1
|
Crystalline structure, molecular motion and photocarrier formation in thin films of monodisperse poly(3-hexylthiophene) with various molecular weights. Polym J 2022. [DOI: 10.1038/s41428-022-00713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2
|
Electron-mediated control of nanoporosity for targeted molecular separation in carbon membranes. Nat Commun 2022; 13:4972. [PMID: 36002462 PMCID: PMC9402951 DOI: 10.1038/s41467-022-32703-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon molecular sieve (CMS) membranes are considered game-changers to overcome the challenges that conventional polymeric membranes face. However, CMS membranes also confront a challenge in successfully separating extremely similar-sized molecules. In this article, high-precision tuning of the microstructure of CMS membranes is proposed by controlled electron irradiation for the separation of molecules with size differences less than 0.05 nm. Fitting CMS membranes for targeted molecular separation can be accomplished by irradiation dosage control, resulting in highly-efficient C2H4/C2H6 separation for low dosages (∼250kGy, with selectivity ∼14) and ultra-selective H2/CO2 separation for high dosages (1000∼2000kGy with selectivity ∼80).The electron irradiated CMS also exhibits highly stabilized permeability and selectivity for long-term operation than the pristine CMS, which suffers from significant performance degradation due to physical aging. This study successfully demonstrates electron irradiation as a possible way to construct “designer” nanoporous carbon membranes out of the standard components mostly confined to pyrolysis conditions. Controlled molecular separation by membranes requires 2D materials with precise structures to achieve the desired selectivity. Here authors demonstrate precise selectivity tuning in carbon membranes using electron irradiation.
Collapse
|
3
|
Polyethylene and Semiconducting Polymer Blends for the Fabrication of Organic Field-Effect Transistors: Balancing Charge Transport and Stretchability. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polyethylene is amongst the most used polymers, finding a plethora of applications in our lives owing to its high impact resistance, non-corrosive nature, light weight, cost effectiveness, and easy processing into various shapes from different sizes. Despite these outstanding features, the commodity polymer has been underexplored in the field of organic electronics. This work focuses on the development of new polymer blends based on a low molecular weight linear polyethylene (LPE) derivative with a high-performance diketopyrrolopyrrole-based semiconducting polymer. Physical blending of the polyethylene with semiconducting polymers was performed at ratios varying from 0 to 75 wt.%, and the resulting blends were carefully characterized to reveal their electronic and solid-state properties. The new polymer blends were also characterized to reveal the influence of polyethylene on the mechanical robustness and stretchability of the semiconducting polymer. Overall, the introduction of LPE was shown to have little to no effect on the solid-state properties of the materials, despite some influence on solid-state morphology through phase separation. Organic field-effect transistors prepared from the new blends showed good device characteristics, even at higher ratios of polyethylene, with an average mobility of 0.151 cm2 V−1 s−1 at a 25 wt.% blend ratio. The addition of polyethylene was shown to have a plasticizing effect on the semiconducting polymers, helping to reduce crack width upon strain and contributing to devices accommodating more strain without suffering from decreased performance. The new blends presented in this work provide a novel platform from which to access more mechanically robust organic electronics and show promising features for the utilization of polyethylene for the solution processing of advanced semiconducting materials toward novel soft electronics and sensors.
Collapse
|
4
|
Lang X, Xu Z, Li Q, Yuan L, Thumu U, Zhao H. Modulating the reactivity of polymer with pendant ester groups by methylation reaction for preparing functional polymers. Polym Chem 2022. [DOI: 10.1039/d2py00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chemical reaction triggered the reactivity of polymeric esters.
Collapse
Affiliation(s)
- Xianhua Lang
- Institute of Fundamental and Frontier Sciences (IFFS), University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
- School of Chemical Engineering, Polymer research institute, Sichuan University (SCU), Chengdu 610065, China
| | - Zhao Xu
- School of Chemical Engineering, Polymer research institute, Sichuan University (SCU), Chengdu 610065, China
| | - Qincong Li
- School of Chemical Engineering, Polymer research institute, Sichuan University (SCU), Chengdu 610065, China
| | - Ling Yuan
- School of Chemical Engineering, Polymer research institute, Sichuan University (SCU), Chengdu 610065, China
| | - Udayabhaskararao Thumu
- Institute of Fundamental and Frontier Sciences (IFFS), University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Hui Zhao
- Institute of Fundamental and Frontier Sciences (IFFS), University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
- School of Chemical Engineering, Polymer research institute, Sichuan University (SCU), Chengdu 610065, China
| |
Collapse
|
5
|
Arabeche K, Delbreilh L, Baer E. Physical aging of multilayer polymer films—influence of layer thickness on enthalpy relaxation process, effect of confinement. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02809-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Döhler D, Triana A, Büttner P, Scheler F, Goerlitzer ESA, Harrer J, Vasileva A, Metwalli E, Gruber W, Unruh T, Manshina A, Vogel N, Bachmann J, Mínguez-Bacho I. A Self-Ordered Nanostructured Transparent Electrode of High Structural Quality and Corresponding Functional Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100487. [PMID: 33817974 DOI: 10.1002/smll.202100487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The preparation of a highly ordered nanostructured transparent electrode based on a combination of nanosphere lithography and anodization is presented. The size of perfectly ordered pore domains is improved by an order of magnitude with respect to the state of the art. The concomitantly reduced density of defect pores increases the fraction of pores that are in good electrical contact with the underlying transparent conductive substrate. This improvement in structural quality translates directly and linearly into an improved performance of energy conversion devices built from such electrodes in a linear manner.
Collapse
Affiliation(s)
- Dirk Döhler
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Andrés Triana
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Pascal Büttner
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Florian Scheler
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Eric S A Goerlitzer
- E. S. A. Goerlitzer, J. Harrer, Prof. N. Vogel, Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Johannes Harrer
- E. S. A. Goerlitzer, J. Harrer, Prof. N. Vogel, Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Anna Vasileva
- A. Vasileva, Prof. A. Manshina, Prof. J. Bachmann, Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, St. Petersburg, 198504, Russia
| | - Ezzeldin Metwalli
- Dr. E. Metwalli, Dr. W. Gruber, Prof. T. Unruh, Institute for Crystallography and Structure Physics, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstrasse 3, 91058, Erlangen, Germany
| | - Wolfgang Gruber
- Dr. E. Metwalli, Dr. W. Gruber, Prof. T. Unruh, Institute for Crystallography and Structure Physics, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstrasse 3, 91058, Erlangen, Germany
| | - Tobias Unruh
- Dr. E. Metwalli, Dr. W. Gruber, Prof. T. Unruh, Institute for Crystallography and Structure Physics, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstrasse 3, 91058, Erlangen, Germany
| | - Alina Manshina
- A. Vasileva, Prof. A. Manshina, Prof. J. Bachmann, Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, St. Petersburg, 198504, Russia
| | - Nicolas Vogel
- E. S. A. Goerlitzer, J. Harrer, Prof. N. Vogel, Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Julien Bachmann
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
- A. Vasileva, Prof. A. Manshina, Prof. J. Bachmann, Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, St. Petersburg, 198504, Russia
| | - Ignacio Mínguez-Bacho
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| |
Collapse
|
7
|
Lin YL, Tsai SY, He HC, Lee LR, Ho JH, Wang CL, Chen JT. Crystallization of Poly(methyl methacrylate) Stereocomplexes under Cylindrical Nanoconfinement. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu-Liang Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Song-Yu Tsai
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hung-Chieh He
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Lin-Ruei Lee
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jhih-Hao Ho
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chien-Lung Wang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
8
|
Ko J, Berger R, Lee H, Yoon H, Cho J, Char K. Electronic effects of nano-confinement in functional organic and inorganic materials for optoelectronics. Chem Soc Rev 2021; 50:3585-3628. [DOI: 10.1039/d0cs01501f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides a comprehensive overview of the electronic effects of nano-confinement (from 1D to 3D geometries) on optoelectronic materials and their applications.
Collapse
Affiliation(s)
- Jongkuk Ko
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Republic of Korea
- School of Chemical & Biological Engineering
| | - Rüdiger Berger
- Physics at Interfaces
- Max Planck Institute for Polymer Research
- D-55128 Mainz
- Germany
| | - Hyemin Lee
- Department of Chemical & Biomolecular Engineering
- Seoul National University of Science & Technology
- Seoul 01811
- Republic of Korea
| | - Hyunsik Yoon
- Department of Chemical & Biomolecular Engineering
- Seoul National University of Science & Technology
- Seoul 01811
- Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology
| | - Kookheon Char
- School of Chemical & Biological Engineering
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
9
|
Jeon J, Tan ATL, Lee J, Park JE, Won S, Kim S, Bedewy M, Go J, Kim JK, Hart AJ, Wie JJ. High-Speed Production of Crystalline Semiconducting Polymer Line Arrays by Meniscus Oscillation Self-Assembly. ACS NANO 2020; 14:17254-17261. [PMID: 33232120 DOI: 10.1021/acsnano.0c07268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Evaporative self-assembly of semiconducting polymers is a low-cost route to fabricating micrometer and nanoscale features for use in organic and flexible electronic devices. However, in most cases, rate is limited by the kinetics of solvent evaporation, and it is challenging to achieve uniformity over length- and time-scales that are compelling for manufacturing scale-up. In this study, we report high-throughput, continuous printing of poly(3-hexylthiophene) (P3HT) by a modified doctor blading technique with oscillatory meniscus motion-meniscus-oscillated self-assembly (MOSA), which forms P3HT features ∼100 times faster than previously reported techniques. The meniscus is pinned to a roller, and the oscillatory meniscus motion of the roller generates repetitive cycles of contact-line formation and subsequent slip. The printed P3HT lines demonstrate reproducible and tailorable structures: nanometer scale thickness, micrometer scale width, submillimeter pattern intervals, and millimeter-to-centimeter scale coverage with highly defined boundaries. The line width as well as interval of P3HT patterns can be independently controlled by varying the polymer concentration levels and the rotation rate of the roller. Furthermore, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals that this dynamic meniscus control technique dramatically enhances the crystallinity of P3HT. The MOSA process can potentially be applied to other geometries, and to a wide range of solution-based precursors, and therefore will develop for practical applications in printed electronics.
Collapse
Affiliation(s)
- Jisoo Jeon
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Alvin T L Tan
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jaeyong Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jeong Eun Park
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sukyoung Won
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sanha Kim
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mostafa Bedewy
- Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jamison Go
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jin Kon Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Republic of Korea
| | - A John Hart
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeong Jae Wie
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
10
|
Backes IK, González-Garcı A L, Holtsch A, Müller F, Jacobs K, Kraus T. Molecular Origin of Electrical Conductivity in Gold-Polythiophene Hybrid Particle Films. J Phys Chem Lett 2020; 11:10538-10547. [PMID: 33290078 DOI: 10.1021/acs.jpclett.0c02831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybrid electronic materials combine inorganic metals and semiconductors with π-conjugated polymers. The orientation of the polymer molecules in relation to the inorganic components is crucial for electrical material properties and device performance, but little is known of the configuration of π-conjugated polymers that bind to inorganic surfaces. Highly curved surfaces are common when using nanoscale components, for example, metal nanocrystal cores covered with conductive polymers. It is important to understand their effect on molecular arrangement. Here, we compare the molecular structures and electrical conductivities of well-defined nanoscale gold spheres and rods with shells of the covalently bound polythiophene PTEBS (poly[2-(3-thienyl)-ethyloxy-4-butylsulfonate]). We prepared aqueous sinter-free inks from the particles and printed them. The particles formed highly conductive films immediately after drying. Films with spherical metal cores consistently had 40% lower conductivities than films based on nanorods. Raman and X-ray photoelectron spectroscopy revealed differences in the gold-sulfur bonds of PTEBS on rods and spheres. The fractions of bond sulfur groups implied differences in the alignment of PTEBS with the surface. More polymer molecules were bound in an edge-on configuration on spheres than on rods, where almost all polymers aligned "face-on" with the metal surface. This leads to different interface resistances: gold-polythiophene-gold interfaces between rods with π-π-tacked face-on PTEBS apparently foster electron transport along the surface-normal direction, while edge-on PTEBS does not. Molecular confinement thus increases the conductivity of hybrid inks based on highly curved nanostructures.
Collapse
Affiliation(s)
- Indra K Backes
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | | | - Anne Holtsch
- Experimental Physics and Center for Biophysics, Campus E2 9, Saarland University, 66123 Saarbrücken, Germany
| | - Frank Müller
- Experimental Physics and Center for Biophysics, Campus E2 9, Saarland University, 66123 Saarbrücken, Germany
| | - Karin Jacobs
- Experimental Physics and Center for Biophysics, Campus E2 9, Saarland University, 66123 Saarbrücken, Germany
| | - Tobias Kraus
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Colloid and Interface Chemistry, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
| |
Collapse
|
11
|
Stumphauser T, Kasza G, Domján A, Wacha A, Varga Z, Thomann Y, Thomann R, Pásztói B, Trötschler TM, Kerscher B, Mülhaupt R, Iván B. Nanoconfined Crosslinked Poly(ionic liquid)s with Unprecedented Selective Swelling Properties Obtained by Alkylation in Nanophase-Separated Poly(1-vinylimidazole)- l-poly(tetrahydrofuran) Conetworks. Polymers (Basel) 2020; 12:E2292. [PMID: 33036354 PMCID: PMC7599712 DOI: 10.3390/polym12102292] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 01/13/2023] Open
Abstract
Despite the great interest in nanoconfined materials nowadays, nanocompartmentalized poly(ionic liquid)s (PILs) have been rarely investigated so far. Herein, we report on the successful alkylation of poly(1-vinylimidazole) with methyl iodide in bicontinuous nanophasic poly(1-vinylimidazole)-l-poly(tetrahydrofuran) (PVIm-l-PTHF) amphiphilic conetworks (APCNs) to obtain nanoconfined methylated PVImMe-l-PTHF poly(ionic liquid) conetworks (PIL-CNs). A high extent of alkylation (~95%) was achieved via a simple alkylation process with MeI at room temperature. This does not destroy the bicontinuous nanophasic morphology as proved by SAXS and AFM, and PIL-CNs with 15-20 nm d-spacing and poly(3-methyl-1-vinylimidazolium iodide) PIL nanophases with average domain sizes of 8.2-8.4 nm are formed. Unexpectedly, while the swelling capacity of the PIL-CN dramatically increases in aprotic polar solvents, such as DMF, NMP, and DMSO, reaching higher than 1000% superabsorbent swelling degrees, the equilibrium swelling degrees decrease in even highly polar protic (hydrophilic) solvents, like water and methanol. An unprecedented Gaussian-type relationship was found between the ratios of the swelling degrees versus the polarity index, indicating increased swelling for the nanoconfined PVImMe-l-PTHF PIL-CNs in solvents with a polarity index between ~6 and 9.5. In addition to the nanoconfined structural features, the unique selective superabsorbent swelling behavior of the PIL-CNs can also be utilized in various application fields.
Collapse
Affiliation(s)
- Tímea Stumphauser
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- George Hevesy PhD School of Chemistry, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter sétány 2, H-1117 Budapest, Hungary
| | - György Kasza
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Attila Domján
- NMR Research Laboratory, Instrumentation Center, Research Centre for Natural Sciences, Magyar TudóSok Körútja 2, H-1117 Budapest, Hungary
| | - András Wacha
- Biological Nanochemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Zoltán Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Yi Thomann
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Ralf Thomann
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Balázs Pásztói
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- George Hevesy PhD School of Chemistry, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter sétány 2, H-1117 Budapest, Hungary
| | - Tobias M Trötschler
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
| | - Benjamin Kerscher
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
| | - Rolf Mülhaupt
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
12
|
Xu L, Shi TF, An LJ, Lu YY, Wang LN. Effect of Interfacial Adsorption on the Stability of Thin Polymer Films in a Solvent-induced Process. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2493-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|