1
|
Xue G, Qin B, Ma C, Yin P, Liu C, Liu K. Large-Area Epitaxial Growth of Transition Metal Dichalcogenides. Chem Rev 2024; 124:9785-9865. [PMID: 39132950 DOI: 10.1021/acs.chemrev.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.
Collapse
Affiliation(s)
- Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Biao Qin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Yin
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Can Liu
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
2
|
Chen L, Chen L, Chen H, Jiang K, Zhu L, Shang L, Li Y, Gong S, Hu Z. Phase transition in WSe 2-xTe x monolayers driven by charge injection and pressure: a first-principles study. NANOSCALE 2024. [PMID: 38477210 DOI: 10.1039/d3nr06164g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Alloying strategies permit new probes for governing structural stability and semiconductor-semimetal phase transition of transition metal dichalcogenides (TMDs). However, the possible structure and phase transition mechanism of the alloy TMDs, and the effect of an external field, have been still unclear. Here, the enrichment of the Te content in WSe2-xTex monolayers allows for coherent structural transition from the H phase to the T' phase. The crystal orbital Hamiltonian population (COHP) uncovers that the bonding state of the H phase approaches the high-energy domain near the Fermi level as the Te concentration increases, posing a source of structural instability followed by a weakened energy barrier for the phase transition. In addition, the structural phase transition driven by charge injection opens up new possibilities for the development of phase-change devices based on atomic thin films. For WSe2-xTex monolayers with the H phase as the stable phase, the critical value of electron concentration triggering the phase transition decreases with an increase in the x value. Furthermore, the energy barrier from the H phase to the T' phase can be effectively reduced by applying tensile strain, which could favor the phase switching in electronic devices. This work provides a critical reference for controllable modulation of phase-sensitive devices from alloy materials with rich phase characteristics.
Collapse
Affiliation(s)
- Liyuan Chen
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Li Chen
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Hongli Chen
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Kai Jiang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Liangqing Zhu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Liyan Shang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Yawei Li
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Shijing Gong
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Zhigao Hu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
3
|
Cui X, Yan H, Yan X, Zhou K, Cai Y. Promoted Electronic Coupling of Acoustic Phonon Modes in Doped Semimetallic MoTe 2. ACS NANO 2023; 17:16530-16538. [PMID: 37646299 DOI: 10.1021/acsnano.3c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
As a prototype of the Weyl superconductor, layered molybdenum ditelluride (MoTe2) encompasses two semimetallic phases (1T' and Td) which differentiate from each other via a slight tilting of the out-of-plane lattice. Both phases are subjected to serious phase mixing, which complicates the analysis of its origin of superconductivity. Herein, we explore the electron-phonon coupling (EPC) of the monolayer semimetallic MoTe2, without phase ambiguity under this thickness limit. Apart from the hardening or softening of the phonon modes, the strength of the EPC can be strongly modulated by doping. Specifically, longitudinal and out-of-plane acoustic modes are significantly activated for electron doped MoTe2. This is ascribed to the presence of rich valley states and equispaced nesting bands, which are dynamically populated under charge doping. Through comparing the monolayer and bilayer MoTe2, the strength of EPC is found to be less likely to depend on thickness for neutral samples but clearly promoted for thinner samples with electron doping, while for hole doping, the strength alters more significantly with the thickness than doping. Our work explains the issue of the doping sensitivity of the superconductivity in semimetallic MoTe2 and establishes the critical role of activating acoustic phonons in such low-dimensional materials.
Collapse
Affiliation(s)
- Xiangyue Cui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
| | - Hejin Yan
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
| | - Xuefei Yan
- School of Microelectronics Science and Technology, Sun Yat-Sen University, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-Sen University, Zhuhai 519082, China
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141 Singapore
| | - Yongqing Cai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
| |
Collapse
|
4
|
Zhang Y, Fei F, Liu R, Zhu T, Chen B, Qiu T, Zuo Z, Guo J, Tang W, Zhou L, Xi X, Wu X, Wu D, Zhong Z, Song F, Zhang R, Wang X. Enhanced Superconductivity and Upper Critical Field in Ta-Doped Weyl Semimetal T d -MoTe 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207841. [PMID: 36905678 DOI: 10.1002/adma.202207841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 02/14/2023] [Indexed: 05/12/2023]
Abstract
2D transition metal dichalcogenides are promising platforms for next-generation electronics and spintronics. The layered Weyl semimetal (W,Mo)Te2 series features structural phase transition, nonsaturated magnetoresistance, superconductivity, and exotic topological physics. However, the superconducting critical temperature of the bulk (W,Mo)Te2 remains ultralow without applying a high pressure. Here, the significantly enhanced superconductivity is observed with a transition temperature as large as about 7.5 K in bulk Mo1- x Tax Te2 single crystals upon Ta doping (0 ≤ x ≤ 0.22), which is attributed to an enrichment of density of states at the Fermi level. In addition, an enhanced perpendicular upper critical field of 14.5 T exceeding the Pauli limit is also observed in Td -phase Mo1- x Tax Te2 (x = 0.08), indicating the possible emergence of unconventional mixed singlet-triplet superconductivity owing to the inversion symmetry breaking. This work provides a new pathway for exploring the exotic superconductivity and topological physics in transition metal dichalcogenides.
Collapse
Affiliation(s)
- Yong Zhang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Fucong Fei
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Ruxin Liu
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Tongshuai Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Bo Chen
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Tianyu Qiu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Zewen Zuo
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Jingwen Guo
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Wenchao Tang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Lifan Zhou
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Xiaoxiang Xi
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Xiaoshan Wu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Di Wu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Zhicheng Zhong
- Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, China
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Rong Zhang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Department of Physics, Xiamen University, Xiamen, 316005, China
| | - Xuefeng Wang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
5
|
Xiao Y, Xiong C, Chen MM, Wang S, Fu L, Zhang X. Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chem Soc Rev 2023; 52:1215-1272. [PMID: 36601686 DOI: 10.1039/d1cs01016f] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Together with the development of two-dimensional (2D) materials, transition metal dichalcogenides (TMDs) have become one of the most popular series of model materials for fundamental sciences and practical applications. Due to the ever-growing requirements of customization and multi-function, dozens of modulated structures have been introduced in TMDs. In this review, we present a systematic and comprehensive overview of the structure modulation of TMDs, including point, linear and out-of-plane structures, following and updating the conventional classification for silicon and related bulk semiconductors. In particular, we focus on the structural characteristics of modulated TMD structures and analyse the corresponding root causes. We also summarize the recent progress in modulating methods, mechanisms, properties and applications based on modulated TMD structures. Finally, we demonstrate challenges and prospects in the structure modulation of TMDs and forecast potential directions about what and how breakthroughs can be achieved.
Collapse
Affiliation(s)
- Yao Xiao
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Chengyi Xiong
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Miao-Miao Chen
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Shengfu Wang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lei Fu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. .,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Xiuhua Zhang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| |
Collapse
|
6
|
Fang Y, Lv X, Lv Z, Wang Y, Zheng G, Huang F. Electron-Extraction Engineering Induced 1T''-1T' Phase Transition of Re 0.75 V 0.25 Se 2 for Ultrafast Sodium Ion Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2205680. [PMID: 36372525 PMCID: PMC9798975 DOI: 10.1002/advs.202205680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/13/2022] [Indexed: 06/01/2023]
Abstract
Inducing new phases of transition metal dichalcogenides by controlling the d-electron-count has attracted much interest due to their novel structures and physicochemical properties. 1T'' ReSe2 is a promising candidate for sodium storage, but the low electronic conductivity and limited active sites hinder its electrochemical capacity. Herein, new-phase 1T' Re0.75 V0.25 Se2 crystals (P2/m) with zig-zag chains are successfully synthesized. The 1T''-1T' phase transition results from the electronic reorganization of 5d orbitals via electron extraction after V-atom doping. The electrical conductivity of 1T' Re0.75 V0.25 Se2 is 2.7 × 105 times higher than that of 1T'' ReSe2 . Moreover, density functional theory (DFT) calculations reveal that 1T' Re0.75 V0.25 Se2 has a larger interlayer spacing, lower bonding energy, and migration energy barrier for Na+ ions than 1T'' ReSe2 . As a result, 1T' Re0.75 V0.25 Se2 electrode shows an excellent rate capability of 203 mAh g-1 at 50 C with no capacity fading over 5000 cycles for sodium storage, which is superior to most reported sodium-ion anode materials. This 1T' Re0.75 V0.25 Se2 provides a new platform for various applications such as electronics, catalysis, and energy storage.
Collapse
Affiliation(s)
- Yuqiang Fang
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesShanghai200050P. R. China
| | - Ximeng Lv
- Laboratory of Advanced MaterialsDepartment of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghai200438P. R. China
| | - Zhuoran Lv
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesShanghai200050P. R. China
| | - Yang Wang
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesShanghai200050P. R. China
| | - Gengfeng Zheng
- Laboratory of Advanced MaterialsDepartment of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghai200438P. R. China
| | - Fuqiang Huang
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesShanghai200050P. R. China
- State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
7
|
Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Electrochemical investigation of MoSeTe as an anode for sodium-ion batteries. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00101-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Kanchanavatee N, Ektarawong A, Pakornchote T, Alling B, Hodak S, Bovornratanaraks T. Phase transitions and suppression of magnetoresistance in WTe2-xSe xsystem. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:435403. [PMID: 35985303 DOI: 10.1088/1361-648x/ac8b53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
X-ray diffraction, Raman spectroscopy, and electrical resistivity measurements on polycrystalline WTe2-xSex(0 ⩽ x ⩽ 0.8) reveal aTd-1T'structural phase transition and suppression of magnetoresistance atx = 0.2. These phenomena are consistent with the pressure phase diagram of WTe2. However, chemical pressure due to substitution of smaller Se ion cannot generate pressure required for the phase transition. Strain induced by sample inhomogeneity is believed to be a trigger to the behaviors. In agreement with previous predictions and reports, a mixed phase of1T'and 2Hstructures was also detected in Se-rich samples. Coincidentally atx = 0.2, electrical resistivity analysis suggests a phase transition from a metallic phase to a nonmetallic phase that is possibly a topological-insulating phase.
Collapse
Affiliation(s)
- N Kanchanavatee
- Center of Excellence in Physics of Energy Materials, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - A Ektarawong
- Center of Excellence in Physics of Energy Materials, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Extreme Condition Physics Research Laboratory, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
- Chula Intelligent and Complex Systems, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - T Pakornchote
- Center of Excellence in Physics of Energy Materials, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Extreme Condition Physics Research Laboratory, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - B Alling
- Theoretical Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - S Hodak
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - T Bovornratanaraks
- Center of Excellence in Physics of Energy Materials, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Extreme Condition Physics Research Laboratory, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| |
Collapse
|
10
|
Wan W, Wickramaratne D, Dreher P, Harsh R, Mazin II, Ugeda MM. Nontrivial Doping Evolution of Electronic Properties in Ising-Superconducting Alloys. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200492. [PMID: 35243698 DOI: 10.1002/adma.202200492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Transition metal dichalcogenides offer unprecedented versatility to engineer 2D materials with tailored properties to explore novel structural and electronic phase transitions. In this work, the atomic-scale evolution of the electronic ground state of a monolayer of Nb1- δ Moδ Se2 across the entire alloy composition range (0 < δ < 1) is investigated using low-temperature (300 mK) scanning tunneling microscopy and spectroscopy (STM/STS). In particular, the atomic and electronic structure of this 2D alloy throughout the metal to semiconductor transition (monolayer NbSe2 to MoSe2 ) is studied. The measurements enable extraction of the effective doping of Mo atoms, the bandgap evolution and the band shifts, which are monotonic with δ. Furthermore, it is demonstrated that collective electronic phases (charge density wave and superconductivity) are remarkably robust against disorder and further shown that the superconducting TC changes non-monotonically with doping. This contrasting behavior in the normal and superconducting state is explained using first-principles calculations. Mo doping is shown to decrease the density of states at the Fermi level and the magnitude of pair-breaking spin fluctuations as a function of Mo content. These results paint a detailed picture of the electronic structure evolution in 2D TMD alloys, which is of utmost relevance for future 2D materials design.
Collapse
Affiliation(s)
- Wen Wan
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizábal 4, San Sebastián, 20018, Spain
| | - Darshana Wickramaratne
- Center for Computational Materials Science, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Paul Dreher
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizábal 4, San Sebastián, 20018, Spain
| | - Rishav Harsh
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizábal 4, San Sebastián, 20018, Spain
| | - Igor I Mazin
- Department of Physics and Astronomy, George Mason University, Fairfax, VA, 22030, USA
- Quantum Science and Engineering Center, George Mason University, Fairfax, VA, 22030, USA
| | - Miguel M Ugeda
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizábal 4, San Sebastián, 20018, Spain
- Centro de Física de Materiales (CSIC-UPV-EHU), Paseo Manuel de Lardizábal 5, San Sebastián, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| |
Collapse
|
11
|
Wang Y, Zhang M, Xue Z, Chen X, Mei Y, Chu PK, Tian Z, Wu X, Di Z. Atomistic Observation of the Local Phase Transition in MoTe 2 for Application in Homojunction Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200913. [PMID: 35411673 DOI: 10.1002/smll.202200913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Direct atomic-scale observation of the local phase transition in transition metal dichalcogenides (TMDCs) is critically required to carry out in-depth studies of their atomic structures and electronic features. However, the structural aspects including crystal symmetries tend to be unclear and unintuitive in real-time monitoring of the phase transition process. Herein, by using in situ transmission electron microscopy, information about the phase transition mechanism of MoTe2 from hexagonal structure (2H phase) to monoclinic structure (1T' phase) driven by sublimation of Te atoms after a spike annealing is obtained directly. Furthermore, with the control of Te atom sublimation by modulating the hexagonal boron nitride (h-BN) coverage in the desired area, the lateral 1T'-enriched MoTe2 /2H MoTe2 homojunction can be one-step constructed via an annealing treatment. Owing to the gradient bandgap provided by 1T'-enriched MoTe2 and 2H MoTe2 , the photodetector composed of the 1T'-enriched MoTe2 /2H MoTe2 homojunction shows fast photoresponse and ten times larger photocurrents than that consisting of a pure 2H MoTe2 channel. The study reveals a route to improve the performance of optoelectronic and electronic devices based on TMDCs with both semiconducting and semimetallic phases.
Collapse
Affiliation(s)
- Yalan Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Miao Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Zhongying Xue
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Xinqian Chen
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200433, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Ziao Tian
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Xing Wu
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Zengfeng Di
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
12
|
Kwak IH, Kwon IS, Zewdie GM, Debela TT, Lee SJ, Kim JY, Yoo SJ, Kim JG, Park J, Kang HS. Polytypic Phase Transition of Nb 1-xV xSe 2 via Colloidal Synthesis and Their Catalytic Activity toward Hydrogen Evolution Reaction. ACS NANO 2022; 16:4278-4288. [PMID: 35245026 DOI: 10.1021/acsnano.1c10301] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polytypes of two-dimensional transition metal dichalcogenide can extend the architecture and application of nanostructures. Herein, Nb1-xVxSe2 alloy nanosheets in the full composition range (x) were synthesized by a colloidal reaction. At x = 0.1-0.3, a phase transition occurred from various hexagonal (three 2H and one 4H types) phase NbSe2 to an atomically homogeneous 1T phase VSe2. Density functional theory calculations also revealed a polytypic phase transition at x = 0.3, which was shifted close to 0 in the presence of Se vacancies. Furthermore, the calculations validate favorable formation of Se vacancies at the phase transition. The sample at x = 0.3 exhibited enhanced electrocatalytic activity toward the hydrogen evolution reaction (HER) in 0.5 M H2SO4. The Gibbs free energy indicates that the catalytic HER performance is correlated with the active Se vacancy sites of polytypic structures.
Collapse
Affiliation(s)
- In Hye Kwak
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Ik Seon Kwon
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Getasew Mulualem Zewdie
- Institute for Application of Advanced Materials, Jeonju University, Chonbuk 55069, Republic of Korea
| | - Tekalign Terfa Debela
- Institute for Application of Advanced Materials, Jeonju University, Chonbuk 55069, Republic of Korea
| | - Seung Jae Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Ju Yeon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Seung Jo Yoo
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute, Daejeon 305-806, Korea
| | - Jin-Gyu Kim
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute, Daejeon 305-806, Korea
| | - Jeunghee Park
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| |
Collapse
|
13
|
Su B, Huang Y, Hou YH, Li J, Yang R, Ma Y, Yang Y, Zhang G, Zhou X, Luo J, Chen Z. Persistence of Monoclinic Crystal Structure in 3D Second-Order Topological Insulator Candidate 1T'-MoTe 2 Thin Flake Without Structural Phase Transition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101532. [PMID: 34923770 PMCID: PMC8844473 DOI: 10.1002/advs.202101532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/29/2021] [Indexed: 05/29/2023]
Abstract
A van der Waals material, MoTe2 with a monoclinic 1T' crystal structure is a candidate for 3D second-order topological insulators (SOTIs) hosting gapless hinge states and insulating surface states. However, due to the temperature-induced structural phase transition, the monoclinic 1T' structure of MoTe2 is transformed into the orthorhombic Td structure as the temperature is lowered, which hinders the experimental verification and electronic applications of the predicted SOTI state at low temperatures. Here, systematic Raman spectroscopy studies of the exfoliated MoTe2 thin flakes with variable thicknesses at different temperatures, are presented. As a spectroscopic signature of the orthorhombic Td structure of MoTe2 , the out-of-plane vibration mode D at ≈ 125 cm-1 is always visible below a certain temperature in the multilayer flakes thicker than ≈ 27.7 nm, but vanishes in the temperature range from 80 to 320 K when the flake thickness becomes lower than ≈ 19.5 nm. The absence of the out-of-plane vibration mode D in the Raman spectra here demonstrates not only the disappearance of the monoclinic-to-orthorhombic phase transition but also the persistence of the monoclinic 1T' structure in the MoTe2 thin flakes thinner than ≈ 19.5 nm at low temperatures down to 80 K, which may be caused by the high enough density of the holes introduced during the gold-enhanced exfoliation process and exposure to air. The MoTe2 thin flakes with the low-temperature monoclinic 1T' structure provide a material platform for realizing SOTI states in van der Waals materials at low temperatures, which paves the way for developing a new generation of electronic devices based on SOTIs.
Collapse
Affiliation(s)
- Bo Su
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| | - Yuan Huang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguan523808China
| | - Yan Hui Hou
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- School of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
| | - Jiawei Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190China
| | - Rong Yang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguan523808China
| | - Yongchang Ma
- School of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
| | - Yang Yang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguan523808China
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguan523808China
- Collaborative Innovation Center of Quantum MatterBeijingChina
| | - Xingjiang Zhou
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguan523808China
- Collaborative Innovation Center of Quantum MatterBeijingChina
| | - Jianlin Luo
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguan523808China
- Collaborative Innovation Center of Quantum MatterBeijingChina
| | - Zhi‐Guo Chen
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguan523808China
| |
Collapse
|
14
|
Zhou R, Wu J, Chen Y, Xie L. Polymorph Structures, Rich Physical Properties and Potential Applications of
Two‐Dimensional MoTe
2
,
WTe
2
and Its Alloys. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Zhou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Juanxia Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology Beijing 100190 China
| | - Yuansha Chen
- Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences Beijing 100190 China
| | - Liming Xie
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
15
|
Kwon IS, Kwak IH, Debela TT, Kim JY, Yoo SJ, Kim JG, Park J, Kang HS. Phase-Transition Mo 1-xV xSe 2 Alloy Nanosheets with Rich V-Se Vacancies and Their Enhanced Catalytic Performance of Hydrogen Evolution Reaction. ACS NANO 2021; 15:14672-14682. [PMID: 34496215 DOI: 10.1021/acsnano.1c04453] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alloys of transition-metal dichalcogenide can display distinctive phase evolution because of their two-dimensional structures. Herein, we report the colloidal synthesis of Mo1-xVxSe2 alloy nanosheets with full composition tuning. Alloying led to a phase transition at x = 0.7 from the semiconducting 2H phase MoSe2 to the metallic 1T phase VSe2. It also produced significant V and Se vacancies, which became the richest in the 2H phase at x = 0.3-0.5. Extensive spin-polarized density functional theory calculations consistently predicted the 2H-1T phase transition at x = 0.7, in agreement with the experimental results. The vacancy formation energy also supports the formation of V and Se vacancies. Alloying in the 2H phase enhanced the electrocatalytic performance toward hydrogen evolution reaction (HER) at x = 0.3 (in 0.5 M H2SO4) or 0.4 (in 1 M KOH). The Gibbs free energy along the HER pathway indicates that this maximum performance is due to the highest concentration of active V and Se vacancy sites.
Collapse
Affiliation(s)
- Ik Seon Kwon
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - In Hye Kwak
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Tekalign Terfa Debela
- Institute for Application of Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| | - Ju Yeon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
- Institute for Application of Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| | - Seung Jo Yoo
- Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | - Jin-Gyu Kim
- Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | - Jeunghee Park
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| |
Collapse
|
16
|
Zhang H, Li Q, Hossain M, Li B, Chen K, Huang Z, Yang X, Dang W, Shu W, Wang D, Li B, Xu W, Zhang Z, Yu G, Duan X. Phase-Selective Synthesis of Ultrathin FeTe Nanoplates by Controllable Fe/Te Atom Ratio in the Growth Atmosphere. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101616. [PMID: 34270865 DOI: 10.1002/smll.202101616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Phase controllable synthesis of 2D materials is of significance for tuning related electrical, optical, and magnetic properties. Herein, the phase-controllable synthesis of tetragonal and hexagonal FeTe nanoplates has been realized by a rational control of the Fe/Te ratio in a chemical vapor deposition system. Using density functional theory calculations, it has been revealed that with the change of the Fe/Te ratio, the formation energy of active clusters changes, causing the phase-controllable synthesis of FeTe nanoplates. The thickness of the obtained FeTe nanoplates can be tuned down to the 2D limit (2.8 nm for tetragonal and 1.4 nm for hexagonal FeTe). X-ray diffraction pattern, transmission electron microscopy, and high resolution scanning transmission electron microscope analyses exhibit the high crystallinity of the as-grown FeTe nanoplates. The two kinds of FeTe nanoflakes show metallic behavior and good electrical conductivity, featuring 8.44 × 104 S m-1 for 9.8 nm-thick tetragonal FeTe and 5.45 × 104 S m-1 for 7.6 nm-thick hexagonal FeTe. The study provides an efficient and convenient route for tailoring the phases of FeTe nanoplates, which benefits to study phase-sensitive properties, and may pave the way for the synthesis of other multiphase 2D nanosheets with controllable phases.
Collapse
Affiliation(s)
- Hongmei Zhang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiuqiu Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mongur Hossain
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bo Li
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Keqiu Chen
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ziwei Huang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiangdong Yang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Weiqi Dang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Weining Shu
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Di Wang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bailing Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Weiting Xu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Zucheng Zhang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Gang Yu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xidong Duan
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
17
|
Qiu D, Gong C, Wang S, Zhang M, Yang C, Wang X, Xiong J. Recent Advances in 2D Superconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006124. [PMID: 33768653 DOI: 10.1002/adma.202006124] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/22/2020] [Indexed: 06/12/2023]
Abstract
The emergence of superconductivity in 2D materials has attracted much attention and there has been rapid development in recent years because of their fruitful physical properties, such as high transition temperature (Tc ), continuous phase transition, and enhanced parallel critical magnetic field (Bc ). Tremendous efforts have been devoted to exploring different physical parameters to figure out the mechanisms behind the unexpected superconductivity phenomena, including adjusting the thickness of samples, fabricating various heterostructures, tuning the carrier density by electric field and chemical doping, and so on. Here, different types of 2D superconductivity with their unique characteristics are introduced, including the conventional Bardeen-Cooper-Schrieffer superconductivity in ultrathin films, high-Tc superconductivity in Fe-based and Cu-based 2D superconductors, unconventional superconductivity in newly discovered twist-angle bilayer graphene, superconductivity with enhanced Bc , and topological superconductivity. A perspective toward this field is then proposed based on academic knowledge from the recently reported literature. The aim is to provide researchers with a clear and comprehensive understanding about the newly developed 2D superconductivity and promote the development of this field much further.
Collapse
Affiliation(s)
- Dong Qiu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chuanhui Gong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - SiShuang Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Miao Zhang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chao Yang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xianfu Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
18
|
Xie C, Yang P, Huan Y, Cui F, Zhang Y. Roles of salts in the chemical vapor deposition synthesis of two-dimensional transition metal chalcogenides. Dalton Trans 2020; 49:10319-10327. [PMID: 32648888 DOI: 10.1039/d0dt01561j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical vapor deposition (CVD) route has emerged as an effective method for the successful synthesis of two-dimensional (2D) materials with satisfactory crystal quality, especially for the synthesis of wafer-scale, uniform thickness or large domain size single-crystal transition metal chalcogenides (TMCs). To achieve this, the salt-assisted CVD strategy has been proved to be powerful to reduce the high melting point of the metal related precursor, decrease the nucleation density and increase the reaction rate on the solid template. However, the specific roles of alkali metals and halide components still remain unclear. Herein, the functions of salts in the growth of TMCs have been discussed by summarizing some recent achievements in salt-assisted synthesis results, wherein salts are mainly introduced as additives in metal precursors to achieve the wafer-scale uniform growth of monolayer and thickness-tunable multi-layered TMCs, and for serving as 3D templates (especially NaCl) to realize the scalable production of TMCs. Moreover, the existing challenges and viable future directions are also proposed for in-depth understanding of salt-assisted C4VD methods and for exploring more efficient CVD strategies.
Collapse
Affiliation(s)
- Chunyu Xie
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Pengfei Yang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Yahuan Huan
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Fangfang Cui
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Yanfeng Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|