1
|
Cho CT, Yeh YJ, Veeramuthu L, Kuo CC, Tung KL, Chiang WH. Improving Redox Activity of Colloidal Plasmonic-Magnetic Nanocrystals by Chemical State Modulation. CHEMSUSCHEM 2025; 18:e202402327. [PMID: 39682058 DOI: 10.1002/cssc.202402327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Controlling the redox ability is crucial for optimizing catalytic processes in clean energy, environmental protection, and CO2 reduction, as it directly influences the reaction efficiency and electron transfer rates, driving sustainable and effective outcomes. Here, we report the plasma-electrified synthesis of composition-controlled FeAu bimetallic nanoparticles, specifically engineered to enhance the redox catalytic performance through precise tuning of their chemical states. Utilizing atmospheric-pressure microplasmas, FeAu nanoparticles were synthesized under ambient conditions without the need for reducing agents or organic solvents, thereby providing a green and sustainable approach. The catalytic activity of the FeAu nanoparticles was significantly influenced by the oxidation states of Au (Au0, Au+, and Au3+), which were carefully modulated by adjusting the precursor concentration. This precise tuning directly affects the oxidation-reduction potential (ORP) of the nanoparticles, driving their superior degradation performance. The FeAu-1.52 sample exhibited the highest normalized rate constant (k=46.3 s-1 g-1), attributed to an optimal Au+/Au0 ratio that facilitates efficient electron transfer and redox cycling during the catalytic reduction of 4-NP to 4-aminophenol (4-AP). Beyond 4-NP, the FeAu nanoparticles demonstrated robust catalytic degradation of multiple dye pollutants, including Congo Red, Rhodamine B, Methyl Blue, and Methylene Blue, showing their versatility and potential for industrial wastewater treatment. This study elucidates the critical role of chemical state tuning in determining redox performance and presents a promising nanotechnology platform for sustainable environmental remediation.
Collapse
Affiliation(s)
- Chiao-Ting Cho
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yi-Jui Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei, 10607, Taiwan
| | - Loganathan Veeramuthu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 10608, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10607, Taiwan
| | - Kuo-Lun Tung
- Department of Chemical Engineering, National Taiwan University, Taipei, 10607, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei City, 10607, Taiwan
| |
Collapse
|
2
|
Qing Q, Luo J, Liu S, Wang J, Wang Z, Xiong XG, Chen J, Lu Y. General synthesis of covalent organic frameworks under ambient condition within minutes via microplasma electrochemistry approach. Nat Commun 2025; 16:2571. [PMID: 40089494 PMCID: PMC11910557 DOI: 10.1038/s41467-025-57892-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Covalent organic frameworks (COFs) are typically synthesized using solvothermal conditions with high temperature and long reaction time (≥120 °C, >72 h). Herein, we report a general and rapid microplasma electrochemistry strategy to synthesize COFs under ambient conditions. A series of flexible imine-bond COFs with high-crystallinity were prepared in minutes via this method, which showed 1000-fold higher space-time yield than solvothermal method. This approach also achieved the preparation of COFs with diverse linkages including rigid imine, hydrazone, β-ketoenamies and azine linkages. Moreover, four types of imine-based COFs were successfully synthesized in aqueous acetic acid, which avoided the use of harmful organic solvents, indicating that microplasma method is green and versatile for COF synthesis. The obtained COFs showed higher surface area and exhibited superior performance in volatile iodine uptake compared to those COFs prepared by solvothermal method. After screening more than ten types of COFs, the iodine adsorption capacity could be promoted from 2.81 to 6.52 g g-1. The efficiency, versatility, and simplicity of the microplasma method render it as a promising approach for the swift screening of COFs across a wide range of applications.
Collapse
Affiliation(s)
- Qi Qing
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Junhan Luo
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Shuang Liu
- Nuclear Research Institute for Future Technology and Policy, Seoul National University, Seoul, Republic of Korea
| | - Jingyu Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Zhe Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China.
| | - Xiao-Gen Xiong
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, China.
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Yuexiang Lu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Yeh YJ, Chen SY, Hsiao WWW, Oshima Y, Takahashi M, Maenosono S, Tung KL, Chiang WH. Single-Molecule-Sensitive Three-Dimensional Atomic Heterostructures with Extreme Light-Matter Coupling. J Am Chem Soc 2025; 147:8227-8239. [PMID: 39932974 PMCID: PMC11912327 DOI: 10.1021/jacs.4c15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
Three-dimensional heterostructures (3DHS) with controlled compositions and tuned properties are highly desired for fundamental studies and applications in optoelectronics, nanocatalysis, clean energy, and biomedicine. However, conventional nanostructure engineering is hindered by challenges such as poor structural control, time- and energy-intensive processes, the use of hazardous and expensive chemicals, and harsh conditions. Here, we report plasma-assisted epitaxy (PAE) engineering of a metal-organic 3DHS with extreme light-matter interaction for rapid single-molecule-level sensing. Plasmonic-active 3DHS composed of structure-tuned gold-silver core-shell nanoparticles (AuAgCSNPs) was precisely engineered using stable and scalable microplasma-enabled nanofabrication under ambient conditions. The engineered AuAgCSNP-based 3DHS possessed exceptional Raman enhancement under suitable laser excitation, leading to single-molecule detection of SARS-CoV-2 spike proteins in simulated human saliva via surface-enhanced Raman scattering (SERS). The developed plasma fabrication method allows the production of centimeter-scale SERS-active metal-organic 3DHS on disposable, flexible, lightweight, and cost-effective substrates, thereby opening a new avenue for next-generation biosensing, nanoelectronics, nanocatalysis, and biomedical applications.
Collapse
Affiliation(s)
- Yi-Jui Yeh
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10607, Taiwan
| | - Shao-Yu Chen
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10607, Taiwan
| | - Wesley Wei-Wen Hsiao
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Yoshifumi Oshima
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Mari Takahashi
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Shinya Maenosono
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kuo-Lun Tung
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10607, Taiwan
| | - Wei-Hung Chiang
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- Sustainable
Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan
| |
Collapse
|
4
|
Dogadina E, Rodriguez RD, Fatkullin M, Lipovka A, Kozelskaya A, Averkiev A, Plotnikov E, Jia X, Liu C, Chen JJ, Cheng C, Qiu L, Tverdokhlebov S, Sheremet E. Integration of Graphene into Calcium Phosphate Coating for Implant Electronics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13527-13537. [PMID: 39969226 DOI: 10.1021/acsami.4c21046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Bone injuries remain a significant challenge, driving the development of new materials and technologies to enhance healing. This study presents a novel approach for incorporating graphene into calcium phosphate (CaP) coatings on titanium alloy (Ti) substrates, with the aim of creating a new generation of materials for bone implant electronics. The stability of the composite coating under physiological conditions, long-term electrical and mechanical durability, and biocompatibility were systematically investigated. We integrated graphene into the CaP coating through the laser processing of diazonium-functionalized graphene films applied to the surface of CaP-coated Ti. The laser treatment induced several processes, including the removal of aryl groups, the formation of conductive pathways, and chemical bonding with the CaP film. As a result, the graphene-CaP nanocomposite demonstrated excellent mechanical durability, withstanding a 2 h sand abrasion test. It also exhibited excellent biocompatibility, as shown by the proliferation of human fibroblast cells for 7 days. The electrical properties remained stable under physiological conditions for 12 weeks, and the material maintained electrochemical stability after 1 million pulse cycles. Furthermore, it withstood the stress of 100,000 bending cycles without compromising electrical performance. This work highlights the versatility of the biocompatible graphene composite and its potential for a range of applications including free-form electronic circuits, electrodes, bending sensors, and electrothermal heaters.
Collapse
Affiliation(s)
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| | - Maxim Fatkullin
- Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| | - Anna Lipovka
- Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| | - Anna Kozelskaya
- Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| | - Andrey Averkiev
- Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| | | | - Xin Jia
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore HA7 4LP, U.K
| | - Jin-Ju Chen
- The School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li Qiu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | | | | |
Collapse
|
5
|
Lin CH, Yeh YJ, Chien TH, Chen SY, Veeramuthu L, Kuo CC, Tung KL, Chiang WH. Compact Disc-Derived Nanocarbon-Supported Catalysts with Extreme Catalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8147-8157. [PMID: 39843397 PMCID: PMC11803566 DOI: 10.1021/acsami.4c17754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Advanced carbon-metal hybrid materials with controllable electronic and optical properties, as well as chemical reactivities, have attracted significant attention for emerging applications, including energy conversion and storage, catalysis and environmental protection. However, the commercialization of these materials is hampered by several vital problems, including energy-intensive synthesis and expensive chemicals, and inefficient control of their structures and properties. Herein, we report the simple and controllable engineering of nanocarbon-metal self-assembled silver nanocatalysts (SSNs) derived from polycarbonate (PC)-based optical discs using microplasmas under ambient conditions. The plasma-engineered catalysts exhibited controlled properties including surface functionalities, hydrophilicities, Ag+/Ag0 metallic states, and Ag loading. The synthesized catalysts leverage localized surface plasmon resonance (LSPR) properties, enabling enhanced catalytic activity for the rapid reduction of carcinogenic 4-nitrophenol (4-NP) to the valuable pharmaceutical intermediate 4-aminophenol (4-AP), achieving a high reaction rate constant of 0.2 ± 0.0 s-1 and completing the reduction in just 30 s. Demonstrating robust performance, the SSNs maintained up to 90% conversion efficiency after ten recycling cycles, underscoring their stability and reusability. This work not only presents an effective approach to upcycling optical disc waste, but also highlights the potential of plasma-engineered nanocatalysts in environmental remediation, offering a low-energy solution for high-efficiency pollutant reduction.
Collapse
Affiliation(s)
- Chia-Hung Lin
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Yi-Jui Yeh
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10607, Taiwan
| | - Tzu-Hsiang Chien
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Shao-Yu Chen
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10607, Taiwan
| | - Loganathan Veeramuthu
- Institute
of Organic and Polymeric Materials, Research and Development Center
of Smart Textile Technology, National Taipei
University of Technology, Taipei 10608, Taiwan
| | - Chi-Ching Kuo
- Institute
of Organic and Polymeric Materials, Research and Development Center
of Smart Textile Technology, National Taipei
University of Technology, Taipei 10608, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10607, Taiwan
| | - Kuo-Lun Tung
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10607, Taiwan
| | - Wei-Hung Chiang
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- Sustainable
Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan
| |
Collapse
|
6
|
Ratnaparkhi MP, Salvankar SS, Tekade AR, Kulkarni GM. Core-Shell Nanoparticles for Pulmonary Drug Delivery. Pharm Nanotechnol 2025; 13:90-116. [PMID: 38265371 DOI: 10.2174/0122117385277725231120043600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 01/25/2024]
Abstract
Nanoscale drug delivery systems have provoked interest for application in various therapies on account of their ability to elevate the intracellular concentration of drugs inside target cells, which leads to an increase in efficacy, a decrease in dose, and dose-associated adverse effects. There are several types of nanoparticles available; however, core-shell nanoparticles outperform bare nanoparticles in terms of their reduced cytotoxicity, high dispersibility and biocompatibility, and improved conjugation with drugs and biomolecules because of better surface characteristics. These nanoparticulate drug delivery systems are used for targeting a number of organs, such as the colon, brain, lung, etc. Pulmonary administration of medicines is a more appealing method as it is a noninvasive route for systemic and locally acting drugs as the pulmonary region has a wide surface area, delicate blood-alveolar barrier, and significant vascularization. A core-shell nano-particulate drug delivery system is more effective in the treatment of various pulmonary disorders. Thus, this review has discussed the potential of several types of core-shell nanoparticles in treating various diseases and synthesis methods of core-shell nanoparticles. The methods for synthesis of core-shell nanoparticles include solid phase reaction, liquid phase reaction, gas phase reaction, mechanical mixing, microwave- assisted synthesis, sono-synthesis, and non-thermal plasma technology. The basic types of core-shell nanoparticles are metallic, magnetic, polymeric, silica, upconversion, and carbon nanomaterial- based core-shell nanoparticles. With this special platform, it is possible to integrate the benefits of both core and shell materials, such as strong serum stability, effective drug loading, adjustable particle size, and immunocompatibility.
Collapse
Affiliation(s)
- Mukesh P Ratnaparkhi
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Shailendra S Salvankar
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Avinash R Tekade
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Gajanan M Kulkarni
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| |
Collapse
|
7
|
Li F, Li G, Lougou BG, Zhou Q, Jiang B, Shuai Y. Upcycling biowaste into advanced carbon materials via low-temperature plasma hybrid system: applications, mechanisms, strategies and future prospects. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:364-388. [PMID: 39236471 DOI: 10.1016/j.wasman.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
This review focuses on the recent advances in the sustainable conversion of biowaste to valuable carbonaceous materials. This study summarizes the significant progress in biowaste-derived carbon materials (BCMs) via a plasma hybrid system. This includes systematic studies like AI-based multi-coupling systems, promising synthesis strategies from an economic point of view, and their potential applications towards energy, environment, and biomedicine. Plasma modified BCM has a new transition lattice phase and exhibits high resilience, while fabrication and formation mechanisms of BCMs are reviewed in plasma hybrid system. A unique 2D structure can be designed and formulated from the biowaste with fascinating physicochemical properties like high surface area, unique defect sites, and excellent conductivity. The structure of BCMs offers various activated sites for element doping and it shows satisfactory adsorption capability, and dynamic performance in the field of electrochemistry. In recent years, many studies have been reported on the biowaste conversion into valuable materials for various applications. Synthesis methods are an indispensable factor that directly affects the structure and properties of BCMs. Therefore, it is imperative to review the facile synthesis methods and the mechanisms behind the formation of BCMs derived from the low-temperature plasma hybrid system, which is the necessity to obtain BCMs having desirable structure and properties by choosing a suitable synthesis process. Advanced carbon-neutral materials could be widely synthesized as catalysts for application in environmental remediation, energy conversion and storage, and biotechnology.
Collapse
Affiliation(s)
- Fanghua Li
- National Engineering Research Center For Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Gaotingyue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bachirou Guene Lougou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qiaoqiao Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, China
| | - Boshu Jiang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yong Shuai
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
8
|
Zhang Q, Wang F, Liu J, Wang R, Ma Y, Xia F, Qiu Y, Zeng L, Xu S, Zhong X. Toward 95.5% Efficient Red Emissive Carbon Dots: Oxidation State Enhancing Radiative Electron-Transition of Indole Fluorophore. NANO LETTERS 2024; 24:13819-13824. [PMID: 39423300 DOI: 10.1021/acs.nanolett.4c04367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Red fluorescence carbon dots (CDs) are promising for diverse applications and have attracted tremendous research interest. However, it is still challenging to achieve red fluorescence CDs with high fluorescence quantum yields (QYs > 50%). Herein, three kinds of red fluorescence CDs with QYs of 53.48, 85.21, and 59.18% are prepared. Benefiting from the oxidation induced by atmospheric-pressure O2 plasma processing, 95.5% efficient red fluorescence emission is achieved. It is revealed that the indole based fluorophores act as the red-emitting photoluminescence center. The synergistic effect between the C-O-C structure and indole based fluorophores plays a key role in promoting the efficiency of radiative electron transition and controlling the red fluorescence QYs. Additionally, the CDs show promising prospects for in vivo bioimaging and low in vivo toxicity. This work shows a new way for achieving high-efficiency red fluorescence CDs, and it may guide the development of high-performance CDs for diverse applications.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengqing Wang
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junlan Liu
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruoyu Wang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yupengxue Ma
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fangfang Xia
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, China
| | - Yuanyuan Qiu
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Liangwei Zeng
- Department of Basic Courses, Guangzhou Maritime University, Guangzhou 510725, China
| | - Shaofeng Xu
- School of Physics, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiaoxia Zhong
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Ding C, Lv H, Huang S, Hu M, Liao Y, Meng X, Gao M, Chen H, Feng X, Wu Z. The Application Progress of Nonthermal Plasma Technology in the Modification of Bone Implant Materials. ACS Biomater Sci Eng 2024; 10:5893-5914. [PMID: 39227180 DOI: 10.1021/acsbiomaterials.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the accelerating trend of global aging, bone damage caused by orthopedic diseases, such as osteoporosis and fractures, has become a shared international event. Traffic accidents, high-altitude falls, and other incidents are increasing daily, and the demand for bone implant treatment is also growing. Although extensive research has been conducted in the past decade to develop medical implants for bone regeneration and healing of body tissues, due to their low biocompatibility, weak bone integration ability, and high postoperative infection rates, pure titanium alloys, such as Ti-6A1-4V and Ti-6A1-7Nb, although widely used in clinical practice, have poor induction of phosphate deposition and wear resistance, and Ti-Zr alloy exhibits a lack of mechanical stability and processing complexity. In contrast, the Ti-Ni alloy exhibits toxicity and low thermal conductivity. Nonthermal plasma (NTP) has aroused widespread interest in synthesizing and modifying implanted materials. More and more researchers are using plasma to modify target catalysts such as changing the dispersion of active sites, adjusting electronic properties, enhancing metal carrier interactions, and changing their morphology. NTP provides an alternative option for catalysts in the modification processes of oxidation, reduction, etching, coating, and doping, especially for materials that cannot tolerate thermodynamic or thermosensitive reactions. This review will focus on applying NTP technology in bone implant material modification and analyze the overall performance of three common types of bone implant materials, including metals, ceramics, and polymers. The challenges faced by NTP material modification are also discussed.
Collapse
Affiliation(s)
- Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Hao Lv
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230602, China
| | - Suoni Huang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Mengxuan Hu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yanxinyue Liao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Xinyue Meng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Ming Gao
- Department of Emergency Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Hemu Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xiaojun Feng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
10
|
Sharma N, Akmal MH, Yura R, Mousavi SM, Kurniawan D, Nonoguchi Y, Chiang WH. Tuning Nanographene-Enhanced Raman Scattering for Rapid Label-Free Detection of Amino Acids. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54377-54388. [PMID: 39316462 PMCID: PMC11472263 DOI: 10.1021/acsami.4c08298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
The rapid and sensitive detection of amino acids is important not only for fundamental studies but also for the establishment of a healthy society. However, conventional detection methods have been hampered by the difficulties of low sensitivity, long sampling and detection times, and expensive operation and instruments. Here, we report the plasma engineering of bioresource-derived graphene quantum dots (GQDs) as surface-enhanced Raman scattering (SERS)-active materials for the rapid and sensitive detection of amino acids. Surface-functionalized GQDs with tuned structures and band gaps were synthesized from earth-abundant bioresources by using reactive microplasmas under ambient conditions. Detailed microscopy and spectroscopy studies indicate that the SERS properties of the synthesized GQDs can be tuned by controlling the band gaps of synthesized GQDs. The plasma-synthesized metal-free GQDs with surface functionalities showed improved SERS properties for rapid amino acid detection with low detection limits of 10-5 M for tyrosine and phenylalanine. Theoretical calculations suggest that charge transfer between GQDs and amino acids can enhance the SERS response of the GQDs. Our work provides insights into the controlled engineering of SERS-active nanographene-based materials using the plasma-enhanced method.
Collapse
Affiliation(s)
- Neha Sharma
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Muhammad Hussnain Akmal
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Ryoto Yura
- Faculty
of Materials Science and Engineering, Kyoto
Institute of Technology, Kyoto 606-8585, Japan
| | - Seyyed Mojtaba Mousavi
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Darwin Kurniawan
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Yoshiyuki Nonoguchi
- Faculty
of Materials Science and Engineering, Kyoto
Institute of Technology, Kyoto 606-8585, Japan
| | - Wei-Hung Chiang
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- Sustainable
Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan
| |
Collapse
|
11
|
Wang ZF, Tsai KC, Chiang WH, Lin DZ. Silver microplasma-engineered nanoassemblies on periodic nanostructures for SERS applications. Phys Chem Chem Phys 2024; 26:24791-24798. [PMID: 39239670 DOI: 10.1039/d4cp02723j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
This research aimed to enhance the performance of surface-enhanced Raman scattering (SERS) substrates through the implementation of periodic nanostructures, effectively increasing surface area and uniformity. The approach involved a two-step process: initially, magnetron sputtering was employed to minimize the Raman background signal from the polymer substrate, and subsequently, the microplasma nanoparticle coating method was utilized to augment the presence of silver nanoparticles (AgNPs) for enhancing SERS efficacy. The outcome revealed several key findings: a coefficient of variation (CV) of approximately 8% for individual substrates (3 × 3 cm2), a CV of 6% between different fabrication batches, and a sustained signal strength of 85% over a storage period exceeding two months in a moisture-proof enclosure, thus meeting commercial product standards. Moreover, the substrate demonstrated a limit of detection of 8.4 × 10-7 M (306.5 ppb) for malachite green under non-resonance Raman excitation conditions along with an impressive enhancement factor of 2.69 × 106, establishing it as a high-performance and stable SERS substrate.
Collapse
Affiliation(s)
- Zhuo-Fu Wang
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| | - Kai-Chun Tsai
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Ding-Zheng Lin
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| |
Collapse
|
12
|
ul Haq A, Fanelli F, Bekris L, Martin AM, Lee S, Khalid H, Savaniu CD, Kousi K, Metcalfe IS, Irvine JTS, Maguire P, Papaioannou EI, Mariotti D. Dielectric Barrier Plasma Discharge Exsolution of Nanoparticles at Room Temperature and Atmospheric Pressure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402235. [PMID: 38965704 PMCID: PMC11425884 DOI: 10.1002/advs.202402235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Indexed: 07/06/2024]
Abstract
Exsolution of metal nanoparticles (NPs) on perovskite oxides has been demonstrated as a reliable strategy for producing catalyst-support systems. Conventional exsolution requires high temperatures for long periods of time, limiting the selection of support materials. Plasma direct exsolution is reported at room temperature and atmospheric pressure of Ni NPs from a model A-site deficient perovskite oxide (La0.43Ca0.37Ni0.06Ti0.94O2.955). Plasma exsolution is carried out within minutes (up to 15 min) using a dielectric barrier discharge configuration both with He-only gas as well as with He/H2 gas mixtures, yielding small NPs (<30 nm diameter). To prove the practical utility of exsolved NPs, various experiments aimed at assessing their catalytic performance for methanation from synthesis gas, CO, and CH4 oxidation are carried out. Low-temperature and atmospheric pressure plasma exsolution are successfully demonstrated and suggest that this approach could contribute to the practical deployment of exsolution-based stable catalyst systems.
Collapse
Affiliation(s)
- Atta ul Haq
- School of EngineeringUlster UniversityBelfastBT37 0QBUK
| | - Fiorenza Fanelli
- Institute of Nanotechnology (NANOTEC)National Research Council (CNR)via Orabona 4Bari70125Italy
- Institute of Chemistry of Organometallic Compounds (ICCOM)National Research Council (CNR)via Orabona 4Bari70125Italy
| | - Leonidas Bekris
- School of EngineeringNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | | - Steve Lee
- School of Physics and AstronomyUniversity of St. AndrewsScotland FifeSt. AndrewsKY16 9SSUK
| | - Hessan Khalid
- School of EngineeringUlster UniversityBelfastBT37 0QBUK
| | - Cristian D. Savaniu
- School of ChemistryUniversity of St. AndrewsScotland FifeSt. AndrewsKY16 9STUK
| | - Kalliopi Kousi
- School of Chemistry & Chemical EngineeringUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Ian S. Metcalfe
- School of EngineeringNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - John T. S. Irvine
- School of ChemistryUniversity of St. AndrewsScotland FifeSt. AndrewsKY16 9STUK
| | - Paul Maguire
- School of EngineeringUlster UniversityBelfastBT37 0QBUK
| | | | - Davide Mariotti
- Department of DesignManufacturing & Engineering ManagementUniversity of StrathclydeGlasgowG1 1XJUK
| |
Collapse
|
13
|
Kalita P, Boruah PJ, Pal AR, Bailung H. Harnessing plasma-generated reactive species for the synthesis of different phases of molybdenum oxide to study adsorption and photocatalytic activity. Dalton Trans 2024; 53:11071-11087. [PMID: 38885122 DOI: 10.1039/d4dt01620c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This study employs plasma-liquid interaction technique to synthesize different phases of molybdenum oxide using air and argon as plasma-forming gases. In situ plasma-generated nitrogen species primarily NO3-/NO2- and hydrogen species (H+) facilitate the reduction of the molybdenum precursor anion (Mo7O24-). The reduced Mo species subsequently reacts with reactive oxygen species, forming MoO6 octahedra, which is the building block of a molybdenum oxide crystal. Varied concentrations of NO3-/NO2- and H+ species in air and argon plasma treatment significantly influence the growth process. Air plasma synthesis yields hexagonal molybdenum oxide microrods, which upon calcination changes its phase to orthorhombic 2D layered structure. Moreover, the argon plasma synthesized sample exhibits a mixed phase of hexagonal and orthorhombic molybdenum oxide due to the heavy argon ion bombardment, inducing material porosity and surface oxygen vacancies. The mixed-phase material exhibits superior adsorption and photo-degradation towards cationic dye compared to the other two phases. The higher photocatalytic performance may be responsible for the extended lifetime of the photo-generated charge carriers possessed by the mixed-phase material. Radical scavenging tests have identified holes and hydroxyl radicals as the key reactive species that take part in the photo-degradation process.
Collapse
Affiliation(s)
- Parismita Kalita
- Plasma Application Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati - 781035, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh - 201002, India
| | - Palash Jyoti Boruah
- Plasma Application Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati - 781035, Assam, India.
| | - A R Pal
- Plasma Application Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati - 781035, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh - 201002, India
| | - H Bailung
- Plasma Application Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati - 781035, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh - 201002, India
- Department of Physics, Bodoland University, Kokrajhar - 783370, Assam, India
| |
Collapse
|
14
|
Yu K, Li X, Zhao H, Ma C, Wang Z, Lv P, Hu E, Zheng J, Wei W, Ostrikov KK. Plasma-Induced 2D Electron Transport at Hetero-Phase Titanium Oxide Interface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304919. [PMID: 38059826 PMCID: PMC10837385 DOI: 10.1002/advs.202304919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Interfaces of metal oxide heterojunctions display a variety of intriguing physical properties that enable novel applications in spintronics, quantum information, neuromorphic computing, and high-temperature superconductivity. One such LaAlO3 /SrTiO3 (LAO/STO) heterojunction hosts a 2D electron liquid (2DEL) presenting remarkable 2D superconductivity and magnetism. However, these remarkable properties emerge only at very low temperatures, while the heterostructure fabrication is challenging even at the laboratory scale, thus impeding practical applications. Here, a novel plasma-enabled fabrication concept is presented to develop the TiO2 /Ti3 O4 hetero-phase bilayer with a 2DEL that exhibits features of a weakly localized Fermi liquid even at room temperature. The hetero-phase bilayer is fabricated by applying a rapid plasma-induced phase transition that transforms a specific portion of anatase TiO2 thin film into vacancy-prone Ti3 O4 in seconds. The underlying mechanism relies on the screening effect of the achieved high-density electron liquid that suppresses the electron-phonon interactions. The achieved "adiabatic" electron transport in the hetero-phase bilayer offers strong potential for low-loss electric or plasmonic circuits and hot electron harvesting and utilization. These findings open new horizons for fabricating diverse multifunctional metal oxide heterostructures as an innovative platform for emerging clean energy, integrated photonics, spintronics, and quantum information technologies.
Collapse
Affiliation(s)
- Kehan Yu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing, 210036, China
| | - Xinglong Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Haoyu Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Chen Ma
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhongyue Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Peng Lv
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Ertao Hu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jiajin Zheng
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing, 210036, China
| | - Wei Wei
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing, 210036, China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
15
|
Wei-Wen Hsiao W, Fadhilah G, Lee CC, Endo R, Lin YJ, Angela S, Ku CC, Chang HC, Chiang WH. Nanomaterial-based biosensors for avian influenza virus: A new way forward. Talanta 2023; 265:124892. [PMID: 37451119 DOI: 10.1016/j.talanta.2023.124892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Avian influenza virus (AIV) is a zoonotic virus that can be transmitted from animals to humans. Although human infections are rare, the virus has a high mortality rate when contracted. Appropriate detection methods are thus crucial for combatting this pathogen. There is a growing demand for rapid, selective, and accurate methods of identifying the virus. Numerous biosensors have been designed and commercialized to detect AIV. However, they all have considerable shortcomings. Nanotechnology offers a new way forward. Nanomaterials produce more eco-friendly, rapid, and portable diagnostic systems. They also exhibit high sensitivity and selectivity while achieving a low detection limit (LOD). This paper reviews state-of-the-art nanomaterial-based biosensors for AIV detection, such as those composed of quantum dots, gold, silver, carbon, silica, nanodiamond, and other nanoparticles. It also offers insight into potential trial protocols for creating more effective methods of identifying AIV and discusses key issues associated with developing nanomaterial-based biosensors.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| | - Gianna Fadhilah
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ryu Endo
- Department of Biomedical Engineering, The Ohio State University, 43210, USA
| | - Yu-Jou Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| |
Collapse
|
16
|
Shivasharma TK, Upadhyay N, Deshmukh TB, Sankapal BR. Exploring Vacuum-Assisted Thin Films toward Supercapacitor Applications: Present Status and Future Prospects. ACS OMEGA 2023; 8:37685-37719. [PMID: 37867670 PMCID: PMC10586283 DOI: 10.1021/acsomega.3c05285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023]
Abstract
Demand for high-performance energy storage devices is growing tremendously. Supercapacitors possess an excellent candidature to fulfill the energy storage requisites such as high energy density when compared to conventional capacitors, high power density, and cycling stability as compared to batteries, though not only for large-scale devices for higher energy/power density applications but also for macro- to microdevices for miniaturized electrical components. With the aid of various routes, many materials have been explored with well-tuned properties with controlled surface architecture through various preparative parameters to find those best suited for supercapacitive electrodes. Growth of a thin film can be accomplished through chemical or physical (vacuum-assisted) routes. Vacuum-assisted (physical) growth yields high purity, precise dimensions with a line-of-sight deposition, along with high adhesion between the film and the substrates, and hence, these techniques are necessary to manufacture many macro- to microscale supercapacitor devices. Still, much effort has not been put forth to explore vacuum-assisted techniques to fabricate supercapacitive electrodes and energy storage applications. The present review explores the first comprehensive report on the growth of widespread materials through vacuum-assisted physical deposition techniques inclusive of thermal evaporation, e-beam evaporation, sputtering, and laser beam ablation toward supercapacitive energy storage applications on one platform. The theoretical background of nucleation and growth through physical deposition, optimization of process parameters, and characterization to supercapacitor applications from macro- to microscale devices has been well explored to a provide critical analysis with literature-reviewed materials. The review ends with future challenges to bring out upcoming prospects to further enhance supercapacitive performance, as much work and materials need to be explored through these routes.
Collapse
Affiliation(s)
- T. Kedara Shivasharma
- Nano Materials and Device
Laboratory, Department of Physics, Visvesvaraya
National Institute of Technology, South Ambazari Road, Nagpur, 440010 M.S., India
| | - Nakul Upadhyay
- Nano Materials and Device
Laboratory, Department of Physics, Visvesvaraya
National Institute of Technology, South Ambazari Road, Nagpur, 440010 M.S., India
| | - Tushar Balasaheb Deshmukh
- Nano Materials and Device
Laboratory, Department of Physics, Visvesvaraya
National Institute of Technology, South Ambazari Road, Nagpur, 440010 M.S., India
| | - Babasaheb R. Sankapal
- Nano Materials and Device
Laboratory, Department of Physics, Visvesvaraya
National Institute of Technology, South Ambazari Road, Nagpur, 440010 M.S., India
| |
Collapse
|
17
|
Wong PC, Kurniawan D, Wu JL, Wang WR, Chen KH, Chen CY, Chen YC, Veeramuthu L, Kuo CC, Ostrikov KK, Chiang WH. Plasma-Enabled Graphene Quantum Dot Hydrogel-Magnesium Composites as Bioactive Scaffolds for In Vivo Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44607-44620. [PMID: 37722031 DOI: 10.1021/acsami.3c05297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Bioactive and mechanically stable metal-based scaffolds are commonly used for bone defect repair. However, conventional metal-based scaffolds induce nonuniform cell growth, limiting damaged tissue restoration. Here, we develop a plasma nanotechnology-enhanced graphene quantum dot (GQD) hydrogel-magnesium (Mg) composite scaffold for functional bone defect repair by integrating a bioresource-derived nitrogen-doped GQD (NGQD) hydrogel into the Mg ZK60 alloy. Each scaffold component brings major synergistic advantages over the current alloy-based state of the art, including (1) mechanical support of the cortical bone and calcium deposition by the released Mg2+ during degradation; (2) enhanced uptake, migration, and distribution of osteoblasts by the porous hydrogel; and (3) improved osteoblast adhesion and proliferation, osteogenesis, and mineralization by the NGQDs in the hydrogel. Through an in vivo study, the hybrid scaffold with the much enhanced osteogenic ability induced by the above synergy promotes a more rapid, uniform, and directional bone growth across the hydrogel channel, compared with the control Mg-based scaffold. This work provides insights into the design of multifunctional hybrid scaffolds, which can be applied in other areas well beyond the demonstrated bone defect repair.
Collapse
Affiliation(s)
- Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jia-Lin Wu
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 110, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Ru Wang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Kuan-Hao Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei 235, Taiwan
| | - Chieh-Ying Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Ying-Chun Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Loganathan Veeramuthu
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Biomedical Technologies and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
18
|
Li S, van Raak T, Kriek R, De Felice G, Gallucci F. Gliding Arc Reactor under AC Pulsed Mode Operation: Spatial Performance Profile for NO x Synthesis. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:12821-12832. [PMID: 37654788 PMCID: PMC10466458 DOI: 10.1021/acssuschemeng.3c03832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Indexed: 09/02/2023]
Abstract
A two-dimensional gliding arc reactor for NOx synthesis was investigated in this study using AC pulsed mode operation. Tests with a duty cycle of 40 or 60% achieved the lowest energy consumption of 6.95 MJ/mol, which is an improvement of 15% from the case of continuous operation. Based on the results achieved, a new method for analyzing the spatial profile of the reactor was presented. The reactor was divided into five zones along the arc propagation, and results indicated that the first zone and last zone of the gliding arc reactor had higher energy consumption (9.59 and 8.63 MJ/mol, respectively), while lower consumption was observed in the middle parts of the reactor with a minimum of 5.00 MJ/mol. Spatial-resolved optical emission spectra, the deduced electron density, and temperature indicated the nonuniformity in plasma properties, which corresponds to the NOx production performance across the reactor. This research provides information and discussion that can be used for understanding and optimization of gliding arc reactors toward efficient nitrogen fixation.
Collapse
Affiliation(s)
- Sirui Li
- Inorganic Membranes and Membrane
Reactors, Sustainable Process Engineering, Department of Chemical
Engineering and Chemistry, Eindhoven University
of Technology, De Rondom 70, Eindhoven 5612 AP, The Netherlands
| | - Thijs van Raak
- Inorganic Membranes and Membrane
Reactors, Sustainable Process Engineering, Department of Chemical
Engineering and Chemistry, Eindhoven University
of Technology, De Rondom 70, Eindhoven 5612 AP, The Netherlands
| | - Rutger Kriek
- Inorganic Membranes and Membrane
Reactors, Sustainable Process Engineering, Department of Chemical
Engineering and Chemistry, Eindhoven University
of Technology, De Rondom 70, Eindhoven 5612 AP, The Netherlands
| | - Giulia De Felice
- Inorganic Membranes and Membrane
Reactors, Sustainable Process Engineering, Department of Chemical
Engineering and Chemistry, Eindhoven University
of Technology, De Rondom 70, Eindhoven 5612 AP, The Netherlands
| | - Fausto Gallucci
- Inorganic Membranes and Membrane
Reactors, Sustainable Process Engineering, Department of Chemical
Engineering and Chemistry, Eindhoven University
of Technology, De Rondom 70, Eindhoven 5612 AP, The Netherlands
| |
Collapse
|
19
|
Kurniawan D, Mathew J, Rahardja MR, Pham HP, Wong PC, Rao NV, Ostrikov KK, Chiang WH. Plasma-Enabled Graphene Quantum Dot Hydrogels as Smart Anticancer Drug Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206813. [PMID: 36732883 DOI: 10.1002/smll.202206813] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/10/2023] [Indexed: 05/18/2023]
Abstract
One of the major challenges on the way to low-cost, simple, and effective cancer treatments is the lack of smart anticancer drug delivery materials with the requisite of site-specific and microenvironment-responsive properties. This work reports the development of plasma-engineered smart drug nanocarriers (SDNCs) containing chitosan and nitrogen-doped graphene quantum dots (NGQDs) for drug delivery in a pH-responsive manner. Through a customized microplasma processing, a highly cross-linked SDNC with only 4.5% of NGQD ratio can exhibit enhanced toughness up to threefold higher than the control chitosan group, avoiding the commonly used high temperatures and toxic chemical cross-linking agents. The SDNCs demonstrate improved loading capability for doxorubicin (DOX) via π-π interactions and stable solid-state photoluminescence to monitor the DOX loading and release through the Förster resonance energy transfer (FRET) mechanism. Moreover, the DOX loaded SDNC exhibits anticancer effects against cancer cells during cytotoxicity tests at minimum concentration. Cellular uptake studies confirm that the DOX loaded SDNC can be successfully internalized into the nucleus after 12 h incubation period. This work provides new insights into the development of smart, environmental-friendly, and biocompatible nanographene hydrogels for the next-generation biomedical applications.
Collapse
Affiliation(s)
- Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Jacob Mathew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Michael Ryan Rahardja
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Hoang-Phuc Pham
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, 110, Taiwan
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| |
Collapse
|
20
|
Sharma D, Rao D, Saha B. A photonic artificial synapse with a reversible multifaceted photochromic compound. NANOSCALE HORIZONS 2023; 8:543-549. [PMID: 36852974 DOI: 10.1039/d2nh00532h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Modern computational technology based on the von Neumann architecture physically partitions memory and the central processing unit, resulting in fundamental speed limitations and high energy consumption. On the other hand, the human brain is an extraordinary multifunctional organ composed of more than a billion neurons capable of simultaneously thinking, processing, and storing information. Neurons are interconnected with synapses that control information flow from pre-synaptic-to-post-synaptic neurons. Therefore, emulating synaptic functionalities and developing neuromorphic computational architecture has recently attracted much interest. Due to their high-speed, large bandwidth, and no interconnect-related power loss, photonic (all-optical) synapses can overcome the existing hurdles with electronic synapses. Here, we show an artificial photonic synapse by utilizing the well-established reversible, high-contrast photochromic organic compound, spiropyran, stimulated by optical pulses. Optical transmission of spiropyran significantly changes during spiropyran-merocyanine isomerization driven by UV-visible optical pulses. Such changes are equivalent to the biological synapses' inhibitory and excitatory synaptic actions. The slow relaxation to the initial state is considered as synaptic plasticity responsible for learning and memory formation. Short-term memory (STM), long-term memory (LTM), and transition from the STM to the LTM are demonstrated in all-optical synapses by modulating the stimuli's strength. The solvatochromic properties of spiropyran are further utilized to augment memory in synapses. Our work shows that photochromic organic compounds are excellent hosts for artificial photonic synapses and can be implemented in neuromorphic applications.
Collapse
Affiliation(s)
- Deeksha Sharma
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Dheemahi Rao
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Bivas Saha
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
21
|
Yeh YJ, Le TN, Hsiao WWW, Tung KL, Ostrikov KK, Chiang WH. Plasmonic nanostructure-enhanced Raman scattering for detection of SARS-CoV-2 nucleocapsid protein and spike protein variants. Anal Chim Acta 2023; 1239:340651. [PMID: 36628748 PMCID: PMC9677586 DOI: 10.1016/j.aca.2022.340651] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/23/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Epidemiological control and public health monitoring during the outbreaks of infectious viral diseases rely on the ability to detect viral pathogens. Here we demonstrate a rapid, sensitive, and selective nanotechnology-enhanced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection based on the surface-enhanced Raman scattering (SERS) responses from the plasma-engineered, variant-specific antibody-functionalized silver microplasma-engineered nanoassemblies (AgMEN) interacting with the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins. The three-dimensional (3D) porous AgMEN with plasmonic-active nanostructures provide a high sensitivity to virus detection via the remarkable SERS signal collection. Moreover, the variant-specific antibody-functionalization on the SERS-active AgMEN enabled the high selectivity of the SARS-CoV-2 S variants, including wild-type, Alpha, Delta, and Omicron, under the simulated human saliva conditions. The exceptional ultrahigh sensitivity of our SERS biosensor was demonstrated via SARS-CoV-2 S and N proteins at the detection limit of 1 fg mL-1 and 0.1 pg mL-1, respectively. Our work demonstrates a versatile SERS-based detection platform can be applied for the ultrasensitive detection of virus variants, infectious diseases, and cancer biomarkers.
Collapse
Affiliation(s)
- Yi-Jui Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Trong-Nghia Le
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| | - Kuo-Lun Tung
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Materials Science, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| |
Collapse
|
22
|
Plasma-enabled graphene quantum dot-based nanofiltration membranes for water purification and dye monitoring. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Kurniawan D, Sharma N, Rahardja MR, Cheng YY, Chen YT, Wu GX, Yeh YY, Yeh PC, Ostrikov KK, Chiang WH. Plasma Nanoengineering of Bioresource-Derived Graphene Quantum Dots as Ultrasensitive Environmental Nanoprobes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52289-52300. [PMID: 36349361 DOI: 10.1021/acsami.2c15251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Environmental contamination and energy shortage are among the most critical global issues that require urgent solutions to ensure sustainable ecological balance. Rapid and ultrasensitive monitoring of water quality against pollutant contaminations using a low-cost, easy-to-operate, and environmentally friendly technology is a promising yet not commonly available solution. Here, we demonstrate the effective use of plasma-converted natural bioresources for environmental monitoring. The energy-efficient microplasmas operated at ambient conditions are used to convert diverse bioresources, including fructose, chitosan, citric acid, lignin, cellulose, and starch, into heteroatom-doped graphene quantum dots (GQDs) with controlled structures and functionalities for applications as fluorescence-based environmental nanoprobes. The simple structure of citric acid enables the production of monodispersed 3.6 nm averaged-size GQDs with excitation-independent emissions, while the saccharides including fructose, chitosan, lignin, cellulose, and starch allow the synthesis of GQDs with excitation-dependent emissions due to broader size distribution. Moreover, the presence of heteroatoms such as N and/or S in the chemical structures of chitosan and lignin coupled with the highly reactive species generated by the plasma facilitates the one-step synthesis of N, S-codoped GQDs, which offer selective detection of toxic environmental contaminants with a low limit of detection of 7.4 nM. Our work provides an insight into the rapid and green fabrication of GQDs with tunable emissions from natural resources in a scalable and sustainable manner, which is expected to generate impact in the environmental safety, energy conversion and storage, nanocatalysis, and nanomedicine fields.
Collapse
Affiliation(s)
- Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Neha Sharma
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Michael Ryan Rahardja
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Yu-Yuan Cheng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Yan-Teng Chen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Guan-Xian Wu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Yen-Yu Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Pei-Chun Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland4000, Australia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| |
Collapse
|
24
|
Zhou J, Xia Y, Zou Z, Yang Q, Jiang X, Xiong X. Microplasma-enabled carbon dots composited with multi-walled carbon nanotubes for dopamine detection. Anal Chim Acta 2022; 1237:340631. [DOI: 10.1016/j.aca.2022.340631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
|
25
|
Chen TY, Hsiao YW, Baker-Fales M, Cameli F, Dimitrakellis P, Vlachos DG. Microflow chemistry and its electrification for sustainable chemical manufacturing. Chem Sci 2022; 13:10644-10685. [PMID: 36320706 PMCID: PMC9491096 DOI: 10.1039/d2sc01684b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 10/26/2023] Open
Abstract
Sustainability is vital in solving global societal problems. Still, it requires a holistic view by considering renewable energy and carbon sources, recycling waste streams, environmentally friendly resource extraction and handling, and green manufacturing. Flow chemistry at the microscale can enable continuous sustainable manufacturing by opening up new operating windows, precise residence time control, enhanced mixing and transport, improved yield and productivity, and inherent safety. Furthermore, integrating microfluidic systems with alternative energy sources, such as microwaves and plasmas, offers tremendous promise for electrifying and intensifying modular and distributed chemical processing. This review provides an overview of microflow chemistry, electrification, their integration toward sustainable manufacturing, and their application to biomass upgrade (a select number of other processes are also touched upon). Finally, we identify critical areas for future research, such as matching technology to the scale of the application, techno-economic analysis, and life cycle assessment.
Collapse
Affiliation(s)
- Tai-Ying Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Yung Wei Hsiao
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Montgomery Baker-Fales
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Fabio Cameli
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Panagiotis Dimitrakellis
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware 221 Academy St. Newark Delaware 19716 USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware 221 Academy St. Newark Delaware 19716 USA
| |
Collapse
|
26
|
Mohammed RS, Aadim KA, Ahmed KA. Estimation of in vivo toxicity of MgO/ZnO core/shell nanoparticles synthesized by eco-friendly non-thermal plasma technology. APPLIED NANOSCIENCE 2022; 12:3783-3795. [PMID: 36120604 PMCID: PMC9469819 DOI: 10.1007/s13204-022-02608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/13/2022] [Indexed: 11/26/2022]
Abstract
MgO/ZnO core/shell nanoparticles were synthesized using the atmosphere plasma jets technique. The physical properties of the synthesized nanoparticles were investigated by a series of techniques, including X-ray diffraction (XRD), X-ray dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). XRD and EDS analyses confirmed the purity of the nanoparticles synthesized with an average nanoparticle crystallite size of 36 nm. TEM confirmed the successful synthesis of spindle-shaped MgO/ZnO core/shell nanoparticles with an average size of 70 nm. To evaluate their toxicity, the MgO/ZnO core/shell nanoparticles were tested in vivo. Twenty-five albino female rats were randomly divided into five groups (five rats in each group); one was used as the control group and the other four as the experimental groups. Doses of the MgO/ZnO core/shell nanoparticles solution were orally administered to the test groups to examine the toxicity. For 30 consecutive days, each rat in test groups 2–5 received 1 mL of the MgO/ZnO core/shell nanoparticles solution at the respective doses of 1.25, 2.5, 5, and 10 mg L−1. The rats’ growth, hematology, thyroid gland function, and histopathology were examined after 30 days. Findings indicate that the growth retardation in the rats treated with MgO/ZnO core/shell nanoparticles may be due to their infection by Hyperthyroidism. The hematology results show the nonsignificant effect of MgO/ZnO core/shell nanoparticles on white blood cells, implying that these nanoparticles have no harmful impact on the immune system. Moreover, the levels of the thyroxine and thyroid‐stimulating hormones increased, and that of the triiodothyronine hormone decreased. The histological analysis results show that low concentrations of MgO/ZnO core/shell nanoparticles are safe for desired biomedical applications.
Collapse
|
27
|
Hosseini H, Ghaffarzadeh M. Investigation of Plasma Induced Reactions of Liquid Toluene in Ar/NH 3: the Formation of Organic Compounds through Radical Intermediates. CHEM LETT 2022. [DOI: 10.1246/cl.220178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hamideh Hosseini
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), PO Box 14335-186, Teheran, Iran
| | - Mohammad Ghaffarzadeh
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), PO Box 14335-186, Teheran, Iran
| |
Collapse
|
28
|
Demaude A, Baert K, Petitjean D, Zveny J, Goormaghtigh E, Hauffman T, Gordon MJ, Reniers F. Simple and Scalable Chemical Surface Patterning via Direct Deposition from Immobilized Plasma Filaments in a Dielectric Barrier Discharge. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200237. [PMID: 35343108 PMCID: PMC9130873 DOI: 10.1002/advs.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Indexed: 06/14/2023]
Abstract
In this work, immobilization of the often unwanted filaments in dielectric barrier discharges (DBD) is achieved and used for one-step deposition of patterned coatings. By texturing one of the dielectric surfaces, a discharge containing stationary plasma filaments is ignited in a mix of argon and propargyl methacrylate (PMA) in a reactor operating at atmospheric pressure. From PMA, hydrophobic and hydrophilic chemical and topographical contrasts at sub-millimeter scale are obtained on silicon and glass substrates. Chemical and physical characterizations of the samples are performed by micrometer-scale X-ray photoelectron spectroscopy and infrared imaging and by water contact angle and profilometry, respectively. From the latter and additional information from high-speed imaging of the plasma phase and electrical measurements, it is suggested that filaments, denser in energetic species, lead to higher deposition rate with higher fragmentation of the precursor, while surface discharges igniting outwards the filaments are leading to smoother and slower deposition. This work opens a new route for a one-step large-area chemical and morphological patterning of surfaces at sub-millimeter scales. Moreover, the possibility to separately deposit coatings from filaments and the surrounding plasma phase can be helpful to better understand the processes occurring during plasma polymerization in filamentary DBD.
Collapse
Affiliation(s)
- Annaëlle Demaude
- Faculty of SciencesChemistry of SurfacesInterfaces and Nanomaterials (ChemSIN)Université libre de BruxellesAvenue F.D. Roosevelt 50, CP 255BrusselsB‐1050Belgium
| | - Kitty Baert
- Faculty of EngineeringDepartment of Materials and ChemistryElectrochemical and Surface Engineering Research Group (SURF)Vrije Universiteit BrusselPleinlaan 2BrusselsB‐1050Belgium
| | - David Petitjean
- Faculty of SciencesChemistry of SurfacesInterfaces and Nanomaterials (ChemSIN)Université libre de BruxellesAvenue F.D. Roosevelt 50, CP 255BrusselsB‐1050Belgium
| | - Juliette Zveny
- Faculty of SciencesChemistry of SurfacesInterfaces and Nanomaterials (ChemSIN)Université libre de BruxellesAvenue F.D. Roosevelt 50, CP 255BrusselsB‐1050Belgium
| | - Erik Goormaghtigh
- Structure and Function of Biological MembranesCenter for Structural Biology and BioinformaticsUniversité libre de BruxellesAvenue F.D. Roosevelt 50, CP 206/2BrusselsB‐1050Belgium
| | - Tom Hauffman
- Faculty of EngineeringDepartment of Materials and ChemistryElectrochemical and Surface Engineering Research Group (SURF)Vrije Universiteit BrusselPleinlaan 2BrusselsB‐1050Belgium
| | - Michael J. Gordon
- Department of Chemical EngineeringEng II #3351University of California – Santa BarbaraSanta BarbaraCA93106‐5080USA
| | - François Reniers
- Faculty of SciencesChemistry of SurfacesInterfaces and Nanomaterials (ChemSIN)Université libre de BruxellesAvenue F.D. Roosevelt 50, CP 255BrusselsB‐1050Belgium
| |
Collapse
|
29
|
Ifijen IH, Maliki M. A comprehensive review on the synthesis and photothermal cancer therapy of titanium nitride nanostructures. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2068596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ikhazuagbe H. Ifijen
- Department of Research Operations, Rubber Research Institute of Nigeria, Benin, Nigeria
| | - Muniratu Maliki
- Department of Industrial Chemistry, Edo State University, Uzairue, Iyamho, Nigeria
| |
Collapse
|
30
|
Rasek K, Bronold FX, Fehske H. Charge kinetics across a negatively biased semiconducting plasma-solid interface. Phys Rev E 2022; 105:045202. [PMID: 35590641 DOI: 10.1103/physreve.105.045202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
An investigation of the self-consistent ambipolar charge kinetics across a negatively biased semiconducting plasma-solid interface is presented. For the specific case of a thin germanium layer with nonpolar electron-phonon scattering, sandwiched between an Ohmic contact and a collisionless argon plasma, we calculate the current-voltage characteristic and show that it is affected by the electron microphysics of the semiconductor. We also obtain the spatially and energetically resolved fluxes and charge distributions inside the layer, visualizing thereby the behavior of the charge carriers responsible for the charge transport. Albeit not quantitative, because of the crude model for the germanium band structure and the neglect of particle-nonconserving scattering processes, such as impact ionization and electron-hole recombination, which at the energies involved cannot be neglected, our results clearly indicate (i) the current through the interface is carried by rather hot carriers and (ii) the perfect absorber model, often used for the description of charge transport across plasma-solid interfaces, cannot be maintained for semiconducting interfaces.
Collapse
Affiliation(s)
- K Rasek
- Institut für Physik, Universität Greifswald, 17489 Greifswald, Germany
| | - F X Bronold
- Institut für Physik, Universität Greifswald, 17489 Greifswald, Germany
| | - H Fehske
- Institut für Physik, Universität Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
31
|
Kurniawan D, Anjali BA, Setiawan O, Ostrikov KK, Chung YG, Chiang WH. Microplasma Band Structure Engineering in Graphene Quantum Dots for Sensitive and Wide-Range pH Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1670-1683. [PMID: 34843204 DOI: 10.1021/acsami.1c18440] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
pH sensing using active nanomaterials is promising in many fields ranging from chemical reactions to biochemistry, biomedicine, and environmental safety especially in the nanoscale. However, it is still challenging to achieve nanotechnology-enhanced rapid, sensitive, and quantitative pH detection with stable, biocompatible, and cost-effective materials. Here, we report a rational design of nitrogen-doped graphene quantum dot (NGQD)-based pH sensors by boosting the NGQD pH sensing properties via microplasma-enabled band-structure engineering. Effectively and economically, the emission-tunable NGQDs can be synthesized from earth-abundant chitosan biomass precursor by controlling the microplasma chemistry under ambient conditions. Advanced spectroscopy measurements and density functional theory (DFT) calculations reveal that functionality-tuned NGQDs with enriched -OH functional groups and stable and large Stokes shift along the variations of pH value can achieve rapid, label-free, and ionic-stable pH sensing with a wide sensing range from pH 1.8 to 13.6. The underlying mechanism of pH sensing is related to the protonation/deprotonation of -OH group of NGQDs, leading to the maximum pH-dependent luminescence peak shift along with the bandgap broadening or narrowing. In just 1 h, a single microplasma jet can produce a stable colloidal NGQD dispersion with 10 mg/mL concentration lasting for at least 100 pH detections, and the process is scalable. This approach is generic and opens new avenues for nanographene-based materials synthesis for applications in sensing, nanocatalysis, energy generation and conversion, quantum optoelectronics, bioimaging, and drug delivery.
Collapse
Affiliation(s)
- Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Bai Amutha Anjali
- School of Chemical Engineering, Pusan National University, 46241 Busan, Korea (South)
| | - Owen Setiawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Yongchul G Chung
- School of Chemical Engineering, Pusan National University, 46241 Busan, Korea (South)
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
32
|
Kan X, Chen K, Yin C, Yang Y, Shan M, Wang H, Han Q, Chen B. Self-Organized Fractal Structures on Plasma-Exposed Silver Surface. Front Chem 2022; 9:816811. [PMID: 35004631 PMCID: PMC8738162 DOI: 10.3389/fchem.2021.816811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Planar fractal microstructure is observed on the silver film treated by positive corona discharge for the first time. Due to the abundant positive ions driven by the electrical field of positive polarity, surface modification is mainly induced by the plasma oxidation effect, resulting in a large scale of dendritic pattern with self-similarity and hierarchy. In contrast, negative ions dominate the plasma-film interaction under negative corona discharge condition, leading to a different surface morphology without fractal characteristics. A growth model based on the modified diffusion-limited aggregation (DLA) theory is proposed to describe the formation of the dendritic fractal structure, whilst the physics behind is attributed to the electric field directed diffusion of the positive ions around the surface roughness. Numerical simulation verifies the high density of the hot spot in the dendritic pattern, which may enable potential applications in fractal photonic metamaterials.
Collapse
Affiliation(s)
- Xuefen Kan
- The Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou, China
| | - Ke Chen
- The Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou, China
| | - Cheng Yin
- The Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou, China
| | - Yu Yang
- The Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou, China
| | - Minglei Shan
- The Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou, China
| | - Huanhuan Wang
- The Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou, China
| | - Qingbang Han
- The Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou, China
| | - Bingyan Chen
- The Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou, China
| |
Collapse
|
33
|
Chang GY, Kurniawan D, Chang YJ, Chiang WH. Microplasma-Enabled Surfaced-Functionalized Silicon Quantum Dots for Label-Free Detection of Dopamine. ACS OMEGA 2022; 7:223-229. [PMID: 35036694 PMCID: PMC8756587 DOI: 10.1021/acsomega.1c04467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Rapid and sensitive detection of dopamine (DA) is important for the diagnostics of neurological disorders and the development of new drugs. Here, we report microplasma synthesis of surfaced-functionalized silicon quantum dots (SiQDs) at ambient conditions. The synthesized SiQDs with useful properties including abundant surface functionalities, stable colloidal dispersion, and photoluminescence (PL) emission enable direct label-free detection of DA, providing a wide sensing range from 0.83 to 83.33 μM and a low detection limit of 0.32 μM. Our work provides a new direction for the synthesis of colloidal SiQDs and the understanding of SiQD-based PL probes for biomolecule sensing.
Collapse
|
34
|
Wang Z, Zhang L, Zhang K, Lu Y, Chen J, Wang S, Hu B, Wang X. Application of carbon dots and their composite materials for the detection and removal of radioactive ions: A review. CHEMOSPHERE 2022; 287:132313. [PMID: 34592206 DOI: 10.1016/j.chemosphere.2021.132313] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 05/18/2023]
Abstract
Radioactive ions with high-heat release or long half-life could cause long-term influence on environment and they might enter the food chain to damage human body for their toxicity and radioactivity. It is of great importance to develop methods and materials to detect and remove radioactive ions. Carbon dots and their composite materials has been applied widely in many fields due to their plentiful raw materials, facile synthesis and functional process, unique optical property and abundant functional groups. This comprehensive review focuses on the preparation of CDs and composite materials for the detection and adsorption of radioactive ions. Firstly, the recent-developed synthetic methods for CDs were summarized briefly, including hydrothermal/solvothermal, microwave, electrochemistry, microplasma, chemical oxidation methods, focusing on the influence of CDs properties. Secondly, the synthetic methods for CDs composite materials were classified to four categories and summarized generally. Thirdly, the application of CDs for radioactive ions detection and adsorption were explored and concluded including uranium, iodine, europium, strontium, samarium et al. Finally, the detection and adsorption mechanism for radioactive ions were searched and the perspective and outlook of CDs for detection and adsorption radioactive ions have been proposed based on our understanding.
Collapse
Affiliation(s)
- Zhe Wang
- The MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; College of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Lingyu Zhang
- The MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Kangjie Zhang
- The MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yuexiang Lu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Haidian District, Beijing, 100084, PR China.
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Haidian District, Beijing, 100084, PR China
| | - Shuqin Wang
- College of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Baowei Hu
- College of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Xiangke Wang
- The MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; College of Life Science, Shaoxing University, Shaoxing, 312000, PR China.
| |
Collapse
|
35
|
Abstract
The present paper investigates the breakdown characteristics—breakdown voltage, with breakdown occurring on the rising edge of the applied HV impulses, and time to breakdown—for gases of significance that are present in the atmosphere: air, N2 and CO2. These breakdown characteristics have been obtained in a 100 µm gap between an HV needle and plane ground electrode, when stressed with sub-µs impulses of both polarities, with a rise time up to ~50 ns. The scaling relationships between the reduced breakdown field Etip/N and the product of the gas number density and inter-electrode gap, Nd, were obtained for all tested gases over a wide range of Nd values, from ~1020 m−2 to ~1025 m−2. The breakdown field-time to breakdown characteristics obtained at different gas pressures are presented as scaling relationships of Etip/N, Nd, and Ntbr for each gas, and compared with data from the literature.
Collapse
|
36
|
Lin L, Li X, Gao H, Xu H, Starostin SA, Ostrikov KK, Hessel V. Microfluidic Plasma-Based Continuous and Tunable Synthesis of Ag–Au Nanoparticles and Their SERS Properties. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c04048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liangliang Lin
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Nanodevices of Jiangsu Province, Suzhou 215123, China
| | - Xuanhe Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Haiyan Gao
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hujun Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Sergey A. Starostin
- FUJIFILM Manufacturing Europe B.V., Tilburg Research Labs, P. O. Box 90156, 5047 TK Tilburg, Netherlands
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace Campus, Adelaide 5005, Australia
| |
Collapse
|
37
|
Xuan LTQ, Nguyen LN, Dao NT. Synthesis of stabilizer-free, homogeneous gold nanoparticles by cold atmospheric-pressure plasma jet and their optical sensing property. NANOTECHNOLOGY 2021; 33:105603. [PMID: 34814120 DOI: 10.1088/1361-6528/ac3c7f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Recently, cold atmospheric-pressure plasma has been studied extensively as an efficient and green method to synthesize gold nanoparticles (AuNPs). Although the characteristics of the AuNPs, especially their homogeneousness, depend very much on the plasma synthesis parameters, there is a lack of a study involving these parameters systematically. Moreover, most of AuNPs-cold-plasma synthesis reports so far either required organic capping agents or resulted in highly non-uniform AuNPs. In this work, we systematically study the effect of most important synthesis parameters- including distance from the plasma jet to the solution, gas flow rate, plasma frequency, volume and concentration of the precursor, plasma interaction time as well as the effect of the synthesis environment (humidity and temperature)-on the uniformity of the AuNPs. Through various characterization measurements, we show that homogeneous and highly stable intrinsic AuNPs with an average size of 45 nm can be obtained with optimized synthesis parameters and in the absence of a stabilizer. The synthesized AuNPs yield advanced optical sensing properties in comparison with commercial AuNPs and can be further applied in developing versatile and high-sensitivity biosensors.
Collapse
Affiliation(s)
- Le Thi Quynh Xuan
- Laboratory of Plasma Technology, Institute of Materials Sciences (IMS), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), VAST, Vietnam
| | - Linh Nhat Nguyen
- Laboratory of Plasma Technology, Institute of Materials Sciences (IMS), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Thuan Dao
- Laboratory of Plasma Technology, Institute of Materials Sciences (IMS), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), VAST, Vietnam
| |
Collapse
|
38
|
Sethy SK, Ficek M, Sankaran KJ, Sain S, Tripathy AR, Gupta S, Ryl J, Sinha Roy S, Tai NH, Bogdanowicz R. Nitrogen-Incorporated Boron-Doped Nanocrystalline Diamond Nanowires for Microplasma Illumination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55687-55699. [PMID: 34781675 DOI: 10.1021/acsami.1c16507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The origin of nitrogen-incorporated boron-doped nanocrystalline diamond (NB-NCD) nanowires as a function of substrate temperature (Ts) in H2/CH4/B2H6/N2 reactant gases is systematically addressed. Because of Ts, there is a drastic modification in the dimensional structure and microstructure and hence in the several properties of the NB-NCD films. The NB-NCD films grown at low Ts (400 °C) contain faceted diamond grains. The morphology changes to nanosized diamond grains for NB-NCD films grown at 550 °C (or 700 °C). Interestingly, the NB-NCD films grown at 850 °C possess one-dimensional nanowire-like morphological grains. These nanowire-like NB-NCD films possess the co-existence of the sp3-diamond phase and the sp2-graphitic phase, where diamond nanowires are surrounded by sp2-graphitic phases at grain boundaries. The optical emission spectroscopy studies stated that the CN, BH, and C2 species in the plasma are the main factors for the origin of nanowire-like conducting diamond grains and the materialization of graphitic phases at the grain boundaries. Moreover, conductive atomic force microscopy studies reveal that the NB-NCD films grown at 850 °C show a large number of emission sites from the grains and the grain boundaries. While boron doping improved the electrical conductivity of the NCD grains, the nitrogen incorporation eased the generation of graphitic phases at the grain boundaries that afford conducting channels for the electrons, thus achieving a high electrical conductivity for the NB-NCD films grown at 850 °C. The microplasma devices using these nanowire-like NB-NCD films as cathodes display superior plasma illumination properties with a threshold field of 3300 V/μm and plasma current density of 1.04 mA/cm2 with a supplied voltage of 520 V and a lifetime stability of 520 min. The outstanding plasma illumination characteristics of these conducting nanowire-like NB-NCD films make them appropriate as cathodes and pave the way for the utilization of these materials in various microplasma device applications.
Collapse
Affiliation(s)
- Salila Kumar Sethy
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - Mateusz Ficek
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland
| | | | - Sourav Sain
- Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Anupam Ruturaj Tripathy
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Shivam Gupta
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Jacek Ryl
- Department of Electrochemistry, Corrosion and Materials Engineering, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Susanta Sinha Roy
- Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Nyan-Hwa Tai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Robert Bogdanowicz
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland
| |
Collapse
|
39
|
Low-Temperature Atmospheric Pressure Plasma Processes for the Deposition of Nanocomposite Coatings. Processes (Basel) 2021. [DOI: 10.3390/pr9112069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Low-temperature atmospheric pressure (AP) plasma technologies have recently proven to offer a range of interesting opportunities for the preparation of a variety of nanocomposite (NC) coatings with different chemical compositions, structures, and morphologies. Since the late 2000s, numerous strategies have been implemented for the deposition of this intriguing class of coatings by using both direct and remote AP plasma sources. Interestingly, considerable progress has been made in the development of aerosol-assisted deposition processes in which the use of either precursor solutions or nanoparticle dispersions in aerosol form allows greatly widening the range of constituents that can be combined in the plasma-deposited NC films. This review summarizes the research published on this topic so far and, specifically, aims to present a concise survey of the developed plasma processes, with particular focus on their optimization as well as on the structural and functional properties of the NC coatings to which they provide access. Current challenges and opportunities are also briefly discussed to give an outlook on possible future research directions.
Collapse
|
40
|
Yeh PC, Ohkatsu G, Toyama R, Tue PT, Ostrikov KK, Majima Y, Chiang WH. Towards single electron transistor-based photon detection with microplasma-enabled graphene quantum dots. NANOTECHNOLOGY 2021; 32:50LT01. [PMID: 34544073 DOI: 10.1088/1361-6528/ac2845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Single-electron transistors (SETs) represent a new generation of electronic devices with high charge sensitivity, high switching speed, and low power consumption. Here a simple and controlled fabrication of graphene quantum dot (GQD)-based SETs for photon detectors has been demonstrated. The plasma-synthesized GQDs exhibit stable photoluminescence and are successfully used as the Coulomb islands between heteroepitaxial spherical-gold/platinum (HS-Au/Pt) nanogap electrodes. The as-fabricated GQD-SETs enable photon detection with 410 nm excitation owing to the ability of GQDs to generate photoluminescence emission.
Collapse
Affiliation(s)
- Pei-Chun Yeh
- Department of Chemical Engineering, National Taiwan University of Science Technology, Taipei 10607, Taiwan
| | - Genki Ohkatsu
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Ryo Toyama
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Phan Trong Tue
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Yutaka Majima
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science Technology, Taipei 10607, Taiwan
| |
Collapse
|
41
|
Kurniawan D, Jhang RC, Ostrikov KK, Chiang WH. Microplasma-Tunable Graphene Quantum Dots for Ultrasensitive and Selective Detection of Cancer and Neurotransmitter Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34572-34583. [PMID: 34255481 DOI: 10.1021/acsami.1c10566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effective and precise detection of cancer and neurotransmitter biomarkers including folic acid (FA), dopamine (DA), and epinephrine (EP) are essential for early detection and diagnosis of cancer and neurological disorders and for the development of new drugs. However, it remains challenging to detect FA, DA, and EP with high selectivity and sensitivity with a single material. Herein, we report a photoluminescence (PL)-based selective sensing of FA, DA, and EP with nitrogen-doped graphene quantum dots (NGQDs) synthesized from biocompatible chitosan under ambient conditions using atmospheric pressure microplasmas. By regulating the pH, the selective detection is achieved in broad ranges from 0.8 to 80 μM for FA and 0.4 to 100 μM for both DA and EP with the very low limits of detections of 81.7, 57.8, and 16.7 nM for FA, DA, and EP, respectively. The developed PL sensing method shows the high throughput of 5000 detections per hour. Moreover, highly stable colloidal NGQD dispersion with 100 μg/mL concentration for at least 100 PL detections is produced in 1 h by a single microplasma, and the process is scalable. The mechanisms of the outstanding performance are related to the enhanced, size-dependent π-π stacking attraction between the NGQDs and the pH-regulated chemical states of the analytes and the associated pH-specific photo-induced electron transfer and PL.
Collapse
Affiliation(s)
- Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Rong-Chen Jhang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
42
|
Cai Y, Li M, Gu J, Zhou H, Zhao Y. An effective method for size-controlled gold nanoparticles synthesis with nonthermal microplasma. NANOTECHNOLOGY 2021; 32:395603. [PMID: 34157697 DOI: 10.1088/1361-6528/ac0d80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
A simple, effective and interesting method for gold nanoparticles (AuNPs) synthesis with nonthermal microplasma is developed in this study. The device of dielectric barrier discharge (DBD) microplasma generator with a spray portion is designed and fabricated for uniform AuNPs synthesis. The AuNPs can be synthesized effectivelyin situby the DBD microplasma generated on the nozzle of the pneumatic micro-nebulizer. The mechanism of the AuNPs formation under microplasma, the effect of nebulization for uniform AuNPs synthesis and other significant parameters are investigated in the experiment. The morphology and optical properties of the synthesized gold nanoparticles are also characterized. The minimum particle size in average obtained by the proposed method is 4.9 ± 1.1 nm. The particle size of AuNPs can be controlled in the range of 4.9-16.8 nm by the various aqueous solution conditions.
Collapse
Affiliation(s)
- Yi Cai
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, People's Republic of China
- College of Information Science and Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Ming Li
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, People's Republic of China
| | - Junjie Gu
- Technology Center of Shenyang Customs, Shenyang, People's Republic of China
| | - Han Zhou
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, People's Republic of China
| | - Yong Zhao
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, People's Republic of China
- College of Information Science and Engineering, Northeastern University, Shenyang, People's Republic of China
| |
Collapse
|
43
|
Nguyen LN, Lamichhane P, Choi EH, Lee GJ. Structural and Optical Sensing Properties of Nonthermal Atmospheric Plasma-Synthesized Polyethylene Glycol-Functionalized Gold Nanoparticles. NANOMATERIALS 2021; 11:nano11071678. [PMID: 34202388 PMCID: PMC8306114 DOI: 10.3390/nano11071678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022]
Abstract
Polyethylene glycol-functionalized gold nanoparticles (Au@PEG NPs) were prepared by a simple plasma-assisted method without additional reducing chemicals. After irradiating tetrachloroauric acid (HAuCl4) and polyethylene glycol (PEG) in aqueous medium with an argon plasma jet, the gold precursor transformed into an Au@PEG NP colloid that exhibited surface plasma resonance at 530 nm. When the plasma jet entered the water, additional reactive species were induced through interactions between plasma-generated reactive species and aqueous media. Interaction of the gold precursor with the plasma-activated medium allowed the synthesis of gold nanoparticles (AuNPs) without reductants. The plasma-synthesized Au@PEG NPs had a quasi-spherical shape with an average particle diameter of 32.5 nm. The addition of PEG not only helped to stabilize the AuNPs but also increased the number of AuNPs. Au@PEG NP-loaded paper (AuNP-paper) was able to detect the degradation of rhodamine B, therefore, indicating that AuNP-paper can act as a surface-enhanced Raman scattering platform. Dye degradation by plasma treatment was investigated by optical absorption and Raman spectroscopy. The method proposed for the fabrication of Au@PEG NPs is rapid, low-cost, and environment-friendly and will facilitate the application of plasma-synthesized nanomaterials in sensors.
Collapse
Affiliation(s)
- Linh Nhat Nguyen
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (L.N.N.); (P.L.); (E.H.C.)
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea
- Laboratory of Plasma Technology, Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Pradeep Lamichhane
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (L.N.N.); (P.L.); (E.H.C.)
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (L.N.N.); (P.L.); (E.H.C.)
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea
| | - Geon Joon Lee
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (L.N.N.); (P.L.); (E.H.C.)
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea
- Correspondence: ; Tel.: +82-2-940-8619
| |
Collapse
|
44
|
Zhao R, Cao J, Yang X, Zhang Q, Iqbal MZ, Lu J, Kong X. Inorganic material based macrophage regulation for cancer therapy: basic concepts and recent advances. Biomater Sci 2021; 9:4568-4590. [PMID: 34113942 DOI: 10.1039/d1bm00508a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages with the M1 phenotype are a type of immune cell with exciting prospects for cancer therapy; however, when these macrophages infiltrate into tumours, many of them are induced by the tumour microenvironment to transform into the M2 type, which can enable tumour defence against external therapeutic strategies, assisting in tumour development. Macrophages have strong plasticity and functional heterogeneity, and their phenotypic transformation is complex and still poorly understood in relation to cancer therapy. Recent material advances in inorganic nanomaterials, especially inorganic elements in vivo, have accelerated the development of macrophage regulation-based cancer treatments. This review summarizes the basics of recent research on macrophage phenotype transformation and discusses the current challenges in macrophage type regulation. Then, the current achievements involving inorganic material-based macrophage regulation and the related anticancer effects of induced macrophages and their extracellular secretions are reviewed systematically. Importantly, inorganic nanomaterial-based macrophage phenotype regulation is flexible and can be adapted for different types of cancer therapies, presenting a possible novel approach for the generation of immune materials for cancer therapy.
Collapse
Affiliation(s)
- Ruibo Zhao
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Jinping Cao
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xinyan Yang
- School of Bioengineering, Hangzhou Medical College, Hangzhou 310013, Zhejiang, China
| | - Quan Zhang
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Muhammad Zubair Iqbal
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Jiaju Lu
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xiangdong Kong
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
45
|
Lin L, Li X, Zhou J, Zou J, Lai J, Chen Z, Shen J, Xu H. Plasma-aided green and controllable synthesis of silver nanoparticles and their compounding with gemini surfactant. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Li S, Lu Z, Yuan B, Hu R, Zhu M. Applications of Plasma-Assisted Systems for Advanced Electrode Material Synthesis and Modification. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13909-13919. [PMID: 33730485 DOI: 10.1021/acsami.0c22907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Research on advanced electrode materials (AEMs) has been explosive for the past decades and constantly promotes the development of batteries, supercapacitors, electrocatalysis, and photovoltaic applications. However, traditional preparation and modification methods can no longer meet the increasing requirements of some AEMs because some of the special reactions are thermodynamically and/or kinetically unfavorable and thus need harsh conditions. Among various recently developed advanced materials synthesis and modification routes, the plasma-assisted (PA) method has received increasing attention because of its unique and different "species reactivity" nature, as well as its wider and adjustable operating conditions. In this Spotlight on Applications, we highlight some recent developments and describe our recent progress by applying PA systems in the synthesis and modification of AEMs, including direct processing, PA deposition, and plasma milling (P-milling). The mechanisms of how plasma works for specific reactions are reviewed and discussed. It is shown that the PA technique has become a powerful and efficient tool in the following areas, including but not limited to materials synthesis, doping, surface modification, and functionalization. Finally, the prospect and challenges are also proposed for AEM preparation and modification using PA systems. This article aims to provide up-to-date information about the progress of PA technology in the fields of chemistry and materials science.
Collapse
Affiliation(s)
- Shaobo Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641, P.R. China
| | - Zhongchen Lu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641, P.R. China
| | - Bin Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641, P.R. China
| | - Renzong Hu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641, P.R. China
| | - Min Zhu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641, P.R. China
| |
Collapse
|
47
|
Brunet P, McGlynn RJ, Alessi B, Smail F, Boies A, Maguire P, Mariotti D. Surfactant-free synthesis of copper nanoparticles and gas phase integration in CNT-composite materials. NANOSCALE ADVANCES 2021; 3:781-788. [PMID: 36133850 PMCID: PMC9419625 DOI: 10.1039/d0na00922a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/27/2020] [Indexed: 06/16/2023]
Abstract
Copper nanoparticles (Cu-NPs) represent a viable low-cost alternative to replace bulk copper or other more expensive NPs (e.g. gold or silver) in various applications such as electronics for electrical contact materials or high conductivity materials. This study deals with the synthesis of well dispersed Cu-NPs by using an Ar + H2 microplasma using a solid copper precursor. The morphological analysis is carried out by electron microscopy showing particles with a mean diameter of 8 nm. Crystallinity and chemical analyses were also carried out by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. In the second step, the Cu-NPs were successfully deposited onto porous carbon nanotube ribbons; surface coverage and the penetration depth of the Cu-NPs inside the CNT ribbon structure were investigated as these can be beneficial for a number of applications. The oxidation state of the Cu-NPs was also studied in detail under different conditions.
Collapse
Affiliation(s)
- Paul Brunet
- Nanotechnology and Integrated Bio Engineering Centre (NIBEC), Ulster University Newtownabbey BT370QB UK
| | - Ruairi J McGlynn
- Nanotechnology and Integrated Bio Engineering Centre (NIBEC), Ulster University Newtownabbey BT370QB UK
| | - Bruno Alessi
- Nanotechnology and Integrated Bio Engineering Centre (NIBEC), Ulster University Newtownabbey BT370QB UK
| | - Fiona Smail
- Department of Engineering, Cambridge University Cambridge UK
| | - Adam Boies
- Department of Engineering, Cambridge University Cambridge UK
| | - Paul Maguire
- Nanotechnology and Integrated Bio Engineering Centre (NIBEC), Ulster University Newtownabbey BT370QB UK
| | - Davide Mariotti
- Nanotechnology and Integrated Bio Engineering Centre (NIBEC), Ulster University Newtownabbey BT370QB UK
| |
Collapse
|
48
|
Qin X, Liu J, Zhang Q, Chen W, Zhong X, He J. Synthesis of Yellow-Fluorescent Carbon Nano-dots by Microplasma for Imaging and Photocatalytic Inactivation of Cancer Cells. NANOSCALE RESEARCH LETTERS 2021; 16:14. [PMID: 33475910 DOI: 10.1186/s11671-021-03478-2/figures/4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/11/2021] [Indexed: 05/26/2023]
Abstract
In recent years, multifunctional nanoparticles with combined diagnostic and therapeutic functions show great promise in nanomedicine. In this study, we report the environmentally friendly synthesis of fluorescent carbon nano-dots such as carbon quantum dots (CQDs) by microplasma using o-phenylenediamine. The produced CQDs exhibited a wide absorption peaks at 380-500 nm and emitted bright yellow fluorescence with a peak at 550 nm. The CQDs were rapidly taken up by HeLa cancer cells. When excited under blue light, a bright yellow fluorescence signal and intense reactive oxygen species (ROS) were efficiently produced, enabling simultaneous fluorescent cancer cell imaging and photodynamic inactivation, with a 40% decrease in relative cell viability. Furthermore, about 98% cells were active after the incubation with 400 μg mL-1 CQDs in the dark, which revealed the excellent biocompatibility of CQDs. Hence, the newly prepared CQDs are thus demonstrated to be materials which might be effective and safe to use for in vivo bioimaging and imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Xing Qin
- Department of Oral and Maxillofacial-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, People's Republic of China
| | - Jinlin Liu
- Hunan Key Laboratory of Oral Health Research and Hunan 3D Printing Engineering Research Center of Oral Care and Hunan Clinical Research Center of Oral Major Diseases and Oral Health and Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Qing Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, People's Republic of China
| | - Xiaoxia Zhong
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Jie He
- Department of Oral and Maxillofacial-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
49
|
Qin X, Liu J, Zhang Q, Chen W, Zhong X, He J. Synthesis of Yellow-Fluorescent Carbon Nano-dots by Microplasma for Imaging and Photocatalytic Inactivation of Cancer Cells. NANOSCALE RESEARCH LETTERS 2021; 16:14. [PMID: 33475910 PMCID: PMC7818297 DOI: 10.1186/s11671-021-03478-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/11/2021] [Indexed: 05/08/2023]
Abstract
In recent years, multifunctional nanoparticles with combined diagnostic and therapeutic functions show great promise in nanomedicine. In this study, we report the environmentally friendly synthesis of fluorescent carbon nano-dots such as carbon quantum dots (CQDs) by microplasma using o-phenylenediamine. The produced CQDs exhibited a wide absorption peaks at 380-500 nm and emitted bright yellow fluorescence with a peak at 550 nm. The CQDs were rapidly taken up by HeLa cancer cells. When excited under blue light, a bright yellow fluorescence signal and intense reactive oxygen species (ROS) were efficiently produced, enabling simultaneous fluorescent cancer cell imaging and photodynamic inactivation, with a 40% decrease in relative cell viability. Furthermore, about 98% cells were active after the incubation with 400 μg mL-1 CQDs in the dark, which revealed the excellent biocompatibility of CQDs. Hence, the newly prepared CQDs are thus demonstrated to be materials which might be effective and safe to use for in vivo bioimaging and imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Xing Qin
- Department of Oral and Maxillofacial-Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Jinlin Liu
- Hunan Key Laboratory of Oral Health Research and Hunan 3D Printing Engineering Research Center of Oral Care and Hunan Clinical Research Center of Oral Major Diseases and Oral Health and Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008 Hunan People’s Republic of China
| | - Qing Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Xiaoxia Zhong
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Jie He
- Department of Oral and Maxillofacial-Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| |
Collapse
|
50
|
Wang Q, Zhao L, Zhou J, Hu Z, Huang K, Jiang X, Yu H. Synthesis of Cu(OH)F microspheres using atmospheric dielectric barrier discharge microplasma: a high-performance non-enzymatic electrochemical sensor. NEW J CHEM 2021. [DOI: 10.1039/d1nj03094a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cu(OH)F microspheres were in situ synthetized using microplasma and were employed as an electrochemical sensor for glucose, hydrogen peroxide and formaldehyde.
Collapse
Affiliation(s)
- Qiang Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Li Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Jiaxin Zhou
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Zhangmei Hu
- Analysis and Testing Centre, Southwest Jiaotong University, Chengdu 610030, Sichuan, China
| | - Ke Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Xue Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Huimin Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| |
Collapse
|