1
|
Guo Z, Li W, Wu H, Cao L, Song S, Ma X, Shi J, Ren Y, Huang T, Li Y, Jiang Z. Reverse filling approach to mixed matrix covalent organic framework membranes for gas separation. Nat Commun 2025; 16:3617. [PMID: 40240325 PMCID: PMC12003767 DOI: 10.1038/s41467-025-56770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/30/2025] [Indexed: 04/18/2025] Open
Abstract
Mixed-matrix membranes that combine the merits of polymer and filler materials offer high potential for molecular separations, but precisely engineering the filler phase structure to give full play to the role of filler materials remains challenging. Herein, we explore a reverse-filling approach to fabricate mixed-matrix membranes with continuous and vertically penetrating covalent organic framework channels for CO2 separation. Covalent organic framework nanosheets as building blocks are pre-assembled into a robust and vertically oriented covalent organic framework scaffold via ice templating method, with the subsequent polyimide filling into the scaffold. The scaffold inherits the intrinsic CO2-philic pore structure of nanosheets, which serves as fast and selective CO2 transport channels in the membrane. The resulting membrane exhibits high CO2 permeability of 972 Barrer and CO2/CH4 selectivity of 58, along with long-term stability and scale-up capability. This approach may stimulate the thinking about how to design advanced mixed-matrix membranes.
Collapse
Affiliation(s)
- Zheyuan Guo
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wenping Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
| | - Li Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shuqing Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaohui Ma
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Jiafu Shi
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China
| | - Tong Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Yonghong Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China.
| |
Collapse
|
2
|
Li X, Jiao C, Zhang X, Xu X, Gul S, Liang F, Caro J, Jiang H. Zinc Coordination-Polymer-Mediated Self-Assembly of Nanoparticles into "Brick-and-Mortar" Membranes for Hydrogen Separation. Angew Chem Int Ed Engl 2025; 64:e202416919. [PMID: 39899280 DOI: 10.1002/anie.202416919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 02/04/2025]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) with high stability and porosity is a promising candidate for hydrogen separation membranes. However, most ZIF-8 polycrystalline membranes exhibit low H2/CO2 (kinetic diameters of 2.9/3.3 Å) mixed gas selectivity, due to the intercrystalline defects and the unprecise molecular sieving originated from framework flexibility of ZIF-8 structure with a theoretical aperture size of 3.4 Å. Here, inspired by nacre's "brick-and-mortar" structure, we develop mixed matrix type composite membranes in which dominant crystalline ZIF-8 nanoparticles (bricks) are interconnected by ultrathin zinc coordination polymer interlayers (mortar) via self-assembling. Driven by coordination bonds between Zn2+ from precursor colloid and branched polyethyleneimine (PEI), a zinc coordination polymer network is formed to connect ZIF-8 nanoparticles through interactions between Zn2+ of coordination polymer and surface terminal groups on ZIF-8 nanoparticles, thus eliminating intercrystalline void defects and providing a highly selective H2 transport pathway. Meanwhile, the micropores and large cavities in ZIF-8 allow fast H2 transport. Benefitting from both highly selective pathway and fast H2 transport through porous ZIF-8, the optimized ZIF-8-PEI membrane exhibits a record-high H2 permeability of ~1.78×105 Barrer with a high mixed gas H2/CO2 selectivity of 176, surpassing state-of-the-art performance. This bioinspired multifunctional membrane expands the scope of molecular sieving membrane.
Collapse
Affiliation(s)
- Xinxin Li
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengli Jiao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xiaoqian Zhang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoya Xu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Saeed Gul
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Department of Chemical Engineering, University of Engineering & Technology Peshawar, Peshawar, Pakistan
| | - Fangyi Liang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstrasse 3 A, 30167, Hannover, Deutschland
| | - Heqing Jiang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
3
|
Tian X, Cao L, Zhang K, Zhang R, Li X, Yin C, Wang S. Molecular Weaving Towards Flexible Covalent Organic Framework Membranes for Efficient Gas Separations. Angew Chem Int Ed Engl 2025; 64:e202416864. [PMID: 39377209 DOI: 10.1002/anie.202416864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 10/09/2024]
Abstract
Covalent organic frameworks (COFs) exhibit considerable potential in gas separations owing to their remarkable stability and tunable pore structures. Nevertheless, their application as gas separation membranes is hindered by limited size-sieving capabilities and poor processability. In this study, we propose a novel molecular weaving strategy that combines hydroxyl polymers and 2D TpPa-SO3H COF nanosheets, achieving high gas separation efficiency. Driven by the strong electrostatic interactions, the hydroxyl chains thread through the COF pores, effectively weaving and assembling the composites to achieve exceptional flexibility and high mechanical strength. The penetrated chains also reduce the effective pore size of COFs, and combined with the "secondary confinement effect" stemming from abundant CO2 sorption sites in the channels, the PVA@TpPa-SO3H membrane demonstrates a remarkable H2 permeance of 1267.3 GPU and an H2/CO2 selectivity of 43, surpassing the 2008 Robson upper bound limit. This facile strategy holds promise for the manufacture of large-area COF-based membranes for small-sized gas separations.
Collapse
Affiliation(s)
- Xiaohe Tian
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511340, China
| | - Li Cao
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Keming Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511340, China
| | - Rui Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511340, China
| | - Xueqin Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Chongshan Yin
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha, 410114, China
| | - Shaofei Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511340, China
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| |
Collapse
|
4
|
Chen Y, Han S, Chen K, Guo X, Wen P, Chen M. Controlled Radical Copolymerization toward Tailored F/N Hybrid Polymers by Using Light-Driven Organocatalysis. Angew Chem Int Ed Engl 2024; 63:e202408611. [PMID: 38924225 DOI: 10.1002/anie.202408611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Controlled radical copolymerizations present attractive avenues to obtain polymers with complicated compositions and sequences. In this work, we report the development of a visible-light-driven organocatalyzed controlled copolymerization of fluoroalkenes and acyclic N-vinylamides for the first time. The approach enables the on-demand synthesis of a broad scope of amide-functionalized main-chain fluoropolymers via novel fluorinated thiocarbamates, facilitating regulations over chemical compositions and alternating fractions by rationally selecting comonomer pairs and ratios. This method allows temporally controlled chain-growth by external light, and maintains high chain-end fidelity that promotes facile preparation of block sequences. Notably, the obtained F/N hybrid polymers, upon hydrolysis, afford free amino-substituted fluoropolymers versatile for post modifications toward various functionalities (e.g., amide, sulfonamide, carbamide, thiocarbamide). We further demonstrate the in situ formation of polymer networks with desirable properties as protective layers on lithium metal anodes, presenting a promising avenue for advancing lithium metal batteries.
Collapse
Affiliation(s)
- Yufei Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China, 200433
| | - Shantao Han
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China, 200433
| | - Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China, 200433
| | - Xing Guo
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China, 200433
| | - Peng Wen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China, 200433
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China, 200433
| |
Collapse
|
5
|
Yu S, Li C, Zhao S, Chai M, Hou J, Lin R. Recent advances in the interfacial engineering of MOF-based mixed matrix membranes for gas separation. NANOSCALE 2024; 16:7716-7733. [PMID: 38536054 DOI: 10.1039/d4nr00096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The membrane process stands as a promising and transformative technology for efficient gas separation due to its high energy efficiency, operational simplicity, low environmental impact, and easy up-and-down scaling. Metal-organic framework (MOF)-polymer mixed matrix membranes (MMMs) combine MOFs' superior gas-separation performance with polymers' processing versatility, offering the opportunity to address the limitations of pure polymer or inorganic membranes for large-scale integration. However, the incompatibility between the rigid MOFs and flexible polymer chains poses a challenge in MOF MMM fabrication, which can cause issues such as MOF agglomeration, sedimentation, and interfacial defects, substantially weakening membrane separation efficiency and mechanical properties, particularly gas separation. This review focuses on engineering MMMs' interfaces, detailing recent strategies for reducing interfacial defects, improving MOF dispersion, and enhancing MOF loading. Advanced characterisation techniques for understanding membrane properties, specifically the MOF-polymer interface, are outlined. Lastly, it explores the remaining challenges in MMM research and outlines potential future research directions.
Collapse
Affiliation(s)
- Shuwen Yu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Conger Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Shuke Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
6
|
Li C, Zhang W, Meng Q, Xu H, Shen C, Zhang G. Ionic-liquid-modified MOFs incorporated in a mixed-matrix membrane by metal-site anchoring for gas separation. Chem Commun (Camb) 2024; 60:4100-4103. [PMID: 38516825 DOI: 10.1039/d4cc00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Through metal-site anchoring, metal-organic frameworks (MOFs) were modified with ionic liquids (ILs) and used as a porous filler to prepare mixed-matrix membranes (MMMs). The targeted growth of the IL exposed more active sites and greatly enhanced CO2 transfer in the MMMs, which exhibited excellent gas separation performance and long durability.
Collapse
Affiliation(s)
- Chang Li
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wenhai Zhang
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qin Meng
- College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haibiao Xu
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Chong Shen
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Guoliang Zhang
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
7
|
Hussain A, Gul H, Raza W, Qadir S, Rehan M, Raza N, Helal A, Shaikh MN, Aziz MA. Micro and Nanoporous Membrane Platforms for Carbon Neutrality: Membrane Gas Separation Prospects. CHEM REC 2024; 24:e202300352. [PMID: 38501854 DOI: 10.1002/tcr.202300352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Recently, carbon neutrality has been promoted as a potentially practical solution to global CO2 emissions and increasing energy-consumption challenges. Many attempts have been made to remove CO2 from the environment to address climate change and rising sea levels owing to anthropogenic CO2 emissions. Herein, membrane technology is proposed as a suitable solution for carbon neutrality. This review aims to comprehensively evaluate the currently available scientific research on membranes for carbon capture, focusing on innovative microporous material membranes used for CO2 separation and considering their material, chemical, and physical characteristics and permeability factors. Membranes from such materials comprise metal-organic frameworks, zeolites, silica, porous organic frameworks, and microporous polymers. The critical obstacles related to membrane design, growth, and CO2 capture and usage processes are summarized to establish novel membranes and strategies and accelerate their scaleup.
Collapse
Affiliation(s)
- Arshad Hussain
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261, Dhahran, Saudi Arabia
| | - Hajera Gul
- Department of Chemistry, Shaheed Benazir Bhutto Women University, 25000, Peshawar, Pakistan
| | - Waseem Raza
- Institute for Advanced Study, Shenzhen University, 518060, Guangdong, China
- College of Civil and Transportation Engineering, Shenzhen University, 518060, Shenzhen, Guangdong, China
| | - Salman Qadir
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, PR China
| | - Muhammad Rehan
- Department of Chemical Engineering, Beijing Institute of Technology, 100000, Beijing, China
| | - Nadeem Raza
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Kingdom of Saudi Arabia
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261, Dhahran, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261, Dhahran, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
8
|
Xing G, Cong S, Wang B, Qiao Z, Li Q, Cong C, Yuan Y, Sheng M, Zhou Y, Shi F, Ma J, Pan Y, Liu X, Zhao S, Wang J, Wang Z. A High-Performance N 2-Selective MXene Membrane with Double Selectivity Mechanism for N 2/CH 4 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309360. [PMID: 37990358 DOI: 10.1002/smll.202309360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Membrane-based separation process for unconventional natural gas purification (mainly N2/CH4 separation) has attracted more attention due to its considerable economic benefits. However, the majority of separation membranes at this stage, particularly N2-selective membranes, achieve the desired separation target by mainly relying on the diffusivity-selectivity mechanism. To overcome the limitation of a single mechanism, 2D lamellar MXene membranes with a double selectivity mechanism are prepared to enhance N2 permeance and N2/CH4 selectivity via introducing unsaturated metal sites into MXene, which can form specific interactions with N2 molecules and enhance N2 permeation. The resulting membranes exhibit an inspiring N2/CH4 separation performance with an N2 permeance of 344 GPU and N2/CH4 selectivity of 13.76. The collaboration of the double selectivity mechanism provides a new idea for the development of a novel N2-selective membrane for N2 removal and CH4 purification, which further broadens the application prospects of membrane separation technology in the field of unconventional natural gas purification.
Collapse
Affiliation(s)
- Guangyu Xing
- Chemical Engineering Research Center, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Shenzhen Cong
- Chemical Engineering Research Center, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Bo Wang
- Life and Health Intelligent Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Qinghua Li
- Chemical Engineering Research Center, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Chang Cong
- Chemical Engineering Research Center, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Ye Yuan
- Chemical Engineering Research Center, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Menglong Sheng
- Chemical Engineering Research Center, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Yunqi Zhou
- Chemical Engineering Research Center, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Fei Shi
- Chemical Engineering Research Center, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Jun Ma
- Chemical Engineering Research Center, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Yurui Pan
- Chemical Engineering Research Center, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Xinlei Liu
- Chemical Engineering Research Center, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Song Zhao
- Chemical Engineering Research Center, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Jixiao Wang
- Chemical Engineering Research Center, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Zhi Wang
- Chemical Engineering Research Center, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| |
Collapse
|
9
|
Liu L, Yu R, Yin L, Zhang N, Zhu G. Porous organic framework membranes based on interface-induced polymerisation: design, synthesis and applications. Chem Sci 2024; 15:1924-1937. [PMID: 38332830 PMCID: PMC10848777 DOI: 10.1039/d3sc05787a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024] Open
Abstract
Porous organic frameworks (POFs) are novel porous materials that have attracted much attention due to their extraordinary properties, such as high specific surface area, tunable pore size, high stability and ease of functionalisation. However, conventional synthesised POFs are mostly large-sized particles or insoluble powders, which are difficult to recycle and have low mass transfer efficiencies, limiting the development of their cutting-edge applications. Therefore, processing POF materials into membrane structures is of great significance. In recent years, interface engineering strategies have proved to be efficient methods for the formation of POF membranes. In this perspective, recent advances in the use of interfaces to prepare POF membranes are reviewed. The challenges of this strategy and the potential applications of the formed POF membranes are discussed.
Collapse
Affiliation(s)
- Lin Liu
- Department of Chemistry, Northeast Normal University Changchun China
| | - Ruihe Yu
- Department of Chemistry, Northeast Normal University Changchun China
| | - Liying Yin
- Department of Chemistry, Northeast Normal University Changchun China
- School of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Ning Zhang
- Department of Chemistry, Northeast Normal University Changchun China
| | - Guangshan Zhu
- Department of Chemistry, Northeast Normal University Changchun China
| |
Collapse
|
10
|
Kundu S, Haldar R. A roadmap to enhance gas permselectivity in metal-organic framework-based mixed-matrix membranes. Dalton Trans 2023; 52:15253-15276. [PMID: 37603374 DOI: 10.1039/d3dt01878d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Performing gas separation at high efficiency with minimum energy input and reduced carbon footprint is a major challenge. While several separation methods exist at various technology readiness levels, porous membrane-based separation is considered as a disruptive technology. To attain sustainability and required efficiency, different approaches of membrane design have been explored. However, the selectivity-permeation trade-off and membrane aging have restricted further advancement. In this regard, a new generation composite made of organic polymers and metal-organic framework (MOF) fillers shows substantial promise. Organic polymer matrix allows easy processibility, but it has poor permselectivity for gas molecules. Metal-organic frameworks are excellent sieving materials; however, they suffer from poor processibility issues. A combination of these two components makes an ideal sieving membrane, which can potentially outnumber the existing energy intensive distillation strategies. In this perspective, we have discussed key indices that regulate gas permselectivity by a careful selection of the existing literature. While the target gas flux and selectivity values have been a part of many previous reviews and articles, we have presented a concise discussion on the interface design of the MOF-polymer membrane, morphology, and orientation control of MOF fillers in the matrix. Following this, a future roadmap to overcome challenges related to MOF-polymer interfacial defects is outlined.
Collapse
Affiliation(s)
- Susmita Kundu
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India.
| | - Ritesh Haldar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India.
| |
Collapse
|
11
|
Regulating the pore engineering of MOFs by the confined dissolving of PSA template to improve CO2 capture. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Tan X, Robijns S, Thür R, Ke Q, De Witte N, Lamaire A, Li Y, Aslam I, Van Havere D, Donckels T, Van Assche T, Van Speybroeck V, Dusselier M, Vankelecom I. Truly combining the advantages of polymeric and zeolite membranes for gas separations. Science 2022; 378:1189-1194. [PMID: 36520897 DOI: 10.1126/science.ade1411] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mixed-matrix membranes (MMMs) have been investigated to render energy-intensive separations more efficiently by combining the selectivity and permeability performance, robustness, and nonaging properties of the filler with the easy processing, handling, and scaling up of the polymer. However, truly combining all in one single material has proven very challenging. In this work, we filled a commercial polyimide with ultrahigh loadings of a high-aspect ratio, CO2-philic Na-SSZ-39 zeolite with a three-dimensional channel system that precisely separates gas molecules. By carefully designing both zeolite and MMM synthesis, we created a gas-percolation highway across a flexible and aging-resistant (more than 1 year) membrane. The combination of a CO2-CH4 mixed-gas selectivity of ~423 and a CO2 permeability of ~8300 Barrer outperformed all existing polymer-based membranes and even most zeolite-only membranes.
Collapse
Affiliation(s)
- Xiaoyu Tan
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Sven Robijns
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Raymond Thür
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Quanli Ke
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Niels De Witte
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Aran Lamaire
- Center for Molecular Modeling, Ghent University, Tech Lane Ghent Science Park, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Yun Li
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Imran Aslam
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Daan Van Havere
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Thibaut Donckels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tom Van Assche
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling, Ghent University, Tech Lane Ghent Science Park, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Michiel Dusselier
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Ivo Vankelecom
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
13
|
Zhang X, Ren X, Wang Y, Li J. ZIF-8@NENP-NH2 embedded mixed matrix composite membranes utilized as CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Guo Z, Wu H, Chen Y, Zhu S, Jiang H, Song S, Ren Y, Wang Y, Liang X, He G, Li Y, Jiang Z. Missing‐linker Defects in Covalent Organic Framework Membranes for Efficient CO
2
Separation. Angew Chem Int Ed Engl 2022; 61:e202210466. [DOI: 10.1002/anie.202210466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Zheyuan Guo
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin 300072 China
| | - Yu Chen
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- School of Environmental Science and Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Shiyi Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Haifei Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Shuqing Song
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Yuhan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Xu Liang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Guangwei He
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Yonghong Li
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Chemistry and Chemical Engineering Guangdong Laboratory School of Chemical Engineering and Technology Tianjin University Shantou 515031 China
| |
Collapse
|
15
|
Li Q, Wu H, Wang Z, Wang J. Analysis and optimal design of membrane processes for flue gas CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Cheng Y, Datta SJ, Zhou S, Jia J, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes. Chem Soc Rev 2022; 51:8300-8350. [PMID: 36070414 DOI: 10.1039/d2cs00031h] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane-based separations have garnered considerable attention owing to their high energy efficiency, low capital cost, small carbon footprint, and continuous operation mode. As a class of highly porous crystalline materials with well-defined pore systems and rich chemical functionalities, metal-organic frameworks (MOFs) have demonstrated great potential as promising membrane materials over the past few years. Different types of MOF-based membranes, including polycrystalline membranes, mixed matrix membranes (MMMs), and nanosheet-based membranes, have been developed for diversified applications with remarkable separation performances. In this comprehensive review, we first discuss the general classification of membranes and outline the historical development of MOF-based membranes. Subsequently, particular attention is devoted to design strategies for MOF-based membranes, along with detailed discussions on the latest advances on these membranes for various gas and liquid separation processes. Finally, challenges and future opportunities for the industrial implementation of these membranes are identified and outlined with the intent of providing insightful guidance on the design and fabrication of high-performance membranes in the future.
Collapse
Affiliation(s)
- Youdong Cheng
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Shuvo Jit Datta
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Sheng Zhou
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Jiangtao Jia
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Mohamed Eddaoudi
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
17
|
Guo Z, Wu H, Chen Y, Zhu S, Jiang H, Song S, Ren Y, Wang Y, Liang X, He G, Li Y, Jiang Z. Missing‐linker Defects in Covalent Organic Framework Membranes for Efficient CO2 Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zheyuan Guo
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Hong Wu
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Yu Chen
- Tianjin University School of Environmental Science and Engineering CHINA
| | - Shiyi Zhu
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Haifei Jiang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Shuqing Song
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Yanxiong Ren
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Yuhan Wang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Xu Liang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Guangwei He
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Yonghong Li
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Zhongyi Jiang
- Tianjin University School of Chemical Engineering and Technology Weijin Road 300072 Tianjin CHINA
| |
Collapse
|
18
|
Bai L, Wang N, Li Y. Controlled Growth and Self-Assembly of Multiscale Organic Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102811. [PMID: 34486181 DOI: 10.1002/adma.202102811] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Currently, organic semiconductors (OSs) are widely used as active components in practical devices related to energy storage and conversion, optoelectronics, catalysis, and biological sensors, etc. To satisfy the actual requirements of different types of devices, chemical structure design and self-assembly process control have been synergistically performed. The morphology and other basic properties of multiscale OS components are governed on a broad scale from nanometers to macroscopic micrometers. Herein, the up-to-date design strategies for fabricating multiscale OSs are comprehensively reviewed. Related representative works are introduced, applications in practical devices are discussed, and future research directions are presented. Design strategies combining the advances in organic synthetic chemistry and supramolecular assembly technology perform an integral role in the development of a new generation of multiscale OSs.
Collapse
Affiliation(s)
- Ling Bai
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
| | - Ning Wang
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
| | - Yuliang Li
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
- Institute of Chemistry, Chinese Academy of Sciences, No. 2 # Zhongguancun North First Street, Beijing, 100190, P. R. China
| |
Collapse
|
19
|
Fabrication of metal-organic framework-mixed matrix membranes with abundant open metal sites through dual-induction mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Yang Z, Li D, Ao D, Ma C, Li N, Sun Y, Qiao Z, Zhong C, Guiver MD. Self-supported membranes fabricated by a polymer‒hydrogen bonded network with a rigidified MOF framework. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Jiang Q, Guo M. Network Structure Engineering of Organosilica Membranes for Enhanced CO2 Capture Performance. MEMBRANES 2022; 12:membranes12050470. [PMID: 35629796 PMCID: PMC9143424 DOI: 10.3390/membranes12050470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
Abstract
The membrane separation process for targeted CO2 capture application has attracted much attention due to the significant advantages of saving energy and reducing consumption. High-performance separation membranes are a key factor in the membrane separation system. In the present study, we conducted a detailed examination of the effect of calcination temperatures on the network structures of organosilica membranes. Bis(triethoxysilyl)acetylene (BTESA) was selected as a precursor for membrane fabrication via the sol-gel strategy. Calcination temperatures affected the silanol density and the membrane pore size, which was evidenced by the characterization of FT-IR, TG, N2 sorption, and molecular size dependent gas permeance. BTESA membrane fabricated at 500 °C showed a loose structure attributed to the decomposed acetylene bridges and featured an ultrahigh CO2 permeance around 15,531 GPU, but low CO2/N2 selectivity of 3.8. BTESA membrane calcined at 100 °C exhibited satisfactory CO2 permeance of 3434 GPU and the CO2/N2 selectivity of 22, displaying great potential for practical CO2 capture application.
Collapse
Affiliation(s)
- Qiwei Jiang
- Wuxi Ginkgo Plastic Industry Co., Ltd., Heqiao Town, Yixing, Wuxi 214216, China;
| | - Meng Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Correspondence:
| |
Collapse
|
22
|
Wang JX, Wang Y, Nadinov I, Yin J, Gutiérrez-Arzaluz L, Healing G, Alkhazragi O, Cheng Y, Jia J, Alsadun N, Kale VS, Kang CH, Ng TK, Shekhah O, Alshareef HN, Bakr OM, Eddaoudi M, Ooi BS, Mohammed OF. Metal-Organic Frameworks in Mixed-Matrix Membranes for High-Speed Visible-Light Communication. J Am Chem Soc 2022; 144:6813-6820. [PMID: 35412323 DOI: 10.1021/jacs.2c00483] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mixed-matrix membranes (MMMs) based on luminescent metal-organic frameworks (MOFs) and emissive polymers with the combination of their unique advantages have great potential in separation science, sensing, and light-harvesting applications. Here, we demonstrate MMMs for the field of high-speed visible-light communication (VLC) using a very efficient energy transfer strategy at the interface between a MOF and an emissive polymer. Our steady-state and ultrafast time-resolved experiments, supported by high-level density functional theory calculations, revealed that efficient and ultrafast energy transfer from the luminescent MOF to the luminescent polymer can be achieved. The resultant MMMs exhibited an excellent modulation bandwidth of around 80 MHz, which is higher than those of most well-established color-converting phosphors commonly used for optical wireless communication. Interestingly, we found that the efficient energy transfer further improved the light communication data rate from 132 Mb/s of the pure polymer to 215 Mb/s of MMMs. This finding not only showcases the promise of the MMMs for high-speed VLC but also highlights the importance of an efficient and ultrafast energy transfer strategy for the advancement of data rates of optical wireless communication.
Collapse
Affiliation(s)
- Jian-Xin Wang
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- Photonics Laboratory, Division of Computer, Electrical, and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Issatay Nadinov
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jun Yin
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,KAUST Catalysis Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Luis Gutiérrez-Arzaluz
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,KAUST Catalysis Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - George Healing
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar Alkhazragi
- Photonics Laboratory, Division of Computer, Electrical, and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Youdong Cheng
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jiangtao Jia
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Norah Alsadun
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,Department of Chemistry, College of Science, King Faisal University (KFU), Al Hofuf, Al-Ahsa 31982-400, Saudi Arabia
| | - Vinayak S Kale
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Chun Hong Kang
- Photonics Laboratory, Division of Computer, Electrical, and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tien Khee Ng
- Photonics Laboratory, Division of Computer, Electrical, and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Boon S Ooi
- Photonics Laboratory, Division of Computer, Electrical, and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Sun Y, Tian L, Qiao Z, Geng C, Guo X, Zhong C. Surface modification of bilayer structure on metal-organic frameworks towards mixed matrix membranes for efficient propylene/propane separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
24
|
Sandru M, Sandru EM, Ingram WF, Deng J, Stenstad PM, Deng L, Spontak RJ. An integrated materials approach to ultrapermeable and ultraselective CO 2 polymer membranes. Science 2022; 376:90-94. [PMID: 35357934 DOI: 10.1126/science.abj9351] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Advances in membrane technologies that combine greatly improved carbon dioxide (CO2) separation efficacy with low costs, facile fabrication, feasible upscaling, and mechanical robustness are needed to help mitigate global climate change. We introduce a hybrid-integrated membrane strategy wherein a high-permeability thin film is chemically functionalized with a patchy CO2-philic grafted chain surface layer. A high-solubility mechanism enriches the concentration of CO2 in the surface layer hydrated by water vapor naturally present in target gas streams, followed by fast CO2 transport through a highly permeable (but low-selectivity) polymer substrate. Analytical methods confirm the existence of an amine surface layer. Integrated multilayer membranes prepared in this way are not diffusion limited and retain much of their high CO2 permeability, and their CO2 selectivity is concurrently increased in some cases by more than ~150-fold.
Collapse
Affiliation(s)
- Marius Sandru
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway
| | - Eugenia M Sandru
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway
| | - Wade F Ingram
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jing Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Per M Stenstad
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Richard J Spontak
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
25
|
Guo M, Qian J, Xu R, Ren X, Zhong J, Kanezashi M. Boosting the CO2 capture efficiency through aromatic bridged organosilica membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Li N, Wang Z, Wang J. Water-swollen carboxymethyl chitosan (CMC) /polyamide (PA) membranes with octopus-branched nanostructures for CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Pan Y, Guo Y, Liu J, Zhu H, Chen G, Liu Q, Liu G, Jin W. PDMS with Tunable Side Group Mobility and Its Highly Permeable Membrane for Removal of Aromatic Compounds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Yanan Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Jiangying Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Haipeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Quan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| |
Collapse
|
28
|
Regulating interface nucleus growth of CuTCPP membranes via polymer collaboration method. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Pan Y, Guo Y, Liu J, Zhu H, Chen G, Liu Q, Liu G, Jin W. PDMS with Tunable Side Group Mobility and Its Highly Permeable Membrane for Removal of Aromatic Compounds. Angew Chem Int Ed Engl 2021; 61:e202111810. [PMID: 34854181 DOI: 10.1002/anie.202111810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 11/08/2022]
Abstract
Polydimethylsiloxane (PDMS), as the benchmark of organophilic membrane materials, still faces challenges for removal of aromatic compounds due to the undesirable transport channels. In this work, we propose to reconstruct the PDMS conformation with tunable side group mobility by introducing phenyl as rigid molecular spacer to relieve steric hindrance of large-sized aromatic molecules; meanwhile, polymer segments are loosely stacked to provide additional degrees of freedom as increasing the permeant size. Moreover, the reconstructed PDMS is engineered into the composite membrane with prevention of condensation of aromatic compounds in the substrate pores. The resulting thin-film composite membrane achieved one order of magnitude higher flux (11.8 kg m-2 h-1 ) with an equivalent separation factor (12.3) compared with the state-of-the-art membranes for aromatic removal. The permeant-customized membrane molecular and microstructure designing strategy opens a new avenue to develop membranes for specific separation targets.
Collapse
Affiliation(s)
- Yang Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Yanan Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Jiangying Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Haipeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Quan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| |
Collapse
|
31
|
Yang Z, Ao D, Guo X, Nie L, Qiao Z, Zhong C. Preparation and characterization of small-size amorphous MOF mixed matrix membrane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Ying Y, Yang Z, Shi D, Peh SB, Wang Y, Yu X, Yang H, Chai K, Zhao D. Ultrathin covalent organic framework film as membrane gutter layer for high-permeance CO2 capture. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
Li S, Liu Y, Wong DA, Yang J. Recent Advances in Polymer-Inorganic Mixed Matrix Membranes for CO 2 Separation. Polymers (Basel) 2021; 13:2539. [PMID: 34372141 PMCID: PMC8348380 DOI: 10.3390/polym13152539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
Since the second industrial revolution, the use of fossil fuels has been powering the advance of human society. However, the surge in carbon dioxide (CO2) emissions has raised unsettling concerns about global warming and its consequences. Membrane separation technologies have emerged as one of the major carbon reduction approaches because they are less energy-intensive and more environmentally friendly compared to other separation techniques. Compared to pure polymeric membranes, mixed matrix membranes (MMMs) that encompass both a polymeric matrix and molecular sieving fillers have received tremendous attention, as they have the potential to combine the advantages of both polymers and molecular sieves, while cancelling out each other's drawbacks. In this review, we will discuss recent advances in the development of MMMs for CO2 separation. We will discuss general mechanisms of CO2 separation in an MMM, and then compare the performances of MMMs that are based on zeolite, MOF, metal oxide nanoparticles and nanocarbons, with an emphasis on the materials' preparation methods and their chemistries. As the field is advancing fast, we will particularly focus on examples from the last 5 years, in order to provide the most up-to-date overview in this area.
Collapse
Affiliation(s)
- Sipei Li
- Aramco Americas—Boston Research Center, Cambridge, MA 02139, USA; (Y.L.); (D.A.W.)
| | | | | | - John Yang
- Aramco Americas—Boston Research Center, Cambridge, MA 02139, USA; (Y.L.); (D.A.W.)
| |
Collapse
|
34
|
|
35
|
Wang B, Xu J, Wang J, Zhao S, Liu X, Wang Z. High-performance membrane with angstrom-scale manipulation of gas transport channels via polymeric decorated MOF cavities. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Constructing low-resistance and high-selectivity transport multi-channels in mixed matrix membranes for efficient CO2 separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119046] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Li N, Wang Z, Wang M, Gao M, Wu H, Zhao S, Wang J. Swelling-controlled positioning of nanofillers through a polyamide layer in thin-film nanocomposite membranes for CO2 separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Recent Developments in High-Performance Membranes for CO 2 Separation. MEMBRANES 2021; 11:membranes11020156. [PMID: 33672335 PMCID: PMC7926567 DOI: 10.3390/membranes11020156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022]
Abstract
In this perspective article, we provide a detailed outlook on recent developments of high-performance membranes used in CO2 separation applications. A wide range of membrane materials including polymers of intrinsic microporosity, thermally rearranged polymers, metal–organic framework membranes, poly ionic liquid membranes, and facilitated transport membranes were surveyed from the recent literature. In addition, mixed matrix and polymer blend membranes were covered. The CO2 separation performance, as well as other membrane properties such as film flexibility, processibility, aging, and plasticization, were analyzed.
Collapse
|
39
|
Yuan Y, Qiao Z, Xu J, Wang J, Zhao S, Cao X, Wang Z, Guiver MD. Mixed matrix membranes for CO2 separations by incorporating microporous polymer framework fillers with amine-rich nanochannels. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118923] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Dou H, Xu M, Wang B, Zhang Z, Luo D, Shi B, Wen G, Mousavi M, Yu A, Bai Z, Jiang Z, Chen Z. Analogous Mixed Matrix Membranes with Self‐Assembled Interface Pathways. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Mi Xu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Baoyu Wang
- School of Chemical Engineering and Food Science Zhengzhou University of Technology Zhengzhou 450044 China
| | - Zhen Zhang
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Dan Luo
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Benbing Shi
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Guobin Wen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Mahboubeh Mousavi
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Aiping Yu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Henan Normal University Xinxiang 453007 China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Zhongwei Chen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
41
|
Dou H, Xu M, Wang B, Zhang Z, Luo D, Shi B, Wen G, Mousavi M, Yu A, Bai Z, Jiang Z, Chen Z. Analogous Mixed Matrix Membranes with Self‐Assembled Interface Pathways. Angew Chem Int Ed Engl 2021; 60:5864-5870. [DOI: 10.1002/anie.202014893] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Mi Xu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Baoyu Wang
- School of Chemical Engineering and Food Science Zhengzhou University of Technology Zhengzhou 450044 China
| | - Zhen Zhang
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Dan Luo
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Benbing Shi
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Guobin Wen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Mahboubeh Mousavi
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Aiping Yu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Henan Normal University Xinxiang 453007 China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Zhongwei Chen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
42
|
Guo M, Kanezashi M, Nagasawa H, Yu L, Ohshita J, Tsuru T. Amino-decorated organosilica membranes for highly permeable CO2 capture. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|