1
|
Menandro A, Bohne C, Péres LO. Fluorescent Self-Supporting Composite Film Formed from Chitosan and the Neutral Poly(3-hexylthiophene- co-1,4-phenylene) Polymer with Enhanced Dispersion Properties for a Small Molecule. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10020-10028. [PMID: 40193321 PMCID: PMC12020410 DOI: 10.1021/acs.langmuir.5c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
A composite film of chitosan (Ch) with a neutral conjugated polymer, poly(3-hexylthiophene-co-1,4-phenylene) (PTPh), was developed to combine the adsorption capacity of Ch with the fluorescence sensitivity of PTPh. Characterization of the films using thermogravimetric analysis, microscopy, and infrared, absorption, and fluorescence spectroscopies revealed that the dispersity of the target small molecule, 4-aminoazobenzene (4-AAB), was improved in the composite film compared to the pristine Ch film as evidenced in microscopy studies. In the presence of 4-AAB, the Ch/PTPh film exhibited fluorescence quenching at low 4-AAB concentrations and changes in emission spectra at higher concentrations. Photoisomerization studies suggested that the improved dispersity of 4-AAB in the composite film is due to an increase in the free volume provided by PTPh, with faster cis-to-trans isomerization observed when PTPh was present. Proof-of-concept adsorption experiments showed that the composite film adsorbed 4-AAB from an aqueous solution, leading to a change in the emission properties of the film. This qualitative characterization uncovered a dual role for the conjugated polymer in the composite film: the addition of the polymer changed the morphology and robustness of the film, and the polymer also provides the fluorophore to sense adsorbed molecules over a wide range of 4-AAB concentrations. These results show that the strategy of incorporating water-insoluble polymers at low concentrations into a versatile biopolymer leads to enhanced functionalities of a composite material.
Collapse
Affiliation(s)
- Alessandra
S. Menandro
- Laboratory
of Hybrid Materials, Federal University
of São Paulo, Diadema, São Paulo 09913-030, Brazil
| | - Cornelia Bohne
- Department
of Chemistry, University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
- Centre
for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada
| | - Laura O. Péres
- Laboratory
of Hybrid Materials, Federal University
of São Paulo, Diadema, São Paulo 09913-030, Brazil
| |
Collapse
|
2
|
Lotocki V, Battaglia AM, Moon N, Titi HM, Seferos DS. Conjugated core-shell bottlebrush polymers that exhibit crystallization-driven self-assembly. Chem Sci 2025; 16:920-932. [PMID: 39660296 PMCID: PMC11626758 DOI: 10.1039/d4sc06868h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Bottlebrush polymers are complex architectures with densely grafted polymer side chains along polymeric backbones. The dense and conformationally extended chains in bottlebrush polymers give rise to unique properties, including low chain entanglement, low critical aggregation concentrations, and elastomeric properties in the bulk phase. Conjugated polymers have garnered attention as lightweight, processible, and flexible semi-conducting materials. They are promising candidates in electronic devices and sensors, but their optoelectronic properties depend on adequate polymer ordering, π-π interactions, and crystallization. Crystallization-driven self-assembly of conjugated polymers has become a prominent method to optimize properties including band energies, redox potentials, and exciton diffusion and transport. Much progress has been made in controlled block copolymer self-assembly, but despite their promising properties, reports of conjugated bottlebrushes have been limited, and their self-assembly is relatively unexplored. For the first time, we report the synthesis of conjugated core-shell bottlebrush polymers. These materials contain poly(3-hexylthiophene) (P3HT) and poly(ethylene glycol) (PEG) in either core or shell position. We demonstrate that the use of P3HT as a crystallizable conjugated polymer and PEG as a colloidally stabilizing and disaggregating block facilitates their self-assembly into a number of unique crystalline morphologies with longer conjugation lengths and lower exciton bandwidths relative to analogous diblock copolymers. These include intramolecularly self-assembled segregated bottlebrush polymers, short nanofibers formed by end-on-end stacking of bottlebrush molecules, extremely long >20 μm nanofibers formed exclusively by end-on-end stacking, and >15 μm nanoribbons formed from both end-on-end and side-by-side stacking of bottlebrush polymers.
Collapse
Affiliation(s)
- Victor Lotocki
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Alicia M Battaglia
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Nahye Moon
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Hatem M Titi
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street Toronto Ontario M5S 3E5 Canada
| |
Collapse
|
3
|
Li X, Wang H, Li Z, Liu S, Chen Y, Ruan Z, Yao Z, Wei G, Cao C, Zheng W, Guan W. Full-active pharmaceutical ingredient nanosensitizer for augmented photoimmunotherapy by synergistic mitochondria targeting and immunogenic death inducing. MedComm (Beijing) 2024; 5:e756. [PMID: 39525955 PMCID: PMC11550090 DOI: 10.1002/mco2.756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 11/16/2024] Open
Abstract
The precise and effective activation of the immune response is crucial in promising therapy curing cancer. Photoimmunotherapy (PIT) is an emerging strategy for precise regulation and highly spatiotemporal selectivity. However, this approach faces a significant challenge due to the off-target effect and the immunosuppressive microenvironment. To address this challenge, a nanoscale full-active pharmaceutical ingredient (API) photo-immune stimulator was developed. This formulation overcomes the limitations of PIT by strengthening the ability to penetrate tumors deeply and inducing precise and potent mitochondria-targeted dual-mode photodynamic therapy and photothermal therapy. Along with inhibiting overexpressed Hsp90, this nanosensitizer in turn improves the immunosuppressive microenvironment. Ultimately, this mitochondria-targeted PIT demonstrated potent antitumor efficacy, achieving a remarkable inhibition rate of ≥95% for both established primary tumors and distant abscopal tumors. In conclusion, this novel self-delivery full-API nanosystem enhances the efficacy of phototherapy and reprograms the immunosuppressive microenvironment, thereby holding great promise in the development of precise and effective immunotherapy.
Collapse
Affiliation(s)
- Xianghui Li
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Haoran Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingChina
| | - Zhiyan Li
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Song Liu
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Yuanyuan Chen
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhuren Ruan
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhijian Yao
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Gao Wei
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Cunwei Cao
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wenjun Zheng
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wenxian Guan
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| |
Collapse
|
4
|
Li Y, Shan X, Li S, Wang J, Li Z, Wang Z, Li X, Hong W, Li M, Ma Y. Nanoarchitectonics on Electrosynthesis and Assembly of Conjugated Metallopolymers. Angew Chem Int Ed Engl 2023; 62:e202311778. [PMID: 37933712 DOI: 10.1002/anie.202311778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
In contrast to edge-on and face-on orientations, end-on uniaxial conjugated polymers have the theoretical possibility of providing a macroscopic crystalline film. However, their fabrication is insurmountable due to sluggishly thermodynamic equilibrium states. Herein, we report the programmatic pathway to fabricate nanoarchitectonics on end-on uniaxial conjugated metallopolymers by surface-initiated simultaneous electrosynthesis and assembly. Self-assembled monolayer (SAM) with bottom-up oriented electroactive molecules as a temple allows orientation, stacking, and reactive addition of monomers triggered by switching alternative redox reactions as well as crystallization of small molecules. Repeating the same reaction can repair the unreactive site on the SAM and dynamically and statistically ensure maximum iterative coverage with ideal linear coefficients between optical or electrical responses and iterative times. The resulting nanoarchitectonics on uniaxially assembled end-on polymers over centimeter-sized areas have a subnanometer-uniform morphology and exhibit ultrahigh modulus as well as an inorganic indium tin oxides and the highest conductance among conjugated molecular monolayers. Their memristive devices provide quantitative electrical and optical responses as a function of molecular length, bias, and iterative junctions. Precise processing of nanoarchitectonics as an electrically assisted assembly or printing technique can present sophisticated optoelectric functions and dimensional batch-to-batch consistency for micro-sized organic materials and electronics.
Collapse
Affiliation(s)
- Yongfang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xuanyu Shan
- Centre for Advanced Optoelectronic Functional Materials Research, Northeast Normal University, Changchun, 130000, China
| | - Shumu Li
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
| | - Jinxin Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Zhongqiang Wang
- Centre for Advanced Optoelectronic Functional Materials Research, Northeast Normal University, Changchun, 130000, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuguang Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
5
|
Sun W, Wang C, Tian C, Li X, Hu X, Liu S. Nanotechnology for brain tumor imaging and therapy based on π-conjugated materials: state-of-the-art advances and prospects. Front Chem 2023; 11:1301496. [PMID: 38025074 PMCID: PMC10663370 DOI: 10.3389/fchem.2023.1301496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In contemporary biomedical research, the development of nanotechnology has brought forth numerous possibilities for brain tumor imaging and therapy. Among these, π-conjugated materials have garnered significant attention as a special class of nanomaterials in brain tumor-related studies. With their excellent optical and electronic properties, π-conjugated materials can be tailored in structure and nature to facilitate applications in multimodal imaging, nano-drug delivery, photothermal therapy, and other related fields. This review focuses on presenting the cutting-edge advances and application prospects of π-conjugated materials in brain tumor imaging and therapeutic nanotechnology.
Collapse
Affiliation(s)
- Wenshe Sun
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Congxiao Wang
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuan Tian
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueda Li
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaokun Hu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shifeng Liu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
6
|
Zhang Y, Tian J, Shaikh H, MacKenzie HK, He Y, Zhao C, Lei S, Ren Y, Manners I. Tailored Energy Funneling in Photocatalytic π-Conjugated Polymer Nanofibers for High-Performance Hydrogen Production. J Am Chem Soc 2023; 145:22539-22547. [PMID: 37788384 DOI: 10.1021/jacs.3c07443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The creation of artificial high-performance photosynthetic assemblies with a tailorable antenna system to deliver absorbed solar energy to a photosynthetic reaction center, thereby mimicking biological photosynthesis, remains a major challenge. We report the construction of recyclable, high-performance photosynthetic nanofibers with a crystalline π-conjugated polyfluorene core as an antenna system that funnels absorbed solar energy to spatially defined sensitized Co(II) porphyrin photocatalysts for the hydrogen evolution reaction. Highly effective energy funneling was achieved by tuning the dimensions of the nanofibers to exploit the very long exciton diffusion lengths (>200 nm) associated with the highly crystalline polyfluorene core formed using the living crystallization-driven self-assembly seeded growth method. This enabled efficient solar light-driven hydrogen production from water with a turnover number of over 450 for 8 h of irradiation, an H2 production rate of ca. 65 mmol h-1 g-1, and an overall quantum yield of 0.4% in the wavelength region (<405 nm) beyond the absorption of the molecular photocatalyst. The strategy of using a tailored antenna system based on π-conjugated polymers and maximizing exciton transport to a reaction center reported in this work opens up future opportunities for potential applications in other fields such as solar overall water splitting, CO2 reduction, and photocatalytic small molecule synthesis.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jia Tian
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Huda Shaikh
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Harvey K MacKenzie
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Yunxiang He
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Chuanqi Zhao
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Shixing Lei
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Yangyang Ren
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
7
|
Yao Z, Lundqvist E, Kuang Y, Ardoña HAM. Engineering Multi-Scale Organization for Biotic and Organic Abiotic Electroactive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205381. [PMID: 36670065 PMCID: PMC10074131 DOI: 10.1002/advs.202205381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Multi-scale organization of molecular and living components is one of the most critical parameters that regulate charge transport in electroactive systems-whether abiotic, biotic, or hybrid interfaces. In this article, an overview of the current state-of-the-art for controlling molecular order, nanoscale assembly, microstructure domains, and macroscale architectures of electroactive organic interfaces used for biomedical applications is provided. Discussed herein are the leading strategies and challenges to date for engineering the multi-scale organization of electroactive organic materials, including biomolecule-based materials, synthetic conjugated molecules, polymers, and their biohybrid analogs. Importantly, this review provides a unique discussion on how the dependence of conduction phenomena on structural organization is observed for electroactive organic materials, as well as for their living counterparts in electrogenic tissues and biotic-abiotic interfaces. Expansion of fabrication capabilities that enable higher resolution and throughput for the engineering of ordered, patterned, and architecture electroactive systems will significantly impact the future of bioelectronic technologies for medical devices, bioinspired harvesting platforms, and in vitro models of electroactive tissues. In summary, this article presents how ordering at multiple scales is important for modulating transport in both the electroactive organic, abiotic, and living components of bioelectronic systems.
Collapse
Affiliation(s)
- Ze‐Fan Yao
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Department of ChemistrySchool of Physical SciencesUniversity of CaliforniaIrvineCA92697USA
| | - Emil Lundqvist
- Department of Biomedical EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
| | - Yuyao Kuang
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
| | - Herdeline Ann M. Ardoña
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Department of ChemistrySchool of Physical SciencesUniversity of CaliforniaIrvineCA92697USA
- Department of Biomedical EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Sue & Bill Gross Stem Cell Research CenterUniversity of CaliforniaIrvineCA92697USA
| |
Collapse
|
8
|
Bendrea AD, Cianga L, Göen Colak D, Constantinescu D, Cianga I. Thiophene End-Functionalized Oligo-(D,L-Lactide) as a New Electroactive Macromonomer for the "Hairy-Rod" Type Conjugated Polymers Synthesis. Polymers (Basel) 2023; 15:polym15051094. [PMID: 36904339 PMCID: PMC10006927 DOI: 10.3390/polym15051094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The development of the modern society imposes a fast-growing demand for new advanced functional polymer materials. To this aim, one of the most plausible current methodologies is the end-group functionalization of existing conventional polymers. If the end functional group is able to polymerize, this method enables the synthesis of a molecularly complex, grafted architecture that opens the access to a wider range of material properties, as well as tailoring the special functions required for certain applications. In this context, the present paper reports on α-thienyl-ω-hydroxyl-end-groups functionalized oligo-(D,L-lactide) (Th-PDLLA), which was designed to combine the polymerizability and photophysical properties of thiophene with the biocompatibility and biodegradability of poly-(D,L-lactide). Th-PDLLA was synthesized using the path of "functional initiator" in the ring-opening polymerization (ROP) of (D,L)-lactide, assisted by stannous 2-ethyl hexanoate (Sn(oct)2). The results of NMR and FT-IR spectroscopic methods confirmed the Th-PDLLA's expected structure, while the oligomeric nature of Th-PDLLA, as resulting from the calculations based on 1H-NMR data, is supported by the findings from gel permeation chromatography (GPC) and by the results of the thermal analyses. The behavior of Th-PDLLA in different organic solvents, evaluated by UV-vis and fluorescence spectroscopy, but also by dynamic light scattering (DLS), suggested the presence of colloidal supramolecular structures, underlining the nature of the macromonomer Th-PDLLA as an "shape amphiphile". To test its functionality, the ability of Th-PDLLA to work as a building block for the synthesis of molecular composites was demonstrated by photoinduced oxidative homopolymerization in the presence of diphenyliodonium salt (DPI). The occurrence of a polymerization process, with the formation of a thiophene-conjugated oligomeric main chain grafted with oligomeric PDLLA, was proven, in addition to the visual changes, by the results of GPC, 1H-NMR, FT-IR, UV-vis and fluorescence measurements.
Collapse
Affiliation(s)
- Anca-Dana Bendrea
- “PetruPoni” Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A, Grigore–GhicaVoda Alley, 700487 Iasi, Romania
| | - Luminita Cianga
- “PetruPoni” Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A, Grigore–GhicaVoda Alley, 700487 Iasi, Romania
- Correspondence: (L.C.); (I.C.); Tel.: +40-332-880-220 (L.C. & I.C.)
| | - Demet Göen Colak
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Istanbul, Turkey
| | | | - Ioan Cianga
- “PetruPoni” Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A, Grigore–GhicaVoda Alley, 700487 Iasi, Romania
- Correspondence: (L.C.); (I.C.); Tel.: +40-332-880-220 (L.C. & I.C.)
| |
Collapse
|
9
|
Söyüt H, Kolcu F, Kaya İ, Yaşar AÖ. Influence of the enzymatic and the chemical oxidative polymerization of trifluoromethyl‐substituted aromatic diamine on thermal and photophysical properties. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hakan Söyüt
- Bursa Uludağ University Faculty of Education, Department of Basic Education Bursa Turkey
- Çanakkale Onsekiz Mart University Department of Chemistry, Polymer Synthesis and Analysis Lab Çanakkale Turkey
| | - Feyza Kolcu
- Çanakkale Onsekiz Mart University Department of Chemistry, Polymer Synthesis and Analysis Lab Çanakkale Turkey
- Lapseki Vocational School, Department of Chemistry and Chemical Processing Technologies Çanakkale Onsekiz Mart University Çanakkale Turkey
| | - İsmet Kaya
- Çanakkale Onsekiz Mart University Department of Chemistry, Polymer Synthesis and Analysis Lab Çanakkale Turkey
| | - Alper Ömer Yaşar
- Çanakkale Onsekiz Mart University Department of Chemistry, Polymer Synthesis and Analysis Lab Çanakkale Turkey
| |
Collapse
|
10
|
Feng J, Hu R, Jiang J, Cai Z, Pan S, Zou X, Dong G, Zhao N, Zhang W. Aggregation-Induced Emission in a Polymeric Photovoltaic Donor Material. THE JOURNAL OF PHYSICAL CHEMISTRY C 2022; 126:20275-20283. [DOI: 10.1021/acs.jpcc.2c06848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junyi Feng
- School of Physics and Materials Science, Guangzhou University, Guangzhou510006, China
| | - Rong Hu
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing402160, China
| | - Jianjun Jiang
- School of Physics and Materials Science, Guangzhou University, Guangzhou510006, China
| | - Zekai Cai
- School of Physics and Materials Science, Guangzhou University, Guangzhou510006, China
| | - Shusheng Pan
- School of Physics and Materials Science, Guangzhou University, Guangzhou510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou510006, China
| | - Xianshao Zou
- Division of Chemical Physics, Lund University, Lund22100, Sweden
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou515041, China
| | - Ningjiu Zhao
- Songshan Lake Materials Laboratory, Dongguan523808, China
- The State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou510640, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou510006, China
- Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou510006, China
| |
Collapse
|
11
|
Chen S, Zheng H, Liu X, Peng J. Tailoring Co-crystallization over Microphase Separation in Conjugated Block Copolymers via Rational Film Processing for Field-Effect Transistors. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Shuwen Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hao Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiaofeng Liu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
12
|
Controlling morphology and microstructure of conjugated polymers via solution-state aggregation. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Hicks GEJ, Cranston RR, Lotocki V, Manion JG, Lessard BH, Seferos DS. Dopant-Stabilized Assembly of Poly(3-hexylthiophene). J Am Chem Soc 2022; 144:16456-16470. [PMID: 36044779 DOI: 10.1021/jacs.2c04984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polymer self-assembly is a powerful approach for forming nanostructures for solution-phase applications. However, polymer semiconductor assembly has primarily been driven by solvent interactions. Here, we report poly(3-hexythiophene) homopolymer assembly driven and stabilized by oxidative doping with iron (III) p-toluenesulfonate in benzonitrile. By this improved method, dopant mol % and addition temperature determine the size and morphology of oxidized polymer nanostructures. The dopant counterion provides colloidal stability in a process of dopant-stabilized assembly (DSA). Each variable governing polymer assembly is systematically varied, revealing general principles of oxidized nanostructure assembly and allowing the polymer planarity, optical absorption, and doping level to be modulated. Oxidized nanostructure heights, lengths, and widths are shown to depend on these properties, which we hypothesize is due to competing nanostructure formation and oxidation mechanisms that are governed by the polymer conformation upon doping. Finally, we demonstrate that the nanoparticle oxidative doping level can be tuned post-formation through sequential dopant addition. By revealing the fundamental processes underlying DSA, this work provides a powerful toolkit to control the assembly and optoelectronic properties of oxidatively doped nanostructures in solution.
Collapse
Affiliation(s)
- Garion E J Hicks
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6 Toronto, Ontario, Canada
| | - Rosemary R Cranston
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, K1N 6N5 Ottawa, Ontario, Canada
| | - Victor Lotocki
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6 Toronto, Ontario, Canada
| | - Joseph G Manion
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, K1N 6N5 Ottawa, Ontario, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, K1N 6N5 Ottawa, Ontario, Canada.,School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward, K1N 6N5 Ottawa, Ontario, Canada
| | - Dwight S Seferos
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6 Toronto, Ontario, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, M5S 3E5 Toronto, Ontario, Canada
| |
Collapse
|
14
|
Bendrea AD, Cianga L, Ailiesei GL, Göen Colak D, Popescu I, Cianga I. Thiophene α-Chain-End-Functionalized Oligo(2-methyl-2-oxazoline) as Precursor Amphiphilic Macromonomer for Grafted Conjugated Oligomers/Polymers and as a Multifunctional Material with Relevant Properties for Biomedical Applications. Int J Mol Sci 2022; 23:7495. [PMID: 35886844 PMCID: PMC9317439 DOI: 10.3390/ijms23147495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Because the combination of π-conjugated polymers with biocompatible synthetic counterparts leads to the development of bio-relevant functional materials, this paper reports a new oligo(2-methyl-2-oxazoline) (OMeOx)-containing thiophene macromonomer, denoted Th-OMeOx. It can be used as a reactive precursor for synthesis of a polymerizable 2,2'-3-OMeOx-substituted bithiophene by Suzuki coupling. Also a grafted polythiophene amphiphile with OMeOx side chains was synthesized by its self-acid-assisted polymerization (SAAP) in bulk. The results showed that Th-OMeOx is not only a reactive intermediate but also a versatile functional material in itself. This is due to the presence of 2-bromo-substituted thiophene and ω-hydroxyl functional end-groups, and due to the multiple functionalities encoded in its structure (photosensitivity, water self-dispersibility, self-assembling capacity). Thus, analysis of its behavior in solvents of different selectivities revealed that Th-OMeOx forms self-assembled structures (micelles or vesicles) by "direct dissolution".Unexpectedly, by exciting the Th-OMeOx micelles formed in water with λabs of the OMeOx repeating units, the intensity of fluorescence emission varied in a concentration-dependent manner.These self-assembled structures showed excitation-dependent luminescence as well. Attributed to the clusteroluminescence phenomenon due to the aggregation and through space interactions of electron-rich groups in non-conjugated, non-aromatic OMeOx, this behavior certifies that polypeptides mimic the character of Th-OMeOx as a non-conventional intrinsic luminescent material.
Collapse
Affiliation(s)
- Anca-Dana Bendrea
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Luminita Cianga
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Gabriela-Liliana Ailiesei
- NMR Spectroscopy Department, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Demet Göen Colak
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey;
| | - Irina Popescu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Ioan Cianga
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| |
Collapse
|
15
|
Baillargeon P, Robidas R, Toulgoat O, Michaud Z, Legault CY, Rahem T. Crystal Structures of Lignocellulosic Furfuryl Biobased Polydiacetylenes with Hydrogen-Bond Networks: Influencing the Direction of Solid-State Polymerization through Modification of the Spacer Length. CRYSTAL GROWTH & DESIGN 2022; 22:2812-2823. [PMID: 35529068 PMCID: PMC9073937 DOI: 10.1021/acs.cgd.2c00307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Indexed: 05/02/2023]
Abstract
We present the topochemical polymerization of two lignocellulosic biobased diacetylenes (DAs) that only differ by an alkyl spacer length of 1 methylene (n = 1) or 3 methylene units (n = 3) between the diyne and carbamate functionalities. Their crystalline molecular organizations have the distinctive feature of being suitable for polymerization in two potential directions, either parallel or skewed to the hydrogen-bonded (HB) network. However, single-crystal structures of the final polydiacetylenes (PDAs) demonstrate that the resulting orientation of the conjugated backbones is different for these two derivatives, which lead to HB supramolecular polymer networks (2D nanosheets) for n = 1 and to independent linear PDA chains with intramolecular HBs for n = 3. Thus, spacer length modification can be considered a new strategy to influence the molecular orientation of conjugated polymer chains, which is crucial for developing the next generation of materials with optimal mechanical and optoelectronic properties. Calculations were performed on model oligodiacetylenes to evaluate the cooperativity effect of HBs in the different crystalline supramolecular packing motifs and the energy profile related to the torsion of the conjugated backbone of a PDA chain (i.e., its ability to adopt planar or helical conformations).
Collapse
Affiliation(s)
- Pierre Baillargeon
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Raphaël Robidas
- Département
de chimie, Université de Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Olivier Toulgoat
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Zacharie Michaud
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Claude Y. Legault
- Département
de chimie, Université de Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Tarik Rahem
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| |
Collapse
|
16
|
Luo N, Ren P, Feng Y, Shao X, Zhang HL, Liu Z. Side-Chain Engineering of Conjugated Polymers for High-Performance Organic Field-Effect Transistors. J Phys Chem Lett 2022; 13:1131-1146. [PMID: 35084195 DOI: 10.1021/acs.jpclett.1c03909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Past decades have witnessed the rapid development of conjugated polymers because of their promising semiconducting properties and applications in organic field-effect transistors (OFETs). Recent studies have shown that side-chain engineering of conjugated polymers is an efficient strategy to increase semiconducting performance. This Perspective focuses on the side-chain modulation of conjugated polymers and evaluating their effects on the performance of OFETs. The challenges and potential applications of functional high-performance OFETs through side-chain engineering are also discussed.
Collapse
Affiliation(s)
- Nan Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Ren
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yu Feng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| |
Collapse
|
17
|
Wang Z, Xiang B, Huang X, Lu G. Effect of Phosphotungstic Acid on Self-seeding of Oligo( p-phenylenevinylene)- b-poly(2-vinylpyridine) ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
MacFarlane LR, Li X, Faul CFJ, Manners I. Efficient and Controlled Seeded Growth of Poly(3-hexylthiophene) Block Copolymer Nanofibers through Suppression of Homogeneous Nucleation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liam R. MacFarlane
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Xiaoyu Li
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Charl F. J. Faul
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victorias, 3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
19
|
Ma J, Lu G, Huang X, Feng C. π-Conjugated-polymer-based nanofibers through living crystallization-driven self-assembly: preparation, properties and applications. Chem Commun (Camb) 2021; 57:13259-13274. [PMID: 34816824 DOI: 10.1039/d1cc04825b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
π-Conjugated-polymer-based nanofibers (CPNFs) of controlled length, composition and morphology are promising for a broad range of emerging applications in optoelectronics, biomedicine and catalysis, owing to the morphological merits of fiber-like nanostructures and structural attributes of π-conjugated polymers. Living crystallization-driven self-assembly (CDSA) of π-conjugated-polymer-containing block copolymers (BCPs) has emerged as an efficient strategy to prepare CPNFs with precise dimensional and structural controllability by taking advantage of the crystallinity of π-conjugated polymers. In this review, recent advances in the generation of CPNFs have been highlighted. The influence of the structure of π-conjugated-polymer-containing BCPs and experimental conditions on the CDSA behaviors, especially seeded growth and self-seeding processes of living CDSA, has been discussed in detail, aiming to provide an in-depth overview of living CDSA of π-conjugated-polymer-containing BCPs. In addition, the properties of CPNFs as well as their potential applications have been illustrated. Finally, we put forward the current challenges and research directions in the field of CPNFs.
Collapse
Affiliation(s)
- Junyu Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| |
Collapse
|