1
|
Liu B, Li P, Zeng J, Li J, Chen K. UV-induced plasma welding and interface customization strategy of cellulose nanofiber/silver nanowire composite electrode for advanced flexible photoelectric applications. Carbohydr Polym 2025; 357:123479. [PMID: 40159000 DOI: 10.1016/j.carbpol.2025.123479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
Significant advancements in flexible photoelectric devices have been achieved through extensive research on flexible transparent conductive electrodes (FTCEs) based on silver nanowires (AgNWs). However, two key challenges that need to be addressed are the high contact resistance of AgNWs and poor interface adhesion between AgNWs and the flexible substrate. In this study, we present a composite electrode comprising polydopamine-grafted cellulose nanofibers (PDA-TCNF) and AgNWs, fabricated through an interface customization strategy combined with UV-induced plasma welding. To enhance interfacial crosslinking, N, N-bis(acryloyl)cysteamine (BACA) was introduced as a surface adsorbate for AgNWs. The composite electrode exhibited rapid plasma welding of AgNWs under low-intensity UV irradiation. The optimized PDA-TCNF/AgNW-S/3 electrode demonstrated a sheet resistance of 7.26 Ω sq.-1 with a remarkable light transmittance of 85.7 %. The interface customization strategy facilitated enhanced diffusion of silver atoms at AgNW junctions during UV-induced heating, thereby strengthening their welding capability. These electrodes serve as high-performance FTCEs for electroluminescent devices and transparent electric heaters. Our work proposes a simple method to fabricate superior FTCEs by integrating nanocellulose with AgNWs, offering a promising environmentally friendly material for flexible optoelectronic applications.
Collapse
Affiliation(s)
- Bingyang Liu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China
| | - Pengfei Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China; School of Environment and Energy, South China University of Technology, Guangzhou 510640, PR China.
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China
| |
Collapse
|
2
|
Qian X, Chen Z, Zhang F, Yan Z. Electrochemically Active Materials for Tissue-Interfaced Soft Biochemical Sensing. ACS Sens 2025. [PMID: 40256874 DOI: 10.1021/acssensors.5c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Tissue-interfaced soft biochemical sensing represents a crucial approach to personalized healthcare by employing electrochemically active materials to monitor biochemical signals at the tissue interface in real time, either noninvasively or through implantation. These soft biochemical sensors can be integrated with various biological tissues, such as neural, gastrointestinal, ocular, cardiac, skin, muscle, and bone, adapting to their unique mechanical and biochemical environments. Sensors employing materials like conductive polymers, composites, metals, metal oxides, and carbon-based nanomaterials have demonstrated capabilities in applications, such as continuous glucose monitoring, neural activity mapping, and real-time metabolite detection, enhancing diagnostics and treatment monitoring across a range of medical fields. Next-generation tissue-interfaced biosensors that enable multimodal and multiplexed measurement of biochemical markers and physiological parameters could be transformative for personalized medicine, allowing for high-resolution, time-resolved historical monitoring of an individual's health status. In this review, we summarize current trends in the field to provide insights into the challenges and future trajectory of tissue-interfaced soft biochemical sensors, highlighting their potential to revolutionize personalized medicine and improve patient outcomes.
Collapse
Affiliation(s)
- Xiaoyan Qian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zehua Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Feng Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
3
|
Song Y, Chen K, Chen S, Zhang L, Wang Y, Wu K, Xu C, Li B, Zhang J, Liu G, Sun J. Stretchable and adhesive bilayers for electrical interfacing. MATERIALS HORIZONS 2025; 12:1981-1991. [PMID: 39744932 DOI: 10.1039/d4mh01166j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Integrated stretchable devices, containing soft modules, rigid modules, and encapsulation modules, are of potential use in implantable bioelectronics and wearable devices. However, such systems often suffer from electrical deterioration due to debonding failure at the connection between rigid and soft modules induced by severe stress concentration, limiting their practical implementation. Here, we report a highly conductive and adhesive bilayer interface that can reliably connect soft-soft modules and soft-rigid modules together by simply pressing without conductive pastes. This interface configuration features a nanoscale styrene-ethylene-butylene-styrene (SEBS) elastomer layer and a SEBS-liquid metal (LM) composite layer. The top SEBS layer enables a strong adhesion with different modules. The connections between soft-soft and soft-rigid modules can be stretched to high strains of 400% and 250%, respectively. Coupling electron tunneling through an ultrathin SEBS layer with LM particle networks in a SEBS-LM composite layer renders continuous pathways for electrical conductivity. Such a bilayer interface exhibits a strain-insensitive high conductivity (3.7 × 105 S m-1) over a wide strain range from 0 to 680%, which can be facilely fabricated in a self-organized manner by sedimentation of LM particles. We present a proof-of-concept demonstration of this bilayer interface as an electrode, interconnect, and self-solder for monitoring physiological signals.
Collapse
Affiliation(s)
- Yuli Song
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Kai Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Shimeng Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Linyuan Zhang
- School of Biomedical Engineering, The Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Yaqiang Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Kai Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Canhua Xu
- School of Biomedical Engineering, The Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Jinyu Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Gang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
4
|
Van Nguyen D, Song P, Manshaii F, Bell J, Chen J, Dinh T. Advances in Soft Strain and Pressure Sensors. ACS NANO 2025; 19:6663-6704. [PMID: 39933798 DOI: 10.1021/acsnano.4c15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Soft strain and pressure sensors represent a breakthrough in material engineering and nanotechnology, providing accurate and reliable signal detection for applications in health monitoring, sports management, human-machine interface, or soft robotics, when compared to traditional rigid sensors. However, their performance is often compromised by environmental interference and off-axis mechanical deformations, which lead to nonspecific responses, as well as unstable and inaccurate measurements. These challenges can be effectively addressed by enhancing the sensors' specificity, making them responsive only to the desired stimulus while remaining insensitive to unwanted stimuli. This review systematically examines various materials and design strategies for developing strain and pressure sensors with high specificity for target physical signals, such as tactility, pressure distribution, body motions, or artery pulse. This review highlights approaches in materials engineering that impart special properties to the sensors to suppress interference from factors such as temperature, humidity, and liquid contact. Additionally, it details structural designs that improve sensor performance under different types of off-axis mechanical deformations. This review concludes by discussing the ongoing challenges and opportunities for inspiring the future development of highly specific electromechanical sensors.
Collapse
Affiliation(s)
- Duy Van Nguyen
- School of Engineering and Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Farid Manshaii
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - John Bell
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Jun Chen
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Toan Dinh
- School of Engineering and Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| |
Collapse
|
5
|
Wang L, Kong D. Stretchable and Self-Adhesive Conductors for Smart Epidermal Electronics. Macromol Rapid Commun 2024:e2400774. [PMID: 39579092 DOI: 10.1002/marc.202400774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Epidermal electronics utilize deformable devices that are seamlessly integrated into the body for various cutting-edge applications. Stretchable conductors are essential for creating electrodes in these devices, allowing them to interface with the skin for sensing and stimulation. Despite considerable progress in improved deformability, these conductors may not easily adhere to the skin for long-term use. There is a growing interest in imparting self-adhesive properties to epidermal devices to ensure secure integration with the body. This article focuses on the emerging field of stretchable and self-adhesive conductors. It explores the design strategy required to enable stretchability and conformability in these materials and discusses their pivotal applications in smart epidermal electronics. Additionally, this article also addresses the current challenges and future directions in this dynamic area of research.
Collapse
Affiliation(s)
- Lin Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210021, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210021, China
| |
Collapse
|
6
|
Wang D, Feng S, Yang M. Multi-Gradient Bone-Like Nanocomposites Induced by Strain Distribution. ACS NANO 2024; 18:29636-29647. [PMID: 39425938 DOI: 10.1021/acsnano.4c08442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The heterogeneity of bones is elegantly adapted to the local strain environment, which is critical for maintaining mechanical functions. Such an adaptation enables the strong correlation between strain distributions and multiple gradients, underlying a promising pathway for creating complex gradient structures. However, this potential remains largely unexplored for the synthesis of functional gradient materials. In this work, heterogeneous bone-like nanocomposites with complex structural and compositional gradients comparable to bones are synthesized by inducing strain distributions within the polymer matrix containing amorphous calcium phosphate (ACP). Uniaxial stretching of composite films exerts the highest strain in the center, which ceases gradually toward the sides, resulting in the gradual decrease of polymer alignment and crystallinity. Simultaneously, the center with high orientation traps most ACP during stretching due to the nanoconfinement effect, which in turn promotes the formation of aligned nanofibrous structures. The sides experiencing the least strain have the smallest amounts of ACP, characteristic of porous architectures. Further crystallization of ACP produces oriented apatite nanorods in the center with a larger crystalline/amorphous ratio than the sides because of template-induced crystallization. The combination of structural and compositional gradients leads to gradient mechanical properties, and the gradient span and magnitude correlate nicely with strain distributions. Accompanying bone-like mechanical gradients, the center is less adhesive and self-healable than the sides, which allows a better recovery after a complete cutting. Our work may represent a general strategy for the synthesis of biomimetic materials with complex gradients thanks to the ubiquitous presence of strain distributions in load-bearing structures.
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Ming Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Himori S, Takahashi R, Tanaka A, Yamaguchi M. Direct Metal Transfer on Swellable Hydrogel with Dehydration-Induced Physical Adhesion. ACS OMEGA 2024; 9:42261-42266. [PMID: 39431084 PMCID: PMC11483376 DOI: 10.1021/acsomega.4c04774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 10/22/2024]
Abstract
Composites of hydrogels and metals are gaining interest because of each material's unique properties. However, the stable adhesion of metals on hydrogels is challenging due to the mechanical mismatch at the soft-hard interface and the liquidity of the water components in hydrogels. We propose a facile physical-adhesion method that involves the dehydration process of hydrogels to transfer metals from a glass substrate. This method is based on the hydrophobic interaction between polymer chains and metals and is stable, even in water. Continuous metal wiring was achieved on a swollen hydrogel, and electrical conduction was effective for a soft electronic device. Therefore, our method could be a versatile method for integrating hydrogels and metals.
Collapse
Affiliation(s)
- Shogo Himori
- NTT Basic Research Laboratories and
Bio-Medical Informatics Research Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Riku Takahashi
- NTT Basic Research Laboratories and
Bio-Medical Informatics Research Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Aya Tanaka
- NTT Basic Research Laboratories and
Bio-Medical Informatics Research Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Masumi Yamaguchi
- NTT Basic Research Laboratories and
Bio-Medical Informatics Research Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| |
Collapse
|
8
|
Han X, Lin X, Sun Y, Huang L, Huo F, Xie R. Advancements in Flexible Electronics Fabrication: Film Formation, Patterning, and Interface Optimization for Cutting-Edge Healthcare Monitoring Devices. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356954 DOI: 10.1021/acsami.4c11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Flexible electronics can seamlessly adhere to human skin or internal tissues, enabling the collection of physiological data and real-time vital sign monitoring in home settings, which give it the potential to revolutionize chronic disease management and mitigate mortality rates associated with sudden illnesses, thereby transforming current medical practices. However, the development of flexible electronic devices still faces several challenges, including issues pertaining to material selection, limited functionality, and performance instability. Among these challenges, the choice of appropriate materials, as well as their methods for film formation and patterning, lays the groundwork for versatile device development. Establishing stable interfaces, both internally within the device and in human-machine interactions, is essential for ensuring efficient, accurate, and long-term monitoring in health electronics. This review aims to provide an overview of critical fabrication steps and interface optimization strategies in the realm of flexible health electronics. Specifically, we discuss common thin film processing methods, patterning techniques for functional layers, interface challenges, and potential adjustment strategies. The objective is to synthesize recent advancements and serve as a reference for the development of innovative flexible health monitoring devices.
Collapse
Affiliation(s)
- Xu Han
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Xinjing Lin
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Yifei Sun
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Lingling Huang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, 10 Zhenhai Road, Xiamen 361102, Fujian, P. R. China
| | - Fengwei Huo
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruijie Xie
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| |
Collapse
|
9
|
Tang H, Li Y, Liao S, Liu H, Qiao Y, Zhou J. Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation. Adv Healthc Mater 2024; 13:e2400562. [PMID: 38773929 DOI: 10.1002/adhm.202400562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Indexed: 05/24/2024]
Abstract
The past few decades have witnessed the rapid advancement and broad applications of flexible bioelectronics, in wearable and implantable electronics, brain-computer interfaces, neural science and technology, clinical diagnosis, treatment, etc. It is noteworthy that soft and elastic conductive hydrogels, owing to their multiple similarities with biological tissues in terms of mechanics, electronics, water-rich, and biological functions, have successfully bridged the gap between rigid electronics and soft biology. Multifunctional hydrogel bioelectronics, emerging as a new generation of promising material candidates, have authentically established highly compatible and reliable, high-quality bioelectronic interfaces, particularly in bioelectronic recording and stimulation. This review summarizes the material basis and design principles involved in constructing hydrogel bioelectronic interfaces, and systematically discusses the fundamental mechanism and unique advantages in bioelectrical interfacing with the biological surface. Furthermore, an overview of the state-of-the-art manufacturing strategies for hydrogel bioelectronic interfaces with enhanced biocompatibility and integration with the biological system is presented. This review finally exemplifies the unprecedented advancement and impetus toward bioelectronic recording and stimulation, especially in implantable and integrated hydrogel bioelectronic systems, and concludes with a perspective expectation for hydrogel bioelectronics in clinical and biomedical applications.
Collapse
Affiliation(s)
- Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shufei Liao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Houfang Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
10
|
Ouyang Z, Wang S, Wang Y, Muqaddas S, Geng S, Yao Z, Zhang X, Yuan B, Zhao X, Xu Q, Tang S, Zhang Q, Li J, Sun H. An Ultralight Composite Current Collector Enabling High-Energy-Density and High-Rate Anode-Free Lithium Metal Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407648. [PMID: 38900369 DOI: 10.1002/adma.202407648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Anode-free lithium (Li) metal batteries are promising alternatives to current Li-ion batteries due to their advantages such as high energy density, low cost, and convenient production. However, the copper (Cu) current collector accounts for more than 25 wt% of the total weight of the anode-free battery without capacity contribution, which severely reduces the energy and power densities. Here, a new family of ultralight composite current collectors with a low areal density of 0.78 mg cm-2, representing significant weight reduction of 49%-91% compared with the Cu-based current collectors for high-energy Li batteries, is presented. Rational molecular engineering of the polyacylsemicarbazide substrate enables enhanced interfacial interaction with the sputtered Cu layer, which results in excellent interfacial stability, flexibility, and safety for the obtained anode-free batteries. The battery-level energy density has been significantly improved by 36%-61%, and a maximum rate capability reaches 5 C (10 mA cm-2) attributed to the homogeneous Li+ flux and smooth Li deposition on the nanostructured Cu layer. The results not only open a new avenue to improve the energy and power densities of anode-free batteries via composite current collector innovation but, in a broader context, provide a new paradigm to pursue high-performance, high-safety, and flexible batteries.
Collapse
Affiliation(s)
- Zhaofeng Ouyang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuo Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sheza Muqaddas
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shitao Geng
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhibo Yao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Yuan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoju Zhao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiuchen Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shanshan Tang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Sun
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
12
|
Lei J, Zhang X, Wang J, Yu F, Liang M, Wang X, Bi Z, Shang G, Xie H, Ma J. Interlayer Structure Manipulation of FeOCl/MXene with Soft/Hard Interface Design for Safe Water Production Using Dechlorination Battery Deionization. Angew Chem Int Ed Engl 2024; 63:e202401972. [PMID: 38703075 DOI: 10.1002/anie.202401972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Suffering from the susceptibility to decomposition, the potential electrochemical application of FeOCl has greatly been hindered. The rational design of the soft-hard material interface can effectively address the challenge of stress concentration and thus decomposition that may occur in the electrodes during charging and discharging. Herein, interlayer structure manipulation of FeOCl/MXene using soft-hard interface design method were conducted for electrochemical dechlorination. FeOCl was encapsulated in Ti3C2Tx MXene nanosheets by electrostatic self-assembly layer by layer to form a soft-hard mechanical hierarchical structure, in which Ti3C2Tx was used as flexible buffer layers to relieve the huge volume change of FeOCl during Cl- intercalation/deintercalation and constructed a conductive network for fast charge transfer. The CDI dechlorination system of FeOCl/Ti3C2Tx delivered outstanding Cl- adsorption capacity (158.47 ± 6.98 mg g-1), rate (6.07 ± 0.35 mg g-1 min-1), and stability (over 94.49 % in 30 cycles), and achieved considerable energy recovery (21.14 ± 0.25 %). The superior dechlorination performance was proved to originate from the Fe2+/Fe3+ topochemical transformation and the deformation constraint effect of Ti3C2Tx on FeOCl. Our interfacial design strategy enables a hard-to-soft integration capacity, which can serve as a universal technology for solving the traditional problem of electrode volume expansion.
Collapse
Affiliation(s)
- Jingjing Lei
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Xiaochen Zhang
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Junce Wang
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, P.R. China
| | - Mingxing Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Xinru Wang
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Zhuanfang Bi
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Guangyi Shang
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co. Ltd., Hangzhou, 310003, P. R. China
| | - Jie Ma
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
- School of Civil Engineering, Kashi University, Kashi, 844000, P.R. China
| |
Collapse
|
13
|
Kong X, Dong M, Du M, Qian J, Yin J, Zheng Q, Wu ZL. Recent Progress in 3D Printing of Polymer Materials as Soft Actuators and Robots. CHEM & BIO ENGINEERING 2024; 1:312-329. [PMID: 39974466 PMCID: PMC11835162 DOI: 10.1021/cbe.4c00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 02/21/2025]
Abstract
With inspiration from natural systems, various soft actuators and robots have been explored in recent years with versatile applications in biomedical and engineering fields. Soft active materials with rich stimulus-responsive characteristics have been an ideal candidate to devise these soft machines by using different manufacturing technologies. Among these technologies, three-dimensional (3D) printing shows advantages in fabricating constructs with multiple materials and sophisticated architectures. In this Review, we aim to provide an overview of recent progress on 3D printing of soft materials, robotics performances, and representative applications. Typical 3D printing techniques are briefly introduced, followed by state-of-the-art advances in 3D printing of hydrogels, shape memory polymers, liquid crystalline elastomers, and their hybrids as soft actuators and robots. From the perspective of material properties, the commonly used printing techniques and action-generation principles for typical printed constructs are discussed. Actuation performances, locomotive behaviors, and representative applications of printed soft materials are summarized. The relationship between printing structures and action performances of soft actuators and robots is also briefly discussed. Finally, the advantages and limitations of each soft material are compared, and the remaining challenges and future directions in this field are prospected.
Collapse
Affiliation(s)
- Xiangren Kong
- Key
Laboratory of Soft Machines and Smart Devices of Zhejiang Province,
Department of Engineering Mechanics, Zhejiang
University, Hangzhou 310027, China
- Ministry
of Education Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Min Dong
- Ministry
of Education Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Miao Du
- Ministry
of Education Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jin Qian
- Key
Laboratory of Soft Machines and Smart Devices of Zhejiang Province,
Department of Engineering Mechanics, Zhejiang
University, Hangzhou 310027, China
| | - Jun Yin
- The
State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory
of 3D Printing Process and Equipment of Zhejiang Province, School
of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qiang Zheng
- Ministry
of Education Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zi Liang Wu
- Ministry
of Education Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Song Y, Hu C, Wang Z, Wang L. Silk-based wearable devices for health monitoring and medical treatment. iScience 2024; 27:109604. [PMID: 38628962 PMCID: PMC11019284 DOI: 10.1016/j.isci.2024.109604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Previous works have focused on enhancing the tensile properties, mechanical flexibility, biocompatibility, and biodegradability of wearable devices for real-time and continuous health management. Silk proteins, including silk fibroin (SF) and sericin, show great advantages in wearable devices due to their natural biodegradability, excellent biocompatibility, and low fabrication cost. Moreover, these silk proteins possess great potential for functionalization and are being explored as promising candidates for multifunctional wearable devices with sensory capabilities and therapeutic purposes. This review introduces current advancements in silk-based constituents used in the assembly of wearable sensors and adhesives for detecting essential physiological indicators, including metabolites in body fluids, body temperature, electrocardiogram (ECG), electromyogram (EMG), pulse, and respiration. SF and sericin play vital roles in addressing issues related to discomfort reduction, signal fidelity improvement, as well as facilitating medical treatment. These developments signify a transition from hospital-centered healthcare toward individual-centered health monitoring and on-demand therapeutic interventions.
Collapse
Affiliation(s)
- Yu Song
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuting Hu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
15
|
Ye C, Zhao L, Yang S, Li X. Recent Research on Preparation and Application of Smart Joule Heating Fabrics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309027. [PMID: 38072784 DOI: 10.1002/smll.202309027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Indexed: 05/03/2024]
Abstract
Multifunctional wearable heaters have attracted much attention for their effective applications in personal thermal management and medical therapy. Compared to passive heating, Joule heating offers significant advantages in terms of reusability, reliable temperature control, and versatile coupling. Joule-heated fabrics make wearable electronics smarter. This review critically discusses recent advances in Joule-heated smart fabrics, focusing on various fabrication strategies based on material-structure synergy. Specifically, various applicable conductive materials with Joule heating effect are first summarized. Subsequently, different preparation methods for Joule heating fabrics are compared, and then their various applications in smart clothing, healthcare, and visual indication are discussed. Finally, the challenges faced in developing these smart Joule heating fabrics and their possible solutions are discussed.
Collapse
Affiliation(s)
- Chunfa Ye
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Longqi Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Sihui Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaoyan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
16
|
Liu H, Ji X, Guo Z, Wei X, Fan J, Shi P, Pu X, Gong F, Xu L. A high-current hydrogel generator with engineered mechanoionic asymmetry. Nat Commun 2024; 15:1494. [PMID: 38374305 PMCID: PMC10876576 DOI: 10.1038/s41467-024-45931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Mechanoelectrical energy conversion is a potential solution for the power supply of miniaturized wearable and implantable systems; yet it remains challenging due to limited current output when exploiting low-frequency motions with soft devices. We report a design of a hydrogel generator with mechanoionic current generation amplified by orders of magnitudes with engineered structural and chemical asymmetry. Under compressive loading, relief structures in the hydrogel intensify net ion fluxes induced by deformation gradient, which synergize with asymmetric ion adsorption characteristics of the electrodes and distinct diffusivity of cations and anions in the hydrogel matrix. This engineered mechanoionic process can yield 4 mA (5.5 A m-2) of peak current under cyclic compression of 80 kPa applied at 0.1 Hz, with the transferred charge reaching up to 916 mC m-2 per cycle. The high current output of this miniaturized hydrogel generator is beneficial for the powering of wearable devices, as exemplified by a controlled drug-releasing system for wound healing. The demonstrated mechanisms for amplifying mechanoionic effect will enable further designs for a variety of self-powered biomedical systems.
Collapse
Affiliation(s)
- Hongzhen Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Xianglin Ji
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR, China
| | - Zihao Guo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Xi Wei
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR, China
| | - Xiong Pu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.
| | - Feng Gong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, China.
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
17
|
Zhou J, Cheng H, Cheng J, Wang L, Xu H. The Emergence of High-Performance Conjugated Polymer/Inorganic Semiconductor Hybrid Photoelectrodes for Solar-Driven Photoelectrochemical Water Splitting. SMALL METHODS 2024; 8:e2300418. [PMID: 37421184 DOI: 10.1002/smtd.202300418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Indexed: 07/10/2023]
Abstract
Solar-driven photoelectrochemical (PEC) energy conversion holds great potential in converting solar energy into storable and transportable chemicals or fuels, providing a viable route toward a carbon-neutral society. Conjugated polymers are rapidly emerging as a new class of materials for PEC water splitting. They exhibit many intriguing properties including tunable electronic structures through molecular engineering, excellent light harvesting capability with high absorption coefficients, and facile fabrication of large-area thin films via solution processing. Recent advances have indicated that integrating rationally designed conjugated polymers with inorganic semiconductors is a promising strategy for fabricating efficient and stable hybrid photoelectrodes for high-efficiency PEC water splitting. This review introduces the history of developing conjugated polymers for PEC water splitting. Notable examples of utilizing conjugated polymers to broaden the light absorption range, improve stability, and enhance the charge separation efficiency of hybrid photoelectrodes are highlighted. Furthermore, key challenges and future research opportunities for further improvements are also presented. This review provides an up-to-date overview of fabricating stable and high-efficiency PEC devices by integrating conjugated polymers with state-of-the-art semiconductors and would have significant implications for the broad solar-to-chemical energy conversion research.
Collapse
Affiliation(s)
- Jie Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hao Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hangxun Xu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
18
|
Pyun KR, Kwon K, Yoo MJ, Kim KK, Gong D, Yeo WH, Han S, Ko SH. Machine-learned wearable sensors for real-time hand-motion recognition: toward practical applications. Natl Sci Rev 2024; 11:nwad298. [PMID: 38213520 PMCID: PMC10776364 DOI: 10.1093/nsr/nwad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Accepted: 11/01/2023] [Indexed: 01/13/2024] Open
Abstract
Soft electromechanical sensors have led to a new paradigm of electronic devices for novel motion-based wearable applications in our daily lives. However, the vast amount of random and unidentified signals generated by complex body motions has hindered the precise recognition and practical application of this technology. Recent advancements in artificial-intelligence technology have enabled significant strides in extracting features from massive and intricate data sets, thereby presenting a breakthrough in utilizing wearable sensors for practical applications. Beyond traditional machine-learning techniques for classifying simple gestures, advanced machine-learning algorithms have been developed to handle more complex and nuanced motion-based tasks with restricted training data sets. Machine-learning techniques have improved the ability to perceive, and thus machine-learned wearable soft sensors have enabled accurate and rapid human-gesture recognition, providing real-time feedback to users. This forms a crucial component of future wearable electronics, contributing to a robust human-machine interface. In this review, we provide a comprehensive summary covering materials, structures and machine-learning algorithms for hand-gesture recognition and possible practical applications through machine-learned wearable electromechanical sensors.
Collapse
Affiliation(s)
- Kyung Rok Pyun
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
| | - Kangkyu Kwon
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
| | - Myung Jin Yoo
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
| | - Kyun Kyu Kim
- Department of Chemical Engineering, Stanford University, Stanford, CA94305, USA
| | - Dohyeon Gong
- Department of Mechanical Engineering, Ajou University, Suwon-si16499, South Korea
| | - Woon-Hong Yeo
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
| | - Seungyong Han
- Department of Mechanical Engineering, Ajou University, Suwon-si16499, South Korea
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
- Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Seoul08826, South Korea
| |
Collapse
|
19
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
20
|
Linares-Moreau M, Brandner LA, Velásquez-Hernández MDJ, Fonseca J, Benseghir Y, Chin JM, Maspoch D, Doonan C, Falcaro P. Fabrication of Oriented Polycrystalline MOF Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309645. [PMID: 38018327 DOI: 10.1002/adma.202309645] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Indexed: 11/30/2023]
Abstract
The field of metal-organic frameworks (MOFs) has progressed beyond the design and exploration of powdery and single-crystalline materials. A current challenge is the fabrication of organized superstructures that can harness the directional properties of the individual constituent MOF crystals. To date, the progress in the fabrication methods of polycrystalline MOF superstructures has led to close-packed structures with defined crystalline orientation. By controlling the crystalline orientation, the MOF pore channels of the constituent crystals can be aligned along specific directions: these systems possess anisotropic properties including enhanced diffusion along specific directions, preferential orientation of guest species, and protection of functional guests. In this perspective, we discuss the current status of MOF research in the fabrication of oriented polycrystalline superstructures focusing on the specific crystalline directions of orientation. Three methods are examined in detail: the assembly from colloidal MOF solutions, the use of external fields for the alignment of MOF particles, and the heteroepitaxial ceramic-to-MOF growth. This perspective aims at promoting the progress of this field of research and inspiring the development of new protocols for the preparation of MOF systems with oriented pore channels, to enable advanced MOF-based devices with anisotropic properties.
Collapse
Affiliation(s)
- Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Lea A Brandner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | | | - Javier Fonseca
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Youven Benseghir
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna, A-1090, Austria
| | - Jia Min Chin
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna, A-1090, Austria
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Christian Doonan
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| |
Collapse
|
21
|
Abstract
Efforts to design devices emulating complex cognitive abilities and response processes of biological systems have long been a coveted goal. Recent advancements in flexible electronics, mirroring human tissue's mechanical properties, hold significant promise. Artificial neuron devices, hinging on flexible artificial synapses, bioinspired sensors, and actuators, are meticulously engineered to mimic the biological systems. However, this field is in its infancy, requiring substantial groundwork to achieve autonomous systems with intelligent feedback, adaptability, and tangible problem-solving capabilities. This review provides a comprehensive overview of recent advancements in artificial neuron devices. It starts with fundamental principles of artificial synaptic devices and explores artificial sensory systems, integrating artificial synapses and bioinspired sensors to replicate all five human senses. A systematic presentation of artificial nervous systems follows, designed to emulate fundamental human nervous system functions. The review also discusses potential applications and outlines existing challenges, offering insights into future prospects. We aim for this review to illuminate the burgeoning field of artificial neuron devices, inspiring further innovation in this captivating area of research.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cong Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongli He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
22
|
Li Y, Li N, Liu W, Prominski A, Kang S, Dai Y, Liu Y, Hu H, Wai S, Dai S, Cheng Z, Su Q, Cheng P, Wei C, Jin L, Hubbell JA, Tian B, Wang S. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat Commun 2023; 14:4488. [PMID: 37495580 PMCID: PMC10372055 DOI: 10.1038/s41467-023-40191-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Soft and stretchable electronics have emerged as highly promising tools for biomedical diagnosis and biological studies, as they interface intimately with the human body and other biological systems. Most stretchable electronic materials and devices, however, still have Young's moduli orders of magnitude higher than soft bio-tissues, which limit their conformability and long-term biocompatibility. Here, we present a design strategy of soft interlayer for allowing the use of existing stretchable materials of relatively high moduli to versatilely realize stretchable devices with ultralow tissue-level moduli. We have demonstrated stretchable transistor arrays and active-matrix circuits with moduli below 10 kPa-over two orders of magnitude lower than the current state of the art. Benefiting from the increased conformability to irregular and dynamic surfaces, the ultrasoft device created with the soft interlayer design realizes electrophysiological recording on an isolated heart with high adaptability, spatial stability, and minimal influence on ventricle pressure. In vivo biocompatibility tests also demonstrate the benefit of suppressing foreign-body responses for long-term implantation. With its general applicability to diverse materials and devices, this soft-interlayer design overcomes the material-level limitation for imparting tissue-level softness to a variety of bioelectronic devices.
Collapse
Affiliation(s)
- Yang Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Nan Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Wei Liu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Seounghun Kang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Yahao Dai
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Youdi Liu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Huawei Hu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Shinya Wai
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Shilei Dai
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Zhe Cheng
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Qi Su
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Ping Cheng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Chen Wei
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lihua Jin
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
- Nanoscience and Technology Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA.
| |
Collapse
|
23
|
Preston C, Dobashi Y, Nguyen NT, Sarwar MS, Jun D, Plesse C, Sallenave X, Vidal F, Aubert PH, Madden JDW. Intrinsically Stretchable Integrated Passive Matrix Electrochromic Display Using PEDOT:PSS Ionic Liquid Composite. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37276196 DOI: 10.1021/acsami.3c02902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The low power consumption of electrochromism makes it widely used in actively shaded windows and mirrors, while flexible versions are attractive for use in wearable devices. Initial demonstration of stretchable electrochromic elements promises good conformability to complex surfaces. Here, fully integrated intrinsically stretchable electrochromic devices are demonstrated as single elements and 3 × 3 displays. Conductive and electrochromic ionic liquid-doped poly(3,4-ethylenedioxythiophene) polystyrene sulfonate is combined with poly(vinyl alcohol)-based electrolyte to form complete cells. A transmission change of 15% is demonstrated, along with a reflectance change of 25% for opaque reflective devices, with <7 s switching time, even under 30% strain. Stability under both electrochemical and mechanical strain cycling is demonstrated. A passive matrix display exhibits addressability and low cross-talk under strain. Comparable optical performance to flexible electrochromics and higher deformability provide attractive qualities for use in wearable, biometric monitoring, and robotic skin devices.
Collapse
Affiliation(s)
- Claire Preston
- Advanced Materials and Process Engineering Laboratory, Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yuta Dobashi
- Advanced Materials and Process Engineering Laboratory, Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ngoc Tan Nguyen
- Advanced Materials and Process Engineering Laboratory, Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mirza Saquib Sarwar
- Advanced Materials and Process Engineering Laboratory, Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Daniel Jun
- Advanced Materials and Process Engineering Laboratory, Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Cédric Plesse
- , CY Cergy Paris Université, CY Advanced Studies, LPPI, F-95000 Cergy, France
| | - Xavier Sallenave
- , CY Cergy Paris Université, CY Advanced Studies, LPPI, F-95000 Cergy, France
| | - Frédéric Vidal
- , CY Cergy Paris Université, CY Advanced Studies, LPPI, F-95000 Cergy, France
| | - Pierre-Henri Aubert
- , CY Cergy Paris Université, CY Advanced Studies, LPPI, F-95000 Cergy, France
| | - John D W Madden
- Advanced Materials and Process Engineering Laboratory, Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
24
|
Zhu Y, Li J, Kim J, Li S, Zhao Y, Bahari J, Eliahoo P, Li G, Kawakita S, Haghniaz R, Gao X, Falcone N, Ermis M, Kang H, Liu H, Kim H, Tabish T, Yu H, Li B, Akbari M, Emaminejad S, Khademhosseini A. Skin-interfaced electronics: A promising and intelligent paradigm for personalized healthcare. Biomaterials 2023; 296:122075. [PMID: 36931103 PMCID: PMC10085866 DOI: 10.1016/j.biomaterials.2023.122075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Skin-interfaced electronics (skintronics) have received considerable attention due to their thinness, skin-like mechanical softness, excellent conformability, and multifunctional integration. Current advancements in skintronics have enabled health monitoring and digital medicine. Particularly, skintronics offer a personalized platform for early-stage disease diagnosis and treatment. In this comprehensive review, we discuss (1) the state-of-the-art skintronic devices, (2) material selections and platform considerations of future skintronics toward intelligent healthcare, (3) device fabrication and system integrations of skintronics, (4) an overview of the skintronic platform for personalized healthcare applications, including biosensing as well as wound healing, sleep monitoring, the assessment of SARS-CoV-2, and the augmented reality-/virtual reality-enhanced human-machine interfaces, and (5) current challenges and future opportunities of skintronics and their potentials in clinical translation and commercialization. The field of skintronics will not only minimize physical and physiological mismatches with the skin but also shift the paradigm in intelligent and personalized healthcare and offer unprecedented promise to revolutionize conventional medical practices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Yichao Zhao
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Payam Eliahoo
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA, 90007, United States
| | - Guanghui Li
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China; Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hao Liu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - HanJun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Tanveer Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Department of Manufacturing Systems Engineering and Management, California State University, Northridge, CA, 91330, United States
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada
| | - Sam Emaminejad
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| |
Collapse
|
25
|
Pragya A, Ghosh TK. Soft Functionally Gradient Materials and Structures - Natural and Manmade: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300912. [PMID: 37031358 DOI: 10.1002/adma.202300912] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Functionally gradient materials (FGM) have gradual variations in their properties along one or more dimensions due to local compositional or structural distinctions by design. Traditionally, hard materials (e.g., metals, ceramics) are used to design and fabricate FGMs; however, there is increasing interest in polymer-based soft and compliant FGMs mainly because of their potential application in the human environment. Soft FGMs are ideally suitable to manage interfacial problems in dissimilar materials used in many emerging devices and systems for human interaction, such as soft robotics and electronic textiles and beyond. Soft systems are ubiquitous in everyday lives; they are resilient and can easily deform, absorb energy, and adapt to changing environments. Here, the basic design and functional principles of biological FGMs and their manmade counterparts are discussed using representative examples. The remarkable multifunctional properties of natural FGMs resulting from their sophisticated hierarchical structures, built from a relatively limited choice of materials, offer a rich source of new design paradigms and manufacturing strategies for manmade materials and systems for emerging technological needs. Finally, the challenges and potential pathways are highlighted to leverage soft materials' facile processability and unique properties toward functional FGMs.
Collapse
Affiliation(s)
- Akanksha Pragya
- Department of Textile Engineering Chemistry and Science, Fiber, and Polymer Science Program, Wilson College of Textiles, North Carolina State University, North Carolina State University, 1020 Main Campus Drive, Raleigh, NC, 27606, USA
| | - Tushar K Ghosh
- Department of Textile Engineering Chemistry and Science, Fiber, and Polymer Science Program, Wilson College of Textiles, North Carolina State University, North Carolina State University, 1020 Main Campus Drive, Raleigh, NC, 27606, USA
| |
Collapse
|
26
|
Xie X, Song J, Fan H, Bai L, Liu S, Wang Y, Zheng W, Liu W. Flexible aqueous supercapacitors with excellent cycling performance and high-energy density based on mesocrystalline NiCo-LDHs. Phys Chem Chem Phys 2023; 25:9104-9114. [PMID: 36928112 DOI: 10.1039/d3cp00450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Flexible aqueous supercapacitors are promising candidates as safe power sources for wearable electronic devices (WEDs). However, the absence of advanced electrode materials with high structural stability has become the most critical factor hindering the development, which is closely related to the poor interface combination between the active substances and flexible collectors. Herein, a unique rigid layered double hydroxide (LDH) nanorod array with the mesocrystalline feature is created using the NiO-Ni layer as the inducer by the electrodeposition strategy. Differing from the traditional NiCo-LDH nanosheets directly grown on a carbon cloth, an elaborately designed NiO-Ni buffer can simultaneously and effectively improve the bidirectional combination with active substances and collectors, also the mesocrystalline LDH showed enhanced intrinsic stability through the reinforcing effect of grain boundaries. Benefiting from these, the assembled supercapacitor exhibited pre-eminent cycle stability (increased from 64% of the initial capacity after 10 000 cycles to no significant attenuation after 50 000 cycles) and ultrahigh energy density. When it was used as a flexible device, a remarkable energy density of 70.4 W h kg-1 could be harvested and processed with high flexibility in the bending state and good temperature adaptability. This study provides an excellent design strategy for the development of next-generation flexible supercapacitors with the goal of better comprehensive performances.
Collapse
Affiliation(s)
- Xiaohui Xie
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jinyue Song
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Hongguang Fan
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Lichong Bai
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Shuang Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yanpeng Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Wansu Zheng
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Wei Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
27
|
Youssef L, Renner-Rao M, Eren ED, Jehle F, Harrington MJ. Fabrication of Tunable Mechanical Gradients by Mussels via Bottom-Up Self-Assembly of Collagenous Precursors. ACS NANO 2023; 17:2294-2305. [PMID: 36657382 DOI: 10.1021/acsnano.2c08801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Functionally graded interfaces are prominent in biological tissues and are used to mitigate stress concentrations at junctions between mechanically dissimilar components. Biological mechanical gradients serve as important role models for bioinspired design in technically and biomedically relevant applications. However, this necessitates elucidating exactly how natural gradients mitigate mechanical mismatch and how such gradients are fabricated. Here, we applied a cross-disciplinary experimental approach to understand structure, function, and formation of mechanical gradients in byssal threads─collagen-based fibers used by marine mussels to anchor on hard surfaces. The proximal end of threads is approximately 50-fold less stiff and twice as extensible as the distal end. However, the hierarchical structure of the distal-proximal junction is still not fully elucidated, and it is unclear how it is formed. Using tensile testing coupled with video extensometry, confocal Raman spectroscopy, and transmission electron microscopy on native threads, we identified a continuous graded transition in mechanics, composition, and nanofibrillar morphology, which extends several hundreds of microns and which can vary significantly between individual threads. Furthermore, we performed in vitro fiber assembly experiments using purified secretory vesicles from the proximal and distal regions of the secretory glands (which contain different precursor proteins), revealing spontaneous self-assembly of distinctive distal- and proximal-like fiber morphologies. Aside from providing fundamental insights into the byssus structure, function, and fabrication, our findings reveal key design principles for bioinspired design of functionally graded polymeric materials.
Collapse
Affiliation(s)
- Lucia Youssef
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Max Renner-Rao
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Egemen Deniz Eren
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Franziska Jehle
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Matthew J Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
28
|
Du Y, Du W, Lin D, Ai M, Li S, Zhang L. Recent Progress on Hydrogel-Based Piezoelectric Devices for Biomedical Applications. MICROMACHINES 2023; 14:167. [PMID: 36677228 PMCID: PMC9862259 DOI: 10.3390/mi14010167] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Flexible electronics have great potential in the application of wearable and implantable devices. Through suitable chemical alteration, hydrogels, which are three-dimensional polymeric networks, demonstrate amazing stretchability and flexibility. Hydrogel-based electronics have been widely used in wearable sensing devices because of their biomimetic structure, biocompatibility, and stimuli-responsive electrical properties. Recently, hydrogel-based piezoelectric devices have attracted intensive attention because of the combination of their unique piezoelectric performance and conductive hydrogel configuration. This mini review is to give a summary of this exciting topic with a new insight into the design and strategy of hydrogel-based piezoelectric devices. We first briefly review the representative synthesis methods and strategies of hydrogels. Subsequently, this review provides several promising biomedical applications, such as bio-signal sensing, energy harvesting, wound healing, and ultrasonic stimulation. In the end, we also provide a personal perspective on the future strategies and address the remaining challenges on hydrogel-based piezoelectric electronics.
Collapse
Affiliation(s)
- Yuxuan Du
- Department of Materials Science, University of Southern California, Los Angeles, CA 90018, USA
| | - Wenya Du
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dabin Lin
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, China
| | - Minghao Ai
- College of Engineering and Computer Science, Syracuse University, Syracuse, NY 13202, USA
| | - Songhang Li
- Department of Physics and Astronomy, Franklin & Marshall College, Lancaster, PA 17604, USA
| | - Lin Zhang
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
Han F, Wang T, Liu G, Liu H, Xie X, Wei Z, Li J, Jiang C, He Y, Xu F. Materials with Tunable Optical Properties for Wearable Epidermal Sensing in Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109055. [PMID: 35258117 DOI: 10.1002/adma.202109055] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Advances in wearable epidermal sensors have revolutionized the way that physiological signals are captured and measured for health monitoring. One major challenge is to convert physiological signals to easily readable signals in a convenient way. One possibility for wearable epidermal sensors is based on visible readouts. There are a range of materials whose optical properties can be tuned by parameters such as temperature, pH, light, and electric fields. Herein, this review covers and highlights a set of materials with tunable optical properties and their integration into wearable epidermal sensors for health monitoring. Specifically, the recent progress, fabrication, and applications of these materials for wearable epidermal sensors are summarized and discussed. Finally, the challenges and perspectives for the next generation wearable devices are proposed.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tiansong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Li
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Yuan He
- The Second Affiliated Hospital, Xi'an Medical University, Xi'an, 710038, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
30
|
Du R, Jin Q, Zhu T, Wang C, Li S, Li Y, Huang X, Jiang Y, Li W, Bao T, Cao P, Pan L, Chen X, Zhang Q, Jia X. Sliding Cyclodextrin Molecules along Polymer Chains to Enhance the Stretchability of Conductive Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200533. [PMID: 35388964 DOI: 10.1002/smll.202200533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The demand for stretchable electronics with a broader working range is increasing for wide application in wearable sensors and e-skin. However, stretchable conductors based on soft elastomers always exhibit low working range due to the inhomogeneous breakage of the conductive network when stretched. Here, a highly stretchable and self-healable conductor is reported by adopting polyrotaxane and disulfide bonds into the binding layer. The binding layer (PR-SS) builds the bridge between polymer substrates (PU-SS) and silver nanowires (AgNWs). The incorporation of sliding molecules endows the stretchable conductor with a long sensing range (190%) due to the energy dissipation derived from the sliding nature of polyrotaxanes, which is two times higher than the working range (93%) of conductors based on AP-SS without polyrotaxanes. Furthermore, the mechanism of sliding effect for the polyrotaxanes in the elastomers is investigated by SEM for morphological change of AgNWs, in situ small-angle x-ray scattering, as well as stress relaxation experiments. Finally, human-body-related sensing tests and a self-correction system in fitness are designed and demonstrated.
Collapse
Affiliation(s)
- Ruichun Du
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education (MOE), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Qi Jin
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education (MOE), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Tangsong Zhu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education (MOE), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Changxian Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sheng Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yanzhen Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xinxin Huang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education (MOE), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Ying Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wenlong Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Tianwei Bao
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education (MOE), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Pengfei Cao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qiuhong Zhang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education (MOE), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xudong Jia
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education (MOE), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
31
|
Li Y, Chen C, Jiang J, Liu S, Zhang Z, Xiao L, Lian R, Sun L, Luo W, Tim‐yun Ong M, Yuk‐wai Lee W, Chen Y, Yuan Y, Zhao J, Liu C, Li Y. Bioactive Film-Guided Soft-Hard Interface Design Technology for Multi-Tissue Integrative Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105945. [PMID: 35322573 PMCID: PMC9130887 DOI: 10.1002/advs.202105945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Control over soft-to-hard tissue interfaces is attracting intensive worldwide research efforts. Herein, a bioactive film-guided soft-hard interface design (SHID) for multi-tissue integrative regeneration is shown. Briefly, a soft bioactive film with good elasticity matchable to native ligament tissue, is incorporated with bone-mimic components (calcium phosphate cement, CPC) to partially endow the soft-film with hard-tissue mimicking feature. The hybrid film is elegantly compounded with a clinical artificial ligament to act as a buffer zone to bridge the soft (ligament) and hard tissues (bone). Moreover, the bioactive film-decorated ligament can be rolled into a 3D bio-instructive implant with spatial-controllable distribution of CPC bioactive motifs. CPC then promotes the recruitment and differentiation of endogenous cells in to the implant inside part, which enables a vascularized bone growth into the implant, and forms a structure mimicking the biological ligament-bone interface, thereby significantly improving osteointegration and biomechanical property. Thus, this special design provides an effective SHID-guided implant-bioactivation strategy unreached by the traditional manufacturing methods, enlightening a promising technology to develop an ideal SHID for translational use in the future.
Collapse
Affiliation(s)
- Yamin Li
- Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Can Chen
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Jia Jiang
- Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Shengyang Liu
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Zeren Zhang
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Lan Xiao
- Centre for Biomedical TechnologiesQueensland University of TechnologyThe Australia‐China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM)60 Musk Avenue, Kelvin GroveBrisbaneQLD4059Australia
| | - Ruixian Lian
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Lili Sun
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Wei Luo
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Michael Tim‐yun Ong
- Department of Orthopaedics and TraumatologyFaculty of MedicinePrince of Wales HospitalThe Chinese University of Hong KongShatinHong KongChina
| | - Wayne Yuk‐wai Lee
- Department of Orthopaedics and TraumatologyLi Ka Shing Institute of Health SciencesFaculty of MedicinePrince of Wales HospitalThe Chinese University of Hong KongShatinHong KongChina
| | - Yunsu Chen
- Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yuan Yuan
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Jinzhong Zhao
- Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Changsheng Liu
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Yulin Li
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
32
|
Xu B, Li M, Li M, Fang H, Wang Y, Sun X, Guo Q, Wang Z, Liu Y, Chen D. Radio Frequency Resonator-Based Flexible Wireless Pressure Sensor with MWCNT-PDMS Bilayer Microstructure. MICROMACHINES 2022; 13:404. [PMID: 35334696 PMCID: PMC8952374 DOI: 10.3390/mi13030404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/30/2022]
Abstract
Flexible pressure sensors have been widely applied in wearable devices, e-skin, and the new generation of robots. However, most of the current sensors use connecting wires for energy supply and signal transmission, which presents an obstacle for application scenarios requiring long endurance and large movement, especially. Flexible sensors combined with wireless technology is a promising research field for realizing efficient state sensing in an active state. Here, we designed and fabricated a soft wireless passive pressure sensor, with a fully flexible Ecoflex substrate and a multi-walled carbon nanotube/polydimethylsiloxane (MWCNT/PDMS) bilayer pyramid dielectric structure. Based on the principle of the radio-frequency resonator, the device achieved pressure sensing with a changeable capacitance. Subsequently, the effect of the pyramid density was simulated by the finite element method to improve the sensitivity. With one-step embossing and spin-coating methods, the fabricated sensor had an optimized sensitivity of 14.25 MHz/kPa in the low-pressure range. The sensor exhibited the potential for application in limb bending monitoring, thus demonstrating its value for long-term wireless clinical monitoring. Moreover, the radio frequency coupling field can be affected by approaching objects, which provides a possible route for realizing non-contact sensing in applications such as pre-collision warning.
Collapse
Affiliation(s)
- Baochun Xu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (B.X.); (M.L.); (M.L.); (H.F.); (Y.W.); (Z.W.)
| | - Mingyue Li
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (B.X.); (M.L.); (M.L.); (H.F.); (Y.W.); (Z.W.)
| | - Min Li
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (B.X.); (M.L.); (M.L.); (H.F.); (Y.W.); (Z.W.)
| | - Haoyu Fang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (B.X.); (M.L.); (M.L.); (H.F.); (Y.W.); (Z.W.)
| | - Yu Wang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (B.X.); (M.L.); (M.L.); (H.F.); (Y.W.); (Z.W.)
| | - Xun Sun
- Guizhou Aerospace Institute of Measuring and Testing Technology, Guiyang 550009, China;
| | - Qiuquan Guo
- Shenzhen Institute for Advanced Study, University of Electronics Science and Technology of China, Shenzhen 518110, China;
| | - Zhuopeng Wang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (B.X.); (M.L.); (M.L.); (H.F.); (Y.W.); (Z.W.)
| | - Yijian Liu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (B.X.); (M.L.); (M.L.); (H.F.); (Y.W.); (Z.W.)
| | - Da Chen
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (B.X.); (M.L.); (M.L.); (H.F.); (Y.W.); (Z.W.)
| |
Collapse
|
33
|
Song L, Chen J, Xu BB, Huang Y. Flexible Plasmonic Biosensors for Healthcare Monitoring: Progress and Prospects. ACS NANO 2021; 15:18822-18847. [PMID: 34841852 DOI: 10.1021/acsnano.1c07176] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The noble metal nanoparticle has been widely utilized as a plasmonic unit to enhance biosensors, by leveraging its electric and/or optical properties. Integrated with the "flexible" feature, it further enables opportunities in developing healthcare products in a conformal and adaptive fashion, such as wrist pulse tracers, body temperature trackers, blood glucose monitors, etc. In this work, we present a holistic review of the recent advance of flexible plasmonic biosensors for the healthcare sector. The technical spectrum broadly covers the design and selection of a flexible substrate, the process to integrate flexible and plasmonic units, the exploration of different types of flexible plasmonic biosensors to monitor human temperature, blood glucose, ions, gas, and motion indicators, as well as their applications for surface-enhanced Raman scattering (SERS) and colorimetric detections. Their fundamental working principles and structural innovations are scoped and summarized. The challenges and prospects are articulated regarding the critical importance for continued progress of flexible plasmonic biosensors to improve living quality.
Collapse
Affiliation(s)
- Liping Song
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, People's Republic of China
- National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering, Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei 230026, China
| | - Jing Chen
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chines Academy of Sciences, Ningbo 315300, China
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, People's Republic of China
| |
Collapse
|
34
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
35
|
Xiao Y, Wang M, Li Y, Sun Z, Liu Z, He L, Liu R. High-Adhesive Flexible Electrodes and Their Manufacture: A Review. MICROMACHINES 2021; 12:1505. [PMID: 34945355 PMCID: PMC8704330 DOI: 10.3390/mi12121505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022]
Abstract
All human activity is associated with the generation of electrical signals. These signals are collectively referred to as electrical physiology (EP) signals (e.g., electrocardiogram, electroencephalogram, electromyography, electrooculography, etc.), which can be recorded by electrodes. EP electrodes are not only widely used in the study of primary diseases and clinical practice, but also have potential applications in wearable electronics, human-computer interface, and intelligent robots. Various technologies are required to achieve such goals. Among these technologies, adhesion and stretchable electrode technology is a key component for rapid development of high-performance sensors. In last decade, remarkable efforts have been made in the development of flexible and high-adhesive EP recording systems and preparation technologies. Regarding these advancements, this review outlines the design strategies and related materials for flexible and adhesive EP electrodes, and briefly summarizes their related manufacturing techniques.
Collapse
Affiliation(s)
- Yingying Xiao
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China; (Y.X.); (M.W.); (Y.L.); (Z.S.)
| | - Mengzhu Wang
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China; (Y.X.); (M.W.); (Y.L.); (Z.S.)
| | - Ye Li
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China; (Y.X.); (M.W.); (Y.L.); (Z.S.)
| | - Zhicheng Sun
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China; (Y.X.); (M.W.); (Y.L.); (Z.S.)
| | - Zilong Liu
- Division of Optics, National Institute of Metrology, Beijing 100029, China;
| | - Liang He
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China;
| | - Ruping Liu
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China; (Y.X.); (M.W.); (Y.L.); (Z.S.)
| |
Collapse
|
36
|
Wang C, Lv Z, Mohan MP, Cui Z, Liu Z, Jiang Y, Li J, Wang C, Pan S, Karim MF, Liu AQ, Chen X. Pangolin-Inspired Stretchable, Microwave-Invisible Metascale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102131. [PMID: 34431137 DOI: 10.1002/adma.202102131] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Microwave-invisible devices are emerging as a valuable technology in various applications, including soft robotics, shape-morphing structures, and textural camouflages, especially in electronic countermeasures. Unfortunately, conventional microwave-absorbing metastructures and bulk absorbers are stretching confined, limiting their application in deformable or special-shaped targets. To overcome such limitations, a conceptually novel soft-rigid-connection strategy, inspired by the pangolin, is proposed. Pangolin-inspired metascale (PIMS), which is a kind of stretchable metamaterial consisting of an electromagnetic dissipative scale (EMD-scale) and elastomer, is rationally designed. Such a device exhibits robust microwave-absorbing capacity under the interference of 50% stretching. Besides, profiting from the covering effect and size-confined effect of EMD-scale, the out-of-plane indentation failure force of PIMS is at least 5 times larger than conventional device. As a proof of concept, the proposed device is conformally pasted on nondevelopable surfaces. For a spherical dome surface, the maximum radar cross-section (RCS) reduction of PIMS is 6.3 dB larger than that of a conventional device, while for a saddle surface, the bandwidth of 10 dB RCS reduction exhibits an increase of 83%. In short, this work provides a conceptually novel platform to develop stretchable, nondevelopable surface conformable functional devices.
Collapse
Affiliation(s)
- Changxian Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhisheng Lv
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Manoj Prabhakar Mohan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zequn Cui
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhihua Liu
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ying Jiang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiaofu Li
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Cong Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shaowu Pan
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Muhammad Faeyz Karim
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| |
Collapse
|
37
|
Chen S, Qi J, Fan S, Qiao Z, Yeo JC, Lim CT. Flexible Wearable Sensors for Cardiovascular Health Monitoring. Adv Healthc Mater 2021; 10:e2100116. [PMID: 33960133 DOI: 10.1002/adhm.202100116] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases account for the highest mortality globally, but recent advances in wearable technologies may potentially change how these illnesses are diagnosed and managed. In particular, continuous monitoring of cardiovascular vital signs for early intervention is highly desired. To this end, flexible wearable sensors that can be comfortably worn over long durations are gaining significant attention. In this review, advanced flexible wearable sensors for monitoring cardiovascular vital signals are outlined and discussed. Specifically, the functional materials, configurations, mechanisms, and recent advances of these flexible sensors for heart rate, blood pressure, blood oxygen saturation, and blood glucose monitoring are highlighted. Different mechanisms in bioelectric, mechano-electric, optoelectric, and ultrasonic wearable sensors are presented to monitor cardiovascular vital signs from different body locations. Present challenges, possible strategies, and future directions of these wearable sensors are also discussed. With rapid development, these flexible wearable sensors will potentially be applicable for both medical diagnosis and daily healthcare use in tackling cardiovascular diseases.
Collapse
Affiliation(s)
- Shuwen Chen
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
| | - Jiaming Qi
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Shicheng Fan
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Zheng Qiao
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Joo Chuan Yeo
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
- Mechanobiology Institute National University of Singapore Singapore 117411 Singapore
| |
Collapse
|
38
|
Ribet S, Murthy A, Roth E, Hu X, Dos Reis R, Dravid V. Emerging Opportunities in STEM to Characterize Soft-Hard Interfaces. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:616-618. [PMID: 36101709 PMCID: PMC9467439 DOI: 10.1017/s1431927621002610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
| | - Akshay Murthy
- Department of Materials Science, Northwestern University, United States
| | - Eric Roth
- NUANCE Center, Northwestern University, United States
| | - Xiaobing Hu
- Department of Materials Science and Engineering, Northwestern University, United States
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, United States
| | - Vinayak Dravid
- Department of Materials Science and Engineering, Northwestern University, United States
| |
Collapse
|
39
|
Duan S, Lin Y, Wang Z, Tang J, Li Y, Zhu D, Wu J, Tao L, Choi CH, Sun L, Xia J, Wei L, Wang B. Conductive Porous MXene for Bionic, Wearable, and Precise Gesture Motion Sensors. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9861467. [PMID: 34223178 PMCID: PMC8212815 DOI: 10.34133/2021/9861467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/23/2021] [Indexed: 01/19/2023]
Abstract
Reliable, wide range, and highly sensitive joint movement monitoring is essential for training activities, human behavior analysis, and human-machine interfaces. Yet, most current motion sensors work on the nano/microcracks induced by the tensile deformation on the convex surface of joints during joint movements, which cannot satisfy requirements of ultrawide detectable angle range, high angle sensitivity, conformability, and consistence under cyclic movements. In nature, scorpions sense small vibrations by allowing for compression strain conversion from external mechanical vibrations through crack-shaped slit sensilla. Here, we demonstrated that ultraconformal sensors based on controlled slit structures, inspired by the geometry of a scorpion's slit sensilla, exhibit high sensitivity (0.45%deg-1), ultralow angle detection threshold (~15°), fast response/relaxation times (115/72 ms), wide range (15° ~120°), and durability (over 1000 cycles). Also, a user-friendly, hybrid sign language system has been developed to realize Chinese and American sign language recognition and feedback through video and speech broadcasts, making these conformal motion sensors promising candidates for joint movement monitoring in wearable electronics and robotics technology.
Collapse
Affiliation(s)
- Shengshun Duan
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yucheng Lin
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Zhehan Wang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
- Center for 2D Materials, Southeast University, Nanjing 211189, China
| | - Junyi Tang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yinhui Li
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Di Zhu
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Jun Wu
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Li Tao
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
- Center for 2D Materials, Southeast University, Nanjing 211189, China
- Center for Advanced Materials and Manufacture, Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Chang-Hwan Choi
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Litao Sun
- Center for 2D Materials, Southeast University, Nanjing 211189, China
- Center for Advanced Materials and Manufacture, Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education Collaborative Innovation Center for Micro/Nano Fabrication Device and System, Southeast University, Nanjing 210096, China
- Center for Advanced Carbon Materials, Southeast University and Jiangnan Graphene Research Institute, Changzhou 213100, China
| | - Jun Xia
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Lei Wei
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Baoping Wang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
40
|
Ivanov AS, Nikolaev KG, Novikov AS, Yurchenko SO, Novoselov KS, Andreeva DV, Skorb EV. Programmable Soft-Matter Electronics. J Phys Chem Lett 2021; 12:2017-2022. [PMID: 33600176 DOI: 10.1021/acs.jpclett.1c00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The hydrogels of the polyelectrolytes polyethylenimine and poly(acrylic acid) are used to form a thin-layer interface on the gallium-indium eutectic alloy's surface. The proposed method of gradually increasing the applied voltage reveals the possibility of formation of electronic components: diode, capacitor, resistor, and memristor. The components can be changed to each other many times. A multilayer perceptron model with one hidden layer and 12 nodes allows identifying hydrogels' composition and automatically setting the desired architecture of electronic components. The design of electronic components makes it possible to easy-to-produce new electronic parts and programmable soft-matter electronics.
Collapse
Affiliation(s)
- Artemii S Ivanov
- Infochemistry Scientific Center, ITMO University, 9, Lomonosova str., Saint Petersburg 191002, Russia
| | - Konstantin G Nikolaev
- Infochemistry Scientific Center, ITMO University, 9, Lomonosova str., Saint Petersburg 191002, Russia
| | - Alexander S Novikov
- Infochemistry Scientific Center, ITMO University, 9, Lomonosova str., Saint Petersburg 191002, Russia
| | | | - Kostya S Novoselov
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Daria V Andreeva
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, 9, Lomonosova str., Saint Petersburg 191002, Russia
| |
Collapse
|
41
|
Taccola S, Poliziani A, Santonocito D, Mondini A, Denk C, Ide AN, Oberparleiter M, Greco F, Mattoli V. Toward the Use of Temporary Tattoo Electrodes for Impedancemetric Respiration Monitoring and Other Electrophysiological Recordings on Skin. SENSORS 2021; 21:s21041197. [PMID: 33567724 PMCID: PMC7915056 DOI: 10.3390/s21041197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/04/2023]
Abstract
The development of dry, ultra-conformable and unperceivable temporary tattoo electrodes (TTEs), based on the ink-jet printing of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on top of commercially available temporary tattoo paper, has gained increasing attention as a new and promising technology for electrophysiological recordings on skin. In this work, we present a TTEs epidermal sensor for real time monitoring of respiration through transthoracic impedance measurements, exploiting a new design, based on the application of soft screen printed Ag ink and magnetic interlink, that guarantees a repositionable, long-term stable and robust interconnection of TTEs with external “docking” devices. The efficiency of the TTE and the proposed interconnection strategy under stretching (up to 10%) and over time (up to 96 h) has been verified on a dedicated experimental setup and on humans, fulfilling the proposed specific application of transthoracic impedance measurements. The proposed approach makes this technology suitable for large-scale production and suitable not only for the specific use case presented, but also for real time monitoring of different bio-electric signals, as demonstrated through specific proof of concept demonstrators.
Collapse
Affiliation(s)
- Silvia Taccola
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy; (A.P.); (A.M.)
- Future Manufacturing Processes Research Group, School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (S.T.); (F.G.); (V.M.)
| | - Aliria Poliziani
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy; (A.P.); (A.M.)
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Daniele Santonocito
- Emerging Application Department, MED-EL Elektromedizinische Geräte Gesellschaft m.b.H., Fürstenweg 77a, 6020 Innsbruck, Austria; (D.S.); (C.D.); (A.N.I.); (M.O.)
| | - Alessio Mondini
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy; (A.P.); (A.M.)
| | - Christian Denk
- Emerging Application Department, MED-EL Elektromedizinische Geräte Gesellschaft m.b.H., Fürstenweg 77a, 6020 Innsbruck, Austria; (D.S.); (C.D.); (A.N.I.); (M.O.)
| | - Alessandro Noriaki Ide
- Emerging Application Department, MED-EL Elektromedizinische Geräte Gesellschaft m.b.H., Fürstenweg 77a, 6020 Innsbruck, Austria; (D.S.); (C.D.); (A.N.I.); (M.O.)
| | - Markus Oberparleiter
- Emerging Application Department, MED-EL Elektromedizinische Geräte Gesellschaft m.b.H., Fürstenweg 77a, 6020 Innsbruck, Austria; (D.S.); (C.D.); (A.N.I.); (M.O.)
| | - Francesco Greco
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy; (A.P.); (A.M.)
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
- Correspondence: (S.T.); (F.G.); (V.M.)
| | - Virgilio Mattoli
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy; (A.P.); (A.M.)
- Correspondence: (S.T.); (F.G.); (V.M.)
| |
Collapse
|
42
|
Xu Z, Wu M, Gao W, Bai H. A Transparent, Skin-Inspired Composite Film with Outstanding Tear Resistance Based on Flat Silk Cocoon. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002695. [PMID: 32686143 DOI: 10.1002/adma.202002695] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Flexible and transparent substrates play a fundamental role as a mechanical support in advanced electronic devices. However, commonly used polymer films, such as polydimethylsiloxane, show low tear resistance because of their crack sensitivity. Herein, inspired by the excellent mechanical robustness of the skin and its fibrous structure, an epoxy-resin-based composite with a flat silk cocoon as a reinforcing fiber network is fabricated. With only 1 wt% of silk fiber, the tensile strength and modulus of the as-prepared composite film are considerably increased by 300% and 612% compared to those of pure resin, while still maintaining flexibility and transparency. More importantly, the composite shows remarkable tear resistance: without fracture after ≈30 000 tensile cycles. The potential application of such transparent composite films as mechanically robust substrates for flexible electronics is also demonstrated. In addition, this study represents a bioinspired strategy to construct high-performance functional composite materials.
Collapse
Affiliation(s)
- Zongpu Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mingrui Wu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weiwei Gao
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
43
|
Zhou W, Yao S, Wang H, Du Q, Ma Y, Zhu Y. Gas-Permeable, Ultrathin, Stretchable Epidermal Electronics with Porous Electrodes. ACS NANO 2020; 14:5798-5805. [PMID: 32347707 DOI: 10.1021/acsnano.0c00906] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We present gas-permeable, ultrathin, and stretchable electrodes enabled by self-assembled porous substrates and conductive nanostructures. An efficient and scalable breath figure method is employed to introduce the porous skeleton, and then silver nanowires (AgNWs) are dip-coated and heat-pressed to offer electric conductivity. The resulting film has a transmittance of 61%, sheet resistance of 7.3 Ω/sq, and water vapor permeability of 23 mg cm-2 h-1. With AgNWs embedded below the surface of the polymer, the electrode exhibits excellent stability in the presence of sweat and after long-term wear. We demonstrate the promising potential of the electrode for wearable electronics in two representative applications: skin-mountable biopotential sensing for healthcare and textile-integrated touch sensing for human-machine interfaces. The electrode can form conformal contact with human skin, leading to low skin-electrode impedance and high-quality biopotential signals. In addition, the textile electrode can be used in a self-capacitance wireless touch sensing system.
Collapse
Affiliation(s)
- Weixin Zhou
- Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910, United States
| | - Shanshan Yao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910, United States
| | - Hongyu Wang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910, United States
| | - Qingchuan Du
- Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Yanwen Ma
- Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910, United States
| |
Collapse
|
44
|
Zhang Y, Haghighi PD, Burstein F, Yap LW, Cheng W, Yao L, Cicuttini F. Electronic Skin Wearable Sensors for Detecting Lumbar-Pelvic Movements. SENSORS 2020; 20:s20051510. [PMID: 32182928 PMCID: PMC7085722 DOI: 10.3390/s20051510] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Background: A nanomaterial-based electronic-skin (E-Skin) wearable sensor has been successfully used for detecting and measuring body movements such as finger movement and foot pressure. The ultrathin and highly sensitive characteristics of E-Skin sensor make it a suitable alternative for continuously out-of-hospital lumbar–pelvic movement (LPM) monitoring. Monitoring these movements can help medical experts better understand individuals’ low back pain experience. However, there is a lack of prior studies in this research area. Therefore, this paper explores the potential of E-Skin sensors to detect and measure the anatomical angles of lumbar–pelvic movements by building a linear relationship model to compare its performance to clinically validated inertial measurement unit (IMU)-based sensing system (ViMove). Methods: The paper first presents a review and classification of existing wireless sensing technologies for monitoring of body movements, and then it describes a series of experiments performed with E-Skin sensors for detecting five standard LPMs including flexion, extension, pelvic tilt, lateral flexion, and rotation, and measure their anatomical angles. The outputs of both E-Skin and ViMove sensors were recorded during each experiment and further analysed to build the comparative models to evaluate the performance of detecting and measuring LPMs. Results: E-Skin sensor outputs showed a persistently repeating pattern for each movement. Due to the ability to sense minor skin deformation by E-skin sensor, its reaction time in detecting lumbar–pelvic movement is quicker than ViMove by ~1 s. Conclusions: E-Skin sensors offer new capabilities for detecting and measuring lumbar–pelvic movements. They have lower cost compared to commercially available IMU-based systems and their non-invasive highly stretchable characteristic makes them more comfortable for long-term use. These features make them a suitable sensing technology for developing continuous, out-of-hospital real-time monitoring and management systems for individuals with low back pain.
Collapse
Affiliation(s)
- Yuxin Zhang
- Faculty of Information Technology, Monash University, Melbourne, VIC 3145, Australia; (Y.Z.); (P.D.H.)
| | - Pari Delir Haghighi
- Faculty of Information Technology, Monash University, Melbourne, VIC 3145, Australia; (Y.Z.); (P.D.H.)
| | - Frada Burstein
- Faculty of Information Technology, Monash University, Melbourne, VIC 3145, Australia; (Y.Z.); (P.D.H.)
- Correspondence: (F.B.); (W.C.); Tel.: +61-3-9903-2011 (F.B.); +61-3-9905-3147 (W.C.)
| | - Lim Wei Yap
- Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia;
| | - Wenlong Cheng
- Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia;
- Correspondence: (F.B.); (W.C.); Tel.: +61-3-9903-2011 (F.B.); +61-3-9905-3147 (W.C.)
| | - Lina Yao
- School of Computer Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Flavia Cicuttini
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia;
| |
Collapse
|
45
|
Joo H, Jung D, Sunwoo SH, Koo JH, Kim DH. Material Design and Fabrication Strategies for Stretchable Metallic Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906270. [PMID: 32022440 DOI: 10.1002/smll.201906270] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Stretchable conductive nanocomposites fabricated by integrating metallic nanomaterials with elastomers have become a vital component of human-friendly electronics, such as wearable and implantable devices, due to their unconventional electrical and mechanical characteristics. Understanding the detailed material design and fabrication strategies to improve the conductivity and stretchability of the nanocomposites is therefore important. This Review discusses the recent technological advances toward high performance stretchable metallic nanocomposites. First, the effect of the filler material design on the conductivity is briefly discussed, followed by various nanocomposite fabrication techniques to achieve high conductivity. Methods for maintaining the initial conductivity over a long period of time are also summarized. Then, strategies on controlled percolation of nanomaterials are highlighted, followed by a discussion regarding the effects of the morphology of the nanocomposite and postfabricated 3D structures on achieving high stretchability. Finally, representative examples of applications of such nanocomposites in biointegrated electronics are provided. A brief outlook concludes this Review.
Collapse
Affiliation(s)
- Hyunwoo Joo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongjun Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
46
|
Liu X, Liu J, Wang J, Wang T, Jiang Y, Hu J, Liu Z, Chen X, Yu J. Bioinspired, Microstructured Silk Fibroin Adhesives for Flexible Skin Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5601-5609. [PMID: 31927972 DOI: 10.1021/acsami.9b21197] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wearable epidermal sensors are of great importance to the next generation of personalized healthcare. The adhesion between the flexible sensor and skin surface is critical for obtaining accurate, reliable, and stable signals. Herein we present a facile approach to fabricate a microstructured, natural silk fibroin protein-based adhesive for achieving highly conformal, comfortable, adjustable, and biocompatible adhesion on the skin surface. The microstructured fibroin adhesive (MSFA) exhibits reliable and stable bonding force on skin surfaces, even under humid or wet conditions, and can be easily peeled off from the skin without causing significant pain. Such an MSFA can greatly improve the sensitivity and reusability of epidermal strain sensors because of its conformal and tunable adhesion on skin surfaces. The MFSA has a great potential to be applied as a functional adhesive for various epidermal electronic sensors in the era of personalized healthcare.
Collapse
Affiliation(s)
- Xijian Liu
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , Shanghai 201620 , P.R. China
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| | - Jun Liu
- Institute of High Performance Computing , Agency for Science Technology and Research, 1 Fusionopolis Way , 138632 , Singapore
| | - Jilei Wang
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| | - Ting Wang
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| | - Ying Jiang
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| | - Junqing Hu
- College of Health Science and Environmental Engineering , Shenzhen Technology University , Shenzhen 518118 , China
| | - Zhuangjian Liu
- Institute of High Performance Computing , Agency for Science Technology and Research, 1 Fusionopolis Way , 138632 , Singapore
| | - Xiaodong Chen
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| | - Jing Yu
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| |
Collapse
|