID: 38864756 DOI: 10.1002/cssc.202400737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
Abstract
Layered double hydroxides (LDH) have significant attention in recent times due to their unique characteristic properties, including layered structure, variable compositions, tunable acidity and basicity, memory effect, and their ability to transform into various kinds of catalysts, which make them desirable for various types of catalytic applications, such as electrocatalysis, photocatalysis, and thermocatalysis. In addition, the upcycling of lignocellulose biomass and its derived compounds has emerged as a promising strategy for the synthesis of valuable products and fine chemicals. The current review focuses on recent advancements in LDH-based catalysts for biomass conversion reactions. Specifically, this review highlights the structural features and advantages of LDH and LDH-derived catalysts for biomass conversion reactions, followed by a detailed summary of the different synthesis methods and different strategies used to tailor their properties. Subsequently, LDH-based catalysts for hydrogenation, oxidation, coupling, and isomerization reactions of biomass-derived molecules are critically summarized in a very detailed manner. The review concludes with a discussion on future research directions in this field which anticipates that further exploration of LDH-based catalysts and integration of cutting-edge technologies into biomass conversion reactions hold promise for addressing future energy challenges, potentially leading to a carbon-neutral or carbon-positive future.
Collapse
Affiliation(s)
- Sahil Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Devanshu Sajwan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Vinit Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
7
|
Zhang Z, Guo G, Yang H, Csechala L, Wang Z, Cziegler C, Zijlstra DS, Lahive CW, Zhang X, Bornscheuer UT, Deuss PJ. One-Pot Catalytic Cascade for the Depolymerization of the Lignin β-O-4 Motif to Non-phenolic Dealkylated Aromatics. Angew Chem Int Ed Engl 2024; 63:e202410382. [PMID: 39083320 DOI: 10.1002/anie.202410382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Indexed: 11/03/2024]
Abstract
Aromatic monomers obtained by selective depolymerization of the lignin β-O-4 motif are typically phenolic and contain (oxygenated) alkyl substitutions. This work reveals the potential of a one-pot catalytic lignin β-O-4 depolymerization cascade strategy that yields a uniform set of methoxylated aromatics without alkyl side-chains. This cascade consists of the selective acceptorless dehydrogenation of the γ-hydroxy group, a subsequent retro-aldol reaction that cleaves the Cα-Cβ bond, followed by in situ acceptorless decarbonylation of the formed aldehydes. This three-step cascade reaction, catalyzed by an iridium(I)-BINAP complex, resulted in 75 % selectivity for 1,2-dimethoxybenzene from G-type lignin dimers, alongside syngas (CO : H2≈1.4 : 1). Applying this method to a synthetic G-type polymer, 11 wt % 1,2-dimethoxybenzene was obtained. This versatile compound can be easily transformed into 3,4-dimethoxyphenol, a valuable precursor for pharmaceutical synthesis, through an enzymatic catalytic approach. Moreover, the hydrodeoxygenation potential of 1,2-dimethoxybenzene offers a pathway to produce valuable cyclohexane or benzene derivatives, presenting enticing opportunities for sustainable chemical transformations without the necessity for phenolic mixture upgrading via dealkylation.
Collapse
Affiliation(s)
- Zhenlei Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), 102249, Beijing, China
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ge Guo
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Huaizhou Yang
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Lina Csechala
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Zhiwen Wang
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Institute of Chemistry, Organic and Bioorganic Chemistry, University of Graz, 8010, Graz, Austria
| | - Clemens Cziegler
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Douwe S Zijlstra
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ciaran W Lahive
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Xiangping Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), 102249, Beijing, China
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Peter J Deuss
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
8
|
Xiao G, Wang Z, Jin Y, Wang F. Visible-light-driven selective cleavage of lignin C-C bonds on the TiO 2@g-C 3N 4heterostructured photocatalyst. NANOTECHNOLOGY 2024; 35:495704. [PMID: 39284323 DOI: 10.1088/1361-6528/ad7b3f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
The selective cleavage of lignin C-C bonds is a highly sought-after process with the goal of obtaining low-molecular-weight aromatic chemicals from renewable resources. However, it remains a challenging task to achieve under mild conditions. Photocatalysis is a potentially promising approach to address this issue, but the development of efficient photocatalysts is still in progress. In this study, we introduce the heterostructured TiO2@g-C3N4photocatalyst for the development of a visible light photocatalytic procedure for the selective cleavage of lignin C-C bonds under mild conditions. The photocatalyst displays favourable visible light absorption, efficient charge separation efficiency, and promising reusability. A typicalβ-O-4 dimer model, 2-phenoxy-1-phenylethanol, was effectively (96.0% conversion) and selectively (95.0 selectivity) cleaved under visible light at ambient conditions. This photocatalytic procedure was also effective when subjected to solar irradiation or other lignin dimer models withβ-O-4 orβ-1 linkages. This reaction occurred through a Cβ-centred radical intermediate and a six-membered transition state with photogenerated holes as the primary active species. The Cα-OH oxidative dehydrogenation of the substrate could also take place but was a relatively minor route. This study provides a new photocatalytic procedure for visible-light-driven lignin valorisation and sheds light on the design of high-performance nanocomposite photocatalysts for C-C bond cleavage.
Collapse
Affiliation(s)
- Gang Xiao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zishuai Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yu Jin
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Fengping Wang
- College of Pharmacy, Hebei North University, Zhangjiakou 075100, People's Republic of China
| |
Collapse
|
9
|
Liu X, Zhai L, Huo J, Yang R, Sun F. FeCl 3-Promoted Photocatalytic Cleavage of C α-C β Bond in Lignin and Lignin Model to Benzoic Acid. J Org Chem 2024; 89:12967-12972. [PMID: 39250268 DOI: 10.1021/acs.joc.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Because of the complex structure and inherent inert chemical activity of lignin, it is still challenging to depolymerize lignin to obtain valuable chemicals efficiently. Here, we present an FeCl3-promoted photocatalytic depolymerization strategy to realize the Cα-Cβ oxidative cleavage of lignin model compounds at room temperature. The method generates benzoic acid and phenol compounds in high yields. In addition, the method is effective for the depolymerization of organosolv lignin by cleavage of the products of Cα-Cβ bonds and affords the corresponding products. This strategy provides a method of using an economical photocatalyst to depolymerize lignin and provides a reference for the industrial depolymerization of lignin.
Collapse
Affiliation(s)
- Xinwei Liu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Lianjing Zhai
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jianyu Huo
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ronghe Yang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Fengxia Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
10
|
Bai W, Wang X, Xu J, Liu Y, Lou Y, Sun X, Zhou A, Li H, Fu G, Dou S, Yu H. Lattice Strain Engineering on Metal-Organic Frameworks by Ligand Doping to Boost the Electrocatalytic Biomass Valorization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403431. [PMID: 38829272 PMCID: PMC11304310 DOI: 10.1002/advs.202403431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/11/2024] [Indexed: 06/05/2024]
Abstract
As an efficient and environmental-friendly strategy, electrocatalytic oxidation can realize biomass lignin valorization by cleaving its aryl ether bonds to produce value-added chemicals. However, the complex and polymerized structure of lignin presents challenges in terms of reactant adsorption on the catalyst surface, which hinders further refinement. Herein, NiCo-based metal-organic frameworks (MOFs) are employed as the electrocatalyst to enhance the adsorption of reactant molecules through π-π interaction. More importantly, lattice strain is introduced into the MOFs via curved ligand doping, which enables tuning of the d-band center of metal active sites to align with the reaction intermediates, leading to stronger adsorption and higher electrocatalytic activity toward bond cleavage within lignin model compounds and native lignin. When 2'-phenoxyacetophenone is utilized as the model compound, high yields of phenol (76.3%) and acetophenone (21.7%) are achieved, and the conversion rate of the reactants reaches 97%. Following pre-oxidation of extracted poplar lignin, >10 kinds of phenolic compounds are received using the as-designed MOFs electrocatalyst, providing ≈12.48% of the monomer, including guaiacol, vanillin, eugenol, etc., and p-hydroxybenzoic acid dominates all the products. This work presents a promising and deliberately designed electrocatalyst for realizing lignin valorization, making significant strides for the sustainability of this biomass resource.
Collapse
Affiliation(s)
- Wenjing Bai
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Jianing Xu
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yongzhuang Liu
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yuhan Lou
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Xinyue Sun
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Ao Zhou
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Hao Li
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980–8577Japan
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Shuo Dou
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
11
|
Wang H, Li B. Recent Advances on the Functionalities of Polyoxometalate-Based Ionic Liquids. Molecules 2024; 29:3216. [PMID: 38999168 PMCID: PMC11243224 DOI: 10.3390/molecules29133216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Polyoxometalate (POM)-based ionic liquids (POM-ILs) are gaining increasing attention due to their diverse structures and functionalities. POMs in POM-ILs not only act as essential structural building blocks but also play a crucial role in their functional performance. With the incorporation of POMs, POM-ILs find applications in various fields such as chemical catalysis, energy science, materials science, sensors, and more. The abundant availability of POMs and other building blocks in POM-ILs, along with their versatile combination possibilities, present promising opportunities for the future. Rather than focusing solely on discovering new structures of POM-ILs, current developments in this field emphasize exploring their functions, leading to the emergence of numerous new applications. Summarizing these advancements aids in understanding the latest trends and facilitates rapid evolution. This review examines the recent five years' worth of results to analyze the new functions of POM-ILs, categorizing them based on their unique characteristics.
Collapse
Affiliation(s)
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
| |
Collapse
|
12
|
Meraj A, Jawaid M, Singh SP, Nasef MM, Ariffin H, Fouad H, Abu-Jdayil B. Isolation and characterisation of lignin using natural deep eutectic solvents pretreated kenaf fibre biomass. Sci Rep 2024; 14:8672. [PMID: 38622317 PMCID: PMC11018866 DOI: 10.1038/s41598-024-59200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
Extraction of lignin via green methods is a crucial step in promoting the bioconversion of lignocellulosic biomasses. In the present study, utilisation of natural deep eutectic solvent for the pretreatment of kenaf fibres biomass is performed. Furthermore, extracted lignin from natural deep eutectic solvent pretreated kenaf biomass was carried out and its comparative study with commercial lignin was studied. The extracted lignin was characterized and investigated through Infrared Fourier transform spectroscopy, X-ray Diffraction, thermogravimetric analysis, UV-Vis spectroscopy, and scanning electron microscopy. FTIR Spectra shows that all samples have almost same set of absorption bands with slight difference in frequencies. CHNS analysis of natural deep eutectic solvent pretreated kenaf fibre showed a slight increase in carbon % from 42.36 to 43.17% and an increase in nitrogen % from - 0.0939 to - 0.1377%. Morphological analysis of commercial lignin shows irregular/uneven surfaces whereas natural deep eutectic solvent extracted lignin shows smooth and wavy surface. EDX analysis indicated noticeable peaks for oxygen and carbon elements which are present in lignocellulosic biomass. Thermal properties showed that lignin is constant at higher temperatures due to more branching and production of extremely condensed aromatic structures. In UV-VIS spectroscopy, commercial lignin shows slightly broad peak between 300 and 400 nm due to presence of carbonyl bond whereas, natural deep eutectic solvent extracted lignin does not show up any peak in this range. XRD results showed that the crystallinity index percentage for kenaf and natural deep eutectic solvent treated kenaf was 70.33 and 69.5% respectively. Therefore, these innovative solvents will undoubtedly have significant impact on the development of clean, green, and sustainable products for biocatalysts, extraction, electrochemistry, adsorption applications.
Collapse
Affiliation(s)
- Aatikah Meraj
- Laboratory of Bio-Polymer and its Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - M Jawaid
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University (UAEU), P.O. Box. 15551, Al Ain, United Arab Emirates.
| | | | - Mohamed Mahmoud Nasef
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
- Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Hidayah Ariffin
- Laboratory of Bio-Polymer and its Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Hassan Fouad
- Applied Medical Science Department, Community College, King Saud University, P.O Box 10219, Riyadh, 11433, Saudi Arabia
| | - Basim Abu-Jdayil
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University (UAEU), P.O. Box. 15551, Al Ain, United Arab Emirates
| |
Collapse
|
13
|
Zou W, Zhou H, Wang M. Photoinduced Biomimetic Room-Temperature C-O Bond Cleavage over Mn Doped CdS. CHEMSUSCHEM 2023; 16:e202300727. [PMID: 37486587 DOI: 10.1002/cssc.202300727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
Selective C-O bond cleavage is an efficient way for the biomass valorization to value-added chemicals, but is challenged to be operated at room temperature via conventional thermal catalysis. Herein, inspired from the DNA biosynthesis which involves a radical-mediated spin-center shift (SCS) C-O bond cleavage process, we report a biomimetic room-temperature C-O bond cleavage of vicinal diol (HOCHCH-OH). We construct a Mn doped CdS (Mn/CdS) as a photocatalyst to mimic the biologic SCS process. The Mn site plays pivotal role: (1) accelerates the photo-induced carrier separation, promoting the hole-mediated C-H bond cleavage to generate carbon-centered radicals, and (2) serves as the binding site for -OH groups, making it to be an easier leaving group. Mn/CdS achieves 0.28 mmol gcat -1 h-1 of hydroxyacetone (HA) from glycerol dehydration at room temperature under visible light irradiation, which is 3.5-fold that over pristine CdS and 40-fold that over bulk MnS/CdS. This study provides a new biomimetic room-temperature C-O bond cleavage process, which is promising for the biomass valorization.
Collapse
Affiliation(s)
- Wenjing Zou
- School of Chemistry, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Hongru Zhou
- School of Chemistry, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Min Wang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| |
Collapse
|
14
|
Xu J, Zhou Z, Liu M, Wang J, Zhang L. Photocatalytic depolymerization of lignin via oxidizing cleavage of C α-C β bonds in micellar aqueous media. Int J Biol Macromol 2023; 245:125476. [PMID: 37353112 DOI: 10.1016/j.ijbiomac.2023.125476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
Photocatalytic depolymerization of lignin to prepare high-value chemicals is a promising way to promote the valuable utilization of lignin. However, the complexity and stubbornness of lignin structure seriously decrease the photocatalytic efficiency and selectivity. Herein, the micellar aqueous media (SDS-8/HCl) consisting of sodium lauryl sulfonate and hydrochloric acid was successfully prepared. Photocatalyst TiO2 and SDS-8/HCl system can effectively depolymerize the typical β-1 lignin models and ethanol organosolv lignin to value-added chemicals by oxidizing cleavage of lignin Cα-Cβ bonds. The addition of hydrochloric acid solution (1 mol/L) improves the selectivity of photocatalytic breaking of lignin Cα-Cβ bonds. Chlorine ions are oxidized to chlorine radicals by photogenerated holes and hydroxyl radicals, dramatically increasing the photocatalytic efficiency. Electron paramagnetic resonance technique and Gas chromatography-mass spectrometry were used to demonstrate the presence of chlorine radicals. Under optimal conditions, the conversion of substrate Dpol is 98.4 %, and the obtained products are mainly benzaldehyde and benzoic acid. Isotope labeling experiments show that water is also involved in photocatalytic reactions and the oxygen needed to form the product benzaldehyde comes from water. Single-electron transfer processes are possible photocatalytic mechanisms that differ from the previous reports. Importantly, water and chlorine ions were found to be involved in photocatalytic reactions for the first time and promote the cleavage of lignin Cα-Cβ bonds. This work provides new ideas for photocatalytic cleavage of lignin Cα-Cβ bonds in heterogeneous photocatalytic systems using micellar aqueous media.
Collapse
Affiliation(s)
- Jie Xu
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China.
| | - Zijie Zhou
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| | - Meng Liu
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| | - Jinyu Wang
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| | - Lihui Zhang
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| |
Collapse
|
15
|
Sun G, Wu X, Zhu H, Yuan K, Zhang Y, Zhang C, Deng Z, Zhou M, Zhang Z, Yang G, Chu H. Reactive Oxygen Species-Triggered Curcumin Release from Hollow Mesoporous Silica Nanoparticles for PM 2.5-Induced Acute Lung Injury Treatment. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37411033 DOI: 10.1021/acsami.3c07361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Exposure to fine particulate matter with a diameter ≤2.5 μm (PM2.5) can result in serious inflammation and oxidative stress in lung tissue. However, there is presently very few effective treatments for PM2.5-induced many pulmonary diseases, such as acute lung injury (ALI). Herein, curcumin-loaded reactive oxygen species (ROS)-responsive hollow mesoporous silica nanoparticles (Cur@HMSN-BSA) are proposed for scavenging the intracellular ROS and suppressing inflammatory responses against PM2.5-induced ALI. The prepared nanoparticles were coated with bovine serum albumin (BSA) via an ROS-sensitive thioketal (TK)-containing linker, in which the TK-containing linker would be cleaved by the excessive amounts of ROS in inflammatory sites to induce the detachment of BSA from the nanoparticles surface and thus triggering release of loaded curcumin. The Cur@HMSN-BSA nanoparticles could be used as ROS scavengers because of their excellent ROS-responsiveness, which were able to efficiently consume high concentrations of intracellular ROS. Furthermore, it was also found that Cur@HMSN-BSA downregulated the secretion of several important pro-inflammatory cytokines and promoted the polarization from M1 phenotypic macrophages to M2 phenotypic macrophages for eliminating PM2.5-induced inflammatory activation. Therefore, this work provided a promising strategy to synergistically scavenge intracellular ROS and suppress the inflammation responses, which may serve as an ideal therapeutic platform for pneumonia treatment.
Collapse
Affiliation(s)
- Guanting Sun
- Department of Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xirui Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huanhuan Zhu
- Department of Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Kangzhi Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yifan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Cai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zheng Deng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Meiyu Zhou
- Department of Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guangbao Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Haiyan Chu
- Department of Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
16
|
Li J, Li Z, Dong J, Fang R, Chi Y, Hu C. Hexaniobate as a Recyclable Solid Base Catalyst to Activate C–H Bonds in Lignin Linkage Boosting the Production of Aromatic Monomers. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Jie Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhen Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jing Dong
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Renbo Fang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yingnan Chi
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
17
|
Xie J, Sun H, Yang Y, Liang J, Li Y, Hou D, Lin X, Zhang J, Shi Z, Liu C. Preparation of High-Toughness Lignin Phenolic Resin Biomaterials Based via Polybutylene Succinate Molecular Intercalation. Int J Mol Sci 2023; 24:ijms24076418. [PMID: 37047390 PMCID: PMC10094893 DOI: 10.3390/ijms24076418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Lignin has many potential applications and is a biopolymer with a three-dimensional network structure. It is composed of three phenylpropane units, p-hydroxyphenyl, guaiacyl, and syringyl, connected by ether bonds and carbon-carbon bonds, and it contains a large number of phenol or aldehyde structural units, resulting in complex lignin structures. This limits the application of lignin. To expand the application range of lignin, we prepared lignin thermoplastic phenolic resins (LPRs) by using lignin instead of phenol; these LPRs had molecular weights of up to 1917 g/mol, a molecular weight distribution of 1.451, and an O/P value of up to 2.73. Due to the complex structure of the lignin, the synthetic lignin thermoplastic phenolic resins were not very tough, which greatly affected the performance of the material. If the lignin phenolic resins were toughened, their application range would be substantially expanded. Polybutylene succinate (PBS) has excellent processability and excellent mechanical properties. The toughening effects of different PBS contents in the LPRs were investigated. PBS was found to be compatible with the LPRs, and the flexible chain segments of the small PBS molecules were embedded in the molecular chain segments of the LPRs, thus reducing the crystallinities of the LPRs. The good compatibility between the two materials promoted hydrogen bond formation between the PBS and LPRs. Rheological data showed good interfacial bonding between the materials, and the modulus of the high-melting PBS made the LPRs more damage resistant. When PBS was added at 30%, the tensile strength of the LPRs was increased by 2.8 times to 1.65 MPa, and the elongation at break increased by 31 times to 93%. This work demonstrates the potential of lignin thermoplastic phenolic resins for industrial applications and provides novel concepts for toughening biobased aromatic resins with PBS.
Collapse
Affiliation(s)
- Jin Xie
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Hao Sun
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Yuchun Yang
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Junxiong Liang
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Yun Li
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Defa Hou
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Xu Lin
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Jun Zhang
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Zhengjun Shi
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Can Liu
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
18
|
Zhang J, Lei P, Yu D, Li Y, Zhong M, Shen W, Guo S. Oxidative Cleavage of β-O-4 Linkage in Lignin via Co Nanoparticles Embedded in 3DNG as Catalyst. Chemistry 2023; 29:e202203144. [PMID: 36408758 DOI: 10.1002/chem.202203144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022]
Abstract
The cleavage of β-O-4 linkage in lignin is one of the key steps for oxidative conversion of lignin to low-molecular-weight aromatics. Herein, Co nanoparticles embedded in three-dimensional network of nitrogen-doped graphene (Co/NG@3DNG-X) were prepared through an immersion-pyrolysis procedure, in which X denotes the pyrolysis temperature. The detailed characterization of Co/NG@3DNG-X shows that the Co nanoparticles are coated with a few layers of nitrogen-doped graphene (NG) sheets that are further embedded in 3DNG matrix. The catalytic activities of the Co/NG@3DNG-X for the oxidative cleavage of β-O-4 linkage in lignin model compounds with O2 as oxidant are explored. It is demonstrated that catalytic activities of as-prepared Co/NG@3DNG-X can be tuned by varying the pyrolysis condition, and the Co/NG@3DNG-900 shows the highest catalytic activity, which is attributed to the enriched Co-Nx species, the strong surface basicity, the high specific surface and the mesoporous motif of 3DNG network. More pronouncedly, the Co/NG@3DNG-900 can also effectively catalyze the oxidative cleavage of organosolv lignin, generating certain monomeric aromatics. Additionally, the intrinsic magnetic property of Co nanoparticles makes the Co/NG@3DNG-X be easily recovered from the reaction mixture, and the as-coated thin NG layer can protect Co nanoparticle from oxidation condition, which putting together afford the Co/NG@3DNG-X with good reusability and stability.
Collapse
Affiliation(s)
- Jiali Zhang
- Department of Electronic Engineering, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Puyi Lei
- Department of Electronic Engineering, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Daobo Yu
- Department of Electronic Engineering, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Yanfang Li
- Department of Electronic Engineering, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Min Zhong
- Department of Electronic Engineering, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Wenzhuo Shen
- Department of Electronic Engineering, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Shouwu Guo
- Department of Electronic Engineering, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
19
|
Fan Y, Shi W, Li L. Regulating Complex Transition Metal Oxyhydroxides Using Ni 3S 2: 3D NiCoFe(oxy)hydroxide/Ni 3S 2/Ni Foam for an Efficient Alkaline Oxygen Evolution Reaction. Inorg Chem 2023; 62:1561-1569. [PMID: 36636990 DOI: 10.1021/acs.inorgchem.2c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In electrochemical decomposition of water, the slow kinetics of the anodic oxygen evolution reaction (OER) is a challenge for efficient hydrogen production. Heterointerface engineering is a desirable way to rationally design electrocatalysts for the OER. Herein, we designed and fabricated a nanoparticle flower-like NiCoFe(oxy)hydroxide catalyst in situ grown on the surface of Ni3S2/NF to construct a heterojunction via combining hydrothermal and electrodeposition methods. The heterostructure exhibits a smaller overpotential of 254 mV at a large current density of 100 mA cm-2 in 1 M KOH than that of pristine NiCoFeOxHy/NF (356 mV) and Ni3S2/NF (471 mV). Tafel and electrochemical impedance spectroscopy further showed a favorable kinetics during electrolysis. The role of the substrate Ni3S2 was explored via density functional theory calculations. Our calculations found that SOx on the Ni3S2 surface is a strong nucleophilic group and the synergy effect between Fe and SOx could break *OOH to reduce the Gibbs energy. We also found that the contribution of SOx in sulfates to the OER activity could be negligible. Furthermore, a series of comparative samples were prepared to test this synergy effect. Our experiments indicated that the introduction of Ni3S2 is beneficial. The present contribution provides an important helpful insight into the design and fabrication of novel and highly efficient heterostructure electrocatalysts by introducing nucleophilic groups at the interface.
Collapse
Affiliation(s)
- Yating Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
20
|
Photocatalyst CdS for efficient cleavage of lignin C O bonds in micellar aqueous medium. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Dong H, Ding L, Wu L, Mamatjan Y. Degradation of cotton stalk lignin by carbon dots loaded copper oxide synergistic emulsion system. NANOTECHNOLOGY 2022; 33:485402. [PMID: 35605575 DOI: 10.1088/1361-6528/ac7240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Based on the realization of efficient utilization of cotton stalk lignin, the degradation of cotton stalk lignin by a CDs/CuO synergistic emulsion system was investigated. Copper oxide (CuO) nanoparticles with monoclinic crystal structure were prepared and carbon dots (CDs) synthesized by microwave method was combined with CuO. Under visible light, water and n-butanol were used to construct a water-oil (W/O) emulsion reaction system to achieved depolymerisation of lignin into small molecule compounds. The involvement of hydrogen peroxide (H2O2) makes the degradation of lignin in this system even more effective. The final high value-added monophenolic compound of 57.70 mg g-1was obtained, among which the most abundant were six monophenolic compounds such as vanillin, eugenol and vinyl guaiacol and so on. The results of GC-MS and FTIR characterization indicated that H-type monomers were the main products of lignin degradation in this system. The process conditions for lignin hydrogenolysis in this system were optimized and the best ratio of CDs/CuO was obtained by product analysis. There were characterized by SEM, TEM, XRD, XPS, FTIR, and US-vis. The results show that CDs/CuO aggregates into flower clusters, in which CDs are uniformly distributed on the surface of rhomboidal CuO monoliths. The analysis shows that the doping of CDs improves the absorption efficiency of CuO in the visible region, while reducing the complexation of CuO photogenerated electrons and holes, which achieves the purpose of improved photocatalytic activity of CuO.
Collapse
Affiliation(s)
- Han Dong
- Xinjiang University, College of Chemical Engineering, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, 666 Shengli Road, Tianshan District, Urumqi City, Xinjiang Province, People's Republic of China
| | - Lijie Ding
- Xinjiang University, College of Chemical Engineering, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, 666 Shengli Road, Tianshan District, Urumqi City, Xinjiang Province, People's Republic of China
| | - Lei Wu
- Xinjiang University, College of Chemical Engineering, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, 666 Shengli Road, Tianshan District, Urumqi City, Xinjiang Province, People's Republic of China
| | - Yimit Mamatjan
- Xinjiang University, College of Chemical Engineering, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, 666 Shengli Road, Tianshan District, Urumqi City, Xinjiang Province, People's Republic of China
| |
Collapse
|
22
|
Jing Y, Shakouri M, Liu X, Hu Y, Guo Y, Wang Y. Breaking C─C Bonds and Preserving C─O Bonds in Aromatic Plastics and Lignin via a Reversing Bond Energy Cleavage Strategy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaxuan Jing
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Mohsen Shakouri
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewanas S7N 2V3, Canada
| | - Xiaohui Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yongfeng Hu
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewanas S7N 2V3, Canada
| | - Yong Guo
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
23
|
Zhu L, Cui C, Liu H, Zhou Z, Qi F. Thermochemical depolymerization of lignin: Process analysis with state-of-the-art soft ionization mass spectrometry. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.982126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lignin valorization via thermochemical approaches has the potential to produce renewable fuels and value-added chemicals, which are of great significance to the sustainable development of human beings. During the thermochemical depolymerization which involves acid-catalyzed, alkali-catalyzed, oxidative, reductive, pyrolytic, and other reactions, the lignin structure will undergo a series of bond cleavage, condensation, and functional group changes, while the mechanism is still unclear. To improve the efficiency, the analysis of the evolution of intermediates during depolymerization is very important, among which soft ionization mass spectrometry plays a vital role. This review aims to summarize the research progress of process analysis of lignin depolymerization in both gas-phase, typically thermal and catalytic pyrolysis, and liquid-phase via online mass spectrometry. The challenges and our insights into the future development of the lignin valorization as well as soft ionization mass spectrometry methods are also discussed.
Collapse
|
24
|
Zhang J, Xiao H, Du C, Qin X, Li S, Sun J, Fang J, Zhang C. Activating MnO with Embedded Ru for Enhanced Selective Hydrogenolysis of C–O Bonds in Lignin-Derived Ethers over Ru–MnO/Al 2O 3. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jianghao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongfei Xiao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Chemical Engineering, Northwest University, Xi’an, Shannxi 710069, China
| | - Chuo Du
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Li
- School of Chemical Engineering, Northwest University, Xi’an, Shannxi 710069, China
| | - Junming Sun
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Jinhou Fang
- Weifang Research Institute of Materials and Technology for Eco-Environmental Protection, Weifang, Shandong 261300, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Weifang Research Institute of Materials and Technology for Eco-Environmental Protection, Weifang, Shandong 261300, China
| |
Collapse
|
25
|
Min X, Zhang T, Xie M, Zhang K, Chai L, Lin Z, Ding C, Shi Y. Functionalized Lignin for Fabrication of FeCoNi Nanoparticles Enriched 3D Carbon Hybrid: From Waste to a High Performance Oxygen Evolution Reaction Catalyst. ChemElectroChem 2022. [DOI: 10.1002/celc.202200394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoye Min
- Central South University School of Metallurgy and Environment CHINA
| | - Tingzheng Zhang
- Central South University School of Metallurgy and Environment CHINA
| | - Mingbo Xie
- Central South University School of Metallurgy and Environment CHINA
| | - Kejing Zhang
- Central South University School of Metallurgy and Environment CHINA
| | - Liyuan Chai
- Central South University School of Metallurgy and Environment CHINA
| | - Zhang Lin
- Central South University School of Metallurgy and Environment CHINA
| | - Chunlian Ding
- Central South University School of Metallurgy and Environment CHINA
| | - Yan Shi
- Central South University School of Metallurgy and Environment No.932, Lushannan Road, Yuelu District 410083 Changsha CHINA
| |
Collapse
|
26
|
Zhou H, Chen L, Guo Y, Liu X, Wu XP, Gong XQ, Wang Y. Hydrogenolysis Cleavage of the C sp2–C sp3 Bond over a Metal-Free NbOPO 4 Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hao Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Lu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yong Guo
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiaohui Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
27
|
Yu D, Lei P, Li Y, Shen W, Zhong M, Zhang J, Guo S. Catalytic Oxidation of Veratryl Alcohol Derivatives Using RuCo/rGO Composites. Chemistry 2022; 28:e202104380. [DOI: 10.1002/chem.202104380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Daobo Yu
- Department of Electronic Engineering School of Electronic Information and Electric Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
- Department of Micro/Nano Electronics School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Puyi Lei
- Department of Electronic Engineering School of Electronic Information and Electric Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Yanfang Li
- Department of Electronic Engineering School of Electronic Information and Electric Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Wenzhuo Shen
- Department of Electronic Engineering School of Electronic Information and Electric Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Min Zhong
- Department of Electronic Engineering School of Electronic Information and Electric Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Jiali Zhang
- Department of Electronic Engineering School of Electronic Information and Electric Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Shouwu Guo
- Department of Electronic Engineering School of Electronic Information and Electric Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| |
Collapse
|
28
|
Kim J, Um Y, Han S, Hilberath T, Kim YH, Hollmann F, Park CB. Unbiased Photoelectrode Interfaces for Solar Coupling of Lignin Oxidation with Biocatalytic C═C Bond Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11465-11473. [PMID: 35196006 DOI: 10.1021/acsami.1c24342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The pulp and paper manufacturers generate approximately 50 million metric tons of lignin per annum, most of which has been abandoned or incinerated because of lignin's recalcitrant nature. Here, we report bias-free photoelectrochemical (PEC) oxidation of lignin coupled with asymmetric hydrogenation of C═C bonds. The PEC platform consists of a hematite (α-Fe2O3) photoanode and a silicon photovoltaic-wired mesoporous indium tin oxide (Si/mesoITO) photocathode. We substantiate a new function of photoelectroactivated α-Fe2O3 to extract electrons from lignin. The extracted electrons are transferred to the Si/mesoITO photocathode for regenerating synthetic nicotinamide cofactor analogues (mNADHs). We demonstrate that the reduction kinetics of mNAD+s depend on their reduction peak potentials. The regenerated mNADHs activate ene-reductases from the old yellow enzyme (OYE) family, which catalyze enantioselective reduction of α,β-unsaturated hydrocarbons. This lignin-fueled biocatalytic PEC system exhibits an excellent OYE's turnover frequency and total turnover number for photobiocatalytic trans-hydrogenation through cofactor regeneration. This work presents the first example of PEC regeneration of mNADHs and opens up a sustainable route for bias-free chemical synthesis using renewable lignin waste as an electron feedstock.
Collapse
Affiliation(s)
- Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Yunna Um
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Seunghyun Han
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Thomas Hilberath
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| |
Collapse
|
29
|
|
30
|
Liu W, Ban Y, Liu J, Wang Y, Hu Z, Wang Y, Li Q, Yang W. ZIF-L based mixed matrix membranes for acetone-butanol-ethanol (ABE) recovery from diluted aqueous solution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Xin Y, Shen X, Dong M, Cheng X, Liu S, Yang J, Wang Z, Liu H, Han B. Organic amine mediated cleavage of C aromatic-C α bonds in lignin and its platform molecules. Chem Sci 2021; 12:15110-15115. [PMID: 34909152 PMCID: PMC8612377 DOI: 10.1039/d1sc05231d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/29/2021] [Indexed: 01/07/2023] Open
Abstract
The activation and cleavage of C-C bonds remains a critical scientific issue in many organic reactions and is an unmet challenge due to their intrinsic inertness and ubiquity. Meanwhile, it is crucial for the valorization of lignin into high-value chemicals. Here, we proposed a novel strategy to enhance the Caromatic-Cα bond cleavage by pre-functionalization with amine sources, in which an active amine intermediate is first formed through Markovnikov hydroamination to reduce the dissociation energy of the Caromatic-Cα bond which is then cleaved to form target chemicals. More importantly, this strategy provides a method to achieve the maximum utilization of the aromatic nucleus and side chains in lignin or its platform molecules. Phenols and N,N-dimethylethylamine compounds with high yields were produced from herbaceous lignin or the p-coumaric acid monomer in the presence of industrially available dimethylamine (DMA).
Collapse
Affiliation(s)
- Yu Xin
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaojun Shen
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL) Dalian China
| | - Minghua Dong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaomeng Cheng
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Shulin Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Junjuan Yang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Zhenpeng Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
32
|
Yu Z, Yao Y, Wang Y, Li Y, Sun Z, Liu YY, Shi C, Liu J, Wang W, Wang A. Reprint of: A bifunctional Ni3P/γ-Al2O3 catalyst prepared by electroless plating for the hydrodeoxygenation of phenol. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Subbotina E, Rukkijakan T, Marquez-Medina MD, Yu X, Johnsson M, Samec JSM. Oxidative cleavage of C-C bonds in lignin. Nat Chem 2021; 13:1118-1125. [PMID: 34556848 DOI: 10.1038/s41557-021-00783-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 08/04/2021] [Indexed: 11/09/2022]
Abstract
Lignin is an aromatic polymer that constitutes up to 30 wt% of woody biomass and is considered the largest source of renewable aromatics. Valorization of the lignin stream is pivotal for making biorefining sustainable. Monomeric units in lignin are bound via C-O and C-C bonds. The majority of existing methods for the production of valuable compounds from lignin are based on the depolymerization of lignin via cleavage of relatively labile C-O bonds within lignin structure, which leads to yields of only 36-40 wt%. The remaining fraction (60 wt%) is a complex mixture of high-molecular-weight lignin, generally left unvalorized. Here we present a method to produce additional valuable monomers from the high-molecular-weight lignin fraction through oxidative C-C bond cleavage. This oxidation reaction proceeds with a high selectivity to give 2,6-dimethoxybenzoquinone (DMBQ) from high-molecular-weight lignin in 18 wt% yield, thus increasing the yield of monomers by 32%. This is an important step to make biorefining competitive with petroleum-based refineries.
Collapse
Affiliation(s)
- Elena Subbotina
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Thanya Rukkijakan
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | | | - Xiaowen Yu
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Mats Johnsson
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Joseph S M Samec
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
34
|
Circulatory Management of Polymer Waste: Recycling into Fine Fibers and Their Applications. MATERIALS 2021; 14:ma14164694. [PMID: 34443216 PMCID: PMC8401388 DOI: 10.3390/ma14164694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
In modern society, it is impossible to imagine life without polymeric materials. However, managing the waste composed of these materials is one of the most significant environmental issues confronting us in the present day. Recycling polymeric waste is the most important action currently available to reduce environmental impacts worldwide and is one of the most dynamic areas in industry today. Utilizing this waste could not only benefit the environment but also promote sustainable development and circular economy management. In its program statement, the European Union has committed to support the use of sorted polymeric waste. This study reviews recent attempts to recycle this waste and convert it by alternative technologies into fine, nano-, and microscale fibers using electrospinning, blowing, melt, or centrifugal spinning. This review provides information regarding applying reprocessed fine fibers in various areas and a concrete approach to mitigate the threat of pollution caused by polymeric materials.
Collapse
|
35
|
Dou Z, Zhang Z, Zhou H, Wang M. Photocatalytic Upgrading of Lignin Oil to Diesel Precursors and Hydrogen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhaolin Dou
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 Liaoning China
| | - Zhe Zhang
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 Liaoning China
| | - Hongru Zhou
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 Liaoning China
| | - Min Wang
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 Liaoning China
| |
Collapse
|
36
|
Dou Z, Zhang Z, Zhou H, Wang M. Photocatalytic Upgrading of Lignin Oil to Diesel Precursors and Hydrogen. Angew Chem Int Ed Engl 2021; 60:16399-16403. [PMID: 33961338 DOI: 10.1002/anie.202105692] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 02/03/2023]
Abstract
Producing renewable biofuels from biomass is a promising way to meet future energy demand. Here, we demonstrated a lignin to diesel route via dimerization of the lignin oil followed by hydrodeoxygenation. The lignin oil undergoes C-C bond dehydrogenative coupling over Au/CdS photocatalyst under visible light irradiation, co-generating diesel precursors and hydrogen. The Au nanoparticles loaded on CdS can effectively restrain the recombination of photogenerated electrons and holes, thus improving the efficiency of the dimerization reaction. About 2.4 mmol gcatal -1 h-1 dimers and 1.6 mmol gcatal -1 h-1 H2 were generated over Au/CdS, which is about 12 and 6.5 times over CdS, respectively. The diesel precursors are finally converted into C16-C18 cycloalkanes or aromatics via hydrodeoxygenation reaction using Pd/C or porous CoMoS catalyst, respectively. The conversion of pine sawdust to diesel was performed to demonstrate the feasibility of the lignin-to-diesel route.
Collapse
Affiliation(s)
- Zhaolin Dou
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Zhe Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Hongru Zhou
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Min Wang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, Liaoning, China
| |
Collapse
|
37
|
Xu J, Li M, Qiu J, Zhang XF, Yao J. Fine tuning of Cd xZn 1-xS for photo-depolymerization of alkaline lignin into vanillin. Int J Biol Macromol 2021; 185:297-305. [PMID: 34166691 DOI: 10.1016/j.ijbiomac.2021.06.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Lignin is abundant and contains a large number of aromatic groups. Herein, CdxZn1-xS photocatalyst with tunable band gap energy was successfully synthesized by using 3-mercaptopropionic acid as a structure tuning additive. CdxZn1-xS can depolymerize alkaline lignin to vanillin by the photocatalytic process. Each gram of alkaline lignin can produce 46.5 mg of vanillin. 2-Phenoxy-1-phenylethanol (PP-ol) and other model compounds were used to understand the depolymerizing process of lignin. Fine tuned CdxZn1-xS can effectively cleave the Cβ-O-4 bond existed in PP-ol under simulated sunlight. The highest conversion of PP-ol was 89.5% with phenol and acetophenone yields of 66.2% and 33.5%, respectively. The mechanism studies confirm that the Cα-H in PP-ol and lignin is firstly dehydrogenated to form Cα radical intermediates, and then the photogenerated electrons break the adjacent Cβ-O bond. This research provides a new strategy to prepare valuable chemicals by virtue of renewable biomass and simulated sunlight.
Collapse
Affiliation(s)
- Jie Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| | - Ming Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianhao Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
38
|
Zhang H, Fu S, Du X, Deng Y. Advances in Versatile Nanoscale Catalyst for the Reductive Catalytic Fractionation of Lignin. CHEMSUSCHEM 2021; 14:2268-2294. [PMID: 33811470 DOI: 10.1002/cssc.202100067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
In the past five years, biomass-derived biofuels and biochemicals were widely studied both in academia and industry as promising alternatives to petroleum. In this Review, the latest progress of the synthesis and fabrication of porous nanocatalysts that are used in catalytic transformations involving hydrogenolysis of lignin is reviewed in terms of their textural properties, catalytic activities, and stabilities. A particular emphasis is made with regard to the catalyst design for the hydrogenolysis of lignin and/or lignin model compounds. Furthermore, the effects of different supports on the lignin hydrogenolysis/hydrogenation are discussed in detail. Finally, the challenges and future opportunities of lignin hydrogenolysis over nanomaterial-supported catalysts are also presented.
Collapse
Affiliation(s)
- Haichuan Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
- School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Xu Du
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| |
Collapse
|
39
|
Zijlstra DS, de Korte J, de Vries EPC, Hameleers L, Wilbers E, Jurak E, Deuss PJ. Highly Efficient Semi-Continuous Extraction and In-Line Purification of High β-O-4 Butanosolv Lignin. Front Chem 2021; 9:655983. [PMID: 34041222 PMCID: PMC8141753 DOI: 10.3389/fchem.2021.655983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Innovative biomass fractionation is of major importance for economically competitive biorefineries. Lignin is currently severely underutilized due to the use of high severity fractionation methodologies that yield complex condensed lignin that limits high-value applicability. Mild lignin fractionation conditions can lead to lignin with a more regular C-O bonded structure that has increased potential for higher value applications. Nevertheless, such extraction methodologies typically suffer from inadequate lignin extraction efficiencies and yield. (Semi)-continuous flow extractions are a promising method to achieve improved extraction efficiency of such C-O linked lignin. Here we show that optimized organosolv extraction in a flow-through setup resulted in 93-96% delignification of 40 g walnut shells (40 wt% lignin content) by applying mild organosolv extraction conditions with a 2 g/min flowrate of a 9:1 n-butanol/water mixture with 0.18 M H2SO4 at 120°C in 2.5 h. 85 wt% of the lignin (corrected for alcohol incorporation, moisture content and carbohydrate impurities) was isolated as a powder with a high retention of the β-aryl ether (β-O-4) content of 63 linking motifs per 100 C9 units. Close examination of the isolated lignin showed that the main carbohydrate contamination in the recovered lignin was butyl-xyloside and other butoxylate carbohydrates. The work-up and purification procedure were investigated and improved by the implementation of a caustic soda treatment step and phase separation with a continuous integrated mixer/separator (CINC). This led to a combined 75 wt% yield of the lignin in 3 separate fractions with 3% carbohydrate impurities and a very high β-O-4 content of 67 linking motifs per 100 C9 units. Analysis of all the mass flows showed that 98% of the carbohydrate content was removed with the inline purification step, which is a significant improvement to the 88% carbohydrate removal for the traditional lignin precipitation work-up procedure. Overall we show a convenient method for inline extraction and purification to obtain high β-O-4 butanosolv lignin in excellent yields.
Collapse
Affiliation(s)
- Douwe Sjirk Zijlstra
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Joren de Korte
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Ernst P. C. de Vries
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Lisanne Hameleers
- Department of Bioproduct Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Erwin Wilbers
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Edita Jurak
- Department of Bioproduct Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Peter Joseph Deuss
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| |
Collapse
|
40
|
Wang X, Xia Q, Jing S, Li C, Chen Q, Chen B, Pang Z, Jiang B, Gan W, Chen G, Cui M, Hu L, Li T. Strong, Hydrostable, and Degradable Straws Based on Cellulose-Lignin Reinforced Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008011. [PMID: 33759326 DOI: 10.1002/smll.202008011] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/25/2021] [Indexed: 05/23/2023]
Abstract
The huge consumption of single-use plastic straws has brought a long-lasting environmental problem. Paper straws, the current replacement for plastic straws, suffer from drawbacks, such as a high cost of the water-proof wax layer and poor water stability due to the easy delamination of the wax layer. It is therefore crucial to find a high-performing alternative to mitigate the environmental problems brought by plastic straws. In this paper, all natural, degradable, cellulose-lignin reinforced composite straws, inspired by the reinforcement principle of cellulose and lignin in natural wood are developed. The cellulose-lignin reinforced composite straw is fabricated by rolling up a wet film made of homogeneously mixed cellulose microfibers, cellulose nanofibers, and lignin powders, which is then baked in oven at 150 °C. When baked, lignin melts and infiltrates the micro-nanocellulose network, acting as a polyphenolic binder to improve the mechanical strength and hydrophobicity performance of the resulting straw. The obtained straws demonstrate several advantageous properties over paper straws, including 1) excellent mechanical performance, 2) high hydrostability, and 3) low cost. Moreover, the natural degradability of the cellulose-lignin reinforced composite straws makes them promising candidates to replace plastic straws and suggests possible substitutes for other petroleum-based plastics.
Collapse
Affiliation(s)
- Xizheng Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Qinqin Xia
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Shuangshuang Jing
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Claire Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Qiongyu Chen
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Bo Chen
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Zhenqian Pang
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Bo Jiang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Wentao Gan
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Gang Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Mingjin Cui
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
41
|
Yu Z, Yao Y, Wang Y, Li Y, Sun Z, Liu YY, Shi C, Liu J, Wang W, Wang A. A bifunctional Ni3P/γ-Al2O3 catalyst prepared by electroless plating for the hydrodeoxygenation of phenol. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Feng Y, Long S, Tang X, Sun Y, Luque R, Zeng X, Lin L. Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chem Soc Rev 2021; 50:6042-6093. [PMID: 34027943 DOI: 10.1039/d0cs01601b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transformation of biomass to chemicals and fuels is a long-term goal in both science and industry. However, high cost is one of the major obstacles to the industrialization of this sustainable technology. Thus, developing catalysts with high activity and low-cost is of great importance for biomass conversion. The last two decades have witnessed the increasing achievement of the use of earth-abundant 3d-transition-metals in catalysis due to their low-cost, high efficiency and excellent stability. Here, we aim to review the fast development and recent advances of 3d-metal-based catalysts including Cu, Fe, Co, Ni and Mn in lignocellulosic biomass conversion. Moreover, present research trends and invigorating perspectives on future development are given.
Collapse
Affiliation(s)
- Yunchao Feng
- College of Energy, Xiamen University, Xiamen 361102, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Chen H, Wan K, Zheng F, Zhang Z, Zhang H, Zhang Y, Long D. Recent Advances in Photocatalytic Transformation of Carbohydrates Into Valuable Platform Chemicals. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.615309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In response to the less accessible fossil resources and deteriorating environmental problems, catalytic conversion of the abundant and renewable lignocellulosic biomass to replace fossil resources for the production of value-added chemicals and fuels is of great importance. Depolymerization of carbohydrate and its derivatives can obtain a series of C5-C6 monosaccharides (e.g., glucose and xylose) and their derived platform compounds (e.g., HMF and furfural). Selective transformation of lignocellulose using sustainable solar energy via photocatalysis has attract broad interest from a growing scientific community. The unique photogenerated reactive species (e.g., h+, e−, •OH, •O2−, and 1O2), novel reaction pathways as well as the mild reaction conditions make photocatalysis a “dream reaction.” This review is aimed to provide an overview of the up-to-date contributions achieved in the selective photocatalytic transformation of carbohydrate and its derivatives. Photocatalytic methods, properties and merits of different catalytic systems are well summarized. We then put forward future perspective and challenges in this field.
Collapse
|
44
|
Xu J, Li M, Qiu J, Zhang XF, Yao J. Photocatalytic depolymerization of organosolv lignin into valuable chemicals. Int J Biol Macromol 2021; 180:403-410. [PMID: 33741371 DOI: 10.1016/j.ijbiomac.2021.03.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/25/2022]
Abstract
Catalytic conversion of lignin to certain aromatic compounds has been extensively studied but still has great challenges. Photocatalytic depolymerizing lignin is a very promising method to obtain valuable chemicals. Herein, Zn4In2S7 (ZIS)-based photocatalyst was successfully synthesized by simply combining ZIS and graphene oxide (GO). Photocatalyst ZIS-100 can efficiently depolymerize organosolv lignin into phenols and ketones. The relative content of valuable compounds in the depolymerized product was increased by 2.5 times as compared that without photocatalyst. The photocatalyst can effectively break Cβ-O bonds in 2-phenoxy-1-phenylethanol (PP-ol, a model compound) and the conversion of PP-ol is 93.27%. Mechanism studies show that the thiol groups on the surface of ZIS-100 play an important role in the formation of Cα radical intermediates. Photocatalytic cleavage of Cβ-O bond mainly follows a one-step reaction mechanism through a self‑hydrogen transfer process. This study provides a new strategy for selectively breaking Cβ-O bond in lignin to form valuable chemicals.
Collapse
Affiliation(s)
- Jie Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| | - Ming Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianhao Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
45
|
Zhou H, Li Z, Xu S, Lu L, Xu M, Ji K, Ge R, Yan Y, Ma L, Kong X, Zheng L, Duan H. Selectively Upgrading Lignin Derivatives to Carboxylates through Electrochemical Oxidative C(OH)−C Bond Cleavage by a Mn‐Doped Cobalt Oxyhydroxide Catalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hua Zhou
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Si‐Min Xu
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Lilin Lu
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Kaiyue Ji
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Ruixiang Ge
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yifan Yan
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Lina Ma
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Lirong Zheng
- Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Haohong Duan
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
46
|
Zhou H, Li Z, Xu S, Lu L, Xu M, Ji K, Ge R, Yan Y, Ma L, Kong X, Zheng L, Duan H. Selectively Upgrading Lignin Derivatives to Carboxylates through Electrochemical Oxidative C(OH)−C Bond Cleavage by a Mn‐Doped Cobalt Oxyhydroxide Catalyst. Angew Chem Int Ed Engl 2021; 60:8976-8982. [DOI: 10.1002/anie.202015431] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/18/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Hua Zhou
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Si‐Min Xu
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Lilin Lu
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Kaiyue Ji
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Ruixiang Ge
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yifan Yan
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Lina Ma
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Lirong Zheng
- Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Haohong Duan
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
47
|
Dong L, Xia J, Guo Y, Liu X, Wang H, Wang Y. Mechanisms of Caromatic-C bonds cleavage in lignin over NbOx-supported Ru catalyst. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Zhang D, Yang G, Xiong J, Liu J, Hu X, Zhang Z. An efficient method to prepare aryl acetates by the carbonylation of aryl methyl ethers or phenols. NEW J CHEM 2021. [DOI: 10.1039/d0nj05050d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A low pressure of CO was used to prepare aryl acetates directly.
Collapse
Affiliation(s)
- Dejin Zhang
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
- School of Chemistry and Chemical Engineering
| | - Guoqiang Yang
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Junping Xiong
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jia Liu
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Xingbang Hu
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Zhibing Zhang
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|
49
|
Jing Y, Dong L, Guo Y, Liu X, Wang Y. Chemicals from Lignin: A Review of Catalytic Conversion Involving Hydrogen. CHEMSUSCHEM 2020; 13:4181-4198. [PMID: 31886600 DOI: 10.1002/cssc.201903174] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/27/2019] [Indexed: 05/14/2023]
Abstract
Lignin is the most abundant biopolymer with aromatic building blocks and its valorization to sustainable chemicals and fuels has extremely great potential to reduce the excessive dependence on fossil resources, although such conversions remain challenging. The purpose of this Review is to present an insight into the catalytic conversion of lignin involving hydrogen, including reductive depolymerization and the hydrodeoxygenation of lignin-derived monomers to arenes, cycloalkanes and phenols, with a main focus on the catalyst systems and reaction mechanisms. The roles of hydrogenation sites (Ru, Pt, Pd, Rh) and acid sites (Nb, Ti, Mo), as well as their interaction in selective hydrodeoxygenation reactions are emphasized. Furthermore, some inspirational strategies for the production of other value-added chemicals are mentioned. Finally, some personal perspectives are provided to highlight the opportunities within this attractive field.
Collapse
Affiliation(s)
- Yaxuan Jing
- Shanghai Key Laboratory of Functional Materials Chemistry and Research, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Lin Dong
- Shanghai Key Laboratory of Functional Materials Chemistry and Research, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Yong Guo
- Shanghai Key Laboratory of Functional Materials Chemistry and Research, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Xiaohui Liu
- Shanghai Key Laboratory of Functional Materials Chemistry and Research, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry and Research, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| |
Collapse
|
50
|
Du X, Zhang H, Sullivan KP, Gogoi P, Deng Y. Electrochemical Lignin Conversion. CHEMSUSCHEM 2020; 13:4318-4343. [PMID: 33448690 DOI: 10.1002/cssc.202001187] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/17/2020] [Indexed: 06/12/2023]
Abstract
Lignin is the largest source of renewable aromatic compounds, making the recovery of aromatic compounds from this material a significant scientific goal. Recently, many studies have reported on lignin depolymerization and upgrading strategies. Electrochemical approaches are considered to be low cost, reagent free, and environmentally friendly, and can be carried out under mild reaction conditions. In this Review, different electrochemical lignin conversion strategies, including electrooxidation, electroreduction, hybrid electro-oxidation and reduction, and combinations of electrochemical and other processes (e. g., biological, solar) for lignin depolymerization and upgrading are discussed in detail. In addition to lignin conversion, electrochemical lignin fractionation from biomass and black liquor is also briefly discussed. Finally, the outlook and challenges for electrochemical lignin conversion are presented.
Collapse
Affiliation(s)
- Xu Du
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Haichuan Zhang
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 303320620, USA
- Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Kevin P Sullivan
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Parikshit Gogoi
- Department of Chemistry, Nowgong College, Nagaon, 782001, Assam, India
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 303320620, USA
| |
Collapse
|