1
|
Ma D, Lu H, Zhang H, Liao A, Peng Q, Yang M. ICG/MnO 2-HFn-mPEG-DSPE-Lip enhances the anticancer activity of ICG phototherapy. Lasers Med Sci 2025; 40:243. [PMID: 40411641 DOI: 10.1007/s10103-025-04494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/11/2025] [Indexed: 05/26/2025]
Abstract
Hypoxia poses a significant challenge to the efficacy of photodynamic therapy (PDT) for cancer treatment. This study aims to design and synthesize PEGylated liposomes encapsulating MnO₂, indocyanine green (ICG), and H-chain ferritin (HFn) to potentially address hypoxia and enhance the therapeutic outcomes of PDT. PEGylated liposomes (ICG/MnO₂-HFn-mPEG-DSPE-Lip) were constructed with a rod-like structure, incorporating MnO₂ as a hypoxia-modulating agent and ICG as a photosensitizer. The drug loading capacity, stability and safety of liposomes were characterized. Singlet oxygen quantum yield (ΦΔ) was measured under simulated tumor microenvironment conditions. In vitro phototoxicity was evaluated using A549 human lung adenocarcinoma cells. Liposomes have a high drug loading capacity, good biocompatibility and good long-term stability. Under tumor-simulated conditions, ΦΔ was significantly improved, increasing from 0.210 for free ICG to 0.507. The liposomes demonstrated remarkable phototoxic effects on A549 cells (90.5% cell death under combined PDT/PTT vs. 15% for free ICG). This nanoplatform proposes a novel strategy to overcome hypoxia-induced PDT resistance, and the enhanced efficacy may be attributed to the increased oxygen supply mediated by MnO2 carried by HFn. These findings provide important insights for the development of next-generation therapeutic systems targeting tumor hypoxia.
Collapse
Affiliation(s)
- Dan Ma
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Huixiang Lu
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Hai Zhang
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Anru Liao
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Qianrong Peng
- China Tobacco Guizhou Industrial Co., Ltd., Guiyang, China
| | - Min Yang
- College of Pharmacy, Guizhou University, Guiyang, China.
| |
Collapse
|
2
|
Alexander C, Guo Z, Glover PB, Faulkner S, Pikramenou Z. Luminescent Lanthanides in Biorelated Applications: From Molecules to Nanoparticles and Diagnostic Probes to Therapeutics. Chem Rev 2025; 125:2269-2370. [PMID: 39960048 PMCID: PMC11869165 DOI: 10.1021/acs.chemrev.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Lanthanides are particularly effective in their clinical applications in magnetic resonance imaging and diagnostic assays. They have open-shell 4f electrons that give rise to characteristic narrow, line-like emission which is unique from other fluorescent probes in biological systems. Lanthanide luminescence signal offers selection of detection pathways based on the choice of the ion from the visible to the near-infrared with long luminescence lifetimes that lend themselves to time-resolved measurements for optical multiplexing detection schemes and novel bioimaging applications. The delivery of lanthanide agents in cells allows localized bioresponsive activity for novel therapies. Detection in the near-infrared region of the spectrum coupled with technological advances in microscopies opens new avenues for deep-tissue imaging and surgical interventions. This review focuses on the different ways in which lanthanide luminescence can be exploited in nucleic acid and enzyme detection, anion recognition, cellular imaging, tissue imaging, and photoinduced therapeutic applications. We have focused on the hierarchy of designs that include luminescent lanthanides as probes in biology considering coordination complexes, multimetallic lanthanide systems to metal-organic frameworks and nanoparticles highlighting the different strategies in downshifting, and upconversion revealing some of the opportunities and challenges that offer potential for further development in the field.
Collapse
Affiliation(s)
- Carlson Alexander
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zhilin Guo
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, China
| | - Peter B. Glover
- Defence
Science and Technology Laboratory (DSTL), Porton Down, Salisbury SP4 0JQ, United
Kingdom
| | - Stephen Faulkner
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Zoe Pikramenou
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
3
|
Sun Z, Sun Y, Wang S, Li M, Guo H, Xu Z, Gao M. Mini Review On: The Roles of DNA Nanomaterials in Phototherapy. Int J Nanomedicine 2025; 20:2021-2041. [PMID: 39975417 PMCID: PMC11835777 DOI: 10.2147/ijn.s501471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
DNA-based functional nanomaterials are distinguished by their structural designability and functional controllability, making them particularly attractive in the biomedical field. Using DNA nanomaterials for cancer treatment through synergistic approaches combining photodynamic therapy and photothermal therapy has garnered significant attention. This growing interest has driven the active development of various DNA nanomaterials tailored for integrated strategies targeting cancer, including phototherapy, chemotherapy, etc. This review provides an overview of DNA nanoplatforms employed in phototherapy and synergistic therapy for cancer treatment. It highlights recent advances in DNA nanoplatforms that leverage multifaceted synergy to enhance phototherapeutic efficacy. It also offers a new perspectives and clinical application potential of DNA nanomaterials in synergistic phototherapy for malignant tumors, focusing on developments in recent years and potential directions for future research and applications.
Collapse
Affiliation(s)
- Zeqing Sun
- Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Yilai Sun
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, People’s Republic of China
| | - Shuo Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Mengyao Li
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Haoran Guo
- Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Ming Gao
- Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Zhang L, Yu Y, Ding K, Ji C, Zhang D, Liang P, Tang BZ, Feng G. Tumor microenvironment ameliorative and adaptive nanoparticles with photothermal-to-photodynamic switch for cancer phototherapy. Biomaterials 2025; 313:122771. [PMID: 39190940 DOI: 10.1016/j.biomaterials.2024.122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
The notorious tumor microenvironment (TME) usually becomes more deteriorative during phototherapeutic progress that hampers the antitumor efficacy. To overcome this issue, we herein report the ameliorative and adaptive nanoparticles (TPASIC-PFH@PLGA NPs) that simultaneously reverse hypoxia TME and switch photoactivities from photothermal-dominated state to photodynamic-dominated state to maximize phototherapeutic effect. TPASIC-PFH@PLGA NPs are designed by incorporating oxygen-rich liquid perfluorohexane (PFH) into the intraparticle microenvironment to regulate the intramolecular motions of AIE photosensitizer TPASIC. TPASIC exhibits a unique aggregation-enhanced reactive oxygen species (ROS) generation feature. PFH incorporation affords TPASIC the initially dispersed state, thus promoting active intramolecular motions and photothermal conversion efficiency. While PFH volatilization leads to nanoparticle collapse and the formation of tight TPASIC aggregates with largely enhanced ROS generation efficiency. As a consequence, PFH incorporation not only currently promotes both photothermal and photodynamic efficacies of TPASIC and increases the intratumoral oxygen level, but also enables the smart photothermal-to-photodynamic switch to maximize the phototherapeutic performance. The integration of PFH and AIE photosensitizer eventually delivers more excellent antitumor effect over conventional phototherapeutic agents with fixed photothermal and photodynamic efficacies. This study proposes a new nanoengineering strategy to ameliorate TME and adapt the treatment modality to fit the changed TME for advanced antitumor applications.
Collapse
Affiliation(s)
- Le Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Yuewen Yu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Keke Ding
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 Zheshan Road, Wuhu, 241001, China
| | - Chao Ji
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Di Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Ping Liang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
5
|
Yang Y, Jiang S, Stanciu SG, Peng H, Wu A, Yang F. Photodynamic therapy with NIR-II probes: review on state-of-the-art tools and strategies. MATERIALS HORIZONS 2024; 11:5815-5842. [PMID: 39207201 DOI: 10.1039/d4mh00819g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In 2022 10% of the world's population was aged 65+, and by 2100 this segment is expected to hit 25%. These demographic changes place considerable pressure over healthcare systems worldwide, which results in an urgent need for accurate, inexpensive and non-invasive ways to treat cancers, a family of diseases correlated with age. Among the therapeutic tools that gained important attention in this context, photodynamic therapies (PDT), which use photosensitizers to produce cytotoxic substances for selectively destroying tumor cells and tissues under light irradiation, profile as important players for next-generation nanomedicine. However, the development of clinical applications is progressing at slow pace, due to still pending bottlenecks, such as the limited tissue penetration of the excitation light, and insufficient targeting performance of the therapeutic probes to fully avoid damage to normal cells and tissues. The penetration depth of long-wavelength near infrared (NIR) light is significantly higher than that of short-wavelength UV and visible light, and thus NIR light in the second window (NIR-II) is acknowledged as the preferred phototherapeutic means for eliminating deep-seated tumors, given the higher maximum permissible exposure, reduced phototoxicity and low autofluorescence, among others. Upon collective multidisciplinary efforts of experts in materials science, medicine and biology, multifunctional NIR-II inorganic or organic photosensitizers have been widely developed. This review overviews the current state-of-the art on NIR-II-activated photosensitizers and their applications for the treatment of deep tumors. We also place focus on recent efforts that combine NIR-II activated PDT with other complementary therapeutic routes such as photothermal therapy, chemotherapy, immunotherapy, starvation, and gas therapies. Finally, we discuss still pending challenges and problems of PDT and provide a series of perspectives that we find useful for further extending the state-of-the art on NIR-II-triggered PDT.
Collapse
Affiliation(s)
- Yiqian Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Stefan G Stanciu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, Bucharest 060042, Romania
| | - Hao Peng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Fang Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
6
|
Hu X, Li P, Xu D, Liu H, Hao Q, Zhang M, Wang Z, Wei T, Dai Z. Facile Alkyne Assembly-Enabled Functional Au Nanosheets for Photoacoustic Imaging-Guided Photothermal/Gene Therapy of Orthotopic Glioblastoma. J Am Chem Soc 2024. [PMID: 39563602 DOI: 10.1021/jacs.4c08990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Treatment of glioblastoma (GBM) remains challenging due to the presence of blood-brain barrier (BBB) and tumor heterogeneity. Herein, Au nanosheets (AuNSs) functionalized with RGD peptides and small interfering RNA (siRNA), referred to as AuNSs-RGD-C≡C-siRNA (ARCR), are prepared to achieve multimodal therapy for GBM. The AuNSs with a large modifiable surface area, intriguing photothermal conversion efficiency (50.26%), and remarkable photothermal stability (44 cycles over 7 h) are created using a well-designed amphiphilic surfactant. Furthermore, alkynyl groups are assembled onto the Au surface within 1 min, enabling strong covalent binding of siRNA to AuNSs and thereby avoiding the interference from biological thiols. Owing to the lipophilicity of the surfactant and the targeting property of RGD, ARCR effectively passes through the BBB and accumulates in GBM tumor regions, allowing near-infrared photoacoustic imaging-guided photothermal/gene therapy. This work proposes a facile strategy to construct theranostic Au-based materials, highlighting the potential of multifunctional nanoagents for GBM therapy.
Collapse
Affiliation(s)
- Xixi Hu
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Peiling Li
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Dongdong Xu
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Hua Liu
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Qiaoqiao Hao
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Mengyang Zhang
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhaoyin Wang
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
7
|
Li X, Wang H, Li Z, Liu S, Chen Y, Ruan Z, Yao Z, Wei G, Cao C, Zheng W, Guan W. Full-active pharmaceutical ingredient nanosensitizer for augmented photoimmunotherapy by synergistic mitochondria targeting and immunogenic death inducing. MedComm (Beijing) 2024; 5:e756. [PMID: 39525955 PMCID: PMC11550090 DOI: 10.1002/mco2.756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 11/16/2024] Open
Abstract
The precise and effective activation of the immune response is crucial in promising therapy curing cancer. Photoimmunotherapy (PIT) is an emerging strategy for precise regulation and highly spatiotemporal selectivity. However, this approach faces a significant challenge due to the off-target effect and the immunosuppressive microenvironment. To address this challenge, a nanoscale full-active pharmaceutical ingredient (API) photo-immune stimulator was developed. This formulation overcomes the limitations of PIT by strengthening the ability to penetrate tumors deeply and inducing precise and potent mitochondria-targeted dual-mode photodynamic therapy and photothermal therapy. Along with inhibiting overexpressed Hsp90, this nanosensitizer in turn improves the immunosuppressive microenvironment. Ultimately, this mitochondria-targeted PIT demonstrated potent antitumor efficacy, achieving a remarkable inhibition rate of ≥95% for both established primary tumors and distant abscopal tumors. In conclusion, this novel self-delivery full-API nanosystem enhances the efficacy of phototherapy and reprograms the immunosuppressive microenvironment, thereby holding great promise in the development of precise and effective immunotherapy.
Collapse
Affiliation(s)
- Xianghui Li
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Haoran Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingChina
| | - Zhiyan Li
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Song Liu
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Yuanyuan Chen
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhuren Ruan
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhijian Yao
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Gao Wei
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Cunwei Cao
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wenjun Zheng
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wenxian Guan
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| |
Collapse
|
8
|
Li H, Liu H, Wong KL, All AH. Lanthanide-doped upconversion nanoparticles as nanoprobes for bioimaging. Biomater Sci 2024; 12:4650-4663. [PMID: 39150405 DOI: 10.1039/d4bm00774c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Upconversion nanoparticles (UCNPs) are a class of nanomaterials composed of lanthanide ions with great potential for paraclinical applications, especially in laboratory and imaging sciences. UCNPs have tunable optical properties and the ability to convert long-wavelength (low energy) excitation light into short-wavelength (high energy) emission in the ultraviolet (UV)-visible and near-infrared (NIR) spectral regions. The core-shell structure of UCNPs can be customized through chemical synthesis to meet the needs of different applications. The surface of UCNPs can also be tailored by conjugating small molecules and/or targeting ligands to achieve high specificity and selectivity, which are indispensable elements in biomedical applications. Specifically, coatings can enhance the water dispersion, biocompatibility, and efficiency of UCNPs, thereby optimizing their functionality and boosting their performance. In this context, multimodal imaging can provide more accurate in vivo information when combined with nuclear imaging. This article intends to provide a comprehensive review of the core structure, structure optimization, surface modification, and various recent applications of UCNPs in biomolecular detection, cell imaging, tumor diagnosis, and deep tissue imaging. We also present and discuss some of their critical challenges, limitations, and potential future directions.
Collapse
Affiliation(s)
- Hengde Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR 999077, China.
| | - Haitao Liu
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR 999077, China.
| | - Ka-Leung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Angelo H All
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR 999077, China.
| |
Collapse
|
9
|
Huang C, Qin Y, Wu S, Yu Q, Mei L, Zhang L, Zhu D. Temperature-Responsive "Nano-to-Micro" Transformed Polymersomes for Enhanced Ultrasound/Fluorescence Dual Imaging-Guided Tumor Phototherapy. NANO LETTERS 2024; 24:9561-9568. [PMID: 39042325 DOI: 10.1021/acs.nanolett.4c02137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The perfect integration of microbubbles for efficient ultrasound imaging and nanocarriers for intelligent tumor-targeting delivery remains a challenge in precise tumor theranostics. Herein, we exquisitely fabricated laser-activated and targeted polymersomes (abbreviated as FIP-NPs) for simultaneously encapsulating the photosensitizer indocyanine green (ICG) and the phase change agent perfluorohexane (PFH). The formulated FIP-NPs were nanosize and effectively accumulated into tumors as observed by ICG fluorescence imaging. When the temperature rose above 56 °C, the encapsulated PFH transformed from liquid to gas and the FIP-NPs underwent balloon-like enlargement without structure destruction. Impressively, the enlarged FIP-NPs fused with adjacent polymersomes to form even larger microparticles. This temperature-responsive "nano-to-micro" transformation and fusion process was clearly demonstrated, and FIP-NPs showed greatly improved ultrasound signals. More importantly, FIP-NPs achieved dramatic antitumor efficacy through ICG-mediated phototherapy. Taken together, the novel polymersomes achieved excellent ultrasound/fluorescence dual imaging-guided tumor phototherapy, providing an optimistic candidate for the application of tumor theranostics.
Collapse
Affiliation(s)
- Chenlu Huang
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Tianjin Key Laboratory of Biomedical Materials, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Yu Qin
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Tianjin Key Laboratory of Biomedical Materials, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Shengjie Wu
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Tianjin Key Laboratory of Biomedical Materials, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Qingyu Yu
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Tianjin Key Laboratory of Biomedical Materials, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Lin Mei
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Tianjin Key Laboratory of Biomedical Materials, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Linhua Zhang
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Tianjin Key Laboratory of Biomedical Materials, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Dunwan Zhu
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Tianjin Key Laboratory of Biomedical Materials, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
10
|
Aebisher D, Przygórzewska A, Bartusik-Aebisher D. The Latest Look at PDT and Immune Checkpoints. Curr Issues Mol Biol 2024; 46:7239-7257. [PMID: 39057071 PMCID: PMC11275601 DOI: 10.3390/cimb46070430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Photodynamic therapy (PDT) can not only directly eliminate cancer cells, but can also stimulate antitumor immune responses. It also affects the expression of immune checkpoints. The purpose of this review is to collect, analyze, and summarize recent news about PDT and immune checkpoints, along with their inhibitors, and to identify future research directions that may enhance the effectiveness of this approach. A search for research articles published between January 2023 and March 2024 was conducted in PubMed/MEDLINE. Eligibility criteria were as follows: (1) papers describing PDT and immune checkpoints, (2) only original research papers, (3) only papers describing new reports in the field of PDT and immune checkpoints, and (4) both in vitro and in vivo papers. Exclusion criteria included (1) papers written in a language other than Polish or English, (2) review papers, and (3) papers published before January 2023. 24 papers describing new data on PDT and immune checkpoints have been published since January 2023. These included information on the effects of PDT on immune checkpoints, and attempts to associate PDT with ICI and with other molecules to modulate immune checkpoints, improve the immunosuppressive environment of the tumor, and resolve PDT-related problems. They also focused on the development of new nanoparticles that can improve the delivery of photosensitizers and drugs selectively to the tumor. The effect of PDT on the level of immune checkpoints and the associated activity of the immune system has not been fully elucidated further, and reports in this area are divergent, indicating the complexity of the interaction between PDT and the immune system. PDT-based strategies have been shown to have a beneficial effect on the delivery of ICI to the tumor. The utility of PDT in enhancing the induction of the antitumor response by participating in the triggering of immunogenic cell death, the exposure of tumor antigens, and the release of various alarm signals that together promote the activation of dendritic cells and other components of the immune system has also been demonstrated, with the result that PDT can enhance the antitumor immune response induced by ICI therapy. PDT also enables multifaceted regulation of the tumor's immunosuppressive environment, as a result of which ICI therapy has the potential to achieve better antitumor efficacy. The current review has presented evidence of PDT's ability to modulate the level of immune checkpoints and the effectiveness of the association of PDT with ICIs and other molecules in inducing an effective immune response against cancer cells. However, these studies are at an early stage and many more observations need to be made to confirm their efficacy. The new research directions indicated may contribute to the development of further strategies.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of The Rzeszów University, 35-025 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-025 Rzeszów, Poland;
| |
Collapse
|
11
|
Yang F, Yang Y, Yan X, He C, Peng H, Wu A. Zinc Doping Engineering in Zn xFe 3-xO 4 Heterostructures for Enhancing Photodynamic Therapy in the Near-Infrared-II Region. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31489-31499. [PMID: 38833169 DOI: 10.1021/acsami.4c05717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Currently, photodynamic therapy (PDT) is restricted by the laser penetration depth. Except for PDT at 1064 nm wavelength excitation, the development of other NIR-II-activated nanomaterials with a higher response depth is still hindered and rarely reported in the literature. To overcome these problems, we fabricated a nanoplatform with heterostructures that generate reactive oxygen species (ROS) and ferrite nanoparticles under a high concentration of zinc doping (ZnxFe3-xO4 NPs), which can achieve oxidative damage of tumor cells under near-infrared (NIR) illumination. The recombination of photoelectrons and holes has been markedly inhibited due to the formation of heterostructures in the interfaces, thus greatly enhancing the capability for ROS and oxygen production by modulating the single-component doping content. The efficiency of PDT was verified by in vivo and in vitro assays under NIR light. Our results revealed that NIR-II (1208 nm) light irradiation of ZnxFe3-xO4 NPs exerted a remarkable antitumor activity, superior to NIR-I light (808 nm). More importantly, the reported ZnxFe3-xO4 NPs strategy provides an opportunity for the success of comparison with light in the first and second near-infrared regions.
Collapse
Affiliation(s)
- Fang Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Yiqian Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Yan
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Chenglong He
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China
| | - Hao Peng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| |
Collapse
|
12
|
Elzoghby AO, Samir O, Emam HE, Soliman A, Abdelgalil RM, Elmorshedy YM, Elkhodairy KA, Nasr ML. Engineering nanomedicines for immunogenic eradication of cancer cells: Recent trends and synergistic approaches. Acta Pharm Sin B 2024; 14:2475-2504. [PMID: 38828160 PMCID: PMC11143780 DOI: 10.1016/j.apsb.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/07/2024] [Accepted: 03/09/2024] [Indexed: 06/05/2024] Open
Abstract
Resistance to cancer immunotherapy is mainly attributed to poor tumor immunogenicity as well as the immunosuppressive tumor microenvironment (TME) leading to failure of immune response. Numerous therapeutic strategies including chemotherapy, radiotherapy, photodynamic, photothermal, magnetic, chemodynamic, sonodynamic and oncolytic therapy, have been developed to induce immunogenic cell death (ICD) of cancer cells and thereby elicit immunogenicity and boost the antitumor immune response. However, many challenges hamper the clinical application of ICD inducers resulting in modest immunogenic response. Here, we outline the current state of using nanomedicines for boosting ICD of cancer cells. Moreover, synergistic approaches used in combination with ICD inducing nanomedicines for remodeling the TME via targeting immune checkpoints, phagocytosis, macrophage polarization, tumor hypoxia, autophagy and stromal modulation to enhance immunogenicity of dying cancer cells were analyzed. We further highlight the emerging trends of using nanomaterials for triggering amplified ICD-mediated antitumor immune responses. Endoplasmic reticulum localized ICD, focused ultrasound hyperthermia, cell membrane camouflaged nanomedicines, amplified reactive oxygen species (ROS) generation, metallo-immunotherapy, ion modulators and engineered bacteria are among the most innovative approaches. Various challenges, merits and demerits of ICD inducer nanomedicines were also discussed with shedding light on the future role of this technology in improving the outcomes of cancer immunotherapy.
Collapse
Affiliation(s)
- Ahmed O. Elzoghby
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Omar Samir
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Hagar E. Emam
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Ahmed Soliman
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Riham M. Abdelgalil
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Yomna M. Elmorshedy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Kadria A. Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mahmoud L. Nasr
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA
| |
Collapse
|
13
|
Xu W, Qian Y, Qiao L, Li L, Xie Y, Sun Q, Quan Z, Li C. "Three Musketeers" Enhances Photodynamic Effects by Reducing Tumor Reactive Oxygen Species Resistance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26590-26603. [PMID: 38742307 DOI: 10.1021/acsami.4c04278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Photodynamic therapy (PDT) based on upconversion nanoparticles (UCNPs) has been widely used in the treatment of a variety of tumors. Compared with other therapeutic methods, this treatment has the advantages of high efficiency, strong penetration, and controllable treatment range. PDT kills tumors by generating a large amount of reactive oxygen species (ROS), which causes oxidative stress in the tumor. However, this killing effect is significantly inhibited by the tumor's own resistance to ROS. This is because tumors can either deplete ROS by high concentration of glutathione (GSH) or stimulate autophagy to eliminate ROS-generated damage. Furthermore, the tumor can also consume ROS through the lactic acid metabolic pathway, ultimately hindering therapeutic progress. To address this conundrum, we developed a UCNP-based nanocomposite for enhanced PDT by reducing tumor ROS resistance. First, Ce6-doped SiO2 encapsulated UCNPs to ensure the efficient energy transfer between UCNPs and Ce6. Then, the biodegradable tetrasulfide bond-bridged mesoporous organosilicon (MON) was coated on the outer layer to load chloroquine (CQ) and α-cyano4-hydroxycinnamic acid (CHCA). Finally, hyaluronic acid was utilized to modify the nanomaterials to realize an active-targeting ability. The obtained final product was abbreviated as UCNPs@MON@CQ/CHCA@HA. Under 980 nm laser irradiation, upconverted red light from UCNPs excited Ce6 to produce a large amount of singlet oxygen (1O2), thus achieving efficient PDT. The loaded CQ and CHCA in MON achieved multichannel enhancement of PDT. Specifically, CQ blocked the autophagy process of tumor cells, and CHCA inhibited the uptake of lactic acid by tumor cells. In addition, the coated MON consumed a high level of intracellular GSH. In this way, these three functions complemented each other, just as the "three musketeers" punctured ROS resistance in tumors from multiple angles, and both in vitro and in vivo experiments had demonstrated the elevated PDT efficacy of nanomaterials.
Collapse
Affiliation(s)
- Wencheng Xu
- Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518057, P. R. China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yanrong Qian
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Luying Qiao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Lei Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yulin Xie
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Qianqian Sun
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Zewei Quan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, P. R. China
| | - Chunxia Li
- Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518057, P. R. China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
14
|
Zhou Y, Zhang R, Lu Y, Fu X, Lv K, Gong J, Wang D, Feng J, Zhang H, Guo Y. Acid‐Unlocked Switch Controlled the Enzyme and CO In Situ Release to Induce Mitochondrial Damage via Synergy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202312416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/15/2024]
Abstract
AbstractCO gas therapy has attracted enormous attention in tumor therapy due to the abilities of mitochondrial damage and inhibition of cellular respiration. However, the inefficient and random release of CO greatly limit its application. Taking this into account, the study constructs an acid‐unlocked nanostructure based on MPDA‐MnCO‐GOx@DSNPs, designated as MMGD. The nanostructure enables tumor microenvironment (TME) specific enzyme and CO prodrug (manganese carbonyl, MnCO) cascade reaction, thus facilitating CO release in situ. Mesoporous polydopamine (MPDA) can provide the space for MnCO and glucose oxidase (GOx) loading. Especially, lanthanide (Ln3+)‐doped down‐shifting luminescent nanoparticles (DSNPs) can not only serve as the near‐infrared II (NIR‐II) fluorescence imaging probe, but also act as the acid‐unlocked gating switch. The slightly acidic TME can render the dissociation of DSNPs, thus exposing GOx and releasing MnCO. The catalytic reaction of GOx can produce H2O2 and create a more acidic environment, which facilitates the CO generation in situ, leading to mitochondrial damage by reducing cytochrome c oxidase activity and adenosine triphosphate (ATP) levels. Meanwhile, MPDA has the NIR light absorption capability for photothermal therapy (PTT). This study provides an ingenious strategy for efficient and controllable CO gas, starvation, and PTT of tumor guided by NIR‐II fluorescence imaging.
Collapse
Affiliation(s)
- Yifei Zhou
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Ruohao Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Yu Lu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Xinyu Fu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Kehong Lv
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Jitong Gong
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Daguang Wang
- Department of Gastrocolorectal Surgery General Surgery Center The First Hospital of Jilin University Changchun 130021 China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuchen Guo
- Department of Gastrocolorectal Surgery General Surgery Center The First Hospital of Jilin University Changchun 130021 China
| |
Collapse
|
15
|
Yan S, Liao X, Xiao Q, Huang Q, Huang X. Photostabilities and anti-tumor effects of curcumin and curcumin-loaded polydopamine nanoparticles. RSC Adv 2024; 14:13694-13702. [PMID: 38681839 PMCID: PMC11044124 DOI: 10.1039/d4ra01246a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024] Open
Abstract
Currently, the photostability of photosensitizer curcumin is the main bottleneck limiting their application, reducing the bioavailability of curcumin. Studying the effect of different light sources on the photostabilities of curcumin and loading it onto polydopamine nanocarriers with better biocompatibility will help improve its light utilization efficiency. In this study, we investigated the photostabilities of curcumin and a polydopamine-based nanoparticle (polydopamine-curcumin composite nanoparticles, PDA-Cur NPs) loaded with curcumin through in vitro and in vivo experiments to achieve better antitumor effects. The results demonstrated that curcumin has good photostability in dark, but with significant photodegradation rates in both red and blue light. Blue light has a faster effect on the photodegradation of curcumin, with a degradation rate of 42.1% after 10 minutes, which is about 1.7 times that of the red light. Our study successfully synthesized PDA-Cur NPs, demonstrating its ability to stably load and release curcumin, with a loading percentage of 65.7% after 2 hours and 41.9% release in 8 hours (pH 6.0). Compared with single curcumin treatments, the photodegradation rates of PDA-Cur NPs in red and blue light treatments were reduced by 46% and 50%, respectively. Meanwhile, PDA-Cur NPs exhibited remarkable antitumor efficacy due to PDT and promote apoptosis in cancer cells, which both better than that of single curcumin treatments. Moreover, in MCF-7 tumor-bearing mice, the PDA-Cur NPs led to significant tumor growth inhibition effects, without causing evident systemic damage in vivo. The findings highlight the potential of PDA-Cur NPs as anticancer photosensitizer with greatly increased utilization of curcumin in PDT.
Collapse
Affiliation(s)
- Shufeng Yan
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University Sanming Fujian 365004 China
| | - Xiaoyun Liao
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University Sanming Fujian 365004 China
| | - Qi Xiao
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University Sanming Fujian 365004 China
| | - Qingqing Huang
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University Sanming Fujian 365004 China
| | - Xiaochen Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
16
|
Zou J, Zhang Y, Pan Y, Mao Z, Chen X. Advancing nanotechnology for neoantigen-based cancer theranostics. Chem Soc Rev 2024; 53:3224-3252. [PMID: 38379286 DOI: 10.1039/d3cs00162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Neoantigens play a pivotal role in the field of tumour therapy, encompassing the stimulation of anti-tumour immune response and the enhancement of tumour targeting capability. Nonetheless, numerous factors directly influence the effectiveness of neoantigens in bolstering anti-tumour immune responses, including neoantigen quantity and specificity, uptake rates by antigen-presenting cells (APCs), residence duration within the tumour microenvironment (TME), and their ability to facilitate the maturation of APCs for immune response activation. Nanotechnology assumes a significant role in several aspects, including facilitating neoantigen release, promoting neoantigen delivery to antigen-presenting cells, augmenting neoantigen uptake by dendritic cells, shielding neoantigens from protease degradation, and optimizing interactions between neoantigens and the immune system. Consequently, the development of nanotechnology synergistically enhances the efficacy of neoantigens in cancer theranostics. In this review, we provide an overview of neoantigen sources, the mechanisms of neoantigen-induced immune responses, and the evolution of precision neoantigen-based nanomedicine. This encompasses various therapeutic modalities, such as neoantigen-based immunotherapy, phototherapy, radiotherapy, chemotherapy, chemodynamic therapy, and other strategies tailored to augment precision in cancer therapeutics. We also discuss the current challenges and prospects in the application of neoantigen-based precision nanomedicine, aiming to expedite its clinical translation.
Collapse
Affiliation(s)
- Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yu Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yuanbo Pan
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumour of Zhejiang Province, Hangzhou, Zhejiang 310009, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
17
|
Ndlovu NL, Mdlalose WB, Ntsendwana B, Moyo T. Evaluation of Advanced Nanomaterials for Cancer Diagnosis and Treatment. Pharmaceutics 2024; 16:473. [PMID: 38675134 PMCID: PMC11054857 DOI: 10.3390/pharmaceutics16040473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer is a persistent global disease and a threat to the human species, with numerous cases reported every year. Over recent decades, a steady but slowly increasing mortality rate has been observed. While many attempts have been made using conventional methods alone as a theragnostic strategy, they have yielded very little success. Most of the shortcomings of such conventional methods can be attributed to the high demands of industrial growth and ever-increasing environmental pollution. This requires some high-tech biomedical interventions and other solutions. Thus, researchers have been compelled to explore alternative methods. This has brought much attention to nanotechnology applications, specifically magnetic nanomaterials, as the sole or conjugated theragnostic methods. The exponential growth of nanomaterials with overlapping applications in various fields is due to their potential properties, which depend on the type of synthesis route used. Either top-down or bottom-up strategies synthesize various types of NPs. The top-down only branches out to one method, i.e., physical, and the bottom-up has two methods, chemical and biological syntheses. This review highlights some synthesis techniques, the types of nanoparticle properties each technique produces, and their potential use in the biomedical field, more specifically for cancer. Despite the evident drawbacks, the success achieved in furthering nanoparticle applications to more complex cancer stages and locations is unmatched.
Collapse
Affiliation(s)
- Nkanyiso L. Ndlovu
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Wendy B. Mdlalose
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Bulelwa Ntsendwana
- DSI/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| | - Thomas Moyo
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
18
|
Zou J, Yuan Z, Chen X, Chen Y, Yao M, Chen Y, Li X, Chen Y, Ding W, Xia C, Zhao Y, Gao F. Hydrogen sulfide responsive nanoplatforms: Novel gas responsive drug delivery carriers for biomedical applications. Asian J Pharm Sci 2024; 19:100858. [PMID: 38362469 PMCID: PMC10867614 DOI: 10.1016/j.ajps.2023.100858] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/30/2023] [Accepted: 10/06/2023] [Indexed: 02/17/2024] Open
Abstract
Hydrogen sulfide (H2S) is a toxic, essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter. These studies have mainly focused on the production and pharmacological side effects caused by H2S. Therefore, effective strategies to remove H2S has become a key research topic. Furthermore, the development of novel nanoplatforms has provided new tools for the targeted removal of H2S. This paper was performed to review the association between H2S and disease, related H2S inhibitory drugs, as well as H2S responsive nanoplatforms (HRNs). This review first analyzed the role of H2S in multiple tissues and conditions. Second, common drugs used to eliminate H2S, as well as their potential for combination with anticancer agents, were summarized. Not only the existing studies on HRNs, but also the inhibition H2S combined with different therapeutic methods were both sorted out in this review. Furthermore, this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail. Finally, potential challenges of HRNs were proposed. This study demonstrates the excellent potential of HRNs for biomedical applications.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - You Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Min Yao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Li
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxing Ding
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuzheng Zhao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Kuang F, Hui T, Chen Y, Qiu M, Gao X. Post-Graphene 2D Materials: Structures, Properties, and Cancer Therapy Applications. Adv Healthc Mater 2024; 13:e2302604. [PMID: 37955406 DOI: 10.1002/adhm.202302604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Cancer is one of the most serious diseases challenging human health and life span. Cancer has claimed millions of lives worldwide. Early diagnosis and effective treatment of cancer are very important for the survival of patients. In recent years, 2D nanomaterials have shown great potential in the development of anticancer treatment by combining their inherent physicochemical properties after surface modification. 2D nanomaterials have attracted great interest due to their unique nanosheet structure, large surface area, and extraordinary physicochemical properties. This article reviews the advantages and application status of emerging 2D nanomaterials for targeted tumor synergistic therapy compared with traditional therapeutic strategies. In order to investigate novel potential anticancer strategies, this paper focuses on the surface modification, cargo delivery capability, and unique optical properties of emerging 2D nanomaterials. Finally, the current problems and challenges in cancer treatment are summarized and prospected.
Collapse
Affiliation(s)
- Fei Kuang
- College of Life Sciences, Qingdao University, No.308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Tiankun Hui
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Yingjie Chen
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Xiang Gao
- College of Life Sciences, Qingdao University, No.308 Ningxia Road, Qingdao, Shandong, 266071, China
| |
Collapse
|
20
|
Hu Q, Xu L, Huang X, Duan Y, Sun D, Fu Z, Ge Y. Polydopamine-Modified Zeolite Imidazole Framework Drug Delivery System for Photothermal Chemotherapy of Hepatocellular Carcinoma. Biomacromolecules 2023; 24:5964-5976. [PMID: 37938159 DOI: 10.1021/acs.biomac.3c00971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Metal-organic frameworks (MOFs) are promising drug-delivering platforms for their intrinsic capability of loading and releasing different cargoes. To further extend their biomedical practices, the development of collaborative MOF systems with good biocompatibility and synergistic efficacy is essential. Herein, the near-infrared and pH dual-response collaborative zeolitic imidazolate framework-8 (ZIF-8) platform SOR@ZIF-8@PDA (SZP) was constructed, in which the chemotherapeutic drug sorafenib (SOR) was encapsulated in ZIF-8 and via polydopamine (PDA) coating on ZIF-8 by hierarchical self-assembly. PDA coating serves as a photothermal agent for PPT while reducing the toxicity of ZIF-8. SZP achieves intelligent release of therapeutic drugs by responding to the lower pH of the tumor microenvironment and thermal stimulation generated by near-infrared light irradiation. In addition, under light irradiation, SZP could effectively realize treatment of cancer cells through synergistic chemo-photothermal therapy, as evidenced by the enhanced cell apoptosis, inhibited tumor cell proliferation and migration. This collaborative MOFs system showed excellent biocompatibility and antitumor ability in vivo on a mouse HepG2 tumor model. Our results demonstrated that PDA-modified MOFs exhibited a fantastic good development prospect in biomedical applications.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liwang Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaoyu Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuxuan Duan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yunfen Ge
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
21
|
Wu M, Hong C, Shen C, Xie D, Chen T, Wu A, Li Q. Polydopamine nanomaterials and their potential applications in the treatment of autoimmune diseases. Drug Deliv 2023; 30:2289846. [PMID: 38069584 PMCID: PMC10987051 DOI: 10.1080/10717544.2023.2289846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The conventional treatment methods used for the management of autoimmune diseases (ADs) have limited efficacy and also exhibit significant side effects. Thus, identification of novel strategies to improve the efficacy and safety of ADs treatment is urgently required. Overactivated immune response and oxidative stress are common characteristics associated with ADs. Polydopamine (PDA), as a polymer material with good antioxidant and photothermal conversion properties, has displayed useful application potential against ADs. In addition, PDA possesses good biosafety, simple preparation, and easy functionalization, which is conducive for the pharmacological development of PDA nanomaterials with clinical transformation prospects. Here, we have first reviewed the preparation of PDA, the different functional integration strategies of PDA-based biomaterials, and their potential applications in ADs. Next, the mechanism of action of PDA in ADs has been elaborated in detail. Finally, the application opportunities and challenges linked with PDA nanomaterials for ADs treatment are discussed. This review is contributed to design reasonable and effective PDA nanomaterials for the diagnosis and treatment of ADs.
Collapse
Affiliation(s)
- Manxiang Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, China
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, P. R. China
| | - Chengyuan Hong
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, China
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Chunjuan Shen
- Center for Reproductive Medicine, Jiaxing University Affilated Maternity and Child Hospital, Jiaxing, P. R. China
| | - Dong Xie
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, China
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, P. R. China
| | - Tianxiang Chen
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, China
| | - Qiang Li
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, P. R. China
| |
Collapse
|
22
|
Shapoval O, Větvička D, Patsula V, Engstová H, Kočková O, Konefał M, Kabešová M, Horák D. Temoporfin-Conjugated Upconversion Nanoparticles for NIR-Induced Photodynamic Therapy: Studies with Pancreatic Adenocarcinoma Cells In Vitro and In Vivo. Pharmaceutics 2023; 15:2694. [PMID: 38140035 PMCID: PMC10748036 DOI: 10.3390/pharmaceutics15122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Upconverting nanoparticles are interesting materials that have the potential for use in many applications ranging from solar energy harvesting to biosensing, light-triggered drug delivery, and photodynamic therapy (PDT). One of the main requirements for the particles is their surface modification, in our case using poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and temoporfin (THPC) photosensitizer to ensure the colloidal and chemical stability of the particles in aqueous media and the formation of singlet oxygen after NIR irradiation, respectively. Codoping of Fe2+, Yb3+, and Er3+ ions in the NaYF4 host induced upconversion emission of particles in the red region, which is dominant for achieving direct excitation of THPC. Novel monodisperse PMVEMA-coated upconversion NaYF4:Yb3+,Er3+,Fe2+ nanoparticles (UCNPs) with chemically bonded THPC were found to efficiently transfer energy and generate singlet oxygen. The cytotoxicity of the UCNPs was determined in the human pancreatic adenocarcinoma cell lines Capan-2, PANC-01, and PA-TU-8902. In vitro data demonstrated enhanced uptake of UCNP@PMVEMA-THPC particles by rat INS-1E insulinoma cells, followed by significant cell destruction after excitation with a 980 nm laser. Intratumoral administration of these nanoconjugates into a mouse model of human pancreatic adenocarcinoma caused extensive necrosis at the tumor site, followed by tumor suppression after NIR-induced PDT. In vitro and in vivo results thus suggest that this nanoconjugate is a promising candidate for NIR-induced PDT of cancer.
Collapse
Affiliation(s)
- Oleksandr Shapoval
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 160 00 Prague, Czech Republic
| | - David Větvička
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovská 1, 120 00 Prague, Czech Republic
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 160 00 Prague, Czech Republic
| | - Hana Engstová
- Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Olga Kočková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 160 00 Prague, Czech Republic
| | - Magdalena Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 160 00 Prague, Czech Republic
| | - Martina Kabešová
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovská 1, 120 00 Prague, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 160 00 Prague, Czech Republic
| |
Collapse
|
23
|
Ma S, Xu W, Fei Y, Li D, Jia X, Wang J, Wang E. Mn 2+ /Ir 3+ -Doped and CaCO 3 -Covered Prussian Blue Nanoparticles with Indocyanine Green Encapsulation for Tumor Microenvironment Modulation and Image-Guided Synergistic Cancer Therapy. Adv Healthc Mater 2023; 12:e2301413. [PMID: 37657182 DOI: 10.1002/adhm.202301413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/20/2023] [Indexed: 09/03/2023]
Abstract
The development of smart theranostic nanoplatforms has gained great interest in effective cancer treatment against the complex tumor microenvironment (TME), including weak acidity, hypoxia, and glutathione (GSH) overexpression. Herein, a TME-responsive nanoplatform named PMICApt /ICG, based on PB:Mn&Ir@CaCO3 Aptamer /ICG, is designed for the competent synergistic photothermal therapy and photodynamic therapy (PDT) under the guidance of photothermal and magnetic resonance imaging. The nanoplatform's aptamer modification targeting the transferrin receptor and the epithelial cell adhesion molecule on breast cancer cells, and the acid degradable CaCO3 shell allow for effective tumor accumulation and TME-responsive payload release in situ. The nanoplatform also exhibits excellent PDT properties due to its ability to generate O2 and consume antioxidant GSH in tumors. Additionally, the synergistic therapy is achieved by a single wavelength of near-infrared laser. RNA sequencing is performed to identify differentially expressed genes, which show that the expressions of proliferation and migration-associated genes are inhibited, while the apoptosis and immune response gene expressions are upregulated after the synergistic treatments. This multifunctional nanoplatform that responds to the TME to realize the on-demand payload release and enhance PDT induced by TME modulation holds great promise for clinical applications in tumor therapy.
Collapse
Affiliation(s)
- Shuaining Ma
- College of Physics, Jilin University, Changchun, Jilin, 130012, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Weiguo Xu
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Yunwei Fei
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Dan Li
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Xiuna Jia
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, USA
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
24
|
Zhang Q, Li Y, Jiang C, Sun W, Tao J, Lu L. Near-Infrared Light-Enhanced Generation of Hydroxyl Radical for Cancer Immunotherapy. Adv Healthc Mater 2023; 12:e2301502. [PMID: 37409492 DOI: 10.1002/adhm.202301502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
Hydroxyl radical (• OH) as a highly oxidizing reactive oxygen species can induce immunogenic cell death (ICD) in cancer treatment. However, high-efficiency cancer immunotherapy is still a huge challenge due to the low • OH generation efficiency in the tumor microenvironment, resulting in insufficient immunogenicity and the poor immune response. Here, a near-infrared (NIR) light-enhanced • OH generation strategy is developed for cancer immunotherapy by using a copper-based metal-organic framework (Cu-DBC) nanoplatform. With this strategy, the generation efficiency of • OH under NIR irradiation is increased 7.34 times than that without NIR irradiation, which induces robust ICD and immune response, thus leading to primary tumor elimination and the inhibition of distant tumor growth and tumor lung metastasis. Experimental results show that Cu-DBC can induce • OH boosting through photothermal (PT)-enhanced Cu-catalytic Fenton-like reaction and photocatalytic electron transfer under NIR light irradiation to amplify tumor ICD for immunotherapy.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wenbo Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingwei Tao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
25
|
Sun Q, Chen W, Wang M, Zheng P, Gao M, Song F, Li C. A "Chase and Block" Strategy for Enhanced Cancer Therapy with Hypoxia-Promoted Photodynamic Therapy and Autophagy Inhibition Based on Upconversion Nanocomposites. Adv Healthc Mater 2023; 12:e2301087. [PMID: 37248635 DOI: 10.1002/adhm.202301087] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 05/31/2023]
Abstract
The combination of hypoxia-promoted photodynamic therapy (PDT) and autophagy modulation has shown strong potential in the treatment of hypoxic tumors. Here, a novel design is put forward for synergistic PDT and autophagy inhibition to amplify the effect of cancer therapy by a "chase and block" strategy. Specifically, the organic photosensitive molecule (denoted FL) is encapsulated in a hydrophobic layer between multi-band emitted upconversion nanoparticles (UCNPs) and the amphiphilic polymer DSPE-PEG-COOH, allowing FL to fully exploit the luminescence spectrum of UCNPs under near-infrared (NIR) light irradiation. The FL is specifically activated by nitroreductase in the tumor microenvironment (TME), enabling hypoxia-promoted PDT and thus performing a "chase" strategy for cancer therapy. Additionally, the nanosystem is combined with an autophagy-inhibiting melittin pro-peptide (denoted as MEL), which could be triggered by the highly expressed legumain in tumor cells to inhibit the autophagy procedure by disrupting the lysosomal membrane, thus "blocking" the cancer cells from rescuing themselves and amplifying the killing effect of PDT. Both FL and MEL can be specifically activated by TME and the upconversion luminescence imaging of UCNPs offers a tracer function for the treatment. Therefore, UCNPs@FL-MEL might be an important reference for the design and development of future nanotherapeutic agents.
Collapse
Affiliation(s)
- Qianqian Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Weilin Chen
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Pan Zheng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Minghong Gao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Fengling Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| |
Collapse
|
26
|
Zeng Y, Pan Z, Yuan J, Song Y, Feng Z, Chen Z, Ye Z, Li Y, Bao Y, Ran Z, Li X, Ye H, Zhang K, Liu X, He Y. Inhibiting Osteolytic Breast Cancer Bone Metastasis by Bone-Targeted Nanoagent via Remodeling the Bone Tumor Microenvironment Combined with NIR-II Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301003. [PMID: 37211708 DOI: 10.1002/smll.202301003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/08/2023] [Indexed: 05/23/2023]
Abstract
Bone is one of the prone metastatic sites of patients with advanced breast cancer. The "vicious cycle" between osteoclasts and breast cancer cells plays an essential role in osteolytic bone metastasis from breast cancer. In order to inhibit bone metastasis from breast cancer, NIR-II photoresponsive bone-targeting nanosystems (CuP@PPy-ZOL NPs) are designed and synthesized. CuP@PPy-ZOL NPs can trigger the photothermal-enhanced Fenton response and photodynamic effect to enhance the photothermal treatment (PTT) effect and thus achieve synergistic anti-tumor effect. Meanwhile, they exhibit a photothermal enhanced ability to inhibit osteoclast differentiation and promote osteoblast differentiation, which reshaped the bone microenvironment. CuP@PPy-ZOL NPs effectively inhibited the proliferation of tumor cells and bone resorption in the in vitro 3D bone metastases model of breast cancer. In a mouse model of breast cancer bone metastasis, CuP@PPy-ZOL NPs combined with PTT with NIR-II significantly inhibited the tumor growth of breast cancer bone metastases and osteolysis while promoting bone repair to achieve the reversal of osteolytic breast cancer bone metastases. Furthermore, the potential biological mechanisms of synergistic treatment are identified by conditioned culture experiments and mRNA transcriptome analysis. The design of this nanosystem provides a promising strategy for treating osteolytic bone metastases.
Collapse
Affiliation(s)
- Yaoxun Zeng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhenxing Pan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jiongpeng Yuan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yuqiong Song
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, P. R. China
| | - Zhenzhen Feng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zefeng Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Zhaoyi Ye
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yushan Li
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Ying Bao
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhili Ran
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Xinyi Li
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Huiling Ye
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Kun Zhang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Xujie Liu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yan He
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| |
Collapse
|
27
|
Li M, Xuan Y, Zhang W, Zhang S, An J. Polydopamine-containing nano-systems for cancer multi-mode diagnoses and therapies: A review. Int J Biol Macromol 2023; 247:125826. [PMID: 37455006 DOI: 10.1016/j.ijbiomac.2023.125826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Polydopamine (PDA) has fascinating properties such as inherent biocompatibility, simple preparation, strong near-infrared absorption, high photothermal conversion efficiency, and strong metal ion chelation, which have catalyzed extensive research in PDA-containing multifunctional nano-systems particularly for biomedical applications. Thus, it is imperative to overview synthetic strategies of various PDA-containing nanoparticles (NPs) for state-of-the-art cancer multi-mode diagnoses and therapies applications, and offer a timely and comprehensive summary. In this review, we will focus on the synthetic approaches of PDA NPs, and summarize the construction strategies of PDA-containing NPs with different structure forms. Additionally, the application of PDA-containing NPs in bioimaging such as photoacoustic imaging, fluorescence imaging, magnetic resonance imaging and other imaging modalities will be reviewed. We will especially offer an overview of their therapeutic applications in tumor chemotherapy, photothermal therapy, photodynamic therapy, photocatalytic therapy, sonodynamic therapy, radionuclide therapy, gene therapy, immunotherapy and combination therapy. At the end, the current trends, limitations and future prospects of PDA-containing nano-systems will be discussed. This review aims to provide guidelines for new scientists in the field of how to design PDA-containing NPs and what has been achieved in this area, while offering comprehensive insights into the potential of PDA-containing nano-systems used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Min Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China
| | - Wenjun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, PR China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China.
| | - Jie An
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| |
Collapse
|
28
|
Xiong Y, Rao Y, Hu J, Luo Z, Chen C. Nanoparticle-Based Photothermal Therapy for Breast Cancer Noninvasive Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305140. [PMID: 37561994 DOI: 10.1002/adma.202305140] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Rapid advancements in materials science and nanotechnology, intertwined with oncology, have positioned photothermal therapy (PTT) as a promising noninvasive treatment strategy for cancer. The breast's superficial anatomical location and aesthetic significance render breast cancer a particularly pertinent candidate for the clinical application of PTT following melanoma. This review comprehensively explores the research conducted on the various types of nanoparticles employed in PTT for breast cancer and elaborates on their specific roles and mechanisms of action. The integration of PTT with existing clinical therapies for breast cancer is scrutinized, underscoring its potential for synergistic outcomes. Additionally, the mechanisms underlying PTT and consequential modifications to the tumor microenvironment after treatment are elaborated from a medical perspective. Future research directions are suggested, with an emphasis on the development of integrative platforms that combine multiple therapeutic approaches and the optimization of nanoparticle synthesis for enhanced treatment efficacy. The goal is to push the boundaries of PTT toward a comprehensive, clinically applicable treatment for breast cancer.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Yan Rao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, Hubei, 430000, P. R. China
| | - Jiawei Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Zixuan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| |
Collapse
|
29
|
He JJ, Li QQ, Zhao C, Zhou J, Wu J, Zhang HB, Zhao YQ, Zhang HH, Lei TY, Zhao XY, You Z, Song QB, Xu B. Advancement and Applications of Nanotherapy for Cancer Immune Microenvironment. Curr Med Sci 2023; 43:631-646. [PMID: 37558863 DOI: 10.1007/s11596-023-2763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/27/2023] [Indexed: 08/11/2023]
Abstract
Cancer treatment has evolved rapidly due to major advances in tumor immunity research. However, due to the complexity, heterogeneity, and immunosuppressive microenvironment of tumors, the overall efficacy of immunotherapy is only 20%. In recent years, nanoparticles have attracted more attention in the field of cancer immunotherapy because of their remarkable advantages in biocompatibility, precise targeting, and controlled drug delivery. However, the clinical application of nanomedicine also faces many problems concerning biological safety, and the synergistic mechanism of nano-drugs with immunity remains to be elucidated. Our study summarizes the functional characteristics and regulatory mechanisms of nanoparticles in the cancer immune microenvironment and how nanoparticles activate and long-term stimulate innate immunity and adaptive immunity. Finally, the current problems and future development trends regarding the application of nanoparticles are fully discussed and prospected to promote the transformation and application of nanomedicine used in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ju He
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qing-Qing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chen Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin Zhou
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hui-Bo Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ya-Qi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao-Han Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tian-Yu Lei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin-Yi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zuo You
- Department of Traditional Chinese Medicine, Xianfeng County People's Hospital, Enshi, 445000, China
| | - Qi-Bin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
30
|
Li Z, Guo L, Lin L, Wang T, Jiang Y, Song J, Feng J, Huang J, Li H, Bai Z, Liu W, Zhang J. Porous SiO 2-Based Reactor with Self-Supply of O 2 and H 2O 2 for Synergistic Photo-Thermal/Photodynamic Therapy. Int J Nanomedicine 2023; 18:3623-3639. [PMID: 37427365 PMCID: PMC10327690 DOI: 10.2147/ijn.s387505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose Although the combined photo-thermal (PTT) and photodynamic therapy (PDT) of tumors have demonstrated promise as effective cancer therapy, the hypoxic and insufficient H2O2 supply of tumors seriously limits the efficacy of PDT, and the acidic environment reduces the catalytic activity of nanomaterial in the tumor microenvironment. To develop a platform for efficiently addressing these challenges, we constructed a nanomaterial of Aptamer@dox/GOD-MnO2-SiO2@HGNs-Fc@Ce6 (AMS) for combination tumor therapy. The treatment effects of AMS were evaluated both in vitro and in vivo. Methods In this work, Ce6 and hemin were loaded on graphene (GO) through π-π conjugation, and Fc was connected to GO via amide bond. The HGNs-Fc@Ce6 was loaded into SiO2, and coated with dopamine. Then, MnO2 was modified on the SiO2. Finally, AS1411-aptamer@dox and GOD were fixed to gain AMS. We characterized the morphology, size, and zeta potential of AMS. The oxygen and reactive oxygen species (ROS) production properties of AMS were analyzed. The cytotoxicity of AMS was detected by MTT and calcein-AM/PI assays. The apoptosis of AMS to a tumor cell was estimated with a JC-1 probe, and the ROS level was detected with a 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) probe. The anticancer efficacy in vivo was analyzed by the changes in the tumor size in different treatment groups. Results AMS was targeted to the tumor cell and released doxorubicin. It decomposed glucose to produce H2O2 in the GOD-mediated reaction. The generated sufficient H2O2 was catalyzed by MnO2 and HGNs-Fc@Ce6 to produce O2 and free radicals (•OH), respectively. The increased oxygen content improved the hypoxic environment of the tumor and effectively reduced the resistance to PDT. The generated •OH enhanced the ROS treatment. Moreover, AMS depicted a good photo-thermal effect. Conclusion The results revealed that AMS had an excellent enhanced therapy effect by combining synergistic PTT and PDT.
Collapse
Affiliation(s)
- Zhengzhao Li
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Lianshan Guo
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Liqiao Lin
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Tongting Wang
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Yanqiu Jiang
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Jin Song
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Jihua Feng
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Jianfeng Huang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Haoyu Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Zhihao Bai
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wenqi Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Jianfeng Zhang
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| |
Collapse
|
31
|
Wang Y, Li W, Lin B, Yuan Y, Ning P, Tao X, Lv R. NIR-II imaging-guided photothermal cancer therapy combined with enhanced immunogenic death. Biomater Sci 2023. [PMID: 37334508 DOI: 10.1039/d3bm00700f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Photothermal therapy has a remarkable effect on the destruction of tumors. It kills tumor cells by photothermal ablation and induces immunogenic cell death by activating the immune response in tumor tissues. However, inhibition of the tumor immune microenvironment suppresses PTT-induced body-specific anti-tumor immunity. In this study, we designed the GdOF@PDA-HA-R837-hydrogel complex to achieve NIR-II imaging-guided photothermal ablation and enhanced immune response. Due to the doping of Yb and Er elements and the presence of a polydopamine coating, the synthesized nanoparticles enable NIR-II and photoacoustic imaging of tumor tissues, which will help in the integration of multimodal tumor imaging for diagnosis and treatment. Polydopamine is used as a photothermal agent and drug carrier because of its excellent photothermal ability and high drug loading capacity under 808 nm near infrared light. Hyaluronic acid can bind to specific receptors on the surface of cancer cells, allowing nanoparticles to aggregate around the tumor, thus enhancing the targeting ability of nanoparticles. In addition, imiquimod (R837) has been used as an immune response modulator to enhance the immunotherapeutic effect. The presence of a hydrogel enhanced the retention effect of nanoparticles in the tumor. We demonstrate that the combination of photothermal therapy with immune adjuvants effectively induces ICD, which in turn stimulates the activation of specific anti-tumor immunity and enhances the effect of photothermal therapy in vivo.
Collapse
Affiliation(s)
- Yukun Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Wenjing Li
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Ying Yuan
- Department of Medical Interdisciplinary Research, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China.
| | - Pengbo Ning
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Xiaofeng Tao
- Department of Medical Interdisciplinary Research, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China.
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
- Interdisciplinary Research Center of Smart Sensor, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| |
Collapse
|
32
|
Li H, Yang X, Wang Z, She W, Liu Y, Huang L, Jiang P. A Near-Infrared-II Fluorescent Nanocatalyst for Enhanced CAR T Cell Therapy against Solid Tumor by Immune Reprogramming. ACS NANO 2023. [PMID: 37319120 DOI: 10.1021/acsnano.3c02592] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy holds great promise in the treatment of hematological malignancies but performs poorly in solid tumors due to the tumor immunosuppressive microenvironment. Herein, a multifunctional nanocatalyst (APHA@CM) was prepared by encapsulating horseradish peroxidase (HRP)-loaded Au/polydopamine nanoparticles (Au/PDA NPs) and Ag2S quantum dots with CAR T cell membranes to improve the CAR T cell therapy in solid tumors. The APHA@CM has excellent multimodal imaging capability to precisely guide the scope and time window for nanocatalyst-induced tumor microenvironment regulation and CAR T cell therapy. The oxidase-like activity of Au NPs inhibited the glycolytic metabolism of tumor cells, reducing lactate efflux, reprogramming tumor immunosuppression, and ultimately increasing CAR T cell activation within the tumors. Additionally, the hypoxia environment of tumors could be relieved by HRP to enhance the Au/PDA NPs-induced synergistic sonodynamic/photothermal therapy (SDT/PTT), thereby promoting the immunogenic cell death of NALM 6 cells and enhancing CAR T cell-mediated immune microenvironment reprogramming. When this strategy was utilized to treat NALM 6 solid tumors, it not only completely eliminated tumors but also formed a long-term immune memory effect to inhibit tumor metastasis and recurrence. This work offers a strategy for CAR T cell therapy in solid tumor.
Collapse
Affiliation(s)
- Haimei Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Xiuxiu Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zichen Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenyan She
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Peng Jiang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| |
Collapse
|
33
|
Yang J, Bai L, Shen M, Gou X, Xiang Z, Ma S, Wu Q, Gong C. A Multiple Stimuli-Responsive NanoCRISPR Overcomes Tumor Redox Heterogeneity to Augment Photodynamic Therapy. ACS NANO 2023. [PMID: 37310989 DOI: 10.1021/acsnano.3c00940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Redox heterogeneity of tumor cells has become one of the key factors leading to the failure of conventional photodynamic therapy (PDT). Exploration of a distinctive therapeutic strategy addressing heterogeneous predicaments is an appealing yet highly challenging task. Herein, a multiple stimuli-responsive nanoCRISPR (Must-nano) with spatial arrangement peculiarities in nanostructure and intracellular delivery is fabricated to overcome redox heterogeneity at both genetic and phenotypic levels for tumor-specific activatable PDT. Must-nano consists of a redox-sensitive core loading CRISPR/Cas9 targeting hypoxia-inducible factors-1α (HIF-1α) and a rationally designed multiple-responsive shell anchored by chlorin e6 (Ce6). Benefiting from the perfect coordination of structure and function, Must-nano avoids enzyme/photodegradation of the CRISPR/Cas9 system and exerts prolonged circulation, precise tumor recognition, and cascade-responsive performances to surmount tumor extra/intracellular barriers. After internalization into tumor cells, Must-nano could undergo hyaluronidase-triggered self-disassembly with charge reversal and rapid endosomal escape, followed by site-specific release and spatially asynchronous delivery of Ce6 and CRISPR/Cas9 under stimulations of redox signals, which not only improves tumor vulnerability to oxidative stress by complete HIF-1α disruption but also destroys the intrinsic antioxidant mechanism through glutathione depletion, thereby homogenizing redox-heterogeneous cells into oxidative stress-sensitive cell subsets. Under laser irradiation, Must-nano eventually exhibits optimal potency to amplify oxidative damage, effectively inhibiting the growth and hypoxia survival of redox-heterogeneous tumor in vitro and in vivo. Overall, our redox homogenization tactic significantly maximizes PDT efficacy and offers a promising strategy to overcome tumor redox heterogeneity in the development of antitumor therapies.
Collapse
Affiliation(s)
- Jin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Liping Bai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Meiling Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xinyu Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhongzheng Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shuang Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
34
|
Jeong H, Lee J, Kim S, Moon H, Hong S. Site-specific fabrication of a melanin-like pigment through spatially confined progressive assembly on an initiator-loaded template. Nat Commun 2023; 14:3432. [PMID: 37301846 PMCID: PMC10257687 DOI: 10.1038/s41467-023-38622-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/10/2023] [Indexed: 06/12/2023] Open
Abstract
Melanin-like nanomaterials have emerged in surface biofunctionalization in a material-independent manner due to their versatile adhesion arising from their catechol-rich structures. However, the unique adhesive properties of these materials ironically raise difficulties in their site-specific fabrication. Here, we report a method for site-specific fabrication and patterning of melanin-like pigments, using progressive assembly on an initiator-loaded template (PAINT), different from conventional lithographical methods. In this method, the local progressive assembly could be naturally induced on the given surface pretreated with initiators mediating oxidation of the catecholic precursor, as the intermediates generated from the precursors during the progressive assembly possess sufficient intrinsic underwater adhesion for localization without diffusion into solution. The pigment fabricated by PAINT showed efficient NIR-to-heat conversion properties, which can be useful in biomedical applications such as the disinfection of medical devices and cancer therapies.
Collapse
Affiliation(s)
- Haejin Jeong
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Jisoo Lee
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Seunghwi Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Haeram Moon
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Seonki Hong
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
35
|
Peng S, Xia P, Wang T, Lu L, Zhang P, Zhou M, Zhao F, Hu S, Kim JT, Qiu J, Wang Q, Yu X, Xu X. Mechano-luminescence Behavior of Lanthanide-Doped Fluoride Nanocrystals for Three-Dimensional Stress Imaging. ACS NANO 2023; 17:9543-9551. [PMID: 37167417 DOI: 10.1021/acsnano.3c02298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Pervasive mechanical force in nature and human activities is closely related to intriguing physics and widespread applications. However, describing stress distribution timely and precisely in three dimensions to avoid "groping in the dark" is still a formidable challenge, especially for nonplanar structures. Herein, we realize three-dimensional (3D) stress imaging for sharp arbitrary targets via advanced 3D printing, owing to the use of fluoride nanocrystal(NC)-based ink. Notably, a fascinating mechano-luminescence (ML) is observed for the homogeneously dispersed NaLuF4:Tb3+ NCs (∼25 nm) with rationally designed deep traps (at 0.88 and 1.02 eV) via incorporating Cs+ ions and using X-ray irradiation. Carriers captured in the corresponding traps are steadily released under mechanical stimulations, which enables a ratio metric luminescence intensity based on the applied force. As a result, a significant mechano-optical conversion and superior optical waveguide of the corresponding transparent printed targets demonstrate stress in 3D with a high spatial and temporal resolution based on stereovision. These results highlight the optical function of the 3D-printed fluoride NCs, which cast light into the black boxes of stress described in space, benefiting us in understanding the ubiquitous force relevant to most natural and engineering processes.
Collapse
Affiliation(s)
- Songcheng Peng
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Ping Xia
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ting Wang
- School of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Lan Lu
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Peng Zhang
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Min Zhou
- College of Physical Science and Technology, Institute of Optoelectronic Technology, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Feng Zhao
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, Sichuan, China
| | - Shiqi Hu
- The University of Hong Kong, Dept Mech Engn, Pokfulam Rd, Hong Kong 999077, Hong Kong, China
| | - Ji Tae Kim
- The University of Hong Kong, Dept Mech Engn, Pokfulam Rd, Hong Kong 999077, Hong Kong, China
| | - Jianbei Qiu
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Qingyuan Wang
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xue Yu
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xuhui Xu
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| |
Collapse
|
36
|
Gu M, Zhang L, Hao L, Wang K, Yang W, Liu Z, Lei Z, Zhang Y, Li W, Jiang L, Li X. Upconversion Nanoplatform Enables Multimodal Imaging and Combinatorial Immunotherapy for Synergistic Tumor Treatment and Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21766-21780. [PMID: 37104533 DOI: 10.1021/acsami.2c22420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Designing a novel nanoplatform that integrates multimodal imaging and synergistic therapy for precision tumor nanomedicines is challenging. Herein, we prepared rare-earth ion-doped upconversion hydroxyapatite (FYH) nanoparticles as nanocarriers coated and loaded respectively with polydopamine (PDA) and doxorubicin (DOX), i.e., FYH-PDA-DOX, for tumor theranostics. The developed FYH-PDA-DOX complexes exhibited desirable photothermal conversion, pH/near-infrared-irradiation-responsive DOX release, and multimodal upconversion luminescence/computed tomography/magnetic resonance imaging performance and helped monitor the metabolic distribution process of the complexes and provided feedback to the therapeutic effect. Upon 808 nm laser irradiation, the fast release of DOX facilitated the photothermal-chemotherapy effect, immunogenic cell death, and antitumor immune response. On combining with the anti-programmed cell death 1 ligand 1 antibody, an enhanced tri-mode photothermal-chemo-immunotherapy synergistic treatment against tumors can be realized. Thus, this treatment elicited potent antitumor immunity, producing appreciable T-cell cytotoxicity against tumors, amplifying tumor suppression, and extending the survival of mice. Therefore, the FYH-PDA-DOX complexes are promising as a smart nanoplatform for imaging-guided synergistic cancer treatment.
Collapse
Affiliation(s)
- Mengqin Gu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhenqi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zixue Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yinmo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiyu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Bhuckory S, Lahtinen S, Höysniemi N, Guo J, Qiu X, Soukka T, Hildebrandt N. Understanding FRET in Upconversion Nanoparticle Nucleic Acid Biosensors. NANO LETTERS 2023; 23:2253-2261. [PMID: 36729707 DOI: 10.1021/acs.nanolett.2c04899] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Upconversion nanoparticles (UCNPs) have been frequently applied in Förster resonance energy transfer (FRET) bioanalysis. However, the understanding of how surface coatings, bioconjugation, and dye-surface distance influence FRET biosensing performance has not significantly advanced. Here, we investigated UCNP-to-dye FRET DNA-hybridization assays in H2O and D2O using ∼24 nm large NaYF4:Yb3+,Er3+ UCNPs coated with thin layers of silica (SiO2) or poly(acrylic acid) (PAA). FRET resulted in strong distance-dependent PL intensity changes. However, the PL decay times were not significantly altered because of continuous Yb3+-to-Er3+ energy migration during Er3+-to-dye FRET. Direct bioconjugation of DNA to the thin PAA coating combined with the closest possible dye-surface distance resulted in optimal FRET performance with minor influence from competitive quenching by H2O. The better comprehension of UCNP-to-dye FRET was successfully translated into a microRNA (miR-20a) FRET assay with a limit of detection of 100 fmol in a 80 μL sample volume.
Collapse
Affiliation(s)
- Shashi Bhuckory
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- EMEA Clinical Service Operations, NAMSA, 38670 Chasse-sur-Rhône, France
| | - Satu Lahtinen
- University of Turku, Department of Life Technologies/Biotechnology, 20520 Turku, Finland
| | - Niina Höysniemi
- University of Turku, Department of Life Technologies/Biotechnology, 20520 Turku, Finland
| | - Jiajia Guo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Xue Qiu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tero Soukka
- University of Turku, Department of Life Technologies/Biotechnology, 20520 Turku, Finland
| | - Niko Hildebrandt
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- Université de Rouen Normandie, CNRS, INSA, Normandie Université, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse - UMR6014 & FR3038), 76000 Rouen, France
- Seoul National University, Department of Chemistry, Seoul 08826, South Korea
| |
Collapse
|
38
|
Li W, Li F, Li T, Zhang W, Li B, Liu K, Lun X, Guo Y. Self-actuated biomimetic nanocomposites for photothermal therapy and PD-L1 immunosuppression. Front Chem 2023; 11:1167586. [PMID: 37007061 PMCID: PMC10063802 DOI: 10.3389/fchem.2023.1167586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Biomimetic nanocomposites are widely used in the biomedical field because they can effectively solve the problems existing in the current cancer treatment by realizing multi-mode collaborative treatment. In this study, we designed and synthesized a multifunctional therapeutic platform (PB/PM/HRP/Apt) with unique working mechanism and good tumor treatment effect. Prussian blue nanoparticles (PBs) with good photothermal conversion efficiency were used as nuclei and coated with platelet membrane (PM). The ability of platelets (PLTs) to specifically target cancer cells and inflammatory sites can effectively enhance PB accumulation at tumor sites. The surface of the synthesized nanocomposites was modified with horseradish peroxidase (HRP) to enhance the deep penetration of the nanocomposites in cancer cells. In addition, PD-L1 aptamer and 4T1 cell aptamer AS1411 were modified on the nanocomposite to achieve immunotherapy and enhance targeting. The particle size, UV absorption spectrum and Zeta potential of the biomimetic nanocomposite were determined by transmission electron microscope (TEM), Ultraviolet-visible (UV-Vis) spectrophotometer and nano-particle size meter, and the successful preparation was proved. In addition, the biomimetic nanocomposites were proved to have good photothermal properties by infrared thermography. The cytotoxicity test showed that it had a good killing ability of cancer cells. Finally, thermal imaging, tumor volume detection, immune factor detection and Haematoxilin-Eosin (HE) staining of mice showed that the biomimetic nanocomposites had good anti-tumor effect and could trigger immune response in vivo. Therefore, this biomimetic nanoplatform as a promising therapeutic strategy provides new inspiration for the current diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Wenxin Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Fen Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Tao Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wenyue Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Binglin Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kunrui Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiaoli Lun
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Yingshu Guo,
| |
Collapse
|
39
|
Abstract
Surface-modified lanthanide nanoparticles have been widely developed as an emerging class of therapeutics for cancer treatment because they exhibit several unique properties. First, lanthanide nanoparticles exhibit a variety of diagnostic capabilities suitable for various image-guided therapies. Second, a large number of therapeutic molecules can be accommodated on the surface of lanthanide nanoparticles, which can simultaneously achieve combined cancer therapy. Third, multivalent targeting ligands on lanthanide nanoparticles can be easily modified to achieve high affinity and specificity for target cells. Last but not least, lanthanide nanoparticles can be engineered for spatially and temporally controlled tumor therapy, which is critical for developing precise and personalized tumor therapy. Surface-modified lanthanide-doped nanoparticles are widely used in cancer phototherapy. This is due to their unique optical properties, including large anti-Stokes shifts, long-lasting luminescence, high photostability, and the capacity for near-infrared or X-ray excitation. Upon near-infrared irradiation, these nanoparticles can emit ultraviolet to visible light, which activates photosensitizers and photothermal agents to destroy tumor cells. Surface modification with special ligands that respond to tumor microenvironment changes, such as acidic pH, hypoxia, or redox reactions, can turn lanthanide nanoparticles into a smart nanoplatform for light-guided tumor chemotherapy and gene therapy. Surface-engineered lanthanide nanoparticles can include antigens that elicit tumor-specific immune responses, as well as immune activators that boost immunity, allowing distant and metastatic tumors to be eradicated. The design of ligands and surface chemistry is crucial for improving cancer therapy without causing side effects. In this Account, we classify surface-modified lanthanide nanoparticles for tumor therapy into four main domains: phototherapy, radiotherapy, chemotherapy, and biotherapy. We begin by introducing fundamental bioapplications and then discuss recent developments in tumor phototherapy (photodynamic therapy and photothermal therapy), radiotherapy, chemotherapy, and biotherapy (gene therapy and immunotherapy). We also assess the viability of a variety of strategies for eliminating tumor cells through innovative pathways. Finally, future opportunities and challenges for the development of more efficient lanthanide nanoprobes are discussed.
Collapse
Affiliation(s)
- Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore.,Institute of Materials Research and Engineering, Agency for Science, Technology, and Research, Singapore 138634, Singapore
| |
Collapse
|
40
|
Xu D, Li C, Li W, Lin B, Lv R. Recent advances in lanthanide-doped up-conversion probes for theranostics. Front Chem 2023; 11:1036715. [PMID: 36846851 PMCID: PMC9949555 DOI: 10.3389/fchem.2023.1036715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Up-conversion (or anti-Stokes) luminescence refers to the phenomenon whereby materials emit high energy, short-wavelength light upon excitation at longer wavelengths. Lanthanide-doped up-conversion nanoparticles (Ln-UCNPs) are widely used in biomedicine due to their excellent physical and chemical properties such as high penetration depth, low damage threshold and light conversion ability. Here, the latest developments in the synthesis and application of Ln-UCNPs are reviewed. First, methods used to synthesize Ln-UCNPs are introduced, and four strategies for enhancing up-conversion luminescence are analyzed, followed by an overview of the applications in phototherapy, bioimaging and biosensing. Finally, the challenges and future prospects of Ln-UCNPs are summarized.
Collapse
Affiliation(s)
| | | | | | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | | |
Collapse
|
41
|
Zhang Y, Chen J, Shi L, Ma F. Polymeric nanoparticle-based nanovaccines for cancer immunotherapy. MATERIALS HORIZONS 2023; 10:361-392. [PMID: 36541078 DOI: 10.1039/d2mh01358d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Therapeutic cancer vaccines, which are designed to amplify tumor-specific T cell responses, have been envisioned as one of the most powerful tools for effective cancer immunotherapy. However, increasing the potency, quality and durability of the vaccine response remains a big challenge. In recent years, materials-based delivery systems focusing on the co-delivery of antigens and adjuvants to enhance cancer vaccination therapy have attracted increasing interest. Among various materials, polymeric nanoparticles (NPs) with different physicochemical properties which can incorporate multiple immunological cues are of great interest. In this review, the recent progress in the design and construction of both ex vivo subunit and in situ cancer vaccines using polymeric NPs is summarized. Especially, we will focus on how these NPs improve the adjuvanticity of vaccines. The design principles of polymeric NPs for ex vivo subunit cancer vaccines and in situ cancer vaccination are also discussed. Finally, we want to briefly discuss molecular chaperones in cancer immunity and the applications of our unique self-assembly mixed shell polymeric micelle-based nanochaperones for cancer vaccines.
Collapse
Affiliation(s)
- Yongxin Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Jiajing Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Feihe Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
| |
Collapse
|
42
|
Zhou Y, Gao X, Lu Y, Zhang R, Lv K, Gong J, Feng J, Zhang H. A pH-Responsive Charge-Convertible Drug Delivery Nanocarrier for Precise Starvation and Chemo Synergistic Oncotherapy. Chempluschem 2023; 88:e202200394. [PMID: 36725346 DOI: 10.1002/cplu.202200394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Indexed: 12/15/2022]
Abstract
A pH-responsive charge-convertible drug delivery nanocarrier (MSN-TPZ-GOx@ZnO@PAH-PEG-DMMA, abbreviated as MTGZ@PPD) was prepared, which could specifically release hypoxia-activated chemotherapeutic Tirapazamine (TPZ) and glucose oxidase (GOx) in the tumor site for precise starvation and chemo synergistic oncotherapy. Acid-responsive Schiff base structure modified mesoporous silica nanoparticles (MSN) co-load with GOx and TPZ, then link with ZnO quantum dots (QDs). PAH-PEG-DMMA (PPD) polymer makes MTGZ@PPD with biocompatibility and charge-convertible feature. MTGZ@PPD is negatively charged at physiological pH, and the charge reversal of PPD and acidolysis of the Schiff base structure under the acidic tumor microenvironment (TME) induce a positively charged surface, which could potentiate the cell internalization. ZnO QDs could decompose at acidic TME, achieving controllable drug release. GOx could starve the tumor cells and enhance hypoxia level, thus initiates the activation of TPZ to realize synergistic starvation therapy and chemotherapy. This intelligent MTGZ@PPD has shown great potential for starvation and chemo synergistic oncotherapy.
Collapse
Affiliation(s)
- Yifei Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuan Gao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yu Lu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ruohao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kehong Lv
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jitong Gong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
43
|
Wang Y, Huang G, Hou Q, Pan H, Cai L. Cell surface-nanoengineering for cancer targeting immunoregulation and precise immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022:e1875. [PMID: 36567668 DOI: 10.1002/wnan.1875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/27/2022]
Abstract
Living cells have become ideal therapeutic agents for cancer treatment owing to their innate activities, such as efficient tumor targeting and delivery, easy engineering, immunomodulatory properties, and fewer adverse effects. However, cell agents are often fragile to rigorous tumor microenvironment (TME) and limited by inadequate therapeutic responses, leading to unwanted treatment efficacy. Cell nanomodification, particularly the cell surface-nanoengineering has emerged as reliable and efficient strategy that not only combines cell activity properties with nanomaterials but also endows them with extra novel functions, enabling to achieve remarkable treatment results. In this review, we systematically introduce two major strategies have been adopted to develop cell surface engineering with nanomaterials, mainly including living cell nano-backpacks and cell membrane-mimicking nanoparticles (NPs). Based on various functional NPs and cell types, we focus on reviewing the cell-surface nanoengineering for targeted drug delivery, immune microenvironment regulation, and precisely antitumor therapy. The advances and challenges of cell surface-nanoengineered antitumor agents for cancer therapy applications are further discussed in future clinical practice. This review provides an overview of the advances in cell surface-engineering for targeting immunoregulation and treatment and could contribute to the future of advanced cell-based antitumor therapeutic applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Cells at the Nanoscale.
Collapse
Affiliation(s)
- Yuhan Wang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China.,Department of Urology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Guojun Huang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Hou
- Department of Urology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Kong C, Chen X. Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: A Review. Int J Nanomedicine 2022; 17:6427-6446. [PMID: 36540374 PMCID: PMC9760263 DOI: 10.2147/ijn.s388996] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
Photoactivation therapy based on photodynamic therapy (PDT) and photothermal therapy (PTT) has been identified as a tumour ablation modality for numerous cancer indications, with photosensitisers and photothermal conversion agents playing important roles in the phototherapy process, especially in recent decades. In addition, the iteration of nanotechnology has strongly promoted the development of phototherapy in tumour treatment. PDT can increase the sensitivity of tumour cells to PTT by interfering with the tumour microenvironment, whereas the heat generated by PTT can increase blood flow, improve oxygen supply and enhance the PDT therapeutic effect. In addition, tumour cell debris generated by phototherapy can serve as tumour-associated antigens, evoking antitumor immune responses. In this review, the research progress of phototherapy, and its research effects in combination with immunotherapy on the treatment of tumours are mainly outlined, and issues that may need continued attention in the future are raised.
Collapse
Affiliation(s)
- Cunqing Kong
- Department of medical imaging center, central hospital affiliated to Shandong first medical university, Jinan, People’s Republic of China
| | - Xingcai Chen
- Department of Human Anatomy and Center for Genomics and Personalized Medicine, Nanning, People’s Republic of China,Correspondence: Xingcai Chen, Email
| |
Collapse
|
45
|
Yang G, Li M, Song T, Chen X, Zhang H, Wei X, Li N, Li T, Qin X, Li S, You F, Wu C, Zhang W, Liu Y, Yang H. Polydopamine-Engineered Theranostic Nanoscouts Enabling Intracellular HSP90 mRNAs Fluorescence Detection for Imaging-Guided Chemo-Photothermal Therapy. Adv Healthc Mater 2022; 11:e2201615. [PMID: 36100559 DOI: 10.1002/adhm.202201615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/08/2022] [Indexed: 01/28/2023]
Abstract
The combination of photothermal therapy (PTT) and chemotherapy is considered a promising tumor treatment modality, nevertheless, cellular resistance induced by heat shock proteins (HSPs) overexpressed in tumor cells will restrict the therapeutic effect. Herein, a multifunctional nanobeacon DOX/HCuS@PDA-MB (D/CP-MB) with a scout function for HSP90 mRNA fluorescence detection and near-infrared (NIR) triggered drug release for sensitizing chemo-photothermal therapy, is proposed. In the theranostic nanobeacons, HSP90MBs not only enable fluorescence detection of intracellular HSP90 mRNAs, but also downregulate the expression of HSP90 to reduce cell resistance. With the assistance of NIR and guidance of fluorescence imaging, spatiotemporal doxorubicin release can be achieved by the trigger of the photothermal effect, allowing for combined chemotherapy and photothermal treatment. Furthermore, the dual photothermal effect of hollow mesoporous CuS (HCuS) and polydopamine will lead to a better photothermal effect. Moreover, compared with other control groups, D/CP-MB nanobeacons exhibit effective boost therapeutic efficacy by inducing significant suppression of tumor proliferation and enhancement of apoptosis both in vitro and in vivo. In summary, this work provides novel theranostic nanobeacons that integrate imaging and therapy in a single nanoparticle, this strategy of imaging-guided therapy can enable precise tumor treatment and effectively improve tumor treatment efficacy.
Collapse
Affiliation(s)
- Geng Yang
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Mengyue Li
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Ting Song
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xiangyan Chen
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Hanxi Zhang
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xiaodan Wei
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Ningxi Li
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Tingting Li
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xiang Qin
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Shun Li
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chunhui Wu
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Wei Zhang
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yiyao Liu
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
| | - Hong Yang
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
46
|
Shen J, Lin M, Ding M, Yu N, Yang C, Kong D, Sun H, Xie Z. Tumor immunosuppressive microenvironment modulating hydrogels for second near-infrared photothermal-immunotherapy of cancer. Mater Today Bio 2022; 16:100416. [PMID: 36105677 PMCID: PMC9465322 DOI: 10.1016/j.mtbio.2022.100416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
Immunotherapy has recently been seen as a hopeful therapeutic device to inhibit tumor growth and metastasis, while the curative efficacy is limited by intrinsic immunosuppressive tumor microenvironment. Herein, we reported a tumor immunosuppressive microenvironment modulating hydrogel (TIMmH) platform to achieve second near-infrared (NIR-II) photothermal therapy (PTT) combined immunotherapy for durable inhibition of breast cancer. This TIMmH platform was synthesized through co-loading of NIR-II photothermal nanoagent and an immunoadjuvant cytosine-phosphateguanosine oligodeoxynucleotides (CpG ODNs) into the alginate hydrogel (ALG). Upon the administration of ALG into the tumor, the TIMmH was in situ formed via the coordination effect with Ca2+, locally encapsulating the semiconducting polymer nanoparticles (SPIIN) and CpG in the colloid, achieving to prolong the accumulation time and prevent the premature damage and release of immunotherapeutic agents. Upon 1064-nm photoirradiation, the TIMmHSD was able to elevate the intratumoral temperature for the ablation of tumors, which could induce the apoptosis of tumor cells and achieve thermal immune activation by regulating of an immunosuppressive microenvironment. The TIMmH-mediated combined treatment effectively suppressed the growths of breast cancers, and even acquired a sustained inhibition of the lung metastasis. This study provides a novel tumor immunosuppressive microenvironment modulating hydrogel platform with NIR-II photoexcited capacity for the safe, effective and durable lung metastasis-inhibiting breast cancer treatment.
Collapse
Affiliation(s)
- Junjian Shen
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, PR China
| | - Minghui Lin
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, PR China
| | - Mengbin Ding
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Ningyue Yu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Department of Cancer, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Deping Kong
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, PR China
| | - Haitao Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Department of Cancer, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Corresponding author.
| | - Zongyu Xie
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, PR China
- Corresponding author.
| |
Collapse
|
47
|
Akhtar N, Chen CL, Chattopadhyay S. PDT-active upconversion nanoheaters for targeted imaging guided combinatorial cancer phototherapies with low-power single NIR excitation. BIOMATERIALS ADVANCES 2022; 141:213117. [PMID: 36155246 DOI: 10.1016/j.bioadv.2022.213117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 01/05/2023]
Abstract
A versatile nanoformulation is designed by anchoring human transferrin protein (Tf) on fluoromagnetic upconverting nanoheaters, NaGdF4:Yb,Er (UCNP), loaded with Rose Bengal (RB), for multimodal imaging guided synergistic photothermal (PTT) and photodynamic therapy (PDT) at the targeted tumor site. The NIR excitation of the UCNP-RB Forster Resonance Energy Transfer (FRET) pair results in the reactive oxygen species (ROS) generation for PDT, whereas the non-radiative transitions in Er result in the heat required for PTT. The intravenously injected theranostic agent (UCNP@Tf-RB) enabled; (1) combinatorial PTT and PDT of 4T1 tumors with minimal systemic toxicity, (2) dual targeted (passive and active) tumor accumulation, (3) dual-modal imaging (MRI/photothermal), and, (4) excellent stability and biocompatibility. The in vitro therapy data corroborates the MRI findings that Tf conjugation resulted in actively targeted tumor accumulation via over-expressed transferrin receptors (TfR) on 4T1 cells. Real-time photothermal imaging enabled visualization of the tumor while receiving the therapy. The UCNP@Tf-RB, for synergistic PTT-PDT, and UCNP@Tf, for PTT only, caused rapid suppression of tumor with a tumor-growth inhibition index (TGII) of ~0.91, and 0.79, respectively. Histopathological examination demonstrated minimal damage to non-targeted tissues and caused significant damage to the tumor. This theranostic methodology enhances anti-cancer therapeutic efficiency, and announces the potential for pre-clinical cancer therapy.
Collapse
Affiliation(s)
- Najim Akhtar
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chuan Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Surojit Chattopadhyay
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
48
|
A single-beam of light priming the immune responses and boosting cancer photoimmunotherapy. J Control Release 2022; 350:734-747. [PMID: 36063959 DOI: 10.1016/j.jconrel.2022.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 11/23/2022]
Abstract
Mirroring the rapid clinical performance, immune checkpoint blockade (ICB) leads a remarkable clinical advance in combating cancer, but suffers poor response in most cancers. The low presence of tumor-infiltration lymphocytes and the poor immunogenicity in tumor microenvironment (TME) are the main factors hindering the effectiveness of ICB in the treatment of immunological "cold" tumors. Aiming at boosting immune response via TME modulation, we report a near-infrared laser-guided photoimmuno-strategy in which synergistic phototherapy, immune adjuvant, and ICB are integrated into one versatile nanoporphyrin platform. The prepared nanoporphyrins are self-assembled from purpurin18-lipids and have photodynamic/photothermal and immunomodulatory effects that can be tuned under a single laser irradiation, concomitant with fluorescence or MSOT imaging. In this work, the contributions of each component in the nanoporphyrin platform were specified. In particular, phototherapy-driven in situ tumor cell death provided abundant tumor-associated antigens to initiate immune responses. With the assist of spatiotemporally delivered immune adjuvant, phototherapy potentiated tumor immunogenicity, reprogrammed "cold" tumors into "hot" ones, and sensitized tumors to ICB therapy. Further combined with PD-L1 blockade, the photoimmune-strategy substantially stimulated tumor-specific immune-responses and long-term immunological memory against primary tumor, abscopal tumor as well as metastatic foci. Such single light-primed photoimmunotherapy offers a promising solution to overcome common hurdles in ICB treatment and can potentially be integrated into existing clinical practice.
Collapse
|
49
|
Multifunctional light-activatable nanocomplex conducting temperate-heat photothermal therapy to avert excessive inflammation and trigger augmented immunotherapy. Biomaterials 2022; 290:121815. [DOI: 10.1016/j.biomaterials.2022.121815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/31/2022] [Accepted: 09/17/2022] [Indexed: 11/20/2022]
|
50
|
Polymyxin E biomineralized and doxorubicin-loaded gold nanoflowers nanodrug for chemo-photothermal therapy. Int J Pharm 2022; 625:122082. [DOI: 10.1016/j.ijpharm.2022.122082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022]
|