1
|
Kim SI, Moon JY, Bae S, Xu Z, Meng Y, Park JW, Lee JH, Bae SH. Freestanding Wide-Bandgap Semiconductors Nanomembrane from 2D to 3D Materials and Their Applications. SMALL METHODS 2025; 9:e2401551. [PMID: 39763129 DOI: 10.1002/smtd.202401551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/16/2024] [Indexed: 05/26/2025]
Abstract
Wide-bandgap semiconductors (WBGS) with energy bandgaps larger than 3.4 eV for GaN and 3.2 eV for SiC have gained attention for their superior electrical and thermal properties, which enable high-power, high-frequency, and harsh-environment devices beyond the capabilities of conventional semiconductors. Pushing the potential of WBGS boundaries, current research is redefining the field by broadening the material landscape and pioneering sophisticated synthesis techniques tailored for state-of-the-art device architectures. Efforts include the growth of freestanding nanomembranes, the leveraging of unique interfaces such as van der Waals (vdW) heterostructure, and the integration of 2D with 3D materials. This review covers recent advances in the synthesis and applications of freestanding WBGS nanomembranes, from 2D to 3D materials. Growth techniques for WBGS, such as liquid metal and epitaxial methods with vdW interfaces, are discussed, and the role of layer lift-off processes for producing freestanding nanomembranes is investigated. The review further delves into electronic devices, including field-effect transistors and high-electron-mobility transistors, and optoelectronic devices, such as photodetectors and light-emitting diodes, enabled by freestanding WBGS nanomembranes. Finally, this review explores new avenues for research, highlighting emerging opportunities and addressing key challenges that will shape the future of the field.
Collapse
Affiliation(s)
- Seung-Il Kim
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering Washington University in St. Louis St. Louis, MO, 63130, USA
- Department of Energy Systems Research and Department of Materials Science and Engineering Ajou University, Suwon, 16499, South Korea
| | - Ji-Yun Moon
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering Washington University in St. Louis St. Louis, MO, 63130, USA
| | - Sanggeun Bae
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering Washington University in St. Louis St. Louis, MO, 63130, USA
| | - Zhihao Xu
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering Washington University in St. Louis St. Louis, MO, 63130, USA
| | - Yuan Meng
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering Washington University in St. Louis St. Louis, MO, 63130, USA
| | - Ji-Won Park
- R&D Center of JB Lab Corporation, Gwanak‑Gu, Seoul, 08788, Republic of Korea
| | - Jae-Hyun Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering Washington University in St. Louis St. Louis, MO, 63130, USA
| |
Collapse
|
2
|
Xing R, Zhang X, Fan X, Xie R, Wu L, Fang X. Coupling Strategies of Multi-Physical Fields in 2D Materials-Based Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501833. [PMID: 40059460 DOI: 10.1002/adma.202501833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/18/2025] [Indexed: 04/24/2025]
Abstract
2D materials possess exceptional carrier transport properties and mechanical stability despite their ultrathin nature. In this context, the coupling between polarization fields and photoelectric fields has been proposed to modulate the physical properties of 2D materials, including energy band structure, carrier mobility, as well as the dynamic processes of photoinduced carriers. These strategies have led to significant improvements in the performance, functionality, and integration density of 2D materials -based photodetectors. The present review introduces the coupling of photoelectric field with four fundamental polarization fields, delivered from dielectric, piezoelectric, pyroelectric, and ferroelectric effects, focusing on their synergistic coupling mechanisms, distinctive properties, and technological merits in advanced photodetection applications. More importantly, it sheds light on the new path of material synthesis and novel structure design to improve the efficiency of the coupling strategies in photodetectors. Then, research advances on the synergy of multi-polarization effects and photoelectric effect in the domain of bionic photodetectors are highlighted. Finally, the review outlines the future research perspectives of coupling strategies in 2D materials-based photodetectors and proposes potential solutions to address the challenges issues of this area. This comprehensive overview will guide futural fundamental and applied research that capitalizes on coupling strategies for sensitive and intelligent photodetection.
Collapse
Affiliation(s)
- Ruofei Xing
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Xinglong Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Xueshuo Fan
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Ranran Xie
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen, 518045, P. R. China
| | - Limin Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
3
|
Li M, Ye W, Ruan J, Ren Q, Dong S, Chen D, Li N, Xu Q, Li H, Lu J. Lead-Free Halide Double Perovskite Cs 2AgBiCl 6 for H 2S Trace Detection at Room Temperature. ACS Sens 2025; 10:2224-2233. [PMID: 40029963 DOI: 10.1021/acssensors.4c03532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Hydrogen sulfide (H2S) is an important respiratory biomarker of many diseases, and thus, developing H2S gas sensors with low detection limits at low operating temperatures is essential for the early diagnosis of diseases in low-resource environments. Although lead halide perovskites have unique electronic and optical properties, the high toxicity of lead has prompted the development of alternative materials. In this study, Cs2AgBiCl6 was synthesized using a simple method. The sensor based on Cs2AgBiCl6 showed excellent sensing of H2S gas at room temperature over a wide humidity range, with high response (90.6 vs 10 ppm of H2S) and fast response speed (99.6 s vs 400 ppb H2S). The detection limit was low (5 ppb H2S), and the selectivity at room temperature was excellent. Small changes in H2S concentration (<100 ppb) were detected as a fully reversible resistance signal. Additionally, sum frequency vibration spectroscopy and DFT calculations showed that the high gas sensitivity was attributed to the physical adsorption of H2S at Cl vacancies on the surface of Cs2AgBiCl6, as well as efficient charge transfer. This work provides an avenue for developing high-performance gas sensors based on nontoxic, wide band gap, halide double perovskite semiconductors operating at room temperature.
Collapse
Affiliation(s)
- Menglong Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Wen Ye
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
- Key Laboratory of Intelligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Juanzhang Ruan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Qiuyuan Ren
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shihong Dong
- Suzhou Shijing Technology Co., Ltd., 58 jinrui Road, Suzhou 215137, P. R. China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Ajayakumar A, Sławek A, Muthu C, Dev AV, Shajan NK, Ajith A, Szaciłowski K, Vijayakumar C. Dimethylamine Bismuth Iodide: A Lead-Free Perovskite Enabling Ultra-Sensitive UVC Photodetection with Low Operating Voltage and High Detectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411332. [PMID: 39659130 DOI: 10.1002/adma.202411332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Ultraviolet (UV) photodetectors (PDs) are essential for various applications, but traditional materials face challenges in cost, fabrication, and performance. This study introduces dimethylamine bismuth iodide (DMABI) as a promising lead-free perovskite for UV PDs, particularly in the UVC region. DMABI demonstrates exceptional device parameters, including an ultralow dark current of 0.12 pA at 0.05 V, a high on/off ratio of 7.1 × 104, and a peak detectivity of 3.18 × 1013 Jones. The unique structure of DMABI, with isolated octahedral units, ensures minimal connectivity, significantly reducing dark current. When exposed to high-energy UV light, carriers gain sufficient energy to hop between octahedrally coordinated bismuth centres, resulting in substantial photocurrent. The small size of the organic cation facilitates efficient charge transfer, contributing to high responsivity (1.46 A W-1) and external quantum efficiency (up to 717%). These results establish DMABI as a superior, low-cost candidate for UV photodetection, addressing limitations of existing materials. The study provides insights into the molecular mechanisms driving these characteristics and highlights potential for future advancements in UV PD technology.
Collapse
Affiliation(s)
- Avija Ajayakumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Andrzej Sławek
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, Krakow, 30 059, Poland
| | - Chinnadurai Muthu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Amarjith V Dev
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Namitha K Shajan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, India
| | - Anila Ajith
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, India
| | - Konrad Szaciłowski
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, Krakow, 30 059, Poland
- Unconventional Computing Lab, University of the West of England, Bristol, BS16 1QY, UK
| | - Chakkooth Vijayakumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
5
|
Zhao Z, Hu Z, Deng M, Hong E, Wang P, Li Z, Fang X. Bias-Switchable Photodetection and Photosynapse Dual-Functional Devices Based on 2D Perovskite/Organic Heterojunction for Imaging-to-Recognition Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416033. [PMID: 39648569 DOI: 10.1002/adma.202416033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Optoelectronic devices with imaging and recognition capabilities are crucial for developing artificial visual system (AVS). Bias-switchable photodetection and photosynaptic devices have been developed using 2D perovskite oxide/organic heterojunctions. This unique structure allows for modulated carrier dynamics under varied bias conditions, enabling the devices to function as photodetectors without bias and as photosynapses with bias. At zero bias, the device achieves high responsivity (≈0.36 A W-1 at 320 nm) and rapid response speed (0.57 s). Under a -0.5 V bias, it exhibits persistent photoconductivity (PPC), resulting in neuromorphic synaptic behaviors with a paired-pulse facilitation (PPF) index exceeding 300%. Moreover, an 8 × 8 sensor array demonstrates image sensing and memory capabilities, showing in situ enhanced imaging when switching the bias from 0 to -0.5 V, and over 200 s of image memory. The image processing and recognition abilities are further explored by constructing an AVS using a 28 × 28 device array combined with an artificial neural network (ANN). The adjustable synaptic weight under different reverse biases allowed for optimized simulated recognition, achieving an accuracy of 92% after 160 training epochs. This work presents a novel method for creating dual-functional photodetection and photosynaptic devices, paving the way for a more integrated and efficient AVS.
Collapse
Affiliation(s)
- Zijin Zhao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Zijun Hu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Ming Deng
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Enliu Hong
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Peixi Wang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Ziqing Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
6
|
Das P, Saha S, Bhunia AK. Engineering of Cd x Zn 1-x S Nanomaterials for Fabrication of Hybrid Cd x Zn 1-x S/Si Heterojunction Broadband Photo Detectors. ACS OMEGA 2025; 10:294-305. [PMID: 39829486 PMCID: PMC11739977 DOI: 10.1021/acsomega.4c06008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025]
Abstract
Effective engineering of nanostructured materials provides a scope to explore the underlying photoelectric phenomenon completely. A simple cost-effective chemical reduction route is taken to grow nanoparticles of Cd x Zn1-x S with varying x = 1, 0.7, 0.5, 0.3, and 0. X-ray diffraction confirms the formation of different phases of targeted Cd x Zn1-x S, while field emission scanning electron microscopy shows change of nanostructures. Energy-dispersive X-ray spectroscopy determines the composition of the grown nanostructures as CdS, Cd0.7Zn0.3S, Cd0.5Zn0.5S, Cd0.3Zn0.7S, and ZnS. The optical absorption study determines the band gap shift with change of composition as well as with quantum confinement. The fluorescence lifetime for each nanomaterial is determined by time-correlated single photon counting, and Raman analysis revealed that ZnS exhibits the highest blue shift. Thus, there is a possibility to apply such grown nanomaterials for fabrication of heterojunction-based photodetectors (PDs) in a broad wavelength region. Cd x Zn1-x S nanostructures on n-type bulk silicon (Si) were successfully fabricated by a simple cost-effective spin coating method and present hybrid heterojunction PDs. The fabricated p-n heterojunction exhibits good rectifying behavior at room temperature under a reverse bias condition. Also, it was observed that the heterojunction is extremely sensitive to the irradiation of visible light because of the significant optoelectric effect with a good I light/I dark ratio (here, I light is the current in the presence of light and I dark is the dark current), quick response time (40 to 1005 ms), and good reproducibility (three cycles of I light/I dark for each sample are observed). It was observed that the responsivity value gradually decreases for x = 1 to x = 0 in the Cd x Zn1-x S/n-Si heterojunction, i.e., it is maximum for CdS NRs (6.74 × 10-3 mA/W), intermediate for Cd0.5Zn0.5S NPs (4.49 × 10-3 mA/W), and minimum for ZnS NPs (2.72161 × 10-4 mA/W). A similar nature has been observed in the case of detectivity, and hence it is a maximum (1.45 × 106 Jones) for CdS NRs. The photocurrent generation at the heterojunction showed excellent "on" and "off" switching behavior in the presence and absence of light illumination. Response time and gain change significantly with change of composition. The responsivity and detectivity with good photoresponse originated from the realization of special microstructures, enhancing the photoelectric behavior of Cd x Zn1-x S materials for applications in low-dimensional PDs covering a large wavelength region.
Collapse
Affiliation(s)
- Priyanka Das
- Department
of Physics, Vidyasagar University, Paschim, Medinipur 721102, India
| | - Satyajit Saha
- Department
of Physics, Vidyasagar University, Paschim, Medinipur 721102, India
| | - Amit Kumar Bhunia
- Department
of Physics, Government General Degree College
Gopiballavpur-II, Jhargram 721517, India
| |
Collapse
|
7
|
Rogalski A, Wang F, Wang J, Martyniuk P, Hu W. The Perovskite Optoelectronic Devices - A Look at the Future. SMALL METHODS 2025; 9:e2400709. [PMID: 39235586 DOI: 10.1002/smtd.202400709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/20/2024] [Indexed: 09/06/2024]
Abstract
The perovskite materials are broadly incorporated into optoelectronic devices due to a number of advantages. Their rapid technological progress is related to the relatively simple fabrication process, low production cost and high efficiency. Significant improvement is made in the light emitting, detection performance and device design especially operating in the visible and near-infrared regions. This review presents the status and possible future development of the perovskite devices such as solar cells, photodetectors, and light-emitting diodes. The fundamental properties of perovskite materials related to their effective device applications are summarized. Since the development of the perovskite technology is mainly driven by the revolutionary evolution of the semiconductor perovskite solar cell as a robust candidate for next-generation solar energy harvesting, this topic is considered first. The device engineering of various perovskite photodetector structures, including perovskite quantum dot photodetectors, is then discussed in detail. Their performance is compared with the current commercial photodetectors available on the global market together with their challenges. Finally, the considerable progress in the fabrication of the perovskite light-emitting diodes with external quantum efficiency exceeding 20% is presented. The paper is completed in an attempt to determine the development of perovskite optoelectronic devices in the future.
Collapse
Affiliation(s)
- Antoni Rogalski
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., Warsaw, 00-908, Poland
| | - Fang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Jin Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Piotr Martyniuk
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., Warsaw, 00-908, Poland
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| |
Collapse
|
8
|
Labed M, Moon JY, Kim SI, Park JH, Kim JS, Venkata Prasad C, Bae SH, Rim YS. 2D Embedded Ultrawide Bandgap Devices for Extreme Environment Applications. ACS NANO 2024; 18:30153-30183. [PMID: 39436685 DOI: 10.1021/acsnano.4c09173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Ultrawide bandgap semiconductors such as AlGaN, AlN, diamond, and β-Ga2O3 have significantly enhanced the functionality of electronic and optoelectronic devices, particularly in harsh environment conditions. However, some of these materials face challenges such as low thermal conductivity, limited P-type conductivity, and scalability issues, which can hinder device performance under extreme conditions like high temperature and irradiation. In this review paper, we explore the integration of various two-dimensional materials (2DMs) to address these challenges. These materials offer excellent properties such as high thermal conductivity, mechanical strength, and electrical properties. Notably, graphene, hexagonal boron nitride, transition metal dichalcogenides, 2D and quasi-2D Ga2O3, TeO2, and others are investigated for their potential in improving ultrawide bandgap semiconductor-based devices. We highlight the significant improvement observed in the device performance after the incorporation of 2D materials. By leveraging the properties of these materials, ultrawide bandgap semiconductor devices demonstrate enhanced functionality and resilience in harsh environmental conditions. This review provides valuable insights into the role of 2D materials in advancing the field of ultrawide bandgap semiconductors and highlights opportunities for further research and development in this area.
Collapse
Affiliation(s)
- Madani Labed
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University Seoul, Seoul 05006, Republic of Korea
| | - Ji-Yun Moon
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Seung-Il Kim
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Jang Hyeok Park
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University Seoul, Seoul 05006, Republic of Korea
| | - Justin S Kim
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Chowdam Venkata Prasad
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University Seoul, Seoul 05006, Republic of Korea
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - You Seung Rim
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University Seoul, Seoul 05006, Republic of Korea
| |
Collapse
|
9
|
Deng M, Li Z, Liu S, Fang X, Wu L. Wafer-scale integration of two-dimensional perovskite oxides towards motion recognition. Nat Commun 2024; 15:8789. [PMID: 39389947 PMCID: PMC11467426 DOI: 10.1038/s41467-024-52840-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Two-dimensional semiconductors have shown great potential for the development of advanced intelligent optoelectronic systems. Among them, two-dimensional perovskite oxides with compelling optoelectronic performance have been thriving in high-performance photodetection. However, harsh synthesis and defect chemistry severely limit their overall performance and further large-scale heterogeneous integration. Here, we report the wafer-scale integration of highly oriented nanosheets by introducing a charge-assisted oriented assembly film-formation process and confirm its universality and scalability. The shallow-trap dominance induced by structural optimization endows the device with a distinguished performance balance, including high photosensitivity close to that of single nanosheet units and fast response speed. An integrated ultra-flexible 256-pixel device demonstrates the versatility of material-to-substrate integration and conformal imaging functionality. Moreover, the device achieves efficient recognition of multidirectional motion trajectories with an accuracy of over 99.8%. Our work provides prescient insights into the large-area fabrication and utilization of 2D perovskite oxides in advanced optoelectronics.
Collapse
Affiliation(s)
- Ming Deng
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P. R. China
| | - Ziqing Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, P. R. China.
| | - Shiyuan Liu
- Optical Fiber Research Center, Department of Materials Science, Fudan University, Shanghai, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P. R. China.
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, P. R. China.
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P. R. China.
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China.
| |
Collapse
|
10
|
Zhou N, Dang Z, Li H, Sun Z, Deng S, Li J, Li X, Bai X, Xie Y, Li L, Zhai T. Low-Symmetry 2D t-InTe for Polarization-Sensitive UV-Vis-NIR Photodetection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400311. [PMID: 38804863 DOI: 10.1002/smll.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/23/2024] [Indexed: 05/29/2024]
Abstract
Polarization-sensitive photodetection grounded on low-symmetry 2D materials has immense potential in improving detection accuracy, realizing intelligent detection, and enabling multidimensional visual perception, which has promising application prospects in bio-identification, optical communications, near-infrared imaging, radar, military, and security. However, the majority of the reported polarized photodetection are limited by UV-vis response range and low anisotropic photoresponsivity factor, limiting the achievement of high-performance anisotropic photodetection. Herein, 2D t-InTe crystal is introduced into anisotropic systems and developed to realize broadband-response and high-anisotropy-ratio polarized photodetection. Stemming from its narrow band gap and intrinsic low-symmetry lattice characteristic, 2D t-InTe-based photodetector exhibits a UV-vis-NIR broadband photoresponse and significant photoresponsivity anisotropy behavior, with an exceptional in-plane anisotropic factor of 1.81@808 nm laser, surpassing the performance of most reported 2D counterparts. This work expounds the anisotropic structure-activity relationship of 2D t-InTe crystal, and identifies 2D t-InTe as a prospective candidate for high-performance polarization-sensitive optoelectronics, laying the foundation for future multifunctional device applications.
Collapse
Affiliation(s)
- Nan Zhou
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
- Guangzhou Institute of Technology, Xidian University, Guangzhou, 710068, P. R. China
| | - Ziwei Dang
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Haoran Li
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Zongdong Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shijie Deng
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Junhao Li
- Institute of Information Sensing, Xidian University, Xi'an, 710126, P. R. China
| | - Xiaobo Li
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
- Guangzhou Institute of Technology, Xidian University, Guangzhou, 710068, P. R. China
| | - Xiaoxia Bai
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Yong Xie
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Liang Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Optics Valley Laboratory, Hubei, 430074, P. R. China
| |
Collapse
|
11
|
Zhou K, Tang L, Zhu C, Tang J, Su H, Luo L, Chen L, Zeng D. Recent Advances in Structure Design and Application of Metal Halide Perovskite-Based Gas Sensor. ACS Sens 2024; 9:4425-4449. [PMID: 39185676 DOI: 10.1021/acssensors.4c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Metal halide perovskites (MHPs) are emerging gas-sensing materials and have attracted considerable attention in gas sensors due to their unique bandgap structure and tunable optoelectronic properties. The past decade has witnessed significant developments in the gas-sensing field; however, their intrinsic structural instability and ambiguous gas-sensing mechanisms hamper their practical applications. Herein, we summarize the recent advances in MHP-based gas sensors. The physicochemical properties of MHPs are discussed at first. The structure design, including dimension design and engineering design, is overviewed as well as their fabrication methods, and we put forward our insights into the gas-sensing mechanism of MHPs. It is believed that enhanced understanding of gas-sensing mechanisms of MHPs are helpful for their application as gas-sensing materials, and structure design can enhance their stability, sensing sensitivity, and selectivity to target gases as gas sensors. Subsequently, the latest developments in MHP-based gas sensors are summarized according to their different application scenarios. Finally, we conclude with the current status and challenges in this field and propose future perspectives.
Collapse
Affiliation(s)
- Kechen Zhou
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Lu Tang
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Chaoqi Zhu
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Jiahong Tang
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Huiyu Su
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Lingfei Luo
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Liyan Chen
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Dawen Zeng
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| |
Collapse
|
12
|
Rogalski A, Hu W, Wang F, Wang Y, Martyniuk P. Perovskite versus Standard Photodetectors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4029. [PMID: 39203207 PMCID: PMC11356170 DOI: 10.3390/ma17164029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024]
Abstract
Perovskites have been largely implemented into optoelectronics as they provide several advantages such as long carrier diffusion length, high absorption coefficient, high carrier mobility, shallow defect levels and finally, high crystal quality. The brisk technological development of perovskite devices is connected to their relative simplicity, high-efficiency processing and low production cost. Significant improvement has been made in the detection performance and the photodetectors' design, especially operating in the visible (VIS) and near-infrared (NIR) regions. This paper attempts to determine the importance of those devices in the broad group of standard VIS and NIR detectors. The paper evaluates the most important parameters of perovskite detectors, including current responsivity (R), detectivity (D*) and response time (τ), compared to the standard photodiodes (PDs) available on the commercial market. The conclusions presented in this work are based on an analysis of the reported data in the vast pieces of literature. A large discrepancy is observed in the demonstrated R and D*, which may be due to two reasons: immature device technology and erroneous D* estimates. The published performance at room temperature is even higher than that reported for typical detectors. The utmost D* for perovskite detectors is three to four orders of magnitude higher than commercially available VIS PDs. Some papers report a D* close to the physical limit defined by signal fluctuations and background radiation. However, it is likely that this performance is overestimated. Finally, the paper concludes with an attempt to determine the progress of perovskite optoelectronic devices in the future.
Collapse
Affiliation(s)
- Antoni Rogalski
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland;
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China; (W.H.); (Y.W.)
| | - Fang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China; (W.H.); (Y.W.)
| | - Yang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China; (W.H.); (Y.W.)
| | - Piotr Martyniuk
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland;
| |
Collapse
|
13
|
Zhang JB, Tian YB, Gu ZG, Zhang J. Metal-Organic Framework-Based Photodetectors. NANO-MICRO LETTERS 2024; 16:253. [PMID: 39048856 PMCID: PMC11269560 DOI: 10.1007/s40820-024-01465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024]
Abstract
The unique and interesting physical and chemical properties of metal-organic framework (MOF) materials have recently attracted extensive attention in a new generation of photoelectric applications. In this review, we summarized and discussed the research progress on MOF-based photodetectors. The methods of preparing MOF-based photodetectors and various types of MOF single crystals and thin film as well as MOF composites are introduced in details. Additionally, the photodetectors applications for X-ray, ultraviolet and infrared light, biological detectors, and circularly polarized light photodetectors are discussed. Furthermore, summaries and challenges are provided for this important research field.
Collapse
Affiliation(s)
- Jin-Biao Zhang
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
- University of Chinese Academy of Science, Beijing, 100049, People's Republic of China
| | - Yi-Bo Tian
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China.
- College of Chemistry and Materials Science, Fujian Nornal University, Fuzhou, 350007, Fujian, People's Republic of China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Nornal University, Fuzhou, 350007, Fujian, People's Republic of China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, People's Republic of China
| |
Collapse
|
14
|
Liu Z. Two-dimensional perovskite oxide high-κ dielectric for high-performance phototransistors. Sci Bull (Beijing) 2024; 69:2001-2003. [PMID: 38789327 DOI: 10.1016/j.scib.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Affiliation(s)
- Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China.
| |
Collapse
|
15
|
Cao F, Liu Y, Liu M, Han Z, Xu X, Fan Q, Sun B. Wide Bandgap Semiconductors for Ultraviolet Photodetectors: Approaches, Applications, and Prospects. RESEARCH (WASHINGTON, D.C.) 2024; 7:0385. [PMID: 38803505 PMCID: PMC11128649 DOI: 10.34133/research.0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/21/2024] [Indexed: 05/29/2024]
Abstract
Ultraviolet (UV) light, invisible to the human eye, possesses both benefits and risks. To harness its potential, UV photodetectors (PDs) have been engineered. These devices can convert UV photons into detectable signals, such as electrical impulses or visible light, enabling their application in diverse fields like environmental monitoring, healthcare, and aerospace. Wide bandgap semiconductors, with their high-efficiency UV light absorption and stable opto-electronic properties, stand out as ideal materials for UV PDs. This review comprehensively summarizes recent advancements in both traditional and emerging wide bandgap-based UV PDs, highlighting their roles in UV imaging, communication, and alarming. Moreover, it examines methods employed to enhance UV PD performance, delving into the advantages, challenges, and future research prospects in this area. By doing so, this review aims to spark innovation and guide the future development and application of UV PDs.
Collapse
Affiliation(s)
- Fa Cao
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| | - Mei Liu
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| | - Zeyao Han
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| | - Xiaobao Xu
- School of Electronic Science and Engineering,
Southeast University, Nanjing 210000, P. R. China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| | - Bin Sun
- State Key Laboratory of Organic Electronics and Information Displays,
Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing210023, P. R. China
| |
Collapse
|
16
|
Chen T, Zhang X, Zhang L, Zeng C, Li S, Yang A, Hu Y, Li B, Jiang M, Huang Z, Li Y, Guo G, Fan Y, Shi W, Cai Y, Zeng Z, Zhang B. High-Speed and Ultrasensitive Solar-Blind Ultraviolet Photodetectors Based on In Situ Grown β-Ga 2O 3 Single-Crystal Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6068-6077. [PMID: 38258520 DOI: 10.1021/acsami.3c15561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Deep-level defects in β-Ga2O3 that worsen the response speed and dark current (Id) of photodetectors (PDs) have been a long-standing issue for its application. Herein, an in situ grown single-crystal Ga2O3 nanoparticle seed layer (NPSL) was used to shorten the response time and reduce the Id of metal-semiconductor-metal (MSM) PDs. With the NPSL, the Id was reduced by 4 magnitudes from 0.389 μA to 81.03 pA, and the decay time (τd1/τd2) decreased from 258/1690 to 62/142 μs at -5 V. In addition, the PDs with the NPSL also exhibit a high responsivity (43.5 A W-1), high specific detectivity (2.81 × 1014 Jones), and large linear dynamic range (61 dB) under 254 nm illumination. The mechanism behind the performance improvement can be attributed to the suppression of the deep-level defects (i.e., self-trapped holes) and increase of the Schottky barrier. The barrier height extracted is increased by 0.18 eV compared with the case without the NPSL. Our work contributes to understanding the relationship between defects and the performance of PDs based on heteroepitaxial β-Ga2O3 thin films and provides an important reference for the development of high-speed and ultrasensitive deep ultraviolet PDs.
Collapse
Affiliation(s)
- Tiwei Chen
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 230026 Hefei, China
- Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Xiaodong Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 230026 Hefei, China
- Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Li Zhang
- Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Chunhong Zeng
- Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Shaojuan Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
| | - An Yang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 230026 Hefei, China
| | - Yu Hu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 230026 Hefei, China
| | - Botong Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 230026 Hefei, China
| | - Ming Jiang
- Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Zijing Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 230026 Hefei, China
| | - Yifei Li
- Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Gaofu Guo
- Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Yaming Fan
- Nanchang Nano-Devices and Technologies Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang 330200, China
| | - Wenhua Shi
- Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Yong Cai
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 230026 Hefei, China
| | - Zhongming Zeng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 230026 Hefei, China
- Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
- Nanchang Nano-Devices and Technologies Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang 330200, China
| | - Baoshun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 230026 Hefei, China
- Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| |
Collapse
|
17
|
Ahmed A, Zahir Iqbal M, Dahshan A, Aftab S, Hegazy HH, Yousef ES. Recent advances in 2D transition metal dichalcogenide-based photodetectors: a review. NANOSCALE 2024; 16:2097-2120. [PMID: 38204422 DOI: 10.1039/d3nr04994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as a highly promising platform for the development of photodetectors (PDs) owing to their remarkable electronic and optoelectronic properties. Highly effective PDs can be obtained by making use of the exceptional properties of 2D materials, such as their high transparency, large charge carrier mobility, and tunable electronic structure. The photodetection mechanism in 2D TMD-based PDs is thoroughly discussed in this article, with special attention paid to the key characteristics that set them apart from PDs based on other integrated materials. This review examines how single TMDs, TMD-TMD heterostructures, TMD-graphene (Gr) hybrids, TMD-MXene composites, TMD-perovskite heterostructures, and TMD-quantum dot (QD) configurations show advanced photodetection. Additionally, a thorough analysis of the recent developments in 2D TMD-based PDs, highlighting their exceptional performance capabilities, including ultrafast photo response, ultrabroad detectivity, and ultrahigh photoresponsivity, attained through cutting-edge methods is provided. The article conclusion highlights the potential for ground-breaking discoveries in this fast developing field of research by outlining the challenges faced in the field of PDs today and providing an outlook on the prospects of 2D TMD-based PDs in the future.
Collapse
Affiliation(s)
- Anique Ahmed
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Zahir Iqbal
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Alaa Dahshan
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - El Sayed Yousef
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| |
Collapse
|
18
|
Kim J, Lee J, Lee JM, Facchetti A, Marks TJ, Park SK. Recent Advances in Low-Dimensional Nanomaterials for Photodetectors. SMALL METHODS 2024; 8:e2300246. [PMID: 37203281 DOI: 10.1002/smtd.202300246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/21/2023] [Indexed: 05/20/2023]
Abstract
New emerging low-dimensional such as 0D, 1D, and 2D nanomaterials have attracted tremendous research interests in various fields of state-of-the-art electronics, optoelectronics, and photonic applications due to their unique structural features and associated electronic, mechanical, and optical properties as well as high-throughput fabrication for large-area and low-cost production and integration. Particularly, photodetectors which transform light to electrical signals are one of the key components in modern optical communication and developed imaging technologies for whole application spectrum in the daily lives, including X-rays and ultraviolet biomedical imaging, visible light camera, and infrared night vision and spectroscopy. Today, diverse photodetector technologies are growing in terms of functionality and performance beyond the conventional silicon semiconductor, and low-dimensional nanomaterials have been demonstrated as promising potential platforms. In this review, the current states of progress on the development of these nanomaterials and their applications in the field of photodetectors are summarized. From the elemental combination for material design and lattice structure to the essential investigations of hybrid device architectures, various devices and recent developments including wearable photodetectors and neuromorphic applications are fully introduced. Finally, the future perspectives and challenges of the low-dimensional nanomaterials based photodetectors are also discussed.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Junho Lee
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Jong-Min Lee
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Antonio Facchetti
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Tobin J Marks
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Sung Kyu Park
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
19
|
Joung SY, Yim H, Lee D, Shim J, Yoo SY, Kim YH, Kim JS, Kim H, Hyeong SK, Kim J, Noh YY, Bae S, Park MJ, Choi JW, Lee CH. All-Solution-Processed High-Performance MoS 2 Thin-Film Transistors with a Quasi-2D Perovskite Oxide Dielectric. ACS NANO 2024; 18:1958-1968. [PMID: 38181200 DOI: 10.1021/acsnano.3c06972] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Assembling solution-processed van der Waals (vdW) materials into thin films holds great promise for constructing large-scale, high-performance thin-film electronics, especially at low temperatures. While transition metal dichalcogenide thin films assembled in solution have shown potential as channel materials, fully solution-processed vdW electronics have not been achieved due to the absence of suitable dielectric materials and high-temperature processing. In this work, we report on all-solution-processedvdW thin-film transistors (TFTs) comprising molybdenum disulfides (MoS2) as the channel and Dion-Jacobson-phase perovskite oxides as the high-permittivity dielectric. The constituent layers are prepared as colloidal solutions through electrochemical exfoliation of bulk crystals, followed by sequential assembly into a semiconductor/dielectric heterostructure for TFT construction. Notably, all fabrication processes are carried out at temperatures below 250 °C. The fabricated MoS2 TFTs exhibit excellent device characteristics, including high mobility (>10 cm2 V-1 s-1) and an on/off ratio exceeding 106. Additionally, the use of a high-k dielectric allows for operation at low voltage (∼5 V) and leakage current (∼10-11 A), enabling low power consumption. Our demonstration of the low-temperature fabrication of high-performance TFTs presents a cost-effective and scalable approach for heterointegrated thin-film electronics.
Collapse
Affiliation(s)
- Su-Yeon Joung
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Haena Yim
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Donghun Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jaehyung Shim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - So Yeon Yoo
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yeon Ho Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin Seok Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyunjun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seok-Ki Hyeong
- Functional Composite Materials Research Center, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Junhee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yong-Young Noh
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sukang Bae
- Functional Composite Materials Research Center, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonbuk 54896, Republic of Korea
| | - Myung Jin Park
- National Institute for Nanomaterials Technology, 77, Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Ji-Won Choi
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Nanomaterials Science and Engineering, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chul-Ho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
20
|
Feng X, Cheng R, Yin L, Wen Y, Jiang J, He J. Two-Dimensional Oxide Crystals for Device Applications: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304708. [PMID: 37452605 DOI: 10.1002/adma.202304708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Atomically thin two-dimensional (2D) oxide crystals have garnered considerable attention because of their remarkable physical properties and potential for versatile applications. In recent years, significant advancements have been made in the design, preparation, and application of ultrathin 2D oxides, providing many opportunities for new-generation advanced technologies. This review focuses on the controllable preparation of 2D oxide crystals and their applications in electronic and optoelectronic devices. Based on their bonding nature, the various types of 2D oxide crystals are first summarized, including both layered and nonlayered crystals, as well as their current top-down and bottom-up synthetic approaches. Subsequently, in terms of the unique physical and electrical properties of 2D oxides, recent advances in device applications are emphasized, including photodetectors, field-effect transistors, dielectric layers, magnetic and ferroelectric devices, memories, and gas sensors. Finally, conclusions and future prospects of 2D oxide crystals are presented. It is hoped that this review will provide comprehensive and insightful guidance for the development of 2D oxide crystals and their device applications.
Collapse
Affiliation(s)
- Xiaoqiang Feng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430072, China
| | - Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
21
|
Zhou Y, Waelchli A, Boselli M, Crassee I, Bercher A, Luo W, Duan J, van Mechelen JLM, van der Marel D, Teyssier J, Rischau CW, Korosec L, Gariglio S, Triscone JM, Kuzmenko AB. Thermal and electrostatic tuning of surface phonon-polaritons in LaAlO 3/SrTiO 3 heterostructures. Nat Commun 2023; 14:7686. [PMID: 38001108 PMCID: PMC10673882 DOI: 10.1038/s41467-023-43464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Phonon polaritons are promising for infrared applications due to a strong light-matter coupling and subwavelength energy confinement they offer. Yet, the spectral narrowness of the phonon bands and difficulty to tune the phonon polariton properties hinder further progress in this field. SrTiO3 - a prototype perovskite oxide - has recently attracted attention due to two prominent far-infrared phonon polaritons bands, albeit without any tuning reported so far. Here we show, using cryogenic infrared near-field microscopy, that long-propagating surface phonon polaritons are present both in bare SrTiO3 and in LaAlO3/SrTiO3 heterostructures hosting a two-dimensional electron gas. The presence of the two-dimensional electron gas increases dramatically the thermal variation of the upper limit of the surface phonon polariton band due to temperature dependent polaronic screening of the surface charge carriers. Furthermore, we demonstrate a tunability of the upper surface phonon polariton frequency in LaAlO3/SrTiO3 via electrostatic gating. Our results suggest that oxide interfaces are a new platform bridging unconventional electronics and long-wavelength nanophotonics.
Collapse
Affiliation(s)
- Yixi Zhou
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, 4, Switzerland
- Beijing Key Laboratory of Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, 100048, Beijing, China
| | - Adrien Waelchli
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, 4, Switzerland
| | - Margherita Boselli
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, 4, Switzerland
| | - Iris Crassee
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, 4, Switzerland
| | - Adrien Bercher
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, 4, Switzerland
| | - Weiwei Luo
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, 4, Switzerland
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin, 300457, China
| | - Jiahua Duan
- Department of Physics, University of Oviedo, Oviedo, 33006, Spain
| | - J L M van Mechelen
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands
| | - Dirk van der Marel
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, 4, Switzerland
| | - Jérémie Teyssier
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, 4, Switzerland
| | - Carl Willem Rischau
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, 4, Switzerland
| | - Lukas Korosec
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, 4, Switzerland
| | - Stefano Gariglio
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, 4, Switzerland
| | - Jean-Marc Triscone
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, 4, Switzerland
| | - Alexey B Kuzmenko
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, 4, Switzerland.
| |
Collapse
|
22
|
Hu H, Zhen W, Yue Z, Niu R, Xu F, Zhu W, Jiao K, Long M, Xi C, Zhu W, Zhang C. A mixed-dimensional quasi-1D BiSeI nanowire-2D GaSe nanosheet p-n heterojunction for fast response optoelectronic devices. NANOSCALE ADVANCES 2023; 5:6210-6215. [PMID: 37941949 PMCID: PMC10629003 DOI: 10.1039/d3na00525a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Due to the unique combination configuration and the formation of a built-in electric field, mixed-dimensional heterojunctions present fruitful possibilities for improving the optoelectronic performances of low-dimensional optoelectronic devices. However, the response times of most photodetectors built from mixed-dimensional heterojunctions are within the millisecond range, limiting their applications in fast response optoelectronic devices. Herein, a mixed-dimensional BiSeI/GaSe van der Waals heterostructure is designed, which exhibits visible light detection ability and competitive photoresponsivity of 750 A W-1 and specific detectivity of 2.25 × 1012 Jones under 520 nm laser excitation. Excitingly, the device displays a very fast response time, e.g., the rise time and decay time under 520 nm laser excitation are 65 μs and 190 μs, respectively. Our findings provide a prospective approach to mixed-dimensional heterojunction photodetection devices with rapid switching capabilities.
Collapse
Affiliation(s)
- Huijie Hu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Weili Zhen
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Zhilai Yue
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Rui Niu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Feng Xu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Wanli Zhu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Keke Jiao
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Mingsheng Long
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Chuanying Xi
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Wenka Zhu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Changjin Zhang
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 China
| |
Collapse
|
23
|
Ouahrani T, Boufatah RM, Bendaoudi L, Bedrane Z, Morales-García Á, Errandonea D. Theoretical study of electrocatalytic properties of low-dimensional freestanding PbTiO 3 for hydrogen evolution reactions. Phys Chem Chem Phys 2023; 25:27457-27467. [PMID: 37796450 DOI: 10.1039/d3cp04241c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The discovery of novel materials for catalytic purposes that are highly stable is one of the main challenges nowadays for reducing our dependence on fossil fuels. Here, low-dimensional PbTiO3 is introduced as an electrocatalyst using first-principles calculations. Density-functional theory calculations indicate that 2D-PbTiO3 is dynamically and thermodynamically stable. Our results show that a single oxygen defect vacancy in 2D-PbTiO3 can play a key role in enhancing the hydrogen evolution reaction (HER), together with the Ti atoms. Our study concludes that the Volmer-Heyrovsky mechanism is a more favorable route to achieve HER than the Volmer-Tafel mechanism, including solvation and vacuum conditions.
Collapse
Affiliation(s)
- Tarik Ouahrani
- École supérieure en sciences appliquées, ESSA-Tlemcen, BB 165 RP Bel Horizon, Tlemcen 13000, Algeria
- Laboratoire de Physique Théorique, Université de Tlemcen 1300, Algeria.
| | - Reda M Boufatah
- Laboratoire de Physique Théorique, Université de Tlemcen 1300, Algeria.
| | - Loubna Bendaoudi
- Laboratory of Materials Discovery, Unit of Research Materials and Renewable Energies, LEPM-URMER. Université de Tlemcen 13000, Algeria
| | - Zeyneb Bedrane
- Laboratoire de Physique Théorique, Université de Tlemcen 1300, Algeria.
| | - Ángel Morales-García
- Departament de Ciéncia de Materials i Química Física & Institut de Química Teórica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Daniel Errandonea
- Departamento de Física Aplicada-Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, Burjassot, 46100, Valencia, Spain.
| |
Collapse
|
24
|
Zakharov DN, Alameda L, Kisslinger K, Stein A, Boscoboinik A, Yang JC. Exploiting 2D Perovskites for Catalyst Support Applications. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1812-1813. [PMID: 37613916 DOI: 10.1093/micmic/ozad067.937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Dmitri N Zakharov
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, United States
| | - Lucas Alameda
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, United States
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, United States
| | - Aaron Stein
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, United States
| | - Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, United States
| | - Judith C Yang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, United States
| |
Collapse
|
25
|
Huang J, Yang L, He S. High-Performance Low-Voltage Transparent Metal-Semiconductor-Metal Ultraviolet Photodetectors Based on Ultrathin Gold Asymmetric Interdigitated Electrodes. MICROMACHINES 2023; 14:1447. [PMID: 37512759 PMCID: PMC10386012 DOI: 10.3390/mi14071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
A high-performance, low-voltage, transparent, metal-semiconductor-metal ultraviolet (UV) photodetector (PD) is proposed and experimentally demonstrated, based on gold (Au) asymmetric interdigitated (aIDT) electrodes with thicknesses well below 10 nm. A 7-nm-thick Au film, with a visible transmittance of 80.4% and a sheet resistance of 11.55 Ω/sq, is patterned into aIDT electrodes on a ZnO active layer, whose average visible transmittance is up to 74.3%. Meshing the pads further improves the overall transmittance of the device. Among all fabricated devices, the PD with the aIDT finger width ratio of 1:4 performs the best. Very low dark currents are achieved at 0, 0.5 and 1 V, allowing for high responsivities and specific detectivities to the UV light. It is also a fast device, especially under the biases of 0.5 and 1 V. The comprehensive performances are comparable and even superior to those of the reported devices. The asymmetric Schottky junctions induced by the aIDT electrodes under UV illumination are the main mechanism for the low-voltage operation of our transparent PD, which is promising to be applied widely.
Collapse
Affiliation(s)
- Jianfeng Huang
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Liu Yang
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Sailing He
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
- Joint Research Center of Photonics, School of Electrical Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm, Sweden
| |
Collapse
|
26
|
Khramova AD, Silyukov OI, Kurnosenko SA, Malygina EN, Zvereva IA. Synthesis and Characterization of Inorganic-Organic Derivatives of Layered Perovskite-like Niobate HSr 2Nb 3O 10 with n-Amines and n-Alcohols. Molecules 2023; 28:4807. [PMID: 37375362 DOI: 10.3390/molecules28124807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A protonated and hydrated Dion-Jacobson-phase HSr2Nb3O10∙yH2O was used to prepare two series of inorganic-organic derivatives containing non-covalently intercalated n-alkylamines and covalently grafted n-alkoxy groups of different lengths, as they are promising hybrid materials for photocatalytic applications. Preparation of the derivatives was carried out both under the conditions of standard laboratory synthesis and by solvothermal methods. For all the hybrid compounds synthesized structure, quantitative composition, a type of bonding between inorganic and organic parts as well as light absorption range were discussed using powder XRD, Raman, IR and NMR spectroscopy, TG, elemental CHN analysis, and DRS. It was shown that the inorganic-organic samples obtained contain approximately one interlayer organic molecule or group per proton of the initial niobate, as well as some amount of intercalated water. In addition, the thermal stability of the hybrid compounds strongly depends on the nature of the organic component anchoring to the niobate matrix. Although non-covalent amine derivatives are stable only at low temperatures, covalent alkoxy ones can withstand heat up to 250 °C without perceptible decomposition. The fundamental absorption edge of both the initial niobate and the products of its organic modification lies in the near-ultraviolet region (370-385 nm).
Collapse
Affiliation(s)
- Alina D Khramova
- Department of Chemical Thermodynamics and Kinetics, Institute of Chemistry, Saint Petersburg State University, 198504 Saint Petersburg, Russia
| | - Oleg I Silyukov
- Department of Chemical Thermodynamics and Kinetics, Institute of Chemistry, Saint Petersburg State University, 198504 Saint Petersburg, Russia
| | - Sergei A Kurnosenko
- Department of Chemical Thermodynamics and Kinetics, Institute of Chemistry, Saint Petersburg State University, 198504 Saint Petersburg, Russia
| | - Ekaterina N Malygina
- Department of Chemical Thermodynamics and Kinetics, Institute of Chemistry, Saint Petersburg State University, 198504 Saint Petersburg, Russia
| | - Irina A Zvereva
- Department of Chemical Thermodynamics and Kinetics, Institute of Chemistry, Saint Petersburg State University, 198504 Saint Petersburg, Russia
| |
Collapse
|
27
|
Zhou K, Shang G, Hsu HH, Han ST, Roy VAL, Zhou Y. Emerging 2D Metal Oxides: From Synthesis to Device Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207774. [PMID: 36333890 DOI: 10.1002/adma.202207774] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Indexed: 05/26/2023]
Abstract
2D metal oxides have aroused increasing attention in the field of electronics and optoelectronics due to their intriguing physical properties. In this review, an overview of recent advances on synthesis of 2D metal oxides and their electronic applications is presented. First, the tunable physical properties of 2D metal oxides that relate to the structure (various oxidation-state forms, polymorphism, etc.), crystallinity and defects (anisotropy, point defects, and grain boundary), and thickness (quantum confinement effect, interfacial effect, etc.) are discussed. Then, advanced synthesis methods for 2D metal oxides besides mechanical exfoliation are introduced and classified into solution process, vapor-phase deposition, and native oxidation on a metal source. Later, the various roles of 2D metal oxides in widespread applications, i.e., transistors, inverters, photodetectors, piezotronics, memristors, and potential applications (solar cell, spintronics, and superconducting devices) are discussed. Finally, an outlook of existing challenges and future opportunities in 2D metal oxides is proposed.
Collapse
Affiliation(s)
- Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gang Shang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hsiao-Hsuan Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
28
|
Kundu S, George SJ, Kulkarni GU. Fabrication of High-Performance Visible-Blind Ultraviolet Photodetectors Using Electro-ionic Conducting Supramolecular Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19270-19278. [PMID: 36996388 DOI: 10.1021/acsami.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The detection of ultraviolet (UV) light is vital for various applications, such as chemical-biological analysis, communications, astronomical studies, and also for its adverse effects on human health. Organic UV photodetectors are gaining much attention in this scenario because they possess properties such as high spectral selectivity and mechanical flexibility. However, the achieved performance parameters are much more inferior than the inorganic counterparts because of the lower mobility of charge carriers in organic systems. Here, we report the fabrication of a high-performance visible-blind UV photodetector, using 1D supramolecular nanofibers. The nanofibers are visibly inactive and exhibit highly responsive behavior mainly for UV wavelengths (275-375 nm), the highest response being at ∼275 nm. The fabricated photodetectors demonstrate desired features, such as high responsivity and detectivity, high selectivity, low power consumption, and good mechanical flexibility, because of their unique electro-ionic behavior and 1D structure. The device performance is shown to be improved by several orders through the tweaking of both electronic and ionic conduction pathways while optimizing the electrode material, external humidity, applied voltage bias, and by introducing additional ions. We have achieved optimum responsivity and detectivity values of around 6265 A W-1 and 1.54 × 1014 Jones, respectively, which stand out compared with the previous organic UV photodetector reports. The present nanofiber system has great potential for integration in future generations of electronic gadgets.
Collapse
Affiliation(s)
- Suman Kundu
- Centre for Nano and Soft Matter Sciences, Shivanapura, Bengaluru 562162, India
| | - Subi J George
- Supramolecular Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Giridhar U Kulkarni
- Centre for Nano and Soft Matter Sciences, Shivanapura, Bengaluru 562162, India
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| |
Collapse
|
29
|
Wang J, Xu P, Ji X, Li M, Lu W. Feature Selection in Machine Learning for Perovskite Materials Design and Discovery. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3134. [PMID: 37109971 PMCID: PMC10146176 DOI: 10.3390/ma16083134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Perovskite materials have been one of the most important research objects in materials science due to their excellent photoelectric properties as well as correspondingly complex structures. Machine learning (ML) methods have been playing an important role in the design and discovery of perovskite materials, while feature selection as a dimensionality reduction method has occupied a crucial position in the ML workflow. In this review, we introduced the recent advances in the applications of feature selection in perovskite materials. First, the development tendency of publications about ML in perovskite materials was analyzed, and the ML workflow for materials was summarized. Then the commonly used feature selection methods were briefly introduced, and the applications of feature selection in inorganic perovskites, hybrid organic-inorganic perovskites (HOIPs), and double perovskites (DPs) were reviewed. Finally, we put forward some directions for the future development of feature selection in machine learning for perovskite material design.
Collapse
Affiliation(s)
- Junya Wang
- Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Pengcheng Xu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xiaobo Ji
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Minjie Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wencong Lu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Zhejiang Laboratory, Hangzhou 311100, China
- Key Laboratory of Silicate Cultural Relics Conservation (Shanghai University), Ministry of Education, Shanghai 200444, China
| |
Collapse
|
30
|
Zhang L, Wei Z, Wang X, Zhang L, Wang Y, Xie C, Han T, Li F, Luo W, Zhao D, Long M, Shan L. Ultrahigh-Sensitivity and Fast-Speed Solar-Blind Ultraviolet Photodetector Based on a Broken-Gap van der Waals Heterodiode. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36913956 DOI: 10.1021/acsami.2c20546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Broad-bandgap semiconductor-based solar-blind ultraviolet (SBUV) photodetectors have attracted considerable research interest because of their broad applications in missile plume tracking, flame detectors, environmental monitoring, and optical communications due to their solar-blind nature and high sensitivity with low background radiation. Owing to its high light absorption coefficient, abundance, and wide tunable bandgap of 2-2.6 eV, tin disulfide (SnS2) has emerged as one of the most promising compounds for application in UV-visible optoelectronic devices. However, SnS2 UV detectors have some undesirable properties such as slow response speed, high current noise level, and low specific detectivity. This study reports a metal mirror-enhanced Ta0.01W0.99Se2/SnS2 (TWS) van der Waals heterodiode-based SBUV photodetector with an ultrahigh photoresponsivity (R) of ∼1.85 × 104 AW-1 and a fast speed with rising time (τr) of 3.3 μs and decay time (τd) of 3.4 μs. Notably, the TWS heterodiode device exhibits a significantly low noise equivalent power of ∼1.02 × 10-18 W Hz-1/2 and a high specific detectivity of ∼3.65 × 1014 cm Hz1/2 W-1. This study provides an alternative method for designing fast-speed SBUV photodetectors with enormous potential in applications.
Collapse
Affiliation(s)
- Li Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Zhenhua Wei
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Xiuxiu Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Luoyu Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Yi Wang
- Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Chao Xie
- Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Tao Han
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Feng Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Wei Luo
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Dongxu Zhao
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Dongnanhu Road, Changchun 130021, China
| | - Mingsheng Long
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Lei Shan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| |
Collapse
|
31
|
Behnia S, Fathizadeh S, Hosseinnezhad P, Nemati F. Modulation of a DNA-based photodetector: Virus-Chromophore hybridization. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
32
|
Hsu CW, Miyano T, Awaya K, Tsushida M, Hatakeyama K, Koinuma M, Ida S. Bandgap Tunable Oxynitride LaNb 2 O 7-x N x Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206552. [PMID: 36642836 DOI: 10.1002/smll.202206552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Bandgap tunable lanthanum niobium oxynitride [LaNb2 O7-x Nx ](1+x)- nanosheet is prepared by the delamination of a Ruddlesden-Popper phase perovskite oxynitride via ion-exchange and two-step intercalation processes. The lanthanum niobium oxynitride nanosheets have a homogeneous thickness of 1.6 nm and exhibit a variety of chromatic colors depending on the nitridation temperature of the parent-layered oxynitride. The bandgap energy of the nanosheets is determined by ultraviolet photoemission spectroscopy, Mott-Schottky, and photoelectrochemical measurements and is found to be tunable in the range of 2.03-2.63 eV. Furthermore, the oxide/oxynitride superlattice structures are fabricated by face-to-face stacking of 2D crystals using oxynitride [LaNb2 O7-x Nx ](1+x)- and oxide [Ca2 Nb3 O10 ]- nanosheets as building blocks. Moreover, the superlattices-like restacked oxynitride/oxide nanosheets hybrid exhibits unique proton conductivity and dielectric properties strongly influenced by the oxynitride nanosheets and enhanced photocatalytic activity under visible light irradiation.
Collapse
Affiliation(s)
- Chu-Wei Hsu
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Takuro Miyano
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Keisuke Awaya
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Masayuki Tsushida
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Kazuto Hatakeyama
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Michio Koinuma
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Shintaro Ida
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
33
|
Bhatia H, Martin C, Keshavarz M, Dovgaliuk I, Schrenker NJ, Ottesen M, Qiu W, Fron E, Bremholm M, Van de Vondel J, Bals S, Roeffaers MBJ, Hofkens J, Debroye E. Deciphering the Role of Water in Promoting the Optoelectronic Performance of Surface-Engineered Lead Halide Perovskite Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7294-7307. [PMID: 36705637 DOI: 10.1021/acsami.2c20605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lead halide perovskites are promising candidates for high-performance light-emitting diodes (LEDs); however, their applicability is limited by their structural instability toward moisture. Although a deliberate addition of water to the precursor solution has recently been shown to improve the crystallinity and optical properties of perovskites, the corresponding thin films still do not exhibit a near-unity quantum yield. Herein, we report that the direct addition of a minute amount of water to post-treated formamidinium lead bromide (FAPbBr3) nanocrystals (NCs) substantially enhances the stability while achieving a 95% photoluminescence quantum yield in a NC thin film. We unveil the mechanism of how moisture assists in the formation of an additional NH4Br component. Alongside, we demonstrate the crucial role of moisture in assisting localized etching of the perovskite crystal, facilitating the partial incorporation of NH4+, which is key for improved performance under ambient conditions. Finally, as a proof-of-concept, the application of post-treated and water-treated perovskites is tested in LEDs, with the latter exhibiting a superior performance, offering opportunities toward commercial application in moisture-stable optoelectronics.
Collapse
Affiliation(s)
- Harshita Bhatia
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Leuven, Belgium
| | - Cristina Martin
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Leuven, Belgium
- Department of Physical Chemistry, Faculty of Pharmacy, University of Castilla-La Mancha, C/ José María Sánchez Ibañez s/n, 02071Albacete, Spain
| | - Masoumeh Keshavarz
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Leuven, Belgium
| | - Iurii Dovgaliuk
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL Université, 75005Paris, France
| | - Nadine J Schrenker
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020Wilrijk, Belgium
| | - Martin Ottesen
- Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000Aarhus C, Denmark
| | - Weiming Qiu
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Leuven, Belgium
| | - Eduard Fron
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Leuven, Belgium
| | - Martin Bremholm
- Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000Aarhus C, Denmark
| | - Joris Van de Vondel
- Quantum Solid-State Physics (QSP), Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven3001, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020Wilrijk, Belgium
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, 3001Leuven, Belgium
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Leuven, Belgium
| | - Elke Debroye
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001Leuven, Belgium
| |
Collapse
|
34
|
Tang K, Jiang M, Yang B, Xu T, Liu Z, Wan P, Kan C, Shi D. Enhancing UV photodetection performance of an individual ZnO microwire p-n homojunction via interfacial engineering. NANOSCALE 2023; 15:2292-2304. [PMID: 36636950 DOI: 10.1039/d2nr06431f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a typical broad bandgap semiconductor, ZnO has received considerable attention for developing optoelectronic devices in ultraviolet wavelengths, but suffers from a lack of high-quality single-crystalline p-type ZnO. Herein, we report the realization of a homojunction ultraviolet photodetector, which involves a p-type Sb-doped ZnO microwire (ZnO:Sb MW) and n-type ZnO layer. The p-type conductivity of the as-synthesized ZnO:Sb MWs was evidenced using an individual wire field-effect transistor. Due to its good rectifying ability and excellent photovoltaic effect, the constructed p-ZnO:Sb MW/n-ZnO homojunction is able to work as an ultraviolet photodetector in self-biased and reversely biased manners. By appropriately engineering the band alignment of the p-ZnO:Sb/n-ZnO homojunction via a MgO interface modification layer, the optimized photodetector exhibits performance-enhanced ultraviolet detection capabilities, such as the light on/off ratio reaching up to 1.6 × 108, responsivity of over 267 mA W-1 and specific detectivity of approximately 1.2 × 1014 Jones upon 365 nm light illumination at 0 V. The detector also produces faster response with rise/recovery times of 102 μs/3.6 ms. This study not only employed a novel method to synthesize genuine p-type ZnO with excellent stability and reproducibility, but also opened up substantial opportunities for developing high-performance ZnO homojunction optoelectronic devices.
Collapse
Affiliation(s)
- Kai Tang
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Mingming Jiang
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Bingwang Yang
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Tong Xu
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Zeng Liu
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Peng Wan
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Caixia Kan
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Daning Shi
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| |
Collapse
|
35
|
Li SX, Xia H, Liu TY, Zhu H, Feng JC, An Y, Zhang XL, Sun HB. In Situ Encapsulated Moiré Perovskite for Stable Photodetectors with Ultrahigh Polarization Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207771. [PMID: 36341484 DOI: 10.1002/adma.202207771] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Nanostructures provide a simple, effective, and low-cost route to enhance the light-trapping capability of optoelectronic devices. In recent years, nano-optical structures have been widely used in perovskite optoelectronic devices to greatly enhance the device performance. However, the inherent instability of perovskite materials hinders the practical application of these nanostructured optoelectronic devices. Here, in situ encapsulated moiré lattice perovskite photodetectors (PDs) by two nanograting-structured soft templates with relative rotation angles is fabricated. The confinement growth of the two nanograting templates leads to crystal growth with moiré lattice structure, which improves the light-harvesting ability of the perovskite crystal, thereby improving the device performance. The PD exhibits responsivity to 1026.5 A W-1 . The Moiré lattice-perovskite-based PD maintained 95% of the initial performance after 223 days. After being continuously sprayed with water moist for 180 min, the performance is maintained at 95.7% of its initial level. The nanograting structure endows the device with high polarization sensitivity of Imax /Imin as high as 9.1.
Collapse
Affiliation(s)
- Shun-Xin Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Hong Xia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Tian-Yu Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - He Zhu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Jia-Cheng Feng
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yang An
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Xu-Lin Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Haidian district, Beijing, 100084, China
| |
Collapse
|
36
|
Zhang Y, Wang F, Zhao X, Feng X, Zhang N, Xia F, Ma Y, Li H, Zhai T. 2D Ruddlesden-Popper perovskite sensitized SnP 2S 6 ultraviolet photodetector enabling high responsivity and fast speed. NANOSCALE HORIZONS 2022; 8:108-117. [PMID: 36426643 DOI: 10.1039/d2nh00466f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As the newly developed wide-bandgap semiconductors, two-dimensional layered metal phosphorus chalcogenides (2D LMPCs) exhibit enormous potential applications in ultraviolet (UV) photodetection due to their superior optoelectronic performance. However, 2D LMPC-based UV photodetectors generally suffer from low responsivity and slow response speed, which hinder their practical applications. Here, we present an effective strategy of sensitizing 2D LMPC UV photodetectors with a 2D Ruddlesden-Popper (RP) perovskite to enable high responsivity and fast response speed. As a demonstration, a hybrid heterojunction composed of RP perovskite (PEA)2PbI4 and a 2D SnP2S6 flake is fabricated by spin-coating method. Benefitting from the strong optical absorption of (PEA)2PbI4 and the efficient interfacial charge transfer caused by the favorable type-II energy band alignment, the as-fabricated 2D SnP2S6/(PEA)2PbI4 hybrid heterojunction photodetectors show high responsivity (67.1 A W-1), large detectivity (2.8 × 1011 Jones), fast rise/delay time (30/120 μs) and excellent external quantum efficiency (22825%) at 365 nm. Under field-effect modulation, the responsivity of the heterojunction photodetector can reach up to 239.4 A W-1, which is attributed to the photogating mechanism and reduced Schottky barriers. Owing to the excellent photodetection performance, the heterojunction device further shows superior imaging capability. This work provides an effective strategy for designing high-performance UV photodetectors toward future applications.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Fakun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xuan Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Xin Feng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Fangfang Xia
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Ying Ma
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| |
Collapse
|
37
|
Liu X, Li S, Li Z, Cao F, Su L, Shtansky DV, Fang X. Enhanced Response Speed in 2D Perovskite Oxides-Based Photodetectors for UV Imaging through Surface/Interface Carrier-Transport Modulation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48936-48947. [PMID: 36273339 DOI: 10.1021/acsami.2c15946] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The long-time decay process induced by the persistent photoconductivity (PPC) in metal oxides-based photodetectors (PDs) impedes our demands for high-speed photodetectors. 2D perovskite oxides, emerging candidates for future high-performance PDs, also suffer from the PPC effect. Here, by integrating 2D perovskite Sr2Nb3O10 (SNO) nanosheets and nitrogen-doped graphene quantum dots (NGQDs), a unique nanoscale heterojunction is designed to modulate surface/interface carrier transport for enhanced response speed. Notably, the decay time is reduced from hundreds of seconds to a few seconds. The 4%NGQDs-SNO PD exhibits excellent performance with a photocurrent of 0.47 μA, a high on-off ratio of 2.2 × 104, and a fast pulse response speed (τdecay = 67.3 ms), making it promising for UV imaging. The trap-involved decay process plays a dominant role in determining the decay time, resulting in the PPC effect in SNO PD, and the trap states mainly originate from oxygen vacancies and chemisorbed oxygen molecules. A significantly enhanced photoresponse speed in NGQDs-SNO PDs can be ascribed to the modulated surface/interface trap states and the efficient carrier pathway provided by the nanoscale heterojunction. This work provides an effective way to enhance the response speed in 2D perovskite oxides constrained by PPC via surface/interface engineering, promoting their applications in optoelectronics.
Collapse
Affiliation(s)
- Xinya Liu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai200433, P. R. China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Hong Kong999077, P. R. China
| | - Ziqing Li
- Institute of Optoelectronics, Fudan University, Shanghai200433, P. R. China
| | - Fa Cao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai200433, P. R. China
| | - Li Su
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai200433, P. R. China
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow119049, Russia
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai200433, P. R. China
| |
Collapse
|
38
|
Guo L, Liu X, Cong R, Gao L, Zhang K, Zhao L, Wang X, Wang RN, Pan C, Yang Z. Patterned 2D Ferroelectric Perovskite Single-Crystal Arrays for Self-Powered UV Photodetector Boosted by Combining Ferro-Pyro-Phototronic and Piezo-Phototronic Effects. NANO LETTERS 2022; 22:8241-8249. [PMID: 36215318 DOI: 10.1021/acs.nanolett.2c02978] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal halide perovskite ferroelectrics possess various physical characteristics such as piezoelectric and pyroelectric effects, which could broaden the application of perovskite ferroelectrics and enhance the optoelectronic performance. Therefore, it is promising to combine multiple effects to optimize the performance of the self-powered PDs. Herein, patterned 2D ferroelectric perovskite (PMA)2PbCl4 microbelt arrays were demonstrated through a PDMS template-assisted antisolvent crystallization method. The perovskite arrays based flexible photodetectors exhibited fine self-powered photodetection performance under 320 nm illumination and much enhanced reproducibility compared with the randomly distributed single-crystal microbelts-based PDs. Furthermore, by introducing the piezo-phototronic effect, the performance of the flexible PD was greatly enhanced. Under an external tensile strain of 0.71%, the responsivity was enhanced by 185% from 84 to 155.5 mA/W. Our findings offer the advancement of comprehensively utilizing various physical characteristics of the ferroelectrics for novel ferroelectric optoelectronics.
Collapse
Affiliation(s)
- Linjuan Guo
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| | - Xiu Liu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| | - Ridong Cong
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| | - Linjie Gao
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| | - Kai Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| | - Lei Zhao
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| | - Xinzhan Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| | - Rui-Ning Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, PR China
| | - Zheng Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
| |
Collapse
|
39
|
Qamar S, Fatima K, Ullah N, Akhter Z, Waseem A, Sultan M. Recent progress in use of MXene in perovskite solar cells: for interfacial modification, work-function tuning and additive engineering. NANOSCALE 2022; 14:13018-13039. [PMID: 36065967 DOI: 10.1039/d2nr02799b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of perovskites in photovoltaic and related industries has achieved tremendous success over the last decade. However, there are still obstacles to overcome in terms of boosting their performance and resolving stability issues for future commercialization. The introduction of a new 2D material of halide perovskites is now the key advancement in boosting the solar energy conversion efficiency. The implication of a new 2D material (MXene) in perovskite solar cells has been initiated since its first report in 2018, showing excellent transparency, electrical conductivity, carrier mobility, superior mechanical strength, and tunable work function. Based on distinctive features at the hetero-interface, halide perovskite and MXene heterostructures (HPs/Mx) have recently exhibited exceptional improvements in both the performance and stability of perovskite solar cells. Furthermore, the wide families of HPs and MXene materials allow playing with the composition and functionalities of HP/Mx interfaces by applying rational designing and alterations. In this review a comprehensive study of implementing MXenes in perovskite solar cells is presented. First, the implementation of MXenes in perovskites as an additive, and then in charge extraction layers (HTL/ETL), is described in detail. It is worth noting that still only Ti3C2Tx, Nb2CTx,V2CTx MXene is being incorporated into perovskite photovoltaics. Finally, the present obstacles in the use of MXenes in PSCS are discussed, along with the future research potential. This review is expected to provide a complete and in-depth description of the current state of research and to open up new opportunities for the study of other MXenes in PSCs.
Collapse
Affiliation(s)
- Samina Qamar
- Department of Chemistry, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Kalsoom Fatima
- Department of Chemistry, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Naimat Ullah
- Department of Chemistry, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Zareen Akhter
- Department of Chemistry, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Amir Waseem
- Department of Chemistry, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Muhammad Sultan
- National Center for physics Islamabad, 45320, Pakistan
- Department of Physics, Kohsar University Murree, 47150, Pakistan
| |
Collapse
|
40
|
Ye Q, Xu D, Cai B, Lu J, Yi H, Ma C, Zheng Z, Yao J, Ouyang G, Yang G. High-performance hierarchical O-SnS/I-ZnIn 2S 4 photodetectors by leveraging the synergy of optical regulation and band tailoring. MATERIALS HORIZONS 2022; 9:2364-2375. [PMID: 35876307 DOI: 10.1039/d2mh00612j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low light absorption and limited carrier lifetime are critical obstacles inhibiting further performance improvement of 2D layered material (2DLM) based photodetectors, while scalable fabrication is an ongoing challenge prior to commercialization from the lab to market. Herein, wafer-scale SnS/ZIS hierarchical nanofilms, where out-of-plane SnS (O-SnS) is modified onto in-plane ZIS (I-ZIS), have been achieved by pulsed-laser deposition. The derived O-SnS/I-ZIS photodetector exhibits markedly boosted sensitivity as compared to a pristine ZIS device. The synergy of multiple functionalities contributes to the dramatic improvement, including the pronounced light-trapping effect of O-SnS by multiple scattering, the high-efficiency spatial separation of photogenerated electron-hole pairs by a type-II staggered band alignment and the promoted carrier transport enabled by the tailored electronic structure of ZIS. Of note, the unique architecture of O-SnS/I-ZIS can considerably expedite the carrier dynamics, where O-SnS promotes the electron transfer from SnS to ZIS whilst the I-ZIS enables high-speed electron circulation. In addition, the interlayer transition enables the bridging of the effective optical window to telecommunication wavelengths. Moreover, monolithic integration of arrayed devices with satisfactory device-to-device variability has been encompassed and a proof-of-concept imaging application is demonstrated. On the whole, this study depicts a fascinating functional coupling architecture toward implementing chip-scale integrated optoelectronics.
Collapse
Affiliation(s)
- Qiaojue Ye
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China
| | - Degao Xu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| | - Biao Cai
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| | - Jianting Lu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China.
| | - Huaxin Yi
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China.
| | - Churong Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511443, China
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China
| | - Gang Ouyang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China
| |
Collapse
|
41
|
Molten salt flux synthesis of cobalt doped refractory double perovskite Sr 2CoxGa1-xNbO6: A spectroscopic investigation for multifunctional materials. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Pesquera D, Fernández A, Khestanova E, Martin LW. Freestanding complex-oxide membranes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:383001. [PMID: 35779514 DOI: 10.1088/1361-648x/ac7dd5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Complex oxides show a vast range of functional responses, unparalleled within the inorganic solids realm, making them promising materials for applications as varied as next-generation field-effect transistors, spintronic devices, electro-optic modulators, pyroelectric detectors, or oxygen reduction catalysts. Their stability in ambient conditions, chemical versatility, and large susceptibility to minute structural and electronic modifications make them ideal subjects of study to discover emergent phenomena and to generate novel functionalities for next-generation devices. Recent advances in the synthesis of single-crystal, freestanding complex oxide membranes provide an unprecedented opportunity to study these materials in a nearly-ideal system (e.g. free of mechanical/thermal interaction with substrates) as well as expanding the range of tools for tweaking their order parameters (i.e. (anti-)ferromagnetic, (anti-)ferroelectric, ferroelastic), and increasing the possibility of achieving novel heterointegration approaches (including interfacing dissimilar materials) by avoiding the chemical, structural, or thermal constraints in synthesis processes. Here, we review the recent developments in the fabrication and characterization of complex-oxide membranes and discuss their potential for unraveling novel physicochemical phenomena at the nanoscale and for further exploiting their functionalities in technologically relevant devices.
Collapse
Affiliation(s)
- David Pesquera
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Abel Fernández
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States of America
| | | | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|
43
|
The era of nano-bionic: 2D materials for wearable and implantable body sensors. Adv Drug Deliv Rev 2022; 186:114315. [PMID: 35513130 DOI: 10.1016/j.addr.2022.114315] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 12/20/2022]
Abstract
Nano-bionics have the potential of revolutionizing modern medicine. Among nano-bionic devices, body sensors allow to monitor in real-time the health of patients, to achieve personalized medicine, and even to restore or enhance human functions. The advent of two-dimensional (2D) materials is facilitating the manufacturing of miniaturized and ultrathin bioelectronics, that can be easily integrated in the human body. Their unique electronic properties allow to efficiently transduce physical and chemical stimuli into electric current. Their flexibility and nanometric thickness facilitate the adaption and adhesion to human body. The low opacity permits to obtain transparent devices. The good cellular adhesion and reduced cytotoxicity are advantageous for the integration of the devices in vivo. Herein we review the latest and more significant examples of 2D material-based sensors for health monitoring, describing their architectures, sensing mechanisms, advantages and, as well, the challenges and drawbacks that hampers their translation into commercial clinical devices.
Collapse
|
44
|
Li Z, Li Z, Zuo C, Fang X. Application of Nanostructured TiO 2 in UV Photodetectors: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109083. [PMID: 35061927 DOI: 10.1002/adma.202109083] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/16/2022] [Indexed: 06/14/2023]
Abstract
As a wide-bandgap semiconductor material, titanium dioxide (TiO2 ), which possesses three crystal polymorphs (i.e., rutile, anatase, and brookite), has gained tremendous attention as a cutting-edge material for application in the environment and energy fields. Based on the strong attractiveness from its advantages such as high stability, excellent photoelectric properties, and low-cost fabrication, the construction of high-performance photodetectors (PDs) based on TiO2 nanostructures is being extensively developed. An elaborate microtopography and device configuration is the most widely used strategy to achieve efficient TiO2 -based PDs with high photoelectric performances; however, a deep understanding of all the key parameters that influence the behavior of photon-generated carriers, is also highly required to achieve improved photoelectric performances, as well as their ultimate functional applications. Herein, an in-depth illustration of the electrical and optical properties of TiO2 nanostructures in addition to the advances in the technological issues such as preparation, microdefects, p-type doping, bandgap engineering, heterojunctions, and functional applications are presented. Finally, a future outlook for TiO2 -based PDs, particularly that of further functional applications is provided. This work will systematically illustrate the fundamentals of TiO2 and shed light on the preparation of more efficient TiO2 nanostructures and heterojunctions for future photoelectric applications.
Collapse
Affiliation(s)
- Ziliang Li
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Ziqing Li
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Chaolei Zuo
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
45
|
Abd Allah T, Elfalaky A, Ghozza M. Effect of sintering on formation, structure, magnetic and dielectric properties of nanocrystalline La0.1Ca0.9MnO3 perovskite. MATERIALS SCIENCE AND ENGINEERING: B 2022; 281:115749. [DOI: 10.1016/j.mseb.2022.115749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
46
|
Tan CS, Yang CC. Optoelectronic Properties Prediction of Lead-Free Methylammonium Alkaline-Earth Perovskite Based on DFT Calculations. ACS OMEGA 2022; 7:16204-16210. [PMID: 35571785 PMCID: PMC9097191 DOI: 10.1021/acsomega.2c01695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
Dynamical stability plays an essential role in phase transition and structure, and it could be a fundamental method of discovering new lead-free perovskite materials. The perovskite materials are well-known for their excellent optoelectronic properties, but the lead element inside could be a hindrance to future development. This research is trying to predict the promising cation candidates in the high-temperature application for lead-free perovskite materials from the replacement of lead in MAPbCl3 (MA = methylammonium) with alkaline-earth cations. The alkaline-earth cations are of a stable positive divalent sort, which is the same as Pb, and most of them are abundant in nature. Therefore, by improving the dynamical stability, the Mg2+, Ca2+, and Sr2+ cations replacement of lead ions could stabilize the perovskite structure by decreasing the imaginary part of phonon density of states. Finally, the density functional theory results show that the MACaCl3 could be a dynamic stable lead-free methylammonium perovskite material with an ultrawide band gap (5.96 eV).
Collapse
|
47
|
Yang W, Xin K, Yang J, Xu Q, Shan C, Wei Z. 2D Ultrawide Bandgap Semiconductors: Odyssey and Challenges. SMALL METHODS 2022; 6:e2101348. [PMID: 35277948 DOI: 10.1002/smtd.202101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
2D ultrawide bandgap (UWBG) semiconductors have aroused increasing interest in the field of high-power transparent electronic devices, deep-ultraviolet photodetectors, flexible electronic skins, and energy-efficient displays, owing to their intriguing physical properties. Compared with dominant narrow bandgap semiconductor material families, 2D UWBG semiconductors are less investigated but stand out because of their propensity for high optical transparency, tunable electrical conductivity, high mobility, and ultrahigh gate dielectrics. At the current stage of research, the most intensively investigated 2D UWBG semiconductors are metal oxides, metal chalcogenides, metal halides, and metal nitrides. This paper provides an up-to-date review of recent research progress on new 2D UWBG semiconductor materials and novel physical properties. The widespread applications, i.e., transistors, photodetector, touch screen, and inverter are summarized, which employ 2D UWBG semiconductors as either a passive or active layer. Finally, the existing challenges and opportunities of the enticing class of 2D UWBG semiconductors are highlighted.
Collapse
Affiliation(s)
- Wen Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Kaiyao Xin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Qun Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key laboratory of Materials Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
48
|
Zhen W, Zhou X, Weng S, Zhu W, Zhang C. Ultrasensitive, Ultrafast, and Gate-Tunable Two-Dimensional Photodetectors in Ternary Rhombohedral ZnIn 2S 4 for Optical Neural Networks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12571-12582. [PMID: 35234462 DOI: 10.1021/acsami.2c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The demand for high-performance semiconductors in electronics and optoelectronics has prompted the expansion of low-dimensional materials research to ternary compounds. However, photodetectors based on 2D ternary materials usually suffer from large dark currents and slow response, which means increased power consumption and reduced performance. Here we report a systematic study of the optoelectronic properties of well-characterized rhombohedral ZnIn2S4 (R-ZIS) nanosheets which exhibit an extremely low dark current (7 pA at 5 V bias). The superior performance represented by a series of parameters surpasses most 2D counterparts. The ultrahigh specific detectivity (1.8 × 1014 Jones), comparably short response time (τrise = 222 μs, τdecay = 158 μs), and compatibility with high-frequency operation (1000 Hz) are particularly prominent. Moreover, a gate-tunable characteristic is observed, which is attributed to photogating and improves the photoresponse by 2 orders of magnitude. Gating technique can effectively modulate the photocurrent-generation mechanism from photoconductive effect to dominant photogating. The combination of ultrahigh sensitivity, ultrafast response, and high gate tunability makes the R-ZIS phototransistor an ideal device for low-energy-consumption and high-frequency optoelectronic applications, which is further demonstrated by its excellent performance in optical neural networks and promising potential in optical deep learning and computing.
Collapse
Affiliation(s)
- Weili Zhen
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xi Zhou
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shirui Weng
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenka Zhu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Changjin Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
49
|
Li Z, Hong E, Zhang X, Deng M, Fang X. Perovskite-Type 2D Materials for High-Performance Photodetectors. J Phys Chem Lett 2022; 13:1215-1225. [PMID: 35089041 DOI: 10.1021/acs.jpclett.1c04225] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodetectors are light sensors in widespread use in image sensing, optical communication, and consumer electronics. In current smart optoelectronic technology, conventional semiconductors have encountered a bottleneck caused by inflexibility and opacity. With the ever-increasing demands for versatile optoelectronic applications, perovskite-type 2D materials demonstrate great potential for advanced photodetectors inspired by molecularly thin 2D materials. Through the reduction of thickness to thin or molecularly thin levels, single-crystalline 2D perovskites can exhibit superior optoelectronic performance characteristics, such as tunable absorption property by chemical design, enhanced carrier separation by remarkable photosensing capability, and improved carrier extraction by versatile band engineering. More importantly, perovskite-type 2D materials exhibit great potential for large-scale monolithic integration to achieve all-in-one sensing-memory-computing optoelectronic devices. In this Perspective, recent progress in 2D perovskite-based photodetectors is presented in detail. The focus is on growth strategies for reducing thickness, thickness-dependent optical and electrical properties, device engineering, heterojunction fabrication, and device performance. Finally, the current challenges and future prospects in this field are presented.
Collapse
Affiliation(s)
- Ziqing Li
- Institute of Optoelectronics, Fudan University, Shanghai 200433, P.R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Enliu Hong
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Xinyu Zhang
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Ming Deng
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Xiaosheng Fang
- Institute of Optoelectronics, Fudan University, Shanghai 200433, P.R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
50
|
Guo L, Liu X, Gao L, Wang X, Zhao L, Zhang W, Wang S, Pan C, Yang Z. Ferro-Pyro-Phototronic Effect in Monocrystalline 2D Ferroelectric Perovskite for High-Sensitive, Self-Powered, and Stable Ultraviolet Photodetector. ACS NANO 2022; 16:1280-1290. [PMID: 34995467 DOI: 10.1021/acsnano.1c09119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
2D hybrid perovskite ferroelectrics have drawn great attention in the field of photodetection, because the spontaneous polarization-induced built-in electric field can separate electron-hole pairs, and makes self-powered photodetection possible. However, most of the 2D hybrid perovskite-based photodetectors focused on the detection of visible light, and only a few reports realized the self-powered and sensitive ultraviolet (UV) detection using wide bandgap hybrid perovskites. Here, 2D ferroelectric PMA2PbCl4 monocrystalline microbelt (MMB)-based PDs are demonstrated. By using the ferro-pyro-phototronic effect, the self-powered Ag/Bi/2D PMA2PbCl4 MMB/Bi/Ag PDs show a high photoresponsivity up to 9 A/W under 320 nm laser illumination, which is much higher than those of previously reported self-powered UV PDs. Compared with responsivity induced by the photovoltaic effect, the responsivity induced by the ferro-pyro-phototronic effect is 128 times larger. The self-powered PD also shows fast response and recovery speed, with the rise time and fall time of 162 and 226 μs, respectively. More importantly, the 2D PMA2PbCl4 MMB-based PDs with Bi/Ag electrode exhibit significant stability when subjected to high humidity, continuous laser illumination, and thermal conditions. Our findings would shed light on the ferro-pyro-phototronic-effect-based devices, and provide a good method for high-performance UV detection.
Collapse
Affiliation(s)
- Linjuan Guo
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Xiu Liu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Linjie Gao
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Xinzhan Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Lei Zhao
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Wei Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Shufang Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Zheng Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| |
Collapse
|