1
|
Chiang LM, Tu CP, Konthoujam JS, Chiang HP, Kao TS, Shih MH. A linearly polarized AC-driven perovskite light emitting device with nanoscale metal contact. NANOSCALE 2025; 17:4732-4739. [PMID: 39868425 DOI: 10.1039/d4nr04894f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Electroluminescent (EL) devices consisting of a single metal-semiconductor contact and a gate effect structure have garnered significant attention in the field of perovskite light-emitting devices. This interest is largely due to the thermal stability of the active layer and the simplicity of the device structure. However, the application of these devices in large-area light-emitting applications is hindered by the inherently low carrier mobility in perovskite materials. In our study, we addressed this limitation by optimizing the nanostructure within the electrodes, which resulted in enhanced electroluminescence and linear polarization. To confirm the luminescence mechanism and the observed enhancement, we conducted comprehensive electrical and optical characterization studies. These characterization studies demonstrated the effectiveness of our approach in improving the performance of perovskite-based EL devices, paving the way for their broader application in large-area light-emitting technologies.
Collapse
Affiliation(s)
- Li-Ming Chiang
- Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
| | - Chi-Peng Tu
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | | | - Hai-Pang Chiang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Tsung-Sheng Kao
- Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Min-Hsiung Shih
- Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
2
|
Zhu S, Xiong F, Gu Y, Chen W, Fan Q, Lu H, Wang T, Yang BR, Deng S. Low Driving Voltage Electroluminescence Device for Integrated Visual Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31657-31665. [PMID: 38838205 DOI: 10.1021/acsami.4c06993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
As a pivotal component in human-machine interactions, display devices have undergone rapid development in modern life. Displays such as alternative current electroluminescence|alternative current electroluminescent (ACEL) devices with high flexibility and long operational lifetimes are essential for wearable electronics. However, ACEL devices are constrained by their inherent high driving voltage and complex fabrication processes. Our work presents an easy blade-coating method for fabricating flexible ACEL display devices based on an all-solution process. By dispersing BaTiO3 and ZnS/Cu powder into waterborne polyurethane, we successfully combined dielectric and fluorescence functionalities within a single layer, significantly reducing the device's driving voltage. Additionally, the ionic conducting hydrogel was chosen as a transparent electrode to achieve good electrical contact and strong interfacial adhesion through in situ polymerization. Owing to the unique method, our ACEL device exhibits high flexibility, low driving voltage (20-100 V), high brightness (300+ cd/m2 at 60 V), and environmental friendliness. Furthermore, by repurposing the hydrogel electrode, we integrated strain visualization capabilities within a single device, highlighting its potential for applications such as wearable healthcare monitoring.
Collapse
Affiliation(s)
- Simu Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Feng Xiong
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yifan Gu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Weichun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qitian Fan
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Hao Lu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ting Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Jiang W, Lee S, Zan G, Zhao K, Park C. Alternating Current Electroluminescence for Human-Interactive Sensing Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304053. [PMID: 37696051 DOI: 10.1002/adma.202304053] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/04/2023] [Indexed: 09/13/2023]
Abstract
The development of stimuli-interactive displays based on alternating current (AC)-driven electroluminescence (EL) is of great interest, owing to their simple device architectures suitable for wearable applications requiring resilient mechanical flexibility and stretchability. AC-EL displays can serve as emerging platforms for various human-interactive sensing displays (HISDs) where human information is electrically detected and directly visualized using EL, promoting the development of the interaction of human-machine technologies. This review provides a holistic overview of the latest developments in AC-EL displays with an emphasis on their applications for HISDs. AC-EL displays based on exciton recombination or impact excitations of hot electrons are classified into four representative groups depending upon their device architecture: 1) displays without insulating layers, 2) displays with single insulating layers, 3) displays with double insulating layers, and 4) displays with EL materials embedded in an insulating matrix. State-of-the-art AC HISDs are discussed. Furthermore, emerging stimuli-interactive AC-EL displays are described, followed by a discussion of scientific and engineering challenges and perspectives for future stimuli-interactive AC-EL displays serving as photo-electronic human-machine interfaces.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Guangtao Zan
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kaiying Zhao
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Spin Convergence Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02791, Republic of Korea
| |
Collapse
|
4
|
Konthoujam JS, Lin YS, Chang YH, Lin HT, Chang CY, Zhang YW, Lin SY, Kuo HC, Shih MH. Dynamical characteristics of AC-driven hybrid WSe 2 monolayer/AlGaInP quantum wells light-emitting device. DISCOVER NANO 2023; 18:140. [PMID: 37943364 PMCID: PMC10635932 DOI: 10.1186/s11671-023-03920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
The exploration of functional light-emitting devices and numerous optoelectronic applications can be accomplished on an elegant platform provided by rapidly developing transition metal dichalcogenides (TMDCs). However, TMDCs-based light emitting devices encounter certain serious difficulties, such as high resistance losses from ohmic contacts or the need for complex heterostructures, which restricts the device applications. Despite the fact that AC-driven light emitting devices have developed ways to overcome these challenges, there is still a significant demand for multiple wavelength emission from a single device, which is necessary for full color light emitting devices. Here, we developed a dual-color AC-driven light-emitting device by integrating the WSe2 monolayer and AlGaInP-GaInP multiple quantum well (MQW) structures in the form of capacitor structure using AlOx insulating layer between the two emitters. In order to comprehend the characteristics of the hybrid device under various driving circumstances, we investigate the frequency-dependent EL intensity of the hybrid device using an equivalent RC circuit model. The time-resolved electroluminescence (TREL) characteristics of the hybrid device were analyzed in details to elucidate the underlying physical mechanisms governing its performance under varying applied frequencies. This dual-color hybrid light-emitting device enables the use of 2-D TMDC-based light emitters in a wider range of applications, including broad-band LEDs, quantum display systems, and chip-scale optoelectronic integrated systems.
Collapse
Affiliation(s)
| | - Yen-Shou Lin
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ya-Hui Chang
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Hsiang-Ting Lin
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan
| | - Chiao-Yun Chang
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Wei Zhang
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Shih-Yen Lin
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Hao-Chung Kuo
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Min-Hsiung Shih
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan.
- Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
- Department of Photonics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
5
|
Rangnekar SV, Sangwan VK, Jin M, Khalaj M, Szydłowska BM, Dasgupta A, Kuo L, Kurtz HE, Marks TJ, Hersam MC. Electroluminescence from Megasonically Solution-Processed MoS 2 Nanosheet Films. ACS NANO 2023; 17:17516-17526. [PMID: 37606956 DOI: 10.1021/acsnano.3c06034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Due to their superior optoelectronic properties, monolayer two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant attention for electroluminescent devices. However, challenges in isolating optoelectronically active TMD monolayers using scalable liquid phase exfoliation have precluded electroluminescence in large-area, solution-processed TMD films. Here, we overcome these limitations and demonstrate electroluminescence from molybdenum disulfide (MoS2) nanosheet films by employing a monolayer-rich MoS2 ink produced by electrochemical intercalation and megasonic exfoliation. Characteristic monolayer MoS2 photoluminescence and electroluminescence spectral peaks at 1.88-1.90 eV are observed in megasonicated MoS2 films, with the emission intensity increasing with film thickness over the range 10-70 nm. Furthermore, employing a vertical light-emitting capacitor architecture enables uniform electroluminescence in large-area devices. These results indicate that megasonically exfoliated MoS2 monolayers retain their direct bandgap character in electrically percolating thin films even following multistep solution processing. Overall, this work establishes megasonicated MoS2 inks as an additive manufacturing platform for flexible, patterned, and miniaturized light sources that can likely be expanded to other TMD semiconductors.
Collapse
Affiliation(s)
- Sonal V Rangnekar
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mengru Jin
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Maryam Khalaj
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Beata M Szydłowska
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Anushka Dasgupta
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lidia Kuo
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Heather E Kurtz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Tobin J Marks
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Wang V, Uddin SZ, Park J, Javey A. Highly multicolored light-emitting arrays for compressive spectroscopy. SCIENCE ADVANCES 2023; 9:eadg1607. [PMID: 37075124 PMCID: PMC10115405 DOI: 10.1126/sciadv.adg1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Miniaturized, multicolored light-emitting device arrays are promising for applications in sensing, imaging, computing, and more, but the range of emission colors achievable by a conventional light-emitting diode is limited by material or device constraints. In this work, we demonstrate a highly multicolored light-emitting array with 49 different, individually addressable colors on a single chip. The array consists of pulsed-driven metal-oxide-semiconductor capacitors, which generate electroluminescence from microdispensed materials spanning a diverse range of colors and spectral shapes, enabling facile generation of arbitrary light spectra across a broad wavelength range (400 to 1400 nm). When combined with compressive reconstruction algorithms, these arrays can be used to perform spectroscopic measurements in a compact manner without diffractive optics. As an example, we demonstrate microscale spectral imaging of samples using a multiplexed electroluminescent array in conjunction with a monochrome camera.
Collapse
Affiliation(s)
- Vivian Wang
- Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Shiekh Zia Uddin
- Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junho Park
- Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author.
| |
Collapse
|
7
|
Chang YH, Lin YS, James Singh K, Lin HT, Chang CY, Chen ZZ, Zhang YW, Lin SY, Kuo HC, Shih MH. AC-driven multicolor electroluminescence from a hybrid WSe 2 monolayer/AlGaInP quantum well light-emitting device. NANOSCALE 2023; 15:1347-1356. [PMID: 36562246 DOI: 10.1039/d2nr03725d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Light-emitting diodes (LEDs) are used widely, but when operated at a low-voltage direct current (DC), they consume unnecessary power because a converter must be used to convert it to an alternating current (AC). DC flow across devices also causes charge accumulation at a high current density, leading to lowered LED reliability. In contrast, gallium-nitride-based LEDs can be operated without an AC-DC converter being required, potentially leading to greater energy efficiency and reliability. In this study, we developed a multicolor AC-driven light-emitting device by integrating a WSe2 monolayer and AlGaInP-GaInP multiple quantum well (MQW) structures. The CVD-grown WSe2 monolayer was placed on the top of an AlGaInP-based light-emitting diode (LED) wafer to create a two-dimensional/three-dimensional heterostructure. The interfaces of these hybrid devices are characterized and verified through transmission electron microscopy and energy-dispersive X-ray spectroscopy techniques. More than 20% energy conversion from the AlGaInP MQWs to the WSe2 monolayer was observed to boost the WSe2 monolayer emissions. The voltage dependence of the electroluminescence intensity was characterized. Electroluminescence intensity-voltage characteristic curves indicated that thermionic emission was the mechanism underlying carrier injection across the potential barrier at the Ag-WSe2 monolayer interface at low voltage, whereas Fowler-Nordheim emission was the mechanism at voltages higher than approximately 8.0 V. These multi-color hybrid light-emitting devices both expand the wavelength range of 2-D TMDC-based light emitters and support their implementation in applications such as chip-scale optoelectronic integrated systems, broad-band LEDs, and quantum display systems.
Collapse
Affiliation(s)
- Ya-Hui Chang
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yen-Shou Lin
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Konthoujam James Singh
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hsiang-Ting Lin
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
| | - Chiao-Yun Chang
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Electrical Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Zheng-Zhe Chen
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Physics, National Taiwan University, Taipei, Taiwan, Taipei 10617, Taiwan
| | - Yu-Wei Zhang
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Yen Lin
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Chung Kuo
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Min-Hsiung Shih
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
8
|
Uddin SZ, Higashitarumizu N, Kim H, Rahman IKMR, Javey A. Efficiency Roll-Off Free Electroluminescence from Monolayer WSe 2. NANO LETTERS 2022; 22:5316-5321. [PMID: 35729730 DOI: 10.1021/acs.nanolett.2c01311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exciton-exciton annihilation (EEA) is a nonradiative process commonly observed in excitonic materials at high exciton densities. Like Auger recombination, EEA degrades luminescence efficiency at high exciton densities and causes efficiency roll-off in light-emitting devices. Near-unity photoluminescence quantum yield has been demonstrated in transition metal dichalcogenides (TMDCs) at all exciton densities with optimal band structure modification mediated by strain. Although the recombination pathways in TMDCs are well understood, the practical application of light-emitting devices has been challenging. Here, we demonstrate a roll-off free electroluminescence (EL) device composed of TMDC monolayers tunable by strain. We show a 2 orders of magnitude EL enhancement from the WSe2 monolayer by applying a small strain of 0.5%. We attain an internal quantum efficiency of 8% at all injection rates. Finally, we demonstrate transient EL turn-on voltages as small as the band gap. Our approach will contribute to practical applications of roll-off free optoelectronic devices based on excitonic materials.
Collapse
Affiliation(s)
- Shiekh Zia Uddin
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Naoki Higashitarumizu
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hyungjin Kim
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - I K M Reaz Rahman
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Wang V, Javey A. A Resonantly Driven, Electroluminescent Metal Oxide Semiconductor Capacitor with High Power Efficiency. ACS NANO 2021; 15:15210-15217. [PMID: 34436863 DOI: 10.1021/acsnano.1c05729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electroluminescence can be generated from a wide variety of emissive materials using a simple, generic device structure. In such a device, emissive materials are deposited by various means on a metal oxide semiconductor capacitor structure across which alternating current voltage is applied. However, these devices suffer from low external efficiencies and require the application of high voltages, thus hindering their practical usage and raising questions about the possible efficiencies that can be achieved using alternating current driving schemes in which injection of bipolar charges does not occur simultaneously. We show that appropriately chosen reactive electrical components can be leveraged to generate passive voltage gain across the device, allowing operation at input voltages below 1 V for devices across a range of gate oxide thicknesses. Furthermore, high power efficiencies are observed when using thermally activated delayed fluorescence emitters deposited by a single thermal evaporation step, suggesting that the efficiency of a light-emitting device with simplified structure can be high.
Collapse
Affiliation(s)
- Vivian Wang
- Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|