1
|
Chen Q, Feng J, Xue Y, Huo S, Dinh T, Xu H, Shi Y, Gao J, Tang LC, Huang G, Lei W, Song P. An Engineered Heterostructured Trinity Enables Fire-Safe, Thermally Conductive Polymer Nanocomposite Films with Low Dielectric Loss. NANO-MICRO LETTERS 2025; 17:168. [PMID: 40009265 DOI: 10.1007/s40820-025-01681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
To adapt to the trend of increasing miniaturization and high integration of microelectronic equipments, there is a high demand for multifunctional thermally conductive (TC) polymeric films combining excellent flame retardancy and low dielectric constant (ε). To date, there have been few successes that achieve such a performance portfolio in polymer films due to their different and even mutually exclusive governing mechanisms. Herein, we propose a trinity strategy for creating a rationally engineered heterostructure nanoadditive (FG@CuP@ZTC) by in situ self-assembly immobilization of copper-phenyl phosphonate (CuP) and zinc-3, 5-diamino-1,2,4-triazole complex (ZTC) onto the fluorinated graphene (FG) surface. Benefiting from the synergistic effects of FG, CuP, and ZTC and the bionic lay-by-lay (LBL) strategy, the as-fabricated waterborne polyurethane (WPU) nanocomposite film with 30 wt% FG@CuP@ZTC exhibits a 55.6% improvement in limiting oxygen index (LOI), 66.0% and 40.5% reductions in peak heat release rate and total heat release, respectively, and 93.3% increase in tensile strength relative to pure WPU film due to the synergistic effects between FG, CuP, and ZTC. Moreover, the WPU nanocomposite film presents a high thermal conductivity (λ) of 12.7 W m-1 K-1 and a low ε of 2.92 at 106 Hz. This work provides a commercially viable rational design strategy to develop high-performance multifunctional polymer nanocomposite films, which hold great potential as advanced polymeric thermal dissipators for high-power-density microelectronics.
Collapse
Affiliation(s)
- Qiang Chen
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jiabing Feng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Yijiao Xue
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, 210042, People's Republic of China
| | - Siqi Huo
- Centre for Future Materials, School of Engineering, University of Southern Queensland, Springfield, 4300, Australia
| | - Toan Dinh
- Centre for Future Materials, School of Engineering, University of Southern Queensland, Springfield, 4300, Australia
| | - Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
- Suzhou Research Institute, Hohai University, Suzhou, 215100, People's Republic of China.
| | - Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Long-Cheng Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Guobo Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, 318000, People's Republic of China.
| | - Weiwei Lei
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Pingan Song
- Centre for Future Materials, School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, 4300, Australia.
| |
Collapse
|
2
|
Peñaranda JSD, Dhara A, Chalishazar A, Minjauw MM, Dendooven J, Detavernier C. Vapour phase deposition of phosphonate-containing alumina thin films using dimethyl vinylphosphonate as precursor. Dalton Trans 2025; 54:2634-2644. [PMID: 39784308 DOI: 10.1039/d4dt02851a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Phosphorous-containing materials are used in a wide array of fields, from energy conversion and storage to heterogeneous catalysis and biomaterials. Among these materials, organic-inorganic metal phosphonate solids and thin films present an interesting option, due to their remarkable thermal and chemical stability. Yet, the synthesis of phosphonate hybrids by vapour phase thin film deposition techniques remains largely unexplored. In this work, we present successful deposition of phosphonate-containing films using dimethyl vinylphosphonate (DMVP) as a phosphonate precursor. Two processes have been studied, being a three-step process comprising alternating exposure to trimethylaluminum (TMA), water (H2O) and DMVP (ABC process), and a four-step process with an extra O3 step following the DMVP pulse (ABCD process). The O3 treatment is employed for in situ functionalisation of the adsorbed phosphonate precursor, transforming the vinyl group into a carboxylic acid end group. For both processes, good precursor saturation was found, with the ABCD process exhibiting a more stable growth per cycle (0.54-0.38 Å per cycle) in the investigated temperature range (100-250 °C). Phosphonate features were visible in FTIR spectra for both films, with the ABCD films also exhibiting a carboxylate signal. XPS showed a higher P incorporation in the ABCD films deposited at 250 °C, although still moderate (P/Al = 0.27), consistent with an alumina structure with phosphonate inclusions. The film stability upon immersion in water was tested, showing a slow oxidation over the course of a week. Finally, annealing experiments in air demonstrated stable films up to 400 °C.
Collapse
Affiliation(s)
- Juan Santo Domingo Peñaranda
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium.
| | - Arpan Dhara
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium.
| | - Aditya Chalishazar
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium.
| | - Matthias M Minjauw
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium.
| | - Jolien Dendooven
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium.
| | - Christophe Detavernier
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium.
| |
Collapse
|
3
|
Ribeiro C, Tan B, Figueira F, Mendes RF, Calbo J, Valente G, Escamilla P, Paz FAA, Rocha J, Dincă M, Souto M. Mixed Ionic and Electronic Conductivity in a Tetrathiafulvalene-Phosphonate Metal-Organic Framework. J Am Chem Soc 2025; 147:63-68. [PMID: 39700340 PMCID: PMC11800380 DOI: 10.1021/jacs.4c13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Mixed ionic-electronic conductors have great potential as materials for energy storage applications. However, despite their promising properties, only a handful of metal-organic frameworks (MOFs) provide efficient pathways for both ion and electron transport. This work reports a proton-electron dual-conductive MOF based on tetrathiafulvalene(TTF)-phosphonate linkers and lanthanum ions. The formation of regular, partially oxidized TTF stacks with short S···S interactions facilitates electron transport via a hopping mechanism, reporting a room-temperature conductivity of 7.2 × 10-6 S cm-1. Additionally, the material exhibits a proton conductivity of 4.9 × 10-5 S cm-1 at 95% relative humidity conditions due to the presence of free -POH groups, enabling efficient proton transport pathways. These results demonstrate the potential of integrating electroactive building blocks along with phosphonate groups toward the development of mixed ionic-electronic conductors.
Collapse
Affiliation(s)
- Catarina Ribeiro
- Department
of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-393 Aveiro, Portugal
| | - Bowen Tan
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Flávio Figueira
- Department
of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-393 Aveiro, Portugal
| | - Ricardo F. Mendes
- Department
of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-393 Aveiro, Portugal
| | - Joaquín Calbo
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático
José Beltrán, 2, 46980 Paterna, Spain
| | - Gonçalo Valente
- Department
of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-393 Aveiro, Portugal
| | - Paula Escamilla
- CIQUS, Centro
Singular de Investigación en Química Bioloxica e Materiais
Moleculares, Departamento de Química-Física, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Filipe A. Almeida Paz
- Department
of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-393 Aveiro, Portugal
| | - João Rocha
- Department
of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-393 Aveiro, Portugal
| | - Mircea Dincă
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Manuel Souto
- Department
of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-393 Aveiro, Portugal
- CIQUS, Centro
Singular de Investigación en Química Bioloxica e Materiais
Moleculares, Departamento de Química-Física, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
- Oportunius,
Galician Innovation Agency (GAIN), 15702 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Zheng T, Tan W, Zheng LM. Porous Metal Phosphonate Frameworks: Construction and Physical Properties. Acc Chem Res 2024; 57:2973-2984. [PMID: 39370784 DOI: 10.1021/acs.accounts.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
ConspectusPorous metal phosphonate frameworks (PMPFs) as a subclass of metal-organic frameworks (MOFs) have promising applications in the fields of gas adsorption and separation, ion exchange and storage, catalysis, sensing, etc. Compared to the typical carboxylate-based MOFs, PMPFs exhibit higher thermal and water stability due to the strong coordination ability of the phosphonate ligands. Despite their robust frameworks, PMPFs account for less than 0.51% of the porous MOFs reported so far. This is because metal phosphonates are highly susceptible to the formation of dense layered or pillared-layered structures, and they precipitate easily and are difficult to crystallize. There is a tendency to use phosphonate ligands containing multiple phosphonate groups and large organic spacers to prevent the formation of dense structures and generate open frameworks with permanent porosity. Thus, many PMPFs are composed of chains or clusters of inorganic metal phosphonates interconnected by organic spacers. Using this feature, a wide range of metal ions and organic components can be selected, and their physical properties can be modulated. However, limited by the small number of PMPFs, there are still relatively few studies on the physical properties of PMPFs, some of which merely remain in the description of the phenomena and lack in-depth elaboration of the structure-property relationship. In this Account, we review the strategies for constructing PMPFs and their physical properties, primarily based on our own research. The construction strategies are categorized according to the number (n = 1-4) of phosphonate groups in the ligand. The physical properties include proton conduction, electrical conduction, magnetism, and photoluminescence properties. Proton conductivity of PMPFs can be enhanced by increasing the proton carrier concentration and mobility. The former can be achieved by adding acidic groups such as -POH and/or introducing acidic guests in the hydrophilic channels. The latter can be attained by introducing conjugate acid-base pairs or elevating the temperature. Semiconducting PMPFs, on the other hand, can be obtained by constructing highly conjugated networks of coordination bonds or introducing large conjugated organic linkers π-π stacked in the lattice. In the case of magnetic PMPFs, long-range magnetic ordering occurs at very low temperatures due to very weak magnetic exchange couplings propagated via O-P-O and/or O(P) units. However, lanthanide compounds may be interesting candidates for single-molecule magnets because of the strong single-ion magnetic anisotropy arising from the spin-orbit coupling and large magnetic moments of lanthanide ions. The luminescent properties of PMPFs depend on the metal ions and/or organic ligands. Emissive PMPFs containing lanthanides and/or uranyl ions are promising for sensing and photonic applications. We conclude with an outlook on the opportunities and challenges for the future development of this promising field.
Collapse
Affiliation(s)
- Tao Zheng
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, Suzhou 215400, China
| | - Wenzhuo Tan
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, Suzhou 215400, China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Otaif KD, Badjah-Hadj-Ahmed AY, ALOthman ZA. Preparation of UiO-66 MOF-Bonded Porous-Layer Open-Tubular Columns Using an In Situ Growth Approach for Gas Chromatography. Molecules 2024; 29:2505. [PMID: 38893383 PMCID: PMC11173385 DOI: 10.3390/molecules29112505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
The thermally stable zirconium-based MOF, UiO-66, was employed for the preparation of bonded porous-layer open-tubular (PLOT) GC columns. The synthesis included the in situ growth of the UiO-66 film on the inner wall of the capillary through a one-step solvothermal procedure. SEM-EDX analysis revealed the formation of a thin, continuous, uniform, and compact layer of UiO-66 polycrystals on the functionalized inner wall of the column. The average polarity (ΔIav = 700) and the McReynolds constants reflected the polar nature of the UiO-66 stationary phase. Several mixtures of small organic compounds and real samples were used to evaluate the separation performance of the fabricated columns. Linear alkanes from n-pentane to n-decane were baseline separated within 1.35 min. Also, a series of six n-alkylbenzenes (C3-C8) were separated within 3 min with a minimum resolution of 3.09, whereas monohalobenzene mixtures were separated at 220 °C within 14s. UiO-66 PLOT columns are ideally suited for the isothermal separation of chlorobenzene structural isomers at 210 °C within 45 s with Rs ≥ 1.37. The prepared column featured outstanding thermal stability (up to 450 °C) without any observed bleeding or significant impact on its performance. This feature enabled the analysis of various petroleum-based samples.
Collapse
Affiliation(s)
- Khadejah D. Otaif
- Department of Chemistry, College of Science, Jazan University, Jazan 82843, Saudi Arabia
| | - Ahmed-Yacine Badjah-Hadj-Ahmed
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Zeid Abdullah ALOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
6
|
Zhang H, Liu S, Zheng A, Wang P, Zheng Z, Wang Z, Cheng H, Dai Y, Huang B, Liu Y. Enhanced Charge Transfer Process and Photocatalytic Activity over a Phosphonate-based MOF via Amorphization Strategy. Angew Chem Int Ed Engl 2024; 63:e202400965. [PMID: 38363034 DOI: 10.1002/anie.202400965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/17/2024]
Abstract
Recently, amorphous materials have gained great attention as an emerging kind of functional material, and their characteristics such as isotropy, absence of grain boundaries, and abundant defects are very likely to outrun the disadvantages of crystalline counterparts, such as low conductivity, and ultimately lead to improved charge transfer efficiency. Herein, we investigated the effect of amorphization on the charge transfer process and photocatalytic performance with a phosphonate-based metal-organic framework (FePPA) as the research object. Comprehensive experimental results suggest that compared to crystalline FePPA, amorphous FePPA has more distorted metal nodes, which affects the electron distribution and consequently improves the photogenerated charge separation efficiency. Meanwhile, the distorted metal nodes in amorphous FePPA also greatly promote the adsorption and activation of O2. Hence, amorphous FePPA exhibits a better performance of photocatalytic C(sp3)-H bond activation for selective oxidation of toluene to benzaldehyde. This work illustrates the advantages of amorphous MOFs in the charge transfer process, which is conducive to the further development of high performance MOFs-based photocatalysts.
Collapse
Affiliation(s)
- Honggang Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Shaozhi Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Aili Zheng
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan, 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
7
|
Beglau THY, Fetzer MNA, Boldog I, Heinen T, Suta M, Janiak C, Yücesan G. Exceptionally Stable And Super-Efficient Electrocatalysts Derived From Semiconducting Metal Phosphonate Frameworks. Chemistry 2024; 30:e202302765. [PMID: 37713258 DOI: 10.1002/chem.202302765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Two new isostructural semiconducting metal-phosphonate frameworks are reported. Co2 [1,4-NDPA] and Zn2 [1,4-NDPA] (1,4-NDPA4- is 1,4-naphthalenediphosphonate) have optical bandgaps of 1.7 eV and 2.5 eV, respectively. The electrocatalyst derived from Co2 [1,4-NPDA] as a precatalyst generated a low overpotential of 374 mV in the oxygen evolution reaction (OER) with a Tafel slope of 43 mV dec-1 at a current density of 10 mA cm-2 in alkaline electrolyte (1 mol L-1 KOH), which is indicative of remarkably superior reaction kinetics. Benchmarking of the OER of Co2 [1,4-NPDA] material as a precatalyst coupled with nickel foam (NF) showed exceptional long-term stability at a current density of 50 mA cm-2 for water splitting compared to the state-of-the-art Pt/C/RuO2 @NF after 30 h in 1 mol L-1 KOH. In order to further understand the OER mechanism, the transformation of Co2 [1,4-NPDA] into its electrocatalytically active species was investigated.
Collapse
Affiliation(s)
- Thi Hai Yen Beglau
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Marcus N A Fetzer
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Istvan Boldog
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Tobias Heinen
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Markus Suta
- Inorganic Photoactive Materials, Institute for Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Christoph Janiak
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Gündoğ Yücesan
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| |
Collapse
|
8
|
Huynh RPS, Evans DR, Lian JX, Spasyuk D, Siahrostrami S, Shimizu GKH. Creating Order in Ultrastable Phosphonate Metal-Organic Frameworks via Isolable Hydrogen-Bonded Intermediates. J Am Chem Soc 2023; 145:21263-21272. [PMID: 37738111 DOI: 10.1021/jacs.3c05279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The stability presented by trivalent metal-organic frameworks (MOFs) makes them an attractive class of materials. With phosphonate-based ligands, crystallization is a challenge, as there are significantly more binding motifs that can be adopted due to the extra oxygen tether compared to carboxylate counterparts and the self-assembly processes are less reversible. Despite this, we have reported charge-assisted hydrogen-bonded metal-organic frameworks (HMOFs) consisting of [Cr(H2O)6]3+ and phosphonate ligands, which were crystallographically characterized. We sought to use these HMOFs as a crystalline intermediate to synthesize ordered Cr(III)-phosphonate MOFs. This can be done by dehydrating the HMOF to remove the aquo ligands around the Cr(III) center, forcing metal-phosphonate coordination. Herein, a new porous HMOF, H-CALF-50, is synthesized and then dehydrated to yield the MOF CALF-50. CALF-50 is ordered, although it is not single crystalline. It does, however, have exceptional stability, maintaining crystallinity and surface area after boiling in water for 3 weeks and soaking in 14.5 M H3PO4 for 24 h and 9 M HCl for 72 h. Computational methods are used to study the HMOF to MOF transformation and give insight into the nature of the structure and the degree of heterogeneity.
Collapse
Affiliation(s)
- Racheal P S Huynh
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - David R Evans
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jian Xiang Lian
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Denis Spasyuk
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Samira Siahrostrami
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - George K H Shimizu
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
9
|
Zheng N, Liu H, Zeng Y. Dynamical Behavior of Pure Spin Current in Organic Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207506. [PMID: 36995070 PMCID: PMC10238225 DOI: 10.1002/advs.202207506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/27/2023] [Indexed: 06/04/2023]
Abstract
Growing concentration on the novel information processing technology and low-cost, flexible materials make the spintronics and organic materials appealing for the future interdisciplinary investigations. Organic spintronics, in this context, has arisen and witnessed great advances during the past two decades owing to the continuous innovative exploitation of the charge-contained spin polarized current. Albeit with such inspiring facts, charge-absent spin angular momentum flow, namely pure spin currents (PSCs) are less probed in organic functional solids. In this review, the past exploring journey of PSC phenomenon in organic materials are retrospected, including non-magnetic semiconductors and molecular magnets. Starting with the basic concepts and the generation mechanism for PSC, the representative experimental observations of PSC in the organic-based networks are subsequently demonstrated and summarized, by accompanying explicit discussion over the propagating mechanism of net spin itself in the organic media. Finally, future perspectives on PSC in organic materials are illustrated mainly from the material point of view, including single molecule magnets, complexes for the organic ligands framework as well as the lanthanide metal complexes, organic radicals, and the emerging 2D organic magnets.
Collapse
Affiliation(s)
- Naihang Zheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
- Guangdong Provincial Key Laboratory of SemiconductorOptoelectronic Materials and Intelligent Photonic SystemsSchool of ScienceHarbin Institute of Technology in Shenzhen518055ShenzhenP. R. China
| | - Haoliang Liu
- Guangdong Provincial Key Laboratory of SemiconductorOptoelectronic Materials and Intelligent Photonic SystemsSchool of ScienceHarbin Institute of Technology in Shenzhen518055ShenzhenP. R. China
| | - Yu‐Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
10
|
Zhao K, Sun W, Li S, Song Z, Zhong M, Zhang D, Gu BN, Liu MJ, Fu H, Liu H, Meng C, Chueh YL. Rational design on high-performance triboelectric nanogenerator consisting of silicon carbide@silicon dioxide nanowhiskers/polydimethylsiloxane (SiC@SiO 2/PDMS) nanocomposite films. DISCOVER NANO 2023; 18:69. [PMID: 37382740 PMCID: PMC10409695 DOI: 10.1186/s11671-023-03822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 06/30/2023]
Abstract
The relatively low output performance of triboelectric nanogenerator (TENG), which faces a challenge in performance improvement, limits its practical applications. Here, a high-performance TENG consisting of a silicon carbide@silicon dioxide nanowhiskers/polydimethylsiloxane (SiC@SiO2/PDMS) nanocomposite film and a superhydrophobic aluminum (Al) plate as triboelectric layers is demonstrated. The 7 wt% SiC@SiO2/PDMS TENG presents a peak voltage of 200 V and a peak current of 30 μA, which are ~ 300 and ~ 500% over that of the PDMS TENG, owing to an increase in dielectric constant and a decrease in dielectric loss of the PDMS film because of electric insulated SiC@SiO2 nanowhiskers. Furthermore, a 10 μF capacitor can be charged up to 3 V within ~ 87 s, which can be continuously operated on the electronic watch for 14 s. The work provides an effective strategy for improving output performance of TENG by adding core-shell nanowhiskers to modulate the dielectric properties of organic materials.
Collapse
Affiliation(s)
- Kun Zhao
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China.
| | - Wanru Sun
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Suixin Li
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Zhenhua Song
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Ming Zhong
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Ding Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, People's Republic of China
| | - Bing-Ni Gu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Colleage of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ming-Jin Liu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Colleage of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hao Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Cheng Meng
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry Biology and Materials Science, East China University of Technology, Nanchang, 330013, People's Republic of China
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Colleage of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan.
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
11
|
Ghosh A, Shyamal S, Palui A, Manna RN, Mondal S, Jana M, Ghosh A, Bhaumik A. Photoelectrochemical Water Oxidation over Novel Semiconducting Zinc-Based Metal-Thiolate Framework. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37699-37708. [PMID: 35960025 DOI: 10.1021/acsami.2c07737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Designing an efficient catalyst for a sustainable photoelectrochemical water oxidation reaction is very challenging in the context of renewable energy research. Here, we have introduced a new semiconducting porous zinc-thiolate framework via successful stitching of an "N" donor linker with a triazine-based tristhiolate secondary building unit in the overall architecture. The introduction of both linker and tristhiolate ligand synergistically modifies the architecture by making it a rigid, crystalline, three-dimensional, thermally stable, and porous framework. Our novel zinc-thiolate framework is used as an n-type semiconductor as revealed from the solid-state UV-vis DRS spectroscopic analysis, ac and dc conductivity analysis, and Mott-Schottky plot. This n-type semiconductor-based zinc-thiolate framework is utilized in the photoelectrochemical water oxidation reaction. It displayed a very high efficiency for a visible-light-driven oxygen evolution reaction (OER) in a KOH medium using standard Ag/AgCl as the reference electrode. The superiority of this material was further revealed from the low onset potential (0.822 mV vs RHE), high photocurrent density (0.204 mA cm-2), good stability, and high O2 evolution rate (77 μmol g-1 of oxygen evolution within 2 h), and a good efficiency (ABPE 0.42%, IPCE 29.6% and APCE 34.5%). Furthermore, the porosity in the overall framework seems to be a blessing to the photoelectrochemical performance due to better mass diffusion of the electrolyte. A detailed mechanism for the OER reaction was analyzed through density functional theory analysis suggesting the potential future of this Zn-thiolate framework for achieving a high efficiency in the sustainable water oxidation reaction.
Collapse
Affiliation(s)
- Anirban Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sanjib Shyamal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arnab Palui
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rabindra Nath Manna
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sujan Mondal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Manish Jana
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Aswini Ghosh
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
12
|
Peeples CA, Çetinkaya A, Tholen P, Schmitt F, Zorlu Y, Bin Yu K, Yazaydin O, Beckmann J, Hanna G, Yücesan G. Coordination-Induced Band Gap Reduction in a Metal-Organic Framework. Chemistry 2022; 28:e202104041. [PMID: 34806792 PMCID: PMC9303878 DOI: 10.1002/chem.202104041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/21/2022]
Abstract
Herein, we report on the synthesis of a microporous, three-dimensional phosphonate metal-organic framework (MOF) with the composition Cu3 (H5 -MTPPA)2 ⋅ 2 NMP (H8 -MTPPA=methane tetra-p-phenylphosphonic acid and NMP=N-methyl-2-pyrrolidone). This MOF, termed TUB1, has a unique one-dimensional inorganic building unit composed of square planar and distorted trigonal bipyramidal copper atoms. It possesses a (calculated) BET surface area of 766.2 m2 /g after removal of the solvents from the voids. The Tauc plot for TUB1 yields indirect and direct band gaps of 2.4 eV and 2.7 eV, respectively. DFT calculations reveal the existence of two spin-dependent gaps of 2.60 eV and 0.48 eV for the alpha and beta spins, respectively, with the lowest unoccupied crystal orbital for both gaps predominantly residing on the square planar copper atoms. The projected density of states suggests that the presence of the square planar copper atoms reduces the overall band gap of TUB1, as the beta-gap for the trigonal bipyramidal copper atoms is 3.72 eV.
Collapse
Affiliation(s)
- Craig A. Peeples
- University of Alberta116 St. and 85 Ave.EdmontonAlbertaT6G 2R3Canada
| | - Ahmet Çetinkaya
- Departement of BioengineeringYildiz Technical UniversityEsenlerIstanbulTurkey
| | - Patrik Tholen
- Technische Universität BerlinGustav-Meyer-Allee 2513355BerlinGermany
| | | | - Yunus Zorlu
- Departement of ChemistryGebze Technical University41400Gebze-KocaeleTurkey
| | - Kai Bin Yu
- University College LondonTorrington PlaceLondonWC1E 7JEUnited Kindom
| | - Ozgur Yazaydin
- University College LondonTorrington PlaceLondonWC1E 7JEUnited Kindom
| | | | - Gabriel Hanna
- University of Alberta116 St. and 85 Ave.EdmontonAlbertaT6G 2R3Canada
| | - Gündoğ Yücesan
- Technische Universität BerlinGustav-Meyer-Allee 2513355BerlinGermany
| |
Collapse
|
13
|
Yuan H, Li N, Fan W, Cai H, Zhao D. Metal-Organic Framework Based Gas Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104374. [PMID: 34939370 PMCID: PMC8867161 DOI: 10.1002/advs.202104374] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Indexed: 05/08/2023]
Abstract
The ever-increasing concerns over indoor/outdoor air quality, industrial gas leakage, food freshness, and medical diagnosis require miniaturized gas sensors with excellent sensitivity, selectivity, stability, low power consumption, cost-effectiveness, and long lifetime. Metal-organic frameworks (MOFs), featuring structural diversity, large specific surface area, controllable pore size/geometry, and host-guest interactions, hold great promises for fabricating various MOF-based devices for diverse applications including gas sensing. Tremendous progress has been made in the past decade on the fabrication of MOF-based sensors with elevated sensitivity and selectivity toward various analytes due to their preconcentrating and molecule-sieving effects. Although several reviews have recently summarized different aspects of this field, a comprehensive review focusing on MOF-based gas sensors is absent. In this review, the latest advance of MOF-based gas sensors relying on different transduction mechanisms, for example, chemiresistive, capacitive/impedimetric, field-effect transistor or Kelvin probe-based, mass-sensitive, and optical ones are comprehensively summarized. The latest progress for making large-area MOF films essential to the mass-production of relevant gas sensors is also included. The structural and compositional features of MOFs are intentionally correlated with the sensing performance. Challenges and opportunities for the further development and practical applications of MOF-based gas sensors are also given.
Collapse
Affiliation(s)
- Hongye Yuan
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Nanxi Li
- Institute of MicroelectronicsA*STAR (Agency for Science, Technology and Research)2 Fusionopolis Way, #08‐02 Innovis TowerSingapore138634Singapore
| | - Weidong Fan
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Hong Cai
- Institute of MicroelectronicsA*STAR (Agency for Science, Technology and Research)2 Fusionopolis Way, #08‐02 Innovis TowerSingapore138634Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| |
Collapse
|
14
|
Eckstein BJ, Brown LC, Noll BC, Moghadasnia MP, Balaich GJ, McGuirk CM. A Porous Chalcogen-Bonded Organic Framework. J Am Chem Soc 2021; 143:20207-20215. [PMID: 34818002 DOI: 10.1021/jacs.1c08642] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The manner of bonding between constituent atoms or molecules invariably influences the properties of materials. Perhaps no material family is more emblematic of this than porous frameworks, wherein the namesake modes of connectivity give rise to discrete subclasses with unique collections of properties. However, established framework classes often display offsetting advantages and disadvantages for a given application. Thus, there exists no universally applicable material, and the discovery of alternative modes of framework connectivity is highly desirable. Here we show that chalcogen bonding, a subclass of σ-hole bonding, is a viable mode of connectivity in low-density porous frameworks. Crystallization studies with the triptycene tris(1,2,5-selenadiazole) molecular tecton reveal how chalcogen bonding can template high-energy lattice structures and how solvent conditions can be rationalized to obtain molecularly programmed porous chalcogen-bonded organic frameworks (ChOFs). These results provide the first evidence that σ-hole bonding can be used to advance the diversity of porous framework materials.
Collapse
Affiliation(s)
- Brian J Eckstein
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Loren C Brown
- Department of Chemistry and Chemistry Research Center, Laboratories for Advanced Materials, United States Air Force Academy, Colorado Springs, Colorado 80840, United States
| | - Bruce C Noll
- Bruker AXS Inc., 5465 East Cheryl Parkway, Madison, Wisconsin 53711, United States
| | - Michael P Moghadasnia
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Gary J Balaich
- Department of Chemistry and Chemistry Research Center, Laboratories for Advanced Materials, United States Air Force Academy, Colorado Springs, Colorado 80840, United States
| | - C Michael McGuirk
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
15
|
Jayababu N, Kim D. CuCo LDHs Coated CuCoTe Honeycomb-Like Nanosheets as a Novel Anode Material for Hybrid Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102369. [PMID: 34323369 DOI: 10.1002/smll.202102369] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks derived metal chalcogenides as a new class of active materials can abolish the existing challenges in supercapacitors with their large electroactive sites and enhanced electrochemical conductivities. With its adequate conductivity and electrochemical properties, tellurium based metal chalcogenide electrodes can deliver better electrochemical performances than other chalcogenides. Herein, CuCoTe honeycomb-like nanosheets are grown on nickel foam (CuCoTe HNSs/NF) and then CuCo layered double hydroxides are successively coated on them (CTC HLSs/NF). The CTC HLSs/NF electrode exhibits tremendous performance with its high specific capacity of 399 mAh g-1 at 7 A g-1 of current density and good capacity retention (81.3%) after 3000 cycles. Finally, CTC HLSs/NF electrode is utilized for the hybrid supercapacitor (HSC) assembly along with activated carbon coated nickel foam in an aqueous electrolyte. The fabricated HSC shows high energy density (214.7 Wh kg-1 ) and power density (40 kW kg-1 ). Moreover, the device retains 96.3% of its capacitance at the end of the 5000th cycle, showing its high stability. Owing to their unique morphology and superior electrochemical properties, the present method of fabrication and selected materials can address the issues faced by electrochemical capacitors.
Collapse
Affiliation(s)
- Nagabandi Jayababu
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, 17104, Republic of Korea
| | - Daewon Kim
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, 17104, Republic of Korea
| |
Collapse
|
16
|
Keil C, Klein J, Schmitt F, Zorlu Y, Haase H, Yücesan G. Arylphosphonate-Tethered Porphyrins: Fluorescence Silencing Speaks a Metal Language in Living Enterocytes*. Chembiochem 2021; 22:1925-1931. [PMID: 33554446 PMCID: PMC8252553 DOI: 10.1002/cbic.202100031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Indexed: 12/22/2022]
Abstract
We report the application of a highly versatile and engineerable novel sensor platform to monitor biologically significant and toxic metal ions in live human Caco-2 enterocytes. The extended conjugation between the fluorescent porphyrin core and metal ions through aromatic phenylphosphonic acid tethers generates a unique turn off and turn on fluorescence and, in addition, shifts in absorption and emission spectra for zinc, cobalt, cadmium and mercury. The reported fluorescent probes p-H8 TPPA and m-H8 TPPA can monitor a wide range of metal ion concentrations via fluorescence titration and also via fluorescence decay curves. Cu- and Zn-induced turn off fluorescence can be differentially reversed by the addition of common chelators. Both p-H8 TPPA and m-H8 TPPA readily pass the mammalian cellular membrane due to their amphipathic character as confirmed by confocal microscopic imaging of living enterocytes.
Collapse
Affiliation(s)
- Claudia Keil
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| | - Julia Klein
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| | - Franz‐Josef Schmitt
- Martin-Luther-Universität Halle-WittenbergDepartment of Physicsvon-Danckelmann-Platz 306120Halle/SaaleGermany
| | - Yunus Zorlu
- Department of ChemistryFaculty of ScienceGebze Technical University41400Gebze-KocaeliTurkey
| | - Hajo Haase
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| | - Gündoğ Yücesan
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| |
Collapse
|
17
|
Lv XW, Weng CC, Zhu YP, Yuan ZY. Nanoporous Metal Phosphonate Hybrid Materials as a Novel Platform for Emerging Applications: A Critical Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005304. [PMID: 33605008 DOI: 10.1002/smll.202005304] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Nanoporous metal phosphonates are propelling the rapid development of emerging energy storage, catalysis, environmental intervention, and biology, the performances of which touch many fundamental aspects of portable electronics, convenient transportation, and sustainable energy conversion systems. Recent years have witnessed tremendous research breakthroughs in these fields in terms of the fascinating pore properties, the structural periodicity, and versatile skeletons of porous metal phosphonates. This review presents recent milestones of porous metal phosphonate research, from the diversified synthesis strategies for controllable pore structures, to several important applications including adsorption and separation, energy conversion and storage, heterogeneous catalysis, membrane engineering, and biomaterials. Highlights of porous structure design for metal phosphonates are described throughout the review and the current challenges and perspectives for future research in this field are discussed at the end. The aim is to provide some guidance for the rational preparation of porous metal phosphonate materials and promote further applications to meet the urgent demands in emerging applications.
Collapse
Affiliation(s)
- Xian-Wei Lv
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chen-Chen Weng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yun-Pei Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
18
|
Ayhan MM, Bayraktar C, Yu KB, Hanna G, Yazaydin AO, Zorlu Y, Yücesan G. A Nanotubular Metal-Organic Framework with a Narrow Bandgap from Extended Conjugation*. Chemistry 2020; 26:14813-14816. [PMID: 32500561 PMCID: PMC7756393 DOI: 10.1002/chem.202001917] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/03/2020] [Indexed: 11/29/2022]
Abstract
A one-dimensional nanotubular metal-organic framework (MOF) [Ni(Cu-H4 TPPA)]⋅2 (CH3 )2 NH2 + (H8 TPPA=5,10,15,20-tetrakis[p-phenylphosphonic acid] porphyrin) constructed by using the arylphosphonic acid H8 TPPA is reported. The structure of this MOF, known as GTUB-4, was solved by using single-crystal X-ray diffraction and its geometric accessible surface area was calculated to be 1102 m2 g-1 , making it the phosphonate MOF with the highest reported surface area. Due to the extended conjugation of its porphyrin core, GTUB-4 possesses narrow indirect and direct bandgaps (1.9 eV and 2.16 eV, respectively) in the semiconductor regime. Thermogravimetric analysis suggests that GTUB-4 is thermally stable up to 400 °C. Owing to its high surface area, low bandgap, and high thermal stability, GTUB-4 could find applications as electrodes in supercapacitors.
Collapse
Affiliation(s)
- M. Menaf Ayhan
- Department of ChemistryFaculty of ScienceGebze Technical University41400GebzeKocaeli (Turkey
| | - Ceyda Bayraktar
- Department of ChemistryFaculty of ScienceGebze Technical University41400GebzeKocaeli (Turkey
| | - Kai Bin Yu
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Gabriel Hanna
- University of AlbertaDepartment of Chemistry116 St. and 85 Ave.EdmontonAlbertaT6G 2R3Canada
| | - A. Ozgur Yazaydin
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Yunus Zorlu
- Department of ChemistryFaculty of ScienceGebze Technical University41400GebzeKocaeli (Turkey
| | - Gündoğ Yücesan
- Technische Universität BerlinDepartment of Food Chemistry and ToxicologyGustav-Meyer-Allee 2513355BerlinGermany
| |
Collapse
|
19
|
Tholen P, Peeples CA, Schaper R, Bayraktar C, Erkal TS, Ayhan MM, Çoşut B, Beckmann J, Yazaydin AO, Wark M, Hanna G, Zorlu Y, Yücesan G. Semiconductive microporous hydrogen-bonded organophosphonic acid frameworks. Nat Commun 2020; 11:3180. [PMID: 32576877 PMCID: PMC7311548 DOI: 10.1038/s41467-020-16977-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Herein, we report a semiconductive, proton-conductive, microporous hydrogen-bonded organic framework (HOF) derived from phenylphosphonic acid and 5,10,15,20-tetrakis[p-phenylphosphonic acid] porphyrin (GTUB5). The structure of GTUB5 was characterized using single crystal X-ray diffraction. A narrow band gap of 1.56 eV was extracted from a UV-Vis spectrum of pure GTUB5 crystals, in excellent agreement with the 1.65 eV band gap obtained from DFT calculations. The same band gap was also measured for GTUB5 in DMSO. The proton conductivity of GTUB5 was measured to be 3.00 × 10-6 S cm-1 at 75 °C and 75% relative humidity. The surface area was estimated to be 422 m2 g-1 from grand canonical Monte Carlo simulations. XRD showed that GTUB5 is thermally stable under relative humidities of up to 90% at 90 °C. These findings pave the way for a new family of organic, microporous, and semiconducting materials with high surface areas and high thermal stabilities.
Collapse
Affiliation(s)
- Patrik Tholen
- Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Craig A Peeples
- University of Alberta, 116 St. and 85 Ave., Edmonton, AB, T6G 2R3, Canada
| | - Raoul Schaper
- Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Ceyda Bayraktar
- Gebze Technical University, Kimya Bölümü, 41400, Gebze-Kocaeli, Turkey
| | | | | | - Bünyemin Çoşut
- Gebze Technical University, Kimya Bölümü, 41400, Gebze-Kocaeli, Turkey
| | - Jens Beckmann
- Universität Bremen, Leobener Str. 7, 28359, Bremen, Germany
| | - A Ozgur Yazaydin
- University College London, Torrington Place, London, WC1E 7JE, UK
| | - Michael Wark
- Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Gabriel Hanna
- University of Alberta, 116 St. and 85 Ave., Edmonton, AB, T6G 2R3, Canada
| | - Yunus Zorlu
- Gebze Technical University, Kimya Bölümü, 41400, Gebze-Kocaeli, Turkey.
| | - Gündoğ Yücesan
- Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| |
Collapse
|