1
|
Yang Z, Yang S, Tang Y, Wang G, Pang H, Yu F. Inhibiting demetalation of ZnNC via bimetallic CoZn alloy for an efficient and durable oxygen reduction reaction. J Colloid Interface Sci 2025; 689:137276. [PMID: 40068534 DOI: 10.1016/j.jcis.2025.137276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/26/2025]
Abstract
Inhibition of demetalation due to electrochemical dissolution of metal active centers is a major challenge for the real-world commercialization of transition metals and nitrogen co-doped carbon (MNC) material catalysts. This research utilized a microchannel reactor to synthesize zeolitic imidazolate framework-8@zeolitic imidazolate framework-67, resulting in a CoZn/ZnNC material produced through a core-shell pyrolysis strategy. Direct synergistic interaction of CoZn alloy nanoparticles and ZnNC improves the activity and durability of the oxygen reduction reaction. In proton-exchange membrane fuel cell tests, the CoZn/ZnNC achieved a peak power density of 380.1 mW/cm2. Furthermore, it demonstrated excellent stability in Zn-air battery charge/discharge cycles, lasting up to 480 h. Experimental tests and density functional theory calculations confirmed the presence of strong interactions between the CoZn alloy and ZnNC, which could inhibit demetalation by strengthening the ZnN bond. Furthermore, a moderate rise in the d-band center optimized the adsorption and desorption capacities of oxygen-containing intermediates (*O, *OH, and *OOH). Overall, this research presents a new strategy based on interactions between alloy nanoparticles and single atoms.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Shouhua Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Ying Tang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Gang Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
2
|
Liu J, Yang J, Dou Y, Liu X, Chen S, Wang D. Deactivation Mechanism and Mitigation Strategies of Single-Atom Site Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420383. [PMID: 40223412 DOI: 10.1002/adma.202420383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/14/2025] [Indexed: 04/15/2025]
Abstract
Single-atom site electrocatalysts (SACs), with maximum atom efficiency, fine-tuned coordination structure, and exceptional reactivity toward catalysis, energy, and environmental purification, have become the emerging frontier in recent decade. Along with significant breakthroughs in activity and selectivity, the limited stability and durability of SACs are often underemphasized, posing a grand challenge in meeting the practical requirements. One pivotal obstacle to the construction of highly stable SACs is the heavy reliance on empirical rather than rational design methods. A comprehensive review is urgently needed to offer a concise overview of the recent progress in SACs stability/durability, encompassing both deactivation mechanism and mitigation strategies. Herein, this review first critically summarizes the SACs degradation mechanism and induction factors at the atomic-, meso- and nanoscale, mainly based on but not limited to oxygen reduction reaction. Subsequently, potential stability/durability improvement strategies by tuning catalyst composition, structure, morphology and surface are delineated, including construction of robust substrate and metal-support interaction, optimization of active site stability, fabrication of porosity and surface modification. Finally, the challenges and prospects for robust SACs are discussed. This review facilitates the fundamental understanding of catalyst degradation mechanism and provides efficient design principles aimed at overcoming deactivation difficulties for SACs and beyond.
Collapse
Affiliation(s)
- Jingjing Liu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Shenghua Chen
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Huang Z, Xiao Q, Ding T, Xia J, Zhan C, Meng X, Pao CW, Hu Z, Huang WH, Wang Y, Chen N, Cao L, Huang X. Interfacial metal-coordinated bifunctional PtCo for practical fuel cells. SCIENCE ADVANCES 2025; 11:eadt4914. [PMID: 40053591 PMCID: PMC11887810 DOI: 10.1126/sciadv.adt4914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025]
Abstract
Platinum (Pt) has been documented as the top-tier fuel cell catalyst, yet it faces a notable challenge regarding its poor CO tolerance and sluggish oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs), particularly when using CO-contaminated blue and gray H2. Here, we present an interfacial metal coordination strategy to design a bifunctional platinum-cobalt (PtCo) intermetallic catalyst integrated with a tin-nitrogen-carbon (Sn-N-C) support, which forms Pt-Sn-N bonds that substantially boost both ORR activity and CO tolerance. The PtCo/Sn-N-C-made fuel cell achieves a topmost peak power density of 2.11 watts per square centimeter in 100 parts per million (ppm) of CO-containing H2, surpassing all previously reported PEMFCs. In addition, it operates stably at a rated voltage for over 710 hours in 100 ppm of CO/H2-air. This work demonstrates the feasibility of fuel cells directly using CO-contaminated gray & blue H2, paving the way for PEMFC-driven energy vehicles.
Collapse
Affiliation(s)
- Zhongliang Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qi Xiao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Tianyi Ding
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Changhong Zhan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangmin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Yingru Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Nanjun Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Liang Cao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
4
|
Xu S, Zhang L, Zhang Y, Peng Y, Zang Z, Cao Y, Li T, Zhang L, Yan C, Qian T. Alleviating O-Intermediates Adsorption Strength over PdRhCu Ternary Metallene via Ligand Effect for Enhanced Oxygen Reduction in Practical PEMFCs. J Phys Chem Lett 2025; 16:1899-1908. [PMID: 39960027 DOI: 10.1021/acs.jpclett.4c03536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Expediting the torpid kinetics of the acidic oxygen reduction reaction (ORR) is a crucial yet formidable challenge toward advancing proton exchange membrane fuel cells (PEMFCs) for commercialization. The cutting-edge Pd-based nanomaterials for acidic ORR are hindered by their low intrinsic activities and significant CO poisoning, stemming from the challenge of simultaneously optimizing surface adsorption toward various adsorbates. Herein, we introduce an ultrathin PdRhCu ternary metallene (PdRhCu metallene) for boosting acidic ORR in PEMFC. Mechanistic studies have identified that the incorporation of Cu into the PdRh configuration could downshift the d-band center on Pd to promote weakened the adsorption of key intermediates, ensuring efficient electron transfer between the PdRhCu ternary metal sites and the adsorbates, thereby lowering the energy barriers of the rate-determining step in ORR. As a proof-of-concept, the optimized PdRhCu metallene demonstrates impressive ORR performance with a high half-wave potential (0.93 VRHE), negligible activity decay after 10 000 cycles, and superior anti-CO-poisoning capacity compared to counterparts and commercial Pt/C catalysts. Intriguingly, the PdRhCu metallene-assembled PEMFC achieves an impressive maximum power density of 820 mW cm-2 with high electrocatalytic stability under the H2/air conditions, paving avenues for further advancements in metallene electrocatalyst engineering toward the practical implementation of PEMFCs.
Collapse
Affiliation(s)
- Shuya Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Luping Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yunyi Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yukun Peng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Zhixing Zang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yufeng Cao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tongfei Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Chenglin Yan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou 215006, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
5
|
Zhao Y, Yin P, Yang Y, Wang R, Gong C, Li J, Guo J, Wang Q, Ling T. Converting Fe-N-C Single-atom Catalyst to a New FeN xSe y Cluster Catalyst for Proton-exchange Membrane Fuel Cells. Angew Chem Int Ed Engl 2025; 64:e202419501. [PMID: 39835461 DOI: 10.1002/anie.202419501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/22/2025]
Abstract
Iron-nitrogen-carbon (Fe-N-C) single-atom catalyst is the most promising alternative to platinum catalyst for proton-exchange membrane fuel cells (PEMFCs), however its high performance cannot be maintained for a long enough time in device operation. The construction of a new Fe coordination environment that is completely different from the square-planar Fe-N4 configuration in classic Fe-N-C catalyst is expected to break the current stability limits of Pt-free catalysts, which however remains unexplored. Here, we report, for the first time, the conversion of Fe-N-C catalyst to a new FeNxSey cluster catalyst, where the active Fe sites are three-dimensionally (3D) co-coordinated by N and Se atoms. Due to this unique Fe coordination configuration, the FeNxSey catalyst exhibits much better 4e- ORR activity and selectivity than the state-of-the-art Fe-N-C catalyst. Specifically, the yields of hydrogen peroxide (H2O2) and ⋅OH radicals on the FeNxSey catalyst are only one-quarter and one-third of that on the Fe-N-C counterpart, respectively. Therefore, the FeNxSey catalyst exhibits outstanding cyclic stability, losing only 10 mV in half-wave potential E1/2 after 10,000 potential cycles, much smaller than that of the Fe-N-C catalyst (56 mV), representing the most stable Pt-free catalysts ever reported for PEMFCs. More significantly, the 3D co-coordination structure effectively inhibits the Fe demetallization of the FeNxSey catalyst in the presence of H2O2. As a result, the FeNxSey based PEMFC shows excellent durability, with the current density attenuation significantly lower than that of the Fe-N-C based device after accelerated durability testing. Our work provides guidance for the development of next-generation Pt-free catalysts for PEMFCs.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Pengfei Yin
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yuanyuan Yang
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Ruguang Wang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cairong Gong
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jisi Li
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiaxin Guo
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Quanlu Wang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Tao Ling
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
6
|
Han Z, Shi Y, Zhang B, Kong L. Dynamic evolution of metal-nitrogen-codoped carbon catalysts in electrocatalytic reactions. Chem Commun (Camb) 2025; 61:1485-1495. [PMID: 39691082 DOI: 10.1039/d4cc04664a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Atomic metal-nitrogen-codoped carbon (M-N-C) catalysts are highly efficient for various electrocatalytic reactions because of their high atomic utilization efficiency. However, the high surface energy of M-N-C catalysts often results in stability issues in electrochemical reactions. Therefore, understanding the stability and dynamic evolution of M-N-C catalysts is crucial for elucidating the active centers and the composition/structure-activity relationship. This review summarizes the factors affecting the durability of atomic catalysts in electrochemical reactions and discusses possible changes in catalysts during these electrochemical processes. Finally, advanced characterization techniques are described, with a focus on tracking the dynamic evolution of M-N-C catalysts during electrocatalysis. This review offers insights into the rational optimization of M-N-C electrocatalysts and provides a framework for linking their composition and structure with their catalytic activity in future research.
Collapse
Affiliation(s)
- Zixuan Han
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yanmei Shi
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Lingjun Kong
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
7
|
Quan L, Zhao X, Yang LM, You B, Xia BY. Intrinsic Activity Identification of Noble Metal Single-Sites for Electrocatalytic Chlorine Evolution. Angew Chem Int Ed Engl 2025; 64:e202414202. [PMID: 39261287 DOI: 10.1002/anie.202414202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Single-atom catalysts with maximal atom-utilization have emerged as promising alternatives for chlorine evolution reaction (CER) toward valuable Cl2 production. However, understanding their intrinsic CER activity has so far been plagued due to the lack of well-defined atomic structure controlling. Herein, we prepare and identify a series of atomically dispersed noble metals (e.g., Pt, Ir, Ru) in nitrogen-doped nanocarbons (M1-N-C) with an identical M-N4 moiety, which allows objective activity evaluation. Electrochemical experiments, operando Raman spectroscopy, and quasi-in situ electron paramagnetic resonance spectroscopy analyses collectively reveal that all the three M1-N-C proceed the CER via a direct Cl-mediated Vomer-Heyrovský mechanism with reactivity following the trend of Pt1-N-C>Ir1-N-C>Ru1-N-C. Density functional theory (DFT) calculations reveal that this activity trend is governed by the binding strength of Cl*-Cl intermediate (ΔGCl*-Cl) on M-N4 sites (Pt
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xin Zhao
- School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Li-Ming Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
8
|
Xia F, Li B, An B, Zachman MJ, Xie X, Liu Y, Xu S, Saha S, Wu Q, Gao S, Abdul Razak IB, Brown DE, Ramani V, Wang R, Marks TJ, Shao Y, Cheng Y. Cooperative Atomically Dispersed Fe-N 4 and Sn-N x Moieties for Durable and More Active Oxygen Electroreduction in Fuel Cells. J Am Chem Soc 2024; 146:33569-33578. [PMID: 39620942 DOI: 10.1021/jacs.4c11121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
One grand challenge for deploying porous carbons with embedded metal-nitrogen-carbon (M-N-C) moieties as platinum group metal (PGM)-free electrocatalysts in proton-exchange membrane fuel cells is their fast degradation and inferior activity. Here, we report the modulation of the local environment at Fe-N4 sites via the application of atomic Sn-Nx sites for simultaneously improved durability and activity. We discovered that Sn-Nx sites not only promote the formation of the more stable D2 FeN4C10 sites but also invoke a unique D3 SnNx-FeIIN4 site that is characterized by having atomically dispersed bridged Sn-Nx and Fe-N4. This new D3 site exhibits significantly improved stability against demetalation and several times higher turnover frequency for the oxygen reduction reaction (ORR) due to the shift of the reaction pathway from a single-site associative mechanism to a dual-site dissociative mechanism with the adjacent Sn site facilitating a lower overpotential cleavage of the O-O bond. This mechanism bypasses the formation of the otherwise inevitable intermediate that is responsible for demetalation, where two hydroxyl intermediates bind to one Fe site. As a result, a mesoporous Fe/Sn-PNC catalyst exhibits a positively shifted ORR half-wave potential and more than 50% lower peroxide formation. This, in combination with the stable D3 site and enriched D2 Fe sites, significantly enhanced the catalyst's durability as demonstrated in membrane electrode assemblies using complementary accelerated durability testing protocols.
Collapse
Affiliation(s)
- Fan Xia
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Bomin Li
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bowen An
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Michael J Zachman
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 United States
| | - Xiaohong Xie
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yiqi Liu
- Department of Chemistry, Northwestern University, Evanston, Ilinois 60208, Untied States
| | - Shicheng Xu
- Jinetics Inc., Santa Clara, California 95050, United States
| | - Sulay Saha
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Qin Wu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Siyuan Gao
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Iddrisu B Abdul Razak
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Dennis E Brown
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Vijay Ramani
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Rongyue Wang
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Tobin J Marks
- Department of Chemistry, Northwestern University, Evanston, Ilinois 60208, Untied States
| | - Yuyan Shao
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yingwen Cheng
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| |
Collapse
|
9
|
Pang Y, Wan X, Li Y, Song M, Liu X, Shang J, Zheng L, Shui J. Evolution of Nitrogen-Coordinated Metal Single Atoms Toward Single-Atom Alloys on MgH₂ as Efficient and Stable Hydrogen Spillover Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412942. [PMID: 39439139 DOI: 10.1002/adma.202412942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
M-N-C catalysts with nitrogen-coordinated metal single-atom active sites have demonstrated high activity for hydrogen storage materials, but their stability in this application remains uncertain. This study addresses this issue by using nickel phthalocyanine (NiPc) molecules on MgH₂ particles as a model system. It is found that the N-coordinated high-valence Ni single atoms in the NiN₄ active site are unstable in the reducing environment of hydrogen storage, spontaneously evolving into zero-valence Ni, forming a Ni₁-Mg single-atom alloy (SAA). The Ni₁-Mg SAA exhibits remarkable stability in catalyzing Mg hydrogen storage reactions. Furthermore, it demonstrates comprehensive catalytic activity for each step of hydrogen absorption and desorption from Mg, surpassing the efficiency of the NiN₄ active site, especially in the critical steps of hydrogenation and dehydrogenation. Overall, the catalytic performance of Ni₁-Mg SAA is superior to most known nickel-based catalysts. This evolutionary process is also observed in FePc, CoPc, and tetraphenylporphyrin nickel (Ni-TPP), suggesting that this reducing transformation is a universal phenomenon for MN₄-type active sites in hydrogen storage catalysis.
Collapse
Affiliation(s)
- Yao Pang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Hangzhou, 310023, China
| | - Xin Wan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yongcheng Li
- Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai University, Xining, 810016, China
| | - Mengchen Song
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Hangzhou, 310023, China
| | - Xiaofang Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Jiaxiang Shang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Lirong Zheng
- Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Hangzhou, 310023, China
| |
Collapse
|
10
|
Yadav A, Hiremath N, Saini B, Matsagar BM, Han PC, Ujihara M, Modi MH, Wu KCW, Sharma RK, Vankayala R, Dutta S. Coordinately unsaturated single Fe-atoms with N vacancies and enhanced sp 3 carbon defects in Fe-N(sp 2)-C structural units for suppression of cancer cell metabolism and electrochemical oxygen evolution. NANOSCALE 2024; 16:21416-21430. [PMID: 39354807 DOI: 10.1039/d4nr02553a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Installing coordinately unsaturated Fe-N-C structural units on polymer-composite-derived N-doped carbon offers highly active Fe-Nx sites for the electrochemical oxygen evolution reaction (OER) and reactive oxygen species (ROS) generation in tumor cells. An NH4Cl-driven high-temperature etching method was employed for the formation of FeSA950NC with coordinately unsaturated single Fe-atoms in an Fe-N(sp2)-C structural unit together with N vacancies (VN) and sp3 defects. The carbonization of Fe-phen@ZIF-8 at 800 °C for 30 min under argon, followed by grinding Fe-ZIF-8@RF-urea with NH4Cl at 950 °C for 2 hours, resulted in sp3 carbon defects and VN sites with coordination unsaturation in Fe-Nx due to NH4Cl decomposition to NH3 and HCl, which produced substantial internal stress for etching the carbon matrix. FeSA950NC was used to treat both A549 lung cancer cells and NIH3T3 mouse fibroblast cells to determine its potential as an efficient tumor therapeutic strategy using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and ROS assays. Additionally, FeSA950NC provided high stability and excellent OER activity through the Fe-N(sp2)-C structural unit on pyridinic nitrogen by delivering at a minimum overpotential of 300 mV, which is much lower than that of structurally similar Fe-atom sites. The significantly stronger ROS and OER activities of FeSA950NC suggested the role of VN and sp3-carbon defects with coordinately unsaturated Fe-N2 sites in improving its catalytic performance.
Collapse
Affiliation(s)
- Anubha Yadav
- Electrochemical Energy & Sensor Research Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, India.
| | - Netra Hiremath
- Interdisciplinary Research Platform Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, Rajasthan, India
| | - Bhagirath Saini
- Sustainable Materials & Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, India.
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Chun Han
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Masaki Ujihara
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Mohammed Hussein Modi
- Soft X-ray Applications Lab, Synchrotron Utilization Section, Raja Ramanna Centre for Advanced Technology, Indore, India
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Rakesh K Sharma
- Sustainable Materials & Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, India.
| | - Raviraj Vankayala
- Interdisciplinary Research Platform Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, Rajasthan, India
- The Nanomed Laboratory, Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, Rajasthan, India.
| | - Saikat Dutta
- Electrochemical Energy & Sensor Research Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, India.
| |
Collapse
|
11
|
Li S, Xing G, Zhao S, Peng J, Zhao L, Hu F, Li L, Wang J, Ramakrishna S, Peng S. Fe-N co-doped carbon nanofibers with Fe 3C decoration for water activation induced oxygen reduction reaction. Natl Sci Rev 2024; 11:nwae193. [PMID: 39301077 PMCID: PMC11409866 DOI: 10.1093/nsr/nwae193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 09/22/2024] Open
Abstract
Proton activity at the electrified interface is central to the kinetics of proton-coupled electron transfer (PCET) reactions in electrocatalytic oxygen reduction reaction (ORR). Here, we construct an efficient Fe3C water activation site in Fe-N co-doped carbon nanofibers (Fe3C-Fe1/CNT) using an electrospinning-pyrolysis-etching strategy to improve interfacial hydrogen bonding interactions with oxygen intermediates during ORR. In situ Fourier transform infrared spectroscopy and density functional theory studies identified delocalized electrons as key to water activation kinetics. Specifically, the strong electronic perturbation of the Fe-N4 sites by Fe3C disrupts the symmetric electron density distribution, allowing more free electrons to activate the dissociation of interfacial water, thereby promoting hydrogen bond formation. This process ultimately controls the PCET kinetics for enhanced ORR. The Fe3C-Fe1/CNT catalyst demonstrates a half-wave potential of 0.83 V in acidic media and 0.91 V in alkaline media, along with strong performance in H2-O2 fuel cells and Al-air batteries.
Collapse
Affiliation(s)
- Shaoxiong Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Gengyu Xing
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sheng Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jian Peng
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, North Wollongong, NSW 2522, Australia
| | - Lingfei Zhao
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, North Wollongong, NSW 2522, Australia
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jiazhao Wang
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, North Wollongong, NSW 2522, Australia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
12
|
Chen Z, Xiong Y, Liu Y, Wang Z, Zhang B, Liang X, Chen X, Yin Y. Precisely Designed Morphology and Surface Chemical Structure of Fe-N-C Electrocatalysts for Enhanced Oxygen Reaction Reduction Activity. Molecules 2024; 29:3785. [PMID: 39202864 PMCID: PMC11357191 DOI: 10.3390/molecules29163785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Fe-N-C materials have been regarded as one of the potential candidates to replace traditional noble-metal-based electrocatalysts for the oxygen reduction reaction (ORR). It is believed that the structure of carbon support in Fe-N-C materials plays an essential role in highly efficient ORR. However, precisely designing the morphology and surface chemical structure of carbon support remains a challenge. Herein, we present a novel synthetic strategy for the preparation of porous carbon spheres (PCSs) with high specific surface area, well-defined pore structure, tunable morphology and controllable heteroatom doping. The synthesis involves Schiff-based polymerization utilizing octaaminophenyl polyhedral oligomeric silsesquioxane (POSS-NH2) and heteroatom-containing aldehydes, followed by pyrolysis and HF etching. The well-defined pore structure of PCS can provide the confinement field for ferroin and transform into Fe-N-C sites after carbonization. The tunable morphology of PCS can be easily achieved by changing the solvents. The surface chemical structure of PCS can be tailored by utilizing different heteroatom-containing aldehydes. After optimizing the structure of PCS, Fe-N-C loading on N,S-codoped porous carbon sphere (NSPCS-Fe) displays outstanding ORR activity in alkaline solution. This work paves a new path for fabrication of Fe-N-C materials with the desired morphology and well-designed surface chemical structure, demonstrating significant potential for energy-related applications.
Collapse
Affiliation(s)
- Zirun Chen
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Yuang Xiong
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Yanling Liu
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Zhanghongyuan Wang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Binbin Zhang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Xingtang Liang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Xia Chen
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou 535011, China
| | - Yanzhen Yin
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| |
Collapse
|
13
|
Tang B, Wu X, Liu L, Xu J, Ma J, Zhang H. Preparation of multi-functional active packaging film of Galla chinensis waste CDs/pullulan. Int J Biol Macromol 2024; 275:133221. [PMID: 38942668 DOI: 10.1016/j.ijbiomac.2024.133221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/30/2024]
Abstract
In this study, multifunctional green carbon dots (CDs) have been synthesized using Galla chinensis waste (GCW) via hydrothermal method for the first time. An active packaging film has been developed in this work by combining CDs and pullulan (PL), using the solution-casting method. The microscopic morphology revealed that the CDs that were prepared using GCW exhibited good compatibility with PL. In addition, it also led to improvement in the toughness of the PL film (14.01 % to 20.26 %), along with its water vapor permeability value [1.31 to 0.53 (g·mm)/(kPa·h·m2)]. The composite films consisting of CDs exhibited good UV blocking rates for the UVA (90.41 %-7.87 %), UVB (87.76 %-0.08 %), and UVC (83.39 %-0 %) spectral ranges. The composite films exhibited strong antioxidant activity, and the clearance of ABTS and DPPH were obtained to be 93.61 % and 86.30 %, respectively. In addition, the composite films showed good antibacterial activity for E. coli and S. aureus, with a high antibacterial rate of up to 99.99 %. Finally, the non-contact preservation of strawberries over a duration of 10 d at room temperature confirmed that the prepared composite film can help preserve the quality of strawberries, as well as extended their shelf-life.
Collapse
Affiliation(s)
- Baoshan Tang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650223, China; Nanjing Forestry University, Nanjing 210037, China
| | - Xi Wu
- College of Forestry, Southwest Forestry University, Kunming 650224, China
| | - Lanxiang Liu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650223, China; Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650223, China
| | - Juan Xu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650223, China; Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650223, China
| | - Jinju Ma
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650223, China; Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650223, China
| | - Hong Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650223, China.
| |
Collapse
|
14
|
Bai J, Lin Y, Xu J, Zhou W, Zhou P, Deng Y, Lian Y. PGM-free single atom catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:7113-7123. [PMID: 38912537 DOI: 10.1039/d4cc02106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The progress of proton exchange membrane fuel cells (PEMFCs) in the clean energy sector is notable for its efficiency and eco-friendliness, although challenges remain in terms of durability, cost and power density. The oxygen reduction reaction (ORR) is a key sluggish process and although current platinum-based catalysts are effective, their high cost and instability is a significant barrier. Single-atom catalysts (SACs) offer an economically viable alternative with comparable catalytic activity for ORR. The primary concern regarding SACs is their operational stability under PEMFCs conditions. In this article, we review current strategies for increasing the catalytic activity of SACs, including increasing active site density, optimizing metal center coordination through heteroatom doping, and engineering porous substrates. To enhance durability, we discuss methods to stabilize metal centers, mitigate the effects of the Fenton reaction, and improve graphitization of the carbon matrix. Future research should apply computational chemistry to predict catalyst properties, develop in situ characterization for real-time active site analysis, explore novel catalysts without the use of platinum-based catalysts to reduce dependence on rare and noble metal, and investigate the long-term stability of catalyst under operating conditions. The aim is to engineer SACs that meet and surpass the performance benchmarks of PEMFCs, contributing to a sustainable energy future.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Yao Lin
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Jinnan Xu
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Wangkai Zhou
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Pin Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Yaoyao Deng
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Yuebin Lian
- School of Optoelectronics, Changzhou Institute of Technology, Changzhou, 213022, China.
| |
Collapse
|
15
|
Zhen J, Sun J, Xu X, Wu Z, Song W, Ying Y, Liang S, Miao L, Cao J, Lv W, Song C, Yao Y, Xing M. M-N 3 Configuration on Boron Nitride Boosts Singlet Oxygen Generation via Peroxymonosulfate Activation for Selective Oxidation. Angew Chem Int Ed Engl 2024; 63:e202402669. [PMID: 38637296 DOI: 10.1002/anie.202402669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
Singlet oxygen (1O2) is an essential reactive species responsible for selective oxidation of organic matter, especially in Fenton-like processes. However, due to the great limitations in synthesizing catalysts with well-defined active sites, the controllable production and practical application of 1O2 remain challenging. Herein, guided by theoretical simulations, a series of boron nitride-based single-atom catalysts (BvBN/M, M=Co, Fe, Cu, Ni and Mn) were synthesized to regulate 1O2 generation by activating peroxymonosulfate (PMS). All the fabricated BvBN/M catalysts with explicit M-N3 sites promoted the self-decomposition of the two PMS molecules to generate 1O2 with high selectivity, where BvBN/Co possessed moderate adsorption energy and d-band center exhibited superior catalytic activity. As an outcome, the BvBN/Co-PMS system coupled with membrane filtration technology could continuously transform aromatic alcohols to aldehydes with nearly 100 % selectivity and conversion rate under mild conditions, suggesting the potential of this novel catalytic system for green organic synthesis.
Collapse
Affiliation(s)
- Jianzheng Zhen
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiahao Sun
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangwei Xu
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zenglong Wu
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenkai Song
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yunzhan Ying
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shikun Liang
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lingshan Miao
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiazhen Cao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weiyang Lv
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Changsheng Song
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuyuan Yao
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
16
|
Honig HC, Mostoni S, Presman Y, Snitkoff-Sol RZ, Valagussa P, D'Arienzo M, Scotti R, Santoro C, Muhyuddin M, Elbaz L. Morphological and structural design through hard-templating of PGM-free electrocatalysts for AEMFC applications. NANOSCALE 2024; 16:11174-11186. [PMID: 38770663 DOI: 10.1039/d4nr01779j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
This study delves into the critical role of customized materials design and synthesis methods in influencing the performance of electrocatalysts for the oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFCs). It introduces a novel approach to obtain platinum-free (PGM-free) electrocatalysts based on the controlled integration of iron active sites onto the surface of silica nanoparticles (NPs) by using nitrogen-based surface ligands. These NPs are used as hard templates to form tailored nanostructured electrocatalysts with an improved iron dispersion into the carbon matrix. By utilizing a wide array of analytical techniques including infrared and X-ray photoelectron spectroscopy techniques, X-ray diffraction and surface area measurements, this work provides insight into the physical parameters that are critical for ORR electrocatalysis with PGM-free electrocatalysts. The new catalysts showed a hierarchical structure containing a large portion of graphitic zones which contribute to the catalyst stability. They also had a high electrochemically active site density reaching 1.47 × 1019 sites g-1 for SAFe_M_P1AP2 and 1.14 × 1019 sites g-1 for SEFe_M_P1AP2, explaining the difference in performance in fuel cell measurements. These findings underscore the potential impact of a controlled materials design for advancing green energy applications.
Collapse
Affiliation(s)
- Hilah C Honig
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Silvia Mostoni
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Yan Presman
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Rifael Z Snitkoff-Sol
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Paolo Valagussa
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Massimiliano D'Arienzo
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Roberto Scotti
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
- Institute for Photonics and Nanotechnologies-CNR, Via alla Cascata 56/C, 38123 Povo, TN, Italy
| | - Carlo Santoro
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Mohsin Muhyuddin
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Lior Elbaz
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
17
|
Yang Y, Li B, Liang Y, Ni W, Li X, Shen G, Xu L, Chen Z, Zhu C, Liang J, Zhang S. Hetero-Diatomic CoN 4-NiN 4 Site Pairs with Long-Range Coupling as Efficient Bifunctional Catalyst for Rechargeable Zn-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310231. [PMID: 38554395 PMCID: PMC11165470 DOI: 10.1002/advs.202310231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Indexed: 04/01/2024]
Abstract
In this study, Co/Ni-NC catalyst with hetero-diatomic Co/Ni active sites dispersed on nitrogen-doped carbon matrix is synthesized via the controlled pyrolysis of ZIF-8 containing Co2+ and Ni2+ compounds. Experimental characterizations and theoretical calculations reveal that Co and Ni are atomically and uniformly dispersed in pairs of CoN4-NiN4 with an intersite distance ≈0.41 nm, and there is long-range d-d coupling between Co and Ni with more electron delocalization for higher bifunctional activity. Besides, the in situ grown carbon nanotubes at the edges of the catalyst particles allow high electronic conductivity for electrocatalysis process. Electrochemical evaluations demonstrate the superior ORR and OER bifunctionality of Co/Ni-NC catalyst with a narrow potential gap of only 0.691 V and long-term durability, significantly prevailing over the single-atom Co-NC and Ni-NC catalysts and the benchmark Pt/C and RuO2 catalysts. Co/Ni-NC catalyzed Zn-air batteries achieve a high specific capacity of 771 mAh g-1 and a long continuous operation period up to 340 h with a small voltage gap of ≈0.65 V, also much superior to Pt/C-RuO2.
Collapse
Affiliation(s)
- Yue Yang
- Zhuhai Institute of Advanced Technology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesZhuhai519000China
| | - Bin Li
- School of Chemistry and Chemical EngineeringGuizhou UniversityGuiyang550025China
| | - Yining Liang
- Zhuhai Institute of Advanced Technology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesZhuhai519000China
| | - Wenpeng Ni
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyHunan UniversityChangsha410004China
| | - Xuan Li
- Zhuhai Institute of Advanced Technology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesZhuhai519000China
| | - Gengzhe Shen
- Zhuhai Institute of Advanced Technology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesZhuhai519000China
| | - Lin Xu
- Zhuhai Institute of Advanced Technology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesZhuhai519000China
| | - Zhengjian Chen
- Zhuhai Institute of Advanced Technology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesZhuhai519000China
| | - Chun Zhu
- School of Chemistry and Chemical EngineeringGuizhou UniversityGuiyang550025China
| | - Jin‐Xia Liang
- School of Chemistry and Chemical EngineeringGuizhou UniversityGuiyang550025China
| | - Shiguo Zhang
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyHunan UniversityChangsha410004China
| |
Collapse
|
18
|
Yang B, Xiang Z. Nanostructure Engineering of Cathode Layers in Proton Exchange Membrane Fuel Cells: From Catalysts to Membrane Electrode Assembly. ACS NANO 2024; 18:11598-11630. [PMID: 38669279 DOI: 10.1021/acsnano.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The membrane electrode assembly (MEA) is the core component of proton exchange membrane fuel cells (PEMFCs), which is the place where the reaction occurrence, the multiphase material transfer and the energy conversion, and the development of MEA with high activity and long stability are crucial for the practical application of PEMFCs. Currently, efforts are devoted to developing the regulation of MEA nanostructure engineering, which is believed to have advantages in improving catalyst utilization, maximizing three-phase boundaries, enhancing mass transport, and improving operational stability. This work reviews recent research progress on platinum group metal (PGM) and PGM-free catalysts with multidimensional nanostructures, catalyst layers (CLs), and nano-MEAs for PEMFCs, emphasizing the importance of structure-function relationships, aiming to guide the further development of the performance for PEMFCs. Then the design strategy of the MEA interface is summarized systematically. In addition, the application of in situ and operational characterization techniques to adequately identify current density distributions, hot spots, and water management visualization of MEAs is also discussed. Finally, the limitations of nanostructured MEA research are discussed and future promising research directions are proposed. This paper aims to provide valuable insights into the fundamental science and technical engineering of efficient MEA interfaces for PEMFCs.
Collapse
Affiliation(s)
- Bolong Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
19
|
Shi X, Pu Z, Chi B, Yu S, Hu J, Sun S, Liao S. Concave Structural Carbon Co-Doped with Iron Atom Pairs and Nitrogen as Ultra-High Performance Catalyst Toward Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307011. [PMID: 37946683 DOI: 10.1002/smll.202307011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Indexed: 11/12/2023]
Abstract
It is crucial to rationally design and synthesize atomic-scale transition metal-doped carbon catalysts with high electrocatalytic activity to achieve a high-efficient oxygen reduction reaction (ORR). Herein, an electrocatalyst comprised of Fe-Fe dual atom pairs and N-doped concave carbon are reported (N-CC@Fe DA) that achieves ultrahigh electrocatalytic ORR activity. The catalyst is prepared by a gaseous doping approach, with zeolitic imidazolate framework-8 (ZIF-8) as the carbon framework precursor and cyclopentadienyliron dicarbonyl dimer as the Fe-Fe atom pair precursor. The catalyst exhibits high cathodic ORR catalytic performance in an alkaline Zn/air battery and proton exchange membrane fuel cell (PEMFC), yielding peak power densities of 241 mW cm-2 and 724 mW cm-2, respectively, compared to 127 mW cm-2 and 1.20 W cm-2 with conventional Pt/C catalysts as cathodes. The presence of Fe atom pairs coordinate with N atoms is revealed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) analysis, and Density Functional Theory (DFT) calculation results show that the Fe-Fe pair structure is beneficial for adsorbing oxygen molecules, activating the O─O bond, and desorbing OH* intermediates formed during oxygen reduction, resulting in a more efficient oxygen reaction. The findings may provide a new pathway for preparing ultra-high-performance doped carbon catalysts with Fe-Fe atom pair structures.
Collapse
Affiliation(s)
- Xiudong Shi
- The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zonghua Pu
- The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- Centre Énergie, Matériaux et Télécommunications, Institute National de la Recherche Scientifique, Varennes, Québec, J3X1P7, Canada
| | - Bin Chi
- The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Siyan Yu
- The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jingsong Hu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Shuhui Sun
- Centre Énergie, Matériaux et Télécommunications, Institute National de la Recherche Scientifique, Varennes, Québec, J3X1P7, Canada
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
20
|
Zhang L, Li T, Du T, Dai X, Zhang L, Tao C, Ding J, Yan C, Qian T. Manipulation of Electronic States of Pt Sites via d-Band Center Tuning for Enhanced Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Inorg Chem 2024; 63:2138-2147. [PMID: 38237037 DOI: 10.1021/acs.inorgchem.3c04058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Expediting the torpid kinetics of the oxygen reduction reaction (ORR) at the cathode with minimal amounts of Pt under acidic conditions plays a significant role in the development of proton exchange membrane fuel cells (PEMFCs). Herein, a novel Pt-N-C system consisting of Pt single atoms and nanoparticles anchored onto the defective carbon nanofibers is proposed as a highly active ORR catalyst (denoted as Pt-N-C). Detailed characterizations together with theoretical simulations illustrate that the strong coupling effect between different Pt sites can enrich the electron density of Pt sites, modify the d-band electronic environments, and optimize the oxygen intermediate adsorption energies, ultimately leading to significantly enhanced ORR performance. Specifically, the as-designed Pt-N-C demonstrates exceptional ORR properties with a high half-wave potential of 0.84 V. Moreover, the mass activity of Pt-N-C reaches 193.8 mA gPt-1 at 0.9 V versus RHE, which is 8-fold greater than that of Pt/C, highlighting the enormously improved electrochemical properties. More impressively, when integrated into a membrane electrode assembly as cathode in an air-fed PEMFC, Pt-N-C achieved a higher maximum power density (655.1 mW cm-2) as compared to Pt/C-based batteries (376.25 mW cm-2), hinting at the practical application of Pt-N-C in PEMFCs.
Collapse
Affiliation(s)
- Luping Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Tongfei Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Tianheng Du
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Xinyi Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Chen Tao
- School of Electrical Engineering, Nantong University, Nantong226019, China
| | - Jinjin Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Chenglin Yan
- School of Petrochemical Engineering, Changzhou University, Changzhou213164, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou215006, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| |
Collapse
|
21
|
Wu HR, Chen MY, Li WD, Lu BA. Recent Progress on Durable Metal-N-C Catalysts for Proton Exchange Membrane Fuel Cells. Chem Asian J 2024; 19:e202300862. [PMID: 37966013 DOI: 10.1002/asia.202300862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
It is essential for the widespread application of proton exchange membrane fuel cells (PEMFCs) to investigate low-cost, extremely active, and long-lasting oxygen reduction catalysts. Initial performance of PGM-free metal-nitrogen-carbon (M-N-C) catalysts for oxygen reduction reaction (ORR) has advanced significantly, particularly for Fe-N-C-based catalysts. However, the insufficient stability of M-N-C catalysts still impedes their use in practical fuel cells. In this review, we focus on the understanding of the structure-stability relationship of M-N-C ORR catalysts and summarize valuable guidance for the rational design of durable M-N-C catalysts. In the first section of this review, we discuss the inherent degrading mechanisms of M-N-C catalysts, such as carbon corrosion, demetallation, H2 O2 attack, etc. As we gain a thorough comprehension of these deterioration mechanisms, we shift our attention to the investigation of strategies that can mitigate catalyst deterioration and increase its stability. These strategies include enhancing the anti-oxidation of carbon, fortifying M-N bonds, and maximizing the effectiveness of free radical scavengers. This review offers a prospective view on the enhancement of the stability of non-noble metal catalysts.
Collapse
Affiliation(s)
- Hao-Ran Wu
- College of Materials Science and Engineering, Zhengzhou University, 450001, Zhengzhou, P. R. China
| | - Miao-Ying Chen
- College of Materials Science and Engineering, Zhengzhou University, 450001, Zhengzhou, P. R. China
| | - Wei-Dong Li
- College of Materials Science and Engineering, Zhengzhou University, 450001, Zhengzhou, P. R. China
| | - Bang-An Lu
- College of Materials Science and Engineering, Zhengzhou University, 450001, Zhengzhou, P. R. China
| |
Collapse
|
22
|
Wang X, Ding S, Feng X, Zhu Y. High stability copper clusters anchored on N-doped carbon nanosheets for efficient CO 2 electroreduction to HCOOH. J Colloid Interface Sci 2024; 653:741-748. [PMID: 37742433 DOI: 10.1016/j.jcis.2023.09.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Cu-based nanomaterials is crucial for electrochemical CO2 reduction reaction (CO2RR), but they inevitably undergo performance degradation due to structural self-reconstruction at a large current density during CO2RR. Here, we developed a pre-synthetic atomically dispersed Cu source strategy to fabricate a catalyst of stable Cu clusters anchored on N-doped carbon nanosheets (c-Cu/NC), which exhibited an exceptional electroreduction for CO2 to HCOOH with a Faradaic efficiency of up to 96.2 % at current density of 276.4 mA cm-2 at - 0.96 V vs. RHE, which surpasses most reported catalysts. Especially, there was no any decay in stability during a 100 h continuous test, attributed to a strong interaction of Cu-C for restraining its self-reconstruction during CO2RR. DFT calculations indicated that N-doped carbon can strongly stabilize Cu clusters for keeping stability and cause the downshift of d-band center of Cu on c-Cu/NC for reducing the desorption energy between c-Cu/NC and OCHO* intermediates. This work provides an effective way to construct stable Cu clusters catalysts, and unveil the origin of catalyticmechanism over Cu clusters anchored on N-doped carbon towards electrochemical conversion ofCO2 to HCOOH.
Collapse
Affiliation(s)
- Xingpu Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology School of Chemistry, Beihang University, Beijing 100191, China
| | - Shaosong Ding
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology School of Chemistry, Beihang University, Beijing 100191, China
| | - Xiaochen Feng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology School of Chemistry, Beihang University, Beijing 100191, China
| | - Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology School of Chemistry, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
23
|
Wang L, Rao L, Ran M, Shentu Q, Wu Z, Song W, Zhang Z, Li H, Yao Y, Lv W, Xing M. A polymer tethering strategy to achieve high metal loading on catalysts for Fenton reactions. Nat Commun 2023; 14:7841. [PMID: 38030639 PMCID: PMC10687042 DOI: 10.1038/s41467-023-43678-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of ultrafine metal embedded N-doped carbon nanosheets (M@N-C) with loadings of up to 30 wt%. Systematic investigation confirms that abundant catechol groups for anchoring metal ions and entangled polymer networks with the stable coordinate environment are essential for realizing high-loading M@N-C catalysts. As a demonstration, Fe@N-C exhibits the dual high-efficiency performance in Fenton reaction with both impressive catalytic activity (0.818 min-1) and H2O2 utilization efficiency (84.1%) using sulfamethoxazole as the probe, which has not yet been achieved simultaneously. Theoretical calculations reveal that the abundant Fe nanocrystals increase the electron density of the N-doped carbon frameworks, thereby facilitating the continuous generation of long-lasting surface-bound •OH through lowering the energy barrier for H2O2 activation. This facile and universal strategy paves the way for the fabrication of diverse high-loading heterogeneous catalysts for broad applications.
Collapse
Affiliation(s)
- Lixin Wang
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Longjun Rao
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Maoxi Ran
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qikai Shentu
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zenglong Wu
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenkai Song
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ziwei Zhang
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hao Li
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuyuan Yao
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Weiyang Lv
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China.
| | - Mingyang Xing
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
24
|
Zhang C, Yang Y, Liu X, Mao M, Li K, Li Q, Zhang G, Wang C. Mobile energy storage technologies for boosting carbon neutrality. Innovation (N Y) 2023; 4:100518. [PMID: 37841885 PMCID: PMC10568306 DOI: 10.1016/j.xinn.2023.100518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Carbon neutrality calls for renewable energies, and the efficient use of renewable energies requires energy storage mediums that enable the storage of excess energy and reuse after spatiotemporal reallocation. Compared with traditional energy storage technologies, mobile energy storage technologies have the merits of low cost and high energy conversion efficiency, can be flexibly located, and cover a large range from miniature to large systems and from high energy density to high power density, although most of them still face challenges or technical bottlenecks. In this review, we provide an overview of the opportunities and challenges of these emerging energy storage technologies (including rechargeable batteries, fuel cells, and electrochemical and dielectric capacitors). Innovative materials, strategies, and technologies are highlighted. Finally, the future directions are envisioned. We hope this review will advance the development of mobile energy storage technologies and boost carbon neutrality.
Collapse
Affiliation(s)
- Chenyang Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ying Yang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuan Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minglei Mao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kanghua Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangzu Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chengliang Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
- Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou 325035, China
| |
Collapse
|
25
|
Ma F, Liu X, Wang X, Liang J, Huang J, Priest C, Liu J, Jiao S, Wang T, Wu G, Huang Y, Li Q. Atomically dispersed Zn-Co-N-C catalyst boosting efficient and robust oxygen reduction catalysis in acid via stabilizing Co-N bonds. FUNDAMENTAL RESEARCH 2023; 3:909-917. [PMID: 38933015 PMCID: PMC11197814 DOI: 10.1016/j.fmre.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
Transition metal supported N-doped carbon (M-N-C) catalysts for oxygen reduction reaction (ORR) are viewed as the promising candidate to replace Pt-group metal (PGM) for proton exchange membrane fuel cells (PEMFCs). However, the stability of M-N-C is extremely challenging due to the demetalation, H2O2 attack, etc. in the strongly oxidative conditions of PEMFCs. In this study, we demonstrate the universal effect of Zn on promoting the stability of atomically dispersed M-Nx/C (M = Co, Fe, Mn) catalysts and the enhancement mechanism is unveiled for the first time. The best-performing dual-metal-site Zn-Co-N-C catalyst exhibits a high half-wave potential (E 1/2) value of 0.81 V vs. reversible hydrogen electrode (RHE) in acid and outstanding durability with no activity decay after 15,000 accelerated degradation test (ADT) cycles at 60 °C, surpassing most reported Co-based PGM-free catalysts in acid media. For comparison, the Co-N-C in the absence of Zn suffers from a rapid degradation after ADT due to the demetalation and higher H2O2 yield. X-ray adsorption spectroscopy (XAS) and density functional theory (DFT) calculations suggest the more negative formation energy (by 1.2 eV) and increased charge transfer of Zn-Co dual-site structure compared to Co-N-C could strength the Co-N bonds against the demetalation and the optimized d-band center accounts for the improved ORR kinetics.
Collapse
Affiliation(s)
- Feng Ma
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xuan Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaoming Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Jiashun Liang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianyu Huang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Cameron Priest
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - Jinjia Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd, Huairou District, Beijing 101400, China
| | - Shuhong Jiao
- Department of Materials Science and Engineering, Key Laboratory of Materials for Energy Conversion Chinese Academy of Science (CAS), University of Science and Technology of China, Hefei 230026, China
| | - Tanyuan Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
26
|
Gong F, Liu Y, Zhao Y, Liu W, Zeng G, Wang G, Zhang Y, Gong L, Liu J. Universal Sub-Nanoreactor Strategy for Synthesis of Yolk-Shell MoS 2 Supported Single Atom Electrocatalysts toward Robust Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2023; 62:e202308091. [PMID: 37340794 DOI: 10.1002/anie.202308091] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
The coordination structure determines the electrocatalytic performances of single atom catalysts (SACs), while it remains a challenge to precisely regulate their spatial location and coordination environment. Herein, we report a universal sub-nanoreactor strategy for synthesis of yolk-shell MoS2 supported single atom electrocatalysts with dual-anchored microenvironment of vacancy-enriched MoS2 and intercalation carbon toward robust hydrogen-evolution reaction. Theoretical calculations reveal that the "E-Lock" and "E-Channel" are conducive to stabilize and activate metal single atoms. A group of SACs is subsequently produced with the assistance of sulfur vacancy and intercalation carbon in the yolk-shell sub-nanoreactor. The optimized C-Co-MoS2 yields the lowest overpotential (η10 =17 mV) compared with previously reported MoS2 -based electrocatalysts to date, and also affords a 5-9 fold improvement in activity even comparing with those as-prepared single-anchored analogues. Theoretical results and in situ characterizations unveil its active center and durability. This work provides a universal pathway to design efficient catalysts for electro-refinery.
Collapse
Affiliation(s)
- Feilong Gong
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Yuheng Liu
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Yang Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Guang Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Guoqing Wang
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Yonghui Zhang
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Lihua Gong
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering and Advanced Technology Institute of University of Surrey, Guildford, Surrey, GU2 7XH, UK
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, P. R. China
| |
Collapse
|
27
|
Zhang C, Wang X, Ma Z, Yao H, Liu H, Li C, Zhou J, Xu R, Zheng X, Wang H, Li Q, Gu M, Jiang H, Huang M. Spin state modulation on dual Fe center by adjacent Ni sites enabling the boosted activities and ultra-long stability in Zn-air batteries. Sci Bull (Beijing) 2023; 68:2042-2053. [PMID: 37574374 DOI: 10.1016/j.scib.2023.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/10/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Breakthrough in developing cost-effective Fe-based catalysts with superior oxygen reduction reaction (ORR) activities and ultra-long-term stability for application in Zn-air batteries (ZABs) remain a priority but still full of challenges. Herein, the neighboring NiN4 single-metal-atom and Fe2N5 dual-metal-atoms on the N-doped hollow carbon sphere (Fe/Ni-NHCS) were deliberately constructed as the efficient and robust ORR catalyst for ZABs. Both theory calculations and magnetic measurements demonstrate that the introduction of NiN4 provides a significant role on optimizing the electron spin state of Fe2N5 sites and reducing the energy barrier for the adsorption and conversion of the oxygen-containing intermediates, enabling the Fe/Ni-NHCS with excellent ORR performance and ultralow byproduct HO2- yield (0.5%). Impressively, the ZABs driven by Fe/Ni-NHCS exhibit unprecedented long-term rechargeable stability over 1200 h. This work paves a new venue to manipulate the spin state of active sites for simultaneously achieving superior catalytic activities and ultra-long-term stability in energy conversion technologies.
Collapse
Affiliation(s)
- Canhui Zhang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xingkun Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zhentao Ma
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China
| | - Hanxu Yao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hengjun Liu
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, State Key Laboratory of Bio-Fibers and Eco-Textiles, Weihai Innovation Research Institute, Qingdao University, Qingdao 266071, China
| | - Cheng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Zhou
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ren Xu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China
| | - Huanlei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qiang Li
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, State Key Laboratory of Bio-Fibers and Eco-Textiles, Weihai Innovation Research Institute, Qingdao University, Qingdao 266071, China
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Heqing Jiang
- Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
28
|
Yuan LJ, Liu B, Shen LX, Dai YK, Li Q, Liu C, Gong W, Sui XL, Wang ZB. d-Orbital Electron Delocalization Realized by Axial Fe 4 C Atomic Clusters Delivers High-Performance Fe-N-C Catalysts for Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305945. [PMID: 37450565 DOI: 10.1002/adma.202305945] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Fe-N-C catalyst for oxygen reduction reaction (ORR) has been considered as the most promising nonprecious metal catalyst due to its comparable catalytic performance to Pt in proton exchange membrane fuel cells (PEMFCs). The active centers of Fe-pyrrolic N4 have been proven to be extremely active for ORR. However, forming a stable Fe-pyrrolic N4 structure is a huge challenge. Here, a Cyan-Fe-N-C catalyst with Fe-pyrrolic N4 as the intrinsic active center is constructed with the help of axial Fe4 C atomic clusters, which shows a half-wave potential of up to 0.836 V (vs. RHE) in the acid environment. More remarkably, it delivers a high power density of 870 and 478 mW cm-2 at 1.0 bar in H2 -O2 and H2 -Air fuel cells, respectively. According to theoretical calculation and in situ spectroscopy, the axial Fe4 C can provide strong electronic perturbation to Fe-N4 active centers, leading to the d-orbital electron delocalization of Fe and forming the Fe-pyrrolic N4 bond with high charge distribution, which stabilizes the Fe-pyrrolic N4 structure and optimizes the OH* adsorption during the catalytic process. This work proposes a new strategy to adjust the electronic structure of single-atom catalysts based on the strong interaction between single atoms and atomic clusters.
Collapse
Affiliation(s)
- Long-Ji Yuan
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Bo Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, P. R. China
| | - Li-Xiao Shen
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yun-Kun Dai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, P. R. China
| | - Qi Li
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chang Liu
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wei Gong
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xu-Lei Sui
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhen-Bo Wang
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, P. R. China
| |
Collapse
|
29
|
Zhang T, Luo D, Xiao H, Liang X, Zhang F, Zhuang H, Li M, Zheng L, Gao Q. A Transmetalation Synthetic Strategy to Engineer Atomically Dispersed MnN 2 O 2 Electrocatalytic Centers Driving High-Performance LiS Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302249. [PMID: 37226368 DOI: 10.1002/smll.202302249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Sluggish sulfur redox reaction (SROR) kinetics accompanying lithium polysulfides (LiPSs) shuttle effect becomes a stumbling block for commercial application of LiS battery. High-efficient single atom catalysts (SACs) are desired to improve the SROR conversion capability; however, the sparse active sites as well as partial sites encapsulated in bulk-phase are fatal to the catalytic performance. Herein, high loading (5.02 wt.%) atomically dispersed manganese sites (MnSA) on hollow nitrogen-doped carbonaceous support (HNC) are realized for the MnSA@HNC SAC by a facile transmetalation synthetic strategy. The thin-walled hollow structure (≈12 nm) anchoring the unique trans-MnN2 O2 sites of MnSA@HNC provides a shuttle buffer zone and catalytic conversion site for LiPSs. Both electrochemical measurement and theoretical calculation indicate that the MnSA@HNC with abundant trans-MnN2 O2 sites have extremely high bidirectional SROR catalytic activity. The assembled LiS battery based on the MnSA@HNC modified separator can deliver a large specific capacity of 1422 mAh g-1 at 0.1 C and stable cycling over 1400 cycles with an ultralow decay rate of 0.033% per cycle at 1 C. More impressively, a flexible pouch cell on account of the MnSA@HNC modified separator may release a high initial specific capacity of 1192 mAh g-1 at 0.1 C and uninterruptedly work after the bending-unbending processes.
Collapse
Affiliation(s)
- Tengfei Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Dengfeng Luo
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Hong Xiao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xiao Liang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Fanchao Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Huifeng Zhuang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mingde Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiuming Gao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
30
|
Zhu Y, Gao Y, Gao L, Gao X, Jiang P, Cheng Y. Double Riveting and Steric Hindrance Strategy for Ultrahigh-Loading Atomically Dispersed Iron Catalysts Toward Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301456. [PMID: 37081234 DOI: 10.1002/smll.202301456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Atomically dispersed iron on nitrogen doped carbon displays high intrinsic activity toward oxygen reduction reaction, and has been identified as an attractive candidate to precious platinum catalysts. However, the loading of atomic iron sites is generally limited to below 4 wt% due to the undesired formation of iron-related particles at higher contents. Herein, this work overcomes this limit by a double riveting and steric hindrance strategy to achieve monodispersed iron with a high-loading of 12.8 wt%. Systematic study reveals that chemical riveting of atomic iron in ZIF-8 framework, chelation of Fe ions with interconfined 1,4-phenylenebisboronic, and physical hindrance are essential to obtain high-loading monodispersed Fe moieties. Resultantly, designed Fe-N-C-PDBA exhibits superior catalytic activity and excellent stability over commercial platinum catalysts toward oxygen reduction reaction in both half-cells and zinc-air fuel cells (ZAFCs). This provides an avenue for developing high-loading single-atom catalysts (SACs) for energy devices.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yifan Gao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lesen Gao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xia Gao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peng Jiang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuanhui Cheng
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
31
|
Chen G, Lu R, Li C, Yu J, Li X, Ni L, Zhang Q, Zhu G, Liu S, Zhang J, Kramm UI, Zhao Y, Wu G, Xie J, Feng X. Hierarchically Porous Carbons with Highly Curved Surfaces for Hosting Single Metal FeN 4 Sites as Outstanding Oxygen Reduction Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300907. [PMID: 37132284 DOI: 10.1002/adma.202300907] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/28/2023] [Indexed: 05/04/2023]
Abstract
Iron-nitrogen-carbon (FeNC) materials have emerged as a promising alternative to platinum-group metals for catalyzing the oxygen reduction reaction (ORR) in proton-exchange-membrane fuel cells. However, their low intrinsic activity and stability are major impediments. Herein, an FeN-C electrocatalyst with dense FeN4 sites on hierarchically porous carbons with highly curved surfaces (denoted as FeN4 -hcC) is reported. The FeN4 -hcC catalyst displays exceptional ORR activity in acidic media, with a high half-wave potential of 0.85 V (versus reversible hydrogen electrode) in 0.5 m H2 SO4 . When integrated into a membrane electrode assembly, the corresponding cathode displays a high maximum peak power density of 0.592 W cm-2 and demonstrates operating durability over 30 000 cycles under harsh H2 /air conditions, outperforming previously reported Fe-NC electrocatalysts. These experimental and theoretical studies suggest that the curved carbon support fine-tunes the local coordination environment, lowers the energies of the Fe d-band centers, and inhibits the adsorption of oxygenated species, which can enhance the ORR activity and stability. This work provides new insight into the carbon nanostructure-activity correlation for ORR catalysis. It also offers a new approach to designing advanced single-metal-site catalysts for energy-conversion applications.
Collapse
Affiliation(s)
- Guangbo Chen
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Ruihu Lu
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Chenzhao Li
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
- School of Mechanical Engineering, Purdue University, West Lafyette, IN, 47907, USA
| | - Jianmin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaodong Li
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, D-06120, Halle (Saale), Germany
| | - Lingmei Ni
- Department of Chemistry, Eduard-Zintl Insitute of Physical and Inorganic Chemistry, TU Darmstadt, D-64287, Darmstadt, Germany
| | - Qi Zhang
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Guangqi Zhu
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Shengwen Liu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jiaxu Zhang
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Ulrike I Kramm
- Department of Chemistry, Eduard-Zintl Insitute of Physical and Inorganic Chemistry, TU Darmstadt, D-64287, Darmstadt, Germany
| | - Yan Zhao
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jian Xie
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, D-06120, Halle (Saale), Germany
| |
Collapse
|
32
|
Kong W, Li C, Sun Z, Gao F, Zheng J, Jiang Y. Nickel-Atom Doping as a Potential Means to Enhance the Photoluminescence Performance of Carbon Dots. Molecules 2023; 28:5526. [PMID: 37513398 PMCID: PMC10386264 DOI: 10.3390/molecules28145526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Heteroatom doping, particularly with nonmetallic atoms such as N, P, and S, has proven to be an effective strategy for modulating the fluorescent properties of carbon dots (CDs). However, there are few reports on the regulation of the photoluminescence of CDs by transition-metal doping. In this work, nickel-doped CDs (Ni-CDs) were fabricated using the hydrothermal approach. Ni atoms were incorporated into the sp2 domains of the CDs through Ni-N bonds, resulting in an increased degree of graphitization of the Ni-CDs. Additionally, Ni-atom doping served to shorten the electron transition and recombination lifetimes, and suppress the nonradiative recombination process, resulting in an absolute fluorescence quantum yield of 54.7% for the Ni-CDs. Meanwhile, the as-prepared Ni-CDs exhibited excellent biocompatibility and were utilized for fluorescent bioimaging of HeLa cells. Subsequently, the Ni-CDs were employed as fluorescent anticounterfeiting inks for the successful encryption of two-dimensional barcodes. Our work demonstrates a novel heteroatom doping strategy for the synthesis of highly fluorescence-emitting CDs.
Collapse
Affiliation(s)
- Wenqi Kong
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Can Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Zhongqi Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Fucheng Gao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Jinfan Zheng
- Department of Neurology, Qilu Hospital, Shandong University, Jinan 250100, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| |
Collapse
|
33
|
Liu F, Shi L, Lin X, Zhang B, Long Y, Ye F, Yan R, Cheng R, Hu C, Liu D, Qiu J, Dai L. Fe/Co dual metal catalysts modulated by S-ligands for efficient acidic oxygen reduction in PEMFC. SCIENCE ADVANCES 2023; 9:eadg0366. [PMID: 37294763 PMCID: PMC10256161 DOI: 10.1126/sciadv.adg0366] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/04/2023] [Indexed: 06/11/2023]
Abstract
Here, we report a conceptual strategy for introducing spatial sulfur (S)-bridge ligands to regulate the coordination environment of Fe-Co-N dual-metal centers (Spa-S-Fe,Co/NC). Benefiting from the electronic modulation, Spa-S-Fe,Co/NC catalyst showed remarkably enhanced oxygen reduction reaction (ORR) performance with a half-wave potential (E1/2) of 0.846 V and satisfactory long-term durability in acidic electrolyte. Combined experimental and theoretical studies revealed that the excellent acidic ORR activity with a remarkable stability observed for Spa-S-Fe,Co/NC is attributable to the optimal adsorption-desorption of ORR oxygenated intermediates achieved through charge-modulation of Fe-Co-N bimetallic centers by the spatial S-bridge ligands. These findings provide a unique perspective to regulate the local coordination environment of catalysts with dual-metal-centers to optimize their electrocatalytic performance.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lei Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xuanni Lin
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biao Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongde Long
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fenghui Ye
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Riqing Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruyi Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jieshan Qiu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
34
|
Li J, Lin M, Huang W, Liao X, Ma Y, Zhou L, Mai L, Lu J. Pomegranate-Like FeNC with Optimized FeN 4 Configuration as Bi-Functional Catalysts for Rechargeable Zinc-Air Batteries. SMALL METHODS 2023:e2201664. [PMID: 37086112 DOI: 10.1002/smtd.202201664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/18/2023] [Indexed: 05/03/2023]
Abstract
Catalysts with FeNC moieties have demonstrated remarkable activity toward oxygen reduction reaction (ORR), but precise synthesis and configuration regulation of FeNC to achieve bi-functional catalytic sites for ORR and oxygen evolution reaction (OER) remain a great challenge. Herein, a pomegranate-like catalyst with optimized FeN4 configuration is designed. The unique framework affords a large surface area for sufficient active site exposure and abundant macroporous channels for mass transport. By twisting chemical bonds, the electronic structure of FeN4 is regulated, and the adsorption/desorption of oxygen species is facilitated. Compared to noble metal-based catalysts (Pt/C+IrO2 ), the optimized FeNC exhibits impressive onset potential (0.96 V versus reversible hydrogen electrode), larger limiting current density (5.85 mA cm-2 ), and better long-term life for ORR, as well as, lower OER overpotential. When integrated into Zn-air batteries, it demonstrates a respectable peak power density (71.6 mW cm-2 ) and ideal cycling stability (30 h), exceeding that of commercial Pt/C+IrO2 . The exploration offers a guideline for designing advanced bi-functional electrocatalysts.
Collapse
Affiliation(s)
- Jiantao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Mengting Lin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Wenzhong Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Xiaobin Liao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Yao Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
35
|
Liu Z, Li Y, Fang J, Wan Q. Investigation of Nanoscale Tungsten Carbide Enhanced Surface Carbon as a Platinum Support for the Hydrogen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1369. [PMID: 37110954 PMCID: PMC10144476 DOI: 10.3390/nano13081369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Finding new supports and reducing the amount of platinum are key steps in the development of fuel cells. Herein, nanoscale WC is used as the support for a Pt catalyst, which was prepared by an improved strategy based on solution combustion and chemical reduction. After high-temperature carbonization, the synthesized Pt/WC catalyst displayed a well-distributed size distribution and relatively fine particles, which consisted of WC and modified Pt nanoparticles. Meanwhile, the excess carbon of the precursor transformed into amorphous carbon in the high-temperature process. The formation carbon layer on the surface of the WC nanoparticles had a significant effect on the microstructure of the Pt/WC catalyst, improving the conductivity and stability of Pt. Linear sweep voltammetry and Tafel plots were used to evaluate the catalytic activity and mechanism for the hydrogen evolution reaction. As compared with the WC and commercial Pt/C catalysts, the Pt/WC catalyst showed the highest activity with η10 of 32.3 mV and a Tafel slope of 30 mV·dec-1 towards HER in acidic solution. These studies confirm that the formation of surface carbon can increase material stability and conductivity, improving the synergistic relationships between Pt and WC catalysts, leading to an increase of catalytic activity.
Collapse
Affiliation(s)
- Zhiwei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Juan Fang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Wan
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
36
|
Chen Z, Peng X, Chen Z, Li T, Zou R, Shi G, Huang Y, Cui P, Yu J, Chen Y, Chi X, Loh KP, Liu Z, Li X, Zhong L, Lu J. Mass Production of Sulfur-Tuned Single-Atom Catalysts for Zn-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209948. [PMID: 36652951 DOI: 10.1002/adma.202209948] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Single-atom catalysts (SACs) show great potential for rechargeable Zn-air batteries (ZABs); however, scalable production of SACs from sustainable resources is difficult owing to poor control of the local coordination environment. Herein, lignosulfonate, a by-product of the papermaking industry, is utilized as a multifunctional bioligand for the mass production of SACs with highly active MN4 S sites (M represents Fe, Cu, and Co) via strong metalnitrogen/sulfur coordination. This effectively adjusts the charge distribution and promotes the catalytic performance, leading to highly durable and excellent performance in oxygen reduction and evolution reactions for ZABs. This study paves the way for the industrial production of cost-effective SACs in a sustainable manner.
Collapse
Affiliation(s)
- Zehong Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Tingzhen Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ren Zou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ge Shi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yongfa Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Peng Cui
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jian Yu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yuling Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiao Chi
- Department of Chemistry and Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Kian Ping Loh
- Department of Chemistry and Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhaoqing Liu
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou, 510006, China
| | - Xuehui Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
37
|
Wu Y, Li X, Hua K, Duan X, Ding R, Rui Z, Cao F, Yuan M, Li J, Liu J. Generalized Encapsulations of ZIF-Based Fe-N-C Catalysts with Controllable Nitrogen-Doped Carbon for Significantly-Improved Stability Toward Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207671. [PMID: 36734204 DOI: 10.1002/smll.202207671] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The vigorous development of efficient platinum group metal-free catalysts is considerably important to facilitate the universal application of proton exchange membrane fuel cells. Although nitrogen-coordinated atomic iron intercalated in carbon matrix (Fe-N-C) catalysts exhibit promising catalytic activity, the performance in fuel cells, especially the short lifetime, remains an obstacle. Herein, a highly-active Fe-N-C catalyst with a power density of >1 w cm-2 and prolonged discharge stability with a current density of 357 mA cm-2 after 40 h of constant voltage discharge at 0.7 V in H2 -O2 fuel cells using a controllable and efficient N-C coating strategy is developed. It is clarified that a thicker N-C coating may be more favorable to enhance the stability of Fe-N-C catalysts at the expense of their catalytic activity. The stability enhancement mechanism of the N-C coating strategy is proven to be the synergistic effect of reduced carbon corrosion and iron loss. It is believed that these findings can contribute to the development of Fe-N-C catalysts with high activity and long lifetimes.
Collapse
Affiliation(s)
- Yongkang Wu
- College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Xiaoke Li
- College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Kang Hua
- College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Xiao Duan
- College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Rui Ding
- College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Zhiyan Rui
- College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Feng Cao
- College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Mengchen Yuan
- College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Jia Li
- Energy and Power Innovation Research Institute, North China Electric Power University, 2 Beinong Road, Beijing, 102206, P. R. China
| | - Jianguo Liu
- Energy and Power Innovation Research Institute, North China Electric Power University, 2 Beinong Road, Beijing, 102206, P. R. China
| |
Collapse
|
38
|
Small-size MOF derived highly active low-platinum catalysts for oxygen reduction reactions. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
39
|
Li S, Li Z, Huang T, Xie H, Miao Z, Liang J, Pan R, Wang T, Han J, Li Q. Si Doping Enables Activity and Stability Enhancement on Atomically Dispersed Fe-N x /C Electrocatalysts for Oxygen Reduction in Acid. CHEMSUSCHEM 2023; 16:e202201795. [PMID: 36355035 DOI: 10.1002/cssc.202201795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Fe-N-C represents the most promising non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) in fuel cells, but often suffers from poor stability in acid due to the dissolution of metal sites and the poor oxidation resistance of carbon substrates. In this work, silicon-doped iron-nitrogen-carbon (Si/Fe-N-C) catalysts were developed by in situ silicon doping and metal-polymer coordination. It was found that Si doping could not only promote the density of Fe-Nx /C active sites but also elevated the content of graphitic carbon through catalytic graphitization. The best-performing Si/Fe-N-C exhibited a half-wave potential of 0.817 V vs. reversible hydrogen electrode in 0.5 m H2 SO4 , outperforming that of undoped Fe-N-C and most of the reported Fe-N-C catalysts. It also exhibited significantly enhanced stability at elevated temperature (≥60 °C). This work provides a new way to develop non-precious metal ORR catalysts with improved activity and stability in acidic media.
Collapse
Affiliation(s)
- Shenzhou Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, P. R. China
| | - Zhiqiang Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianping Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huan Xie
- International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zhengpei Miao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiashun Liang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, P. R. China
| | - Ran Pan
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tanyuan Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiantao Han
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, P. R. China
| |
Collapse
|
40
|
Li L, Xu M, Wang Y, Zhang Y, Li Y, Li F, Zeng L, Zhang X, Zheng J, Zheng Z. Linking Enhanced Kinetics of Electrocatalytic Oxygen Reduction Reaction with Increased Utilization of Active Sites in a Hierarchical Single-Atom Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205743. [PMID: 36372523 DOI: 10.1002/smll.202205743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Single-atom catalysts (SACs) are of tremendous current research due to maximized use of metal atoms and enhanced activity and selectivity for a great variety of chemical reactions. Hierarchically structured SACs have been explored to further increase the number and accessibility of active sites to realize the full potentials of SACs. However, though plausible-sounding, these supposed advantages of hierarchically structured SACs are largely untested. The assumed enhancing effects on the formation of intermediates on and the overall reaction kinetics remain largely unknown. Herein is reported a Fe-SAC with a hierarchical hollow structure (Fe/HH) that showed excellent activity in oxygen reduction reaction and proton exchange membrane fuel cell. Comparative experimental and computational studies with respect to Fe/SS-the counterpart of Fe/HH with a compact primary structure-reveal a significantly increased number of active sites and their utilization in Fe/HH as reflected by the facilitated formation of the rate-determining-step intermediate Fe-OOH*. This work thus establishes unambiguously the connection between the increased utilization of active sites and the enhanced kinetics of the electrocatalytic reduction of oxygen.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, and Key Laboratory of Energy Conversion and Storage Technologies (Ministry of Education), Southern University of Science and Technology, Shenzhen, 518055, China
- College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Ming Xu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yameng Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanan Zhang
- College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yanyan Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, and Key Laboratory of Energy Conversion and Storage Technologies (Ministry of Education), Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fayan Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, and Key Laboratory of Energy Conversion and Storage Technologies (Ministry of Education), Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Zeng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyu Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, and Key Laboratory of Energy Conversion and Storage Technologies (Ministry of Education), Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiaxin Zheng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhiping Zheng
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, and Key Laboratory of Energy Conversion and Storage Technologies (Ministry of Education), Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
41
|
Miao Z, Li S, Priest C, Wang T, Wu G, Li Q. Effective Approaches for Designing Stable M-N x /C Oxygen-Reduction Catalysts for Proton-Exchange-Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200595. [PMID: 35338536 DOI: 10.1002/adma.202200595] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The large-scale commercialization of proton-exchange-membrane fuel cells (PEMFCs) is extremely limited by their costly platinum-group metals (PGMs) catalysts, which are used for catalyzing the sluggish oxygen reduction reaction (ORR) kinetics at the cathode. Among the reported PGM-free catalysts so far, metal-nitrogen-carbon (M-Nx /C) catalysts hold a great potential to replace PGMs catalysts for the ORR due to their excellent initial activity and low cost. However, despite tremendous progress in this field in the past decade, their further applications are restricted by fast degradation under practical conditions. Herein, the theoretical fundamentals of the stability of the M-Nx /C catalysts are first introduced in terms of thermodynamics and kinetics. The primary degradation mechanisms of M-Nx /C catalysts and the corresponding mitigating strategies are discussed in detail. Finally, the current challenges and the prospects for designing highly stable M-Nx /C catalysts are outlined.
Collapse
Affiliation(s)
- Zhengpei Miao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Shenzhou Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Cameron Priest
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Tanyuan Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
42
|
Qiu X, Li Z, Wu Y, Binder WH, Chen S, Zhu J. Core-Coordinated Elliptic Polymer Nanoparticles Loading Copper(II) and Chlorambucil for Cooperative Chemodynamic/Chemotherapy. Biomacromolecules 2022; 23:4519-4531. [PMID: 36250649 DOI: 10.1021/acs.biomac.2c00656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chemodynamic therapy (CDT) reflects an innovative cancer treatment modality; however, to enhance its relatively low therapeutic efficiency, rational combination with extra therapeutic modes is highly appreciated. Here, core-coordinated amphiphilic, elliptic polymer nanoparticles (Cu/CBL-POEGEA NPs) are constructed via the self-assembly of a glutathione (GSH)-responsive polymer-drug conjugate, bearing side-chain acylthiourea (ATU) motifs which behave as ligands capable of coordinating Cu(II), such a design is featured by combined chemo (CT)/CDT with dual GSH depletion collectively triggered by the Cu(II) reduction reaction and disulfide bond breakage. To do so, an amphiphilic random copolymer poly[oligo(ethylene glycol)ethyl acrylate-co-thiourea] [P(OEGEA-co-ATU)] is synthesized, followed by conjugation of chlorambucil (CBL) to ATU motifs linked via a disulfide bond, thus yielding the targeted P[OEGEA-co-(ATU-g-CBL)]. In such a system, hydrophilic POEGEA serves as the biocompatible section and ATU motifs coordinate Cu(II), resulting in core-coordinated elliptic Cu/CBL-POEGEA NPs. Benefitting from the GSH-induced reduction reaction, Cu(II) is converted into Cu(I) and subsequently react with endogenous H2O2 to create •OH, realizing GSH-depletion-promoted CDT. Additionally, the disulfide bond endows GSH-responsive CBL release and provokes further GSH decline, finally realizing combined CDT/CT toward enhancing antitumor outcomes, and in vitro as well as in vivo studies indeed reveal remarkable efficacy. Such a system can provide valuable advantages to create novel nanomedicines toward cascade antitumor therapy.
Collapse
Affiliation(s)
- Xiaoyang Qiu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zeke Li
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanggui Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wolfgang H Binder
- Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, Halle (Saale) D-06120, Germany
| | - Senbin Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
43
|
Zhang J, Ye Y, Wang Z, Xu Y, Gui L, He B, Zhao L. Probing Dynamic Self-Reconstruction on Perovskite Fluorides toward Ultrafast Oxygen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201916. [PMID: 35869034 PMCID: PMC9507342 DOI: 10.1002/advs.202201916] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/01/2022] [Indexed: 05/22/2023]
Abstract
Exploring low cost, highly active, and durable electrocatalysts for oxygen evolution reaction (OER) is of prime importance to boost energy conversion efficiency. Perovskite fluorides are emerging as alternative electrocatalysts for OER, however, their intrinsically active sites during real operation are still elusive. Herein, the self-reconstruction on newly designed NiFe coupled perovskite fluorides during OER process is demonstrated. In situ Raman spectroscopy, ex situ X-ray absorption spectroscopy, and theoretical calculation reveal that Fe incorporation can significantly activate the self-reconstruction of perovskite fluorides and efficiently lower the energy barrier of OER. Benefiting from self-reconstruction and low energy barrier, the KNi0.8 Fe0.2 F3 @nickel foam (KNFF2@NF) electrocatalyst delivers an ultralow overpotential of 258 mV to afford 100 mA cm-2 and an excellent durability for 100 h, favorably rivaling most the state-of-the-art OER electrocatalysts. This protocol provides the fundamental understanding on OER mechanism associated with surface reconstruction for perovskite fluorides.
Collapse
Affiliation(s)
- Jing Zhang
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Yu Ye
- State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhan430074China
| | - Zhenbin Wang
- Department of PhysicsTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Yin Xu
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Liangqi Gui
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
- School of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Beibei He
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
- Shenzhen Research InstituteChina University of GeosciencesShenzhen518000China
| | - Ling Zhao
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
- Shenzhen Research InstituteChina University of GeosciencesShenzhen518000China
| |
Collapse
|
44
|
Bai J, Feng Z, Huang L, Tang J, Wang Y, Wang S. Hardwood Kraft lignin-derived carbon microfibers with enhanced electrochemical performance. Int J Biol Macromol 2022; 220:733-742. [PMID: 36007695 DOI: 10.1016/j.ijbiomac.2022.08.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
It is of great challenge to prepare lignin-derived carbon microfibers with suitable graphite crystallites due to the volatilization of incorporated polymers. In this work, we proposed a simple method for the construction of graphite crystallites based on the regulation of the hydrogen-bonding interaction between hardwood Kraft lignin (HKL) and poly(m-phenylene isophthalamide) (PMIA). The strong hydrogen-bonding interaction demonstrated by the results of TG, FTIR, XPS, Raman and XRD increased the graphite crystal size and perfected the crystal structure of HKL-based carbon microfibers, which further enhanced the electrochemical performance of HKL/PMIA-based carbon microfibers electrodes, especially for the increase of capacitance and cycle performance and the decrease of charge transfer resistance. The specific capacitance, energy density and power density of P2H2-based (HKL/PMIA = 1:1) carbon microfibers electrode were up to 190.8 F g-1, 34.4 Wh kg-1 and 540 W kg-1 at a current density of 0.5 A g-1, respectively, which were comparable to or even higher than those of lignin composites-based carbon fibers electrodes. This work reveals the relationship between hydrogen-bonding interaction and crystalline structure, which can be further considered in the preparation of lignin-based carbon fibers electrodes.
Collapse
Affiliation(s)
- Jixing Bai
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zihao Feng
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Linjun Huang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jianguo Tang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yao Wang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shichao Wang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
45
|
Zaman S, Wang M, Liu H, Sun F, Yu Y, Shui J, Chen M, Wang H. Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
46
|
Steering structural mesoporosity and working microenvironment of Fe-N-C catalysts for boosting cathodic mass transport of zinc-air batteries. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Zhang LL, Tong L, Lv XH, Yan QQ, Ding YW, Wang YC, Liang HW. A Top-Down Templating Strategy toward Functional Porous Carbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201838. [PMID: 35618445 DOI: 10.1002/smll.202201838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Nanostructured carbon materials with high porosity and desired chemical functionalities are of immense interest because of their wide application potentials in catalysis, environment, and energy storage. Herein, a top-down templating strategy is presented for the facile synthesis of functional porous carbons, based on the direct carbonization of diverse organic precursors with commercially available metal oxide powders. During the carbonization, the metal oxide powders can evolve into nanoparticles that serve as in situ templates to introduce nanopores in carbons. The porosity and heteroatom doping of the prepared carbon materials can be engineered by varying the organic precursors and/or the metal oxides. It is further demonstrated that the top-down templating strategy is applicable to prepare carbon-based single-atom catalysts with iron-nitrogen sites, which exhibit a high power density of 545 mW cm-2 in a H2 -air proton exchange membrane fuel cell.
Collapse
Affiliation(s)
- Le-Le Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Tong
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xue-Hui Lv
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qiang-Qiang Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yan-Wei Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hai-Wei Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
48
|
Iron atom-cluster interactions increase activity and improve durability in Fe-N-C fuel cells. Nat Commun 2022; 13:2963. [PMID: 35618792 PMCID: PMC9135695 DOI: 10.1038/s41467-022-30702-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Simultaneously increasing the activity and stability of the single-atom active sites of M–N–C catalysts is critical but remains a great challenge. Here, we report an Fe–N–C catalyst with nitrogen-coordinated iron clusters and closely surrounding Fe–N4 active sites for oxygen reduction reaction in acidic fuel cells. A strong electronic interaction is built between iron clusters and satellite Fe–N4 due to unblocked electron transfer pathways and very short interacting distances. The iron clusters optimize the adsorption strength of oxygen reduction intermediates on Fe–N4 and also shorten the bond amplitude of Fe–N4 with incoherent vibrations. As a result, both the activity and stability of Fe–N4 sites are increased by about 60% in terms of turnover frequency and demetalation resistance. This work shows the great potential of strong electronic interactions between multiphase metal species for improvements of single-atom catalysts. It is challenging to break the activity–stability trade-off in Fe–N–C fuel cell catalysts. Here, the authors show that interactions between iron atoms and clusters accelerate reaction kinetics and suppress demetalation to improve fuel cell stability.
Collapse
|
49
|
Jiang S, Xue D, Zhang J. Optimizing Atomically Dispersed Metal Electrocatalysts for Hydrogen Evolution: Chemical Coordination Effect and Electronic Metal Support Interaction. Chem Asian J 2022; 17:e202200319. [DOI: 10.1002/asia.202200319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Su Jiang
- Zhengzhou University college of material science and engineering CHINA
| | - Dongping Xue
- Zhengzhou University college of material science and engineering CHINA
| | - Jianan Zhang
- Zhengzhou University College of Materials Science and Engineering 100 Kexue Road 450001 Zhengzhou CHINA
| |
Collapse
|
50
|
Pan C, Mao Z, Yuan X, Zhang H, Mei L, Ji X. Heterojunction Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105747. [PMID: 35174980 PMCID: PMC9008793 DOI: 10.1002/advs.202105747] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/29/2022] [Indexed: 05/07/2023]
Abstract
Exogenous stimulation catalytic therapy has received enormous attention as it holds great promise to address global medical issues. However, the therapeutic effect of catalytic therapy is seriously restricted by the fast charge recombination and the limited utilization of exogenous stimulation by catalysts. In the past few decades, many strategies have been developed to overcome the above serious drawbacks, among which heterojunctions are the most widely used and promising strategy. This review attempts to summarize the recent progress in the rational design and fabrication of heterojunction nanomedicine, such as semiconductor-semiconductor heterojunctions (including type I, type II, type III, PN, and Z-scheme junctions) and semiconductor-metal heterojunctions (including Schottky, Ohmic, and localized surface plasmon resonance-mediated junctions). The catalytic mechanisms and properties of the above junction systems are also discussed in relation to biomedical applications, especially cancer treatment and sterilization. This review concludes with a summary of the challenges and some perspectives on future directions in this exciting and still evolving field of research.
Collapse
Affiliation(s)
- Chao Pan
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Zhuo Mao
- Tianjin Key Laboratory of Biomedical MaterialsKey Laboratory of Biomaterials and Nanotechnology for Cancer ImmunotherapyInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Xue Yuan
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Hanjie Zhang
- Tianjin Key Laboratory of Biomedical MaterialsKey Laboratory of Biomaterials and Nanotechnology for Cancer ImmunotherapyInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical MaterialsKey Laboratory of Biomaterials and Nanotechnology for Cancer ImmunotherapyInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| |
Collapse
|