1
|
Li K, Zhang X, Li J, Zheng X. Photoelectric activity of titania nanotube by dimensionality control for neural-stimulated osteoblast activation. Colloids Surf B Biointerfaces 2025; 251:114619. [PMID: 40086210 DOI: 10.1016/j.colsurfb.2025.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Simultaneous bone and nerve regeneration is important in facilitating osseointegration. However, regeneration of neural elements is often overlooked when designing orthopedic implants. Since nerves are electroactive tissues that regulate bone formation via neuropeptide release, developing photoelectric coating material on implants is optimal for neural-stimulated osteoblast activation. In this study, three kinds of vertically oriented TiO2 nanotube (TNT) coatings with tube diameter of 60, 110 and 180 nm were fabricated on Ti implants denoting as TNT-60, TNT-110 and TNT-180, respectively. TNT-60 coating with higher oxygen-vacancy concentration and lower crystallinity displayed higher visible-light absorption capacity and transient photocurrent density. Enhanced photoelectric activity of TNT-60 was ascribed to narrowed bandgap of TiO2 and enhanced separation efficiency of photogenerated carriers. TNTs coatings under visible-light irradiation significantly improved proliferation of PC12 cells and cell differentiation in terms of neurite outgrowth and calcitonin gene-related peptide release. Among them, TNT-60 coating exerted the greatest enhancement via Ca2 + influx mechanism. Osteoblast differentiation and mineralization of MC3T3-E1 cells were significantly enhanced when cells were cultured with conditioned medium from PC12 cells cultured on the TNTs coatings with visible-light illumination. This indicated neural-stimulated osteoblast activation. Above all, photoelectric TNT coating provides a promising approach for targeting nerve activation to stimulate osteogenesis.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Xinwei Zhang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Jieping Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Hou J, Sun W, Yuan Q, Ding L, Wan Y, Xiao Z, Zhu T, Lei X, Lin J, Cheacharoen R, Zhou Y, Wang S, Manshaii F, Xie J, Li W, Zhao J. Multiscale Engineered Bionic Solid-State Electrolytes Breaking the Stiffness-Damping Trade-Off. Angew Chem Int Ed Engl 2025; 64:e202421427. [PMID: 39825672 DOI: 10.1002/anie.202421427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 01/17/2025] [Indexed: 01/20/2025]
Abstract
All-solid-state lithium metal batteries (LMBs) are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of Li dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes. This bionic electrolyte exhibits both high stiffness (Young's modulus=15 GPa, hardness=0.13 GPa) and damping (tanδ=0.08), breaking the trade-off. Thus, this composite electrolyte can not only inhibit Li dendrites growth but also ensure intimate contact with electrodes. Meanwhile, it also exhibits considerable Li+ transference number (0.62) and room temperature ionic conductivity (1.34×10-4 S cm-1), which is attributed to oxygen vacancies of the amorphous ceramic effectively decoupling the Li-TFSI ion pair. Consequently, the assembled Li symmetric battery shows an ultra-stable cycling (>2000 hours at 0.1 mA cm-2 at 60 °C, >500 hours at 0.1 mA cm-2 at 30 °C). Moreover, the LiFePO4/Li and LiNi0.8Co0.1Mn0.1O2/Li all-solid-state full cells both show excellent cycling performance. We demonstrate that this bionic strategy is a promising approach for the development of high-performance solid-state electrolytes.
Collapse
Affiliation(s)
- Junyu Hou
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| | - Wu Sun
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| | - Qunyao Yuan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| | - Longjiang Ding
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yanhua Wan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200438, P. R. China
| | - Zuohui Xiao
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Tianke Zhu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| | - Xingyu Lei
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| | - Jingsen Lin
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| | - Rongrong Cheacharoen
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yunlei Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311200, P. R. China
| | - Shaolei Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Jin Xie
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200438, P. R. China
| | - Jie Zhao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
3
|
Palmolahti L, Ali-Löytty H, Hannula M, Tinus T, Lehtola K, Tukiainen A, Reuna J, Valden M. Production of mixed phase Ti 3+-rich TiO 2 thin films by oxide defect engineered crystallization. NANOSCALE 2024; 16:22383-22392. [PMID: 39545864 DOI: 10.1039/d4nr03545c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Amorphous TiO2 has insufficient chemical stability that can be enhanced with annealing induced crystallization. However, the crystalline structure is already predetermined by the defect composition of the amorphous phase. In this paper, we demonstrate that the oxide defects, i.e., oxygen vacancies and Ti3+ states, can be created by O2 deficiency during ion-beam sputter deposition without affecting the O/Ti ratio of TiO2. The films are thus stoichiometric containing a variable degree of interstitial O instead of lattice O. Defect-free TiO2 crystallizes into microcrystalline anatase during vacuum annealing, whereas a moderate number density of defects causes crystallization into nanocrystalline rutile. An excessive number density of defects results in a mixed amorphous/nanocrystalline rutile phase that was analyzed by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The number density of defects did not affect the crystallization temperature, which was 400 °C. All crystalline films, including the mixed amorphous/nanocrystalline rutile phase, were chemically stable in 1.0 M NaOH for 80 h. Unlike annealing treatments in oxidizing environments that are typically applied to improve stability, vacuum annealing improves the stability preserving also the Ti3+ gap states that are critical to the charge transfer in protective TiO2-based photoelectrode coatings.
Collapse
Affiliation(s)
- Lauri Palmolahti
- Surface Science Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | - Harri Ali-Löytty
- Surface Science Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
- Liquid Sun Ltd, Tampere, Finland
| | - Markku Hannula
- Surface Science Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | - Tuomas Tinus
- Surface Science Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | - Kalle Lehtola
- Surface Science Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | - Antti Tukiainen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Jarno Reuna
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Mika Valden
- Surface Science Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| |
Collapse
|
4
|
Ji Y, Dong H, Shao Q, Wen T, Wang L, Zhang J, Long C. Ethylene Glycol (EG)-Derived Chlorine-Resistant Cu 0/TiO 2-x for Efficient Photocatalytic Degradation of Nitrate to N 2 without Sacrificial Agents at Near-Neutral pH Conditions: The Synergistic Effects of Cu 0 and EG Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19555-19566. [PMID: 39421922 DOI: 10.1021/acs.est.4c09037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The selective photoreduction of nitrate to nontoxic nitrogen gas has emerged as an energy-efficient and environmentally friendly route for nitrate removal. However, the coexisting high-concentration chloride ions in wastewater can exert a significant influence on nitrate reduction due to the competitive adsorption and corrosion of Cl- on photocatalysts. Herein, we prepared ethylene glycol-Cu/TiO2-x (EG-Cu/TiO2-x) through a solvothermal reaction of Cu-doped TiO2 in an EG solution. The photodegradation of nitrate using EG-Cu/TiO2-x without adding sacrificial agents can efficiently occur in near-neutral pH solutions containing 50 mM Cl- with 95.26% of NO3- removal and 76.52% of N2 selectivity. Moreover, the photocatalyst performance remained at a high level after 8 cycles. In this work, NO3- was first converted to NH4+ by Cu0 and Ti3+, followed by the NH4+-to-N2 conversion by photogenerated chlorine free radicals. Compared to HO•, Cl•, and Cl2•-, ClO• is proved to play the predominant role in transforming NH4+ to N2. The EG radicals produced by UV light impede Cl- adsorption on Cu, protecting Cu0 from being corroded. What's more, photoelectrons can reduce Ti4+ to Ti3+ and protect Cu0 from being oxidized, enabling the stability of reactive sites. This work provides novel insights and understanding on designing photocatalysts for NO3- removal in solutions containing chloride ions, highlighting the significance of eliminating Cl- by EG radicals and adjusting the conversion process of NO3- for the efficient removal of NO3-.
Collapse
Affiliation(s)
- Yekun Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hao Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qi Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tiancheng Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lisha Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng 224000, China
| |
Collapse
|
5
|
Hou X, Li Y, Zhang H, Lund PD, Kwan J, Tsang SCE. Black titanium oxide: synthesis, modification, characterization, physiochemical properties, and emerging applications for energy conversion and storage, and environmental sustainability. Chem Soc Rev 2024; 53:10660-10708. [PMID: 39269216 DOI: 10.1039/d4cs00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Since its advent in 2011, black titanium oxide (B-TiOx) has garnered significant attention due to its exceptional optical characteristics, notably its enhanced absorption spectrum ranging from 200 to 2000 nm, in stark contrast to its unmodified counterpart. The escalating urgency to address global climate change has spurred intensified research into this material for sustainable hydrogen production through thermal, photocatalytic, electrocatalytic, or hybrid water-splitting techniques. The rapid advancements in this dynamic field necessitate a comprehensive update. In this review, we endeavor to provide a detailed examination and forward-looking insights into the captivating attributes, synthesis methods, modifications, and characterizations of B-TiOx, as well as a nuanced understanding of its physicochemical properties. We place particular emphasis on the potential integration of B-TiOx into solar and electrochemical energy systems, highlighting its applications in green hydrogen generation, CO2 reduction, and supercapacitor technology, among others. Recent breakthroughs in the structure-property relationship of B-TiOx and its applications, grounded in both theoretical and empirical studies, are underscored. Additionally, we will address the challenges of scaling up B-TiOx production, its long-term stability, and economic viability to align with ambitious future objectives.
Collapse
Affiliation(s)
- Xuelan Hou
- Department of Engineering Sciences, University of Oxford, Oxford, OX1 3PJ, UK.
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| | - Yiyang Li
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| | - Hang Zhang
- Department of Applied Physics, School of Science, Aalto University, P. O. Box 15100, FI-00076 Aalto, Finland
| | - Peter D Lund
- Department of Applied Physics, School of Science, Aalto University, P. O. Box 15100, FI-00076 Aalto, Finland
| | - James Kwan
- Department of Engineering Sciences, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| |
Collapse
|
6
|
Chen Y, Lang Z, Feng K, Wang K, Li Y, Kang Z, Guo L, Zhong J, Lu J. Practical H 2 supply from ammonia borane enabled by amorphous iron domain. Nat Commun 2024; 15:9113. [PMID: 39438482 PMCID: PMC11496879 DOI: 10.1038/s41467-024-53574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Efficient catalysis of ammonia borane (AB) holds potential for realizing controlled energy release from hydrogen fuel and addressing cost challenges faced by hydrogen storage. Here, we report that amorphous domains on metallic Fe crystal structures (R-Fe2O3 Foam) can achieve AB catalytic performances and stability (turnover frequency (TOF) of 113.6 min-1, about 771 L H2 in 900 h, and 43.27 mL/(min·cm2) for 10×10 cm2 of Foam) that outperform reported benchmarks (most <14 L H2 in 45 h) by at least 20 times. These notable increases are enabled by the stable Fe crystal structure, while defects and unsaturated atoms in the amorphous domains form Fe-B intermediates that significantly lower the dissociation barriers of H2O and AB. Given that the catalyst lifetime is a key determinant for the practical use in fuel cells, our R-Fe2O3 Foam also provides decent H2 supply (180 mL H2/min, AB water solution of 7.5 wt% H2) in a driven commercial car fuel cell at stable power outputs (7.8 V and 1.6 A for at least 5 h). When considered with its facile synthesis method, these materials are potentially very promising for realizing durable high-performance AB catalysts and viable chemical storage in hydrogen powered vehicles.
Collapse
Affiliation(s)
- Yufeng Chen
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Zhongling Lang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, China
| | - Kun Feng
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Kang Wang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, China.
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China.
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
- Quzhou Institute of Power Battery and Grid Energy Storage, Quzhou, China.
| |
Collapse
|
7
|
Guan X, Han R, Asakura H, Wang B, Chen L, Yan JHC, Guan S, Keenan L, Hayama S, van Spronsen MA, Held G, Zhang J, Gu H, Ren Y, Zhang L, Yao Z, Zhu Y, Regoutz A, Tanaka T, Guo Y, Wang FR. Subsurface Single-Atom Catalyst Enabled by Mechanochemical Synthesis for Oxidation Chemistry. Angew Chem Int Ed Engl 2024; 63:e202410457. [PMID: 39004608 DOI: 10.1002/anie.202410457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Single-atom catalysts have garnered significant attention due to their exceptional atom utilization and unique properties. However, the practical application of these catalysts is often impeded by challenges such as sintering-induced instability and poisoning of isolated atoms due to strong gas adsorption. In this study, we employed the mechanochemical method to insert single Cu atoms into the subsurface of Fe2O3 support. By manipulating the location of single atoms at the surface or subsurface, catalysts with distinct adsorption properties and reaction mechanisms can be achieved. It was observed that the subsurface Cu single atoms in Fe2O3 remained isolated under both oxidation and reduction environments, whereas surface Cu single atoms on Fe2O3 experienced sintering under reduction conditions. The unique properties of these subsurface single-atom catalysts call for innovations and new understandings in catalyst design.
Collapse
Affiliation(s)
- Xuze Guan
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Rong Han
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, China
| | - Hiroyuki Asakura
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan
| | - Bolun Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Lu Chen
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Jay Hon Cheung Yan
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Shaoliang Guan
- Maxwell Centre, Cavendish Laboratory, Cambridge, CB3 0HE, UK
| | - Luke Keenan
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Shusaku Hayama
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Matthijs A van Spronsen
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Georg Held
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Jie Zhang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Hao Gu
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Yifei Ren
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Lun Zhang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Zhangyi Yao
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Yujiang Zhu
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Anna Regoutz
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Tsunehiro Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan
| | - Yuzheng Guo
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, China
| | - Feng Ryan Wang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| |
Collapse
|
8
|
Liu Y, Hu Q, Yang X, Kang J. Unveiling the potential of amorphous nanocatalysts in membrane-based hydrogen production. MATERIALS HORIZONS 2024; 11:4885-4910. [PMID: 39086327 DOI: 10.1039/d4mh00589a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Hydrogen, as a clean and renewable energy source, is a promising candidate to replace fossil fuels and alleviate the environmental crisis. Compared with the traditional H-type cells with a finite-gap, the design of membrane electrodes can reduce the gas transmission resistance, enhance the current density, and improve the efficiency of hydrogen production. However, the harsh environment in the electrolyser makes the membrane electrode based water electrolysis technology still limited by the lack of catalyst activity and stability under the working conditions. Due to the abundant active sites and structural flexibility, amorphous nanocatalysts are alternatives. In this paper, we review the recent research progress of amorphous nanomaterials as electrocatalysts for hydrogen production by electrolysis at membrane electrodes, illustrate and discuss their structural advantages in membrane electrode catalytic systems, as well as explore the significance of the amorphous structure for the development of membrane electrode systems. Finally, the article also looks at future opportunities and adaptations of amorphous catalysts for hydrogen production at membrane electrodes. The authors hope that this review will deepen the understanding of the potential of amorphous nanomaterials for application in electrochemical hydrogen production, facilitating future nanomaterials research and new sustainable pathways for hydrogen production.
Collapse
Affiliation(s)
- Yifei Liu
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Qi Hu
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Xiuyi Yang
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Jianxin Kang
- School of Chemistry, Beihang University, Beijing 100191, China.
| |
Collapse
|
9
|
Liu X, Qian R, Li B, Zhang Y, Han Y. Sono-Catalytic Tooth Whitening and Oral Health Enhancement with Oxygen Vacancies-Enriched Mesoporous TiO 2 Nanospheres: A Nondestructive Approach for Daily Tooth Care. ACS Biomater Sci Eng 2024; 10:6634-6647. [PMID: 39348292 DOI: 10.1021/acsbiomaterials.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Tooth discoloration and the breeding of oral microorganisms pose threats to both one's aesthetic appearance and oral health. Clinical whitening agents based on H2O2 with high concentrations are effective in tooth whitening and bacterial elimination but may also cause enamel demineralization, gingival irritation, or cytotoxicity, necessitating professional supervision. Herein, leveraging sono-catalysis effects, a nondestructive and convenient tooth whitening strategy was developed, utilizing oxygen vacancies (OVs)-enriched mesoporous TiO2 nanospheres. The introduction of OVs leads to TiO2 bandgap narrowing, boosting the generation of reactive oxygen species (ROS) by TiO2 under ultrasound treatment. Additionally, through the chemocatalysis effect, the ROS yield can be further augmented by employing OVs-enriched TiO2 in conjunction with an extremely low concentration of H2O2 (1%) during ultrasound treatment. Hence, under ultrasound treatment simulating daily tooth brushing using an electronic toothbrush, the combination of OVs-enriched TiO2 and 1% H2O2 proves to be effective in whitening teeth stained by tea, coffee, and mix juice. Furthermore, the combination of OVs-enriched TiO2 and 1% H2O2 demonstrates potent bacterial-killing and biofilm-eradicating effects under ultrasound treatment within an extremely short duration (5 min). Additionally, given the mesoporous structure, curcumin, serving as an anti-inflammatory agent, can be efficiently loaded into OVs-enriched TiO2 and then controllably released through ultrasound treatment. The curcumin-loaded TiO2 facilitates the transition of macrophages to the anti-inflammatory M2 phenotype, potentially alleviating oral inflammation induced by bacterial infection without showing any biotoxicity. The OVs-enriched TiO2 based sono-catalysis tooth whitening procedure provides the convenience of whitening teeth during daily brushing without requiring professional supervision.
Collapse
Affiliation(s)
- Xiaoqi Liu
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Runliu Qian
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bo Li
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yingang Zhang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yong Han
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
10
|
Dong H, Ji Y, Shao Q, Hu X, Zhang J, Yao X, Long C. Spatial interfacial heterojunctions of TiO 2 for photocatalytic degradation of toluene: Effects of interface amorphous region and oxygen vacancy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171521. [PMID: 38458445 DOI: 10.1016/j.scitotenv.2024.171521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The catalytic activity of TiO2 is contingent upon its crystal structure and the optoelectronic properties associated with defects. In this study, a one-step method was used to synthesize TiO2 with a spatial interface of rutile/anatase phases, and a simple thermal annealing process was applied to optimize the amorphous regions and oxygen vacancies at the interface between the rutile and anatase phases of TiO2. High-resolution transmission electron microscopy (HRTEM) elucidates the evolution process of the amorphous domain at the interface, skillfully introducing oxygen vacancies at the heterojunction interface by modulating the amorphous domain. The obtained photocatalyst (TiO2-350 °C) after annealing exhibits an optimal interface structure, with its photocatalytic activity and stability in degrading toluene far superior to P25. Photocurrent and photoluminescence (PL) measurements affirm that the existence of interfacial oxygen vacancies heightens the efficiency of electron transfer at the interface, while surface oxygen vacancies significantly enhance the stability and mineralization rate of toluene degradation. The improved photocatalytic properties were attributed to the combined effects of surface/interface oxygen vacancies and spatial interface heterojunctions. The one-step synthesis method developed in this work provides a novel perspective on combining spatially interfaced anatase/rutile phases with surface/interfacial oxygen vacancies.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yekun Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qi Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xueyu Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Beifeng Road, Quanzhou 362000, China
| | - Xiaohong Yao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; School of Environment and Ecology, Jiangsu Open University, 832 Yingtian Street, Nanjing 210019, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Beifeng Road, Quanzhou 362000, China.
| |
Collapse
|
11
|
Yuan R, Yan B, Lai C, Wang X, Cao Y, Tu J, Li Y, Wu Q. Carbon Dot-Modified Branched TiO 2 Photoelectrochemical Glucose Sensors with Visible Light Response. ACS OMEGA 2023; 8:22099-22107. [PMID: 37360461 PMCID: PMC10286250 DOI: 10.1021/acsomega.3c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
The development of a photoelectrochemical (PEC) sensor for the sensitive and rapid detection of glucose is highly desirable. In PEC enzyme sensors, inhibition of the charge recombination of electrode materials is an efficient technique, and detection in visible light can prevent enzyme inactivation due to ultraviolet irradiation. In this study, a visible light-driven PEC enzyme biosensor was proposed, using CDs/branched TiO2 (B-TiO2) as the photoactive material and glucose oxidase (GOx) as the identification element. The CDs/B-TiO2 composites were produced via a facile hydrothermal method. Carbon dots (CDs) can not only act as photosensitizers but also inhibit photogenerated electron and hole recombination of B-TiO2. Under visible light, electrons in the carbon dots flowed to B-TiO2 and further to the counter electrode through the external circuit. In the presence of glucose and dissolved oxygen, H2O2 generated through the catalysis of GOx could consume electrons in B-TiO2, causing a decrease in photocurrent intensity. Ascorbic acid was added to ensure the stability of the CDs during the test. Based on the variation of the photocurrent response, the CDs/B-TiO2/GOx biosensor presented a good sensing performance of glucose in visible light, its detection range was from 0 to 9.00 mM, and the detection limit was 0.0430 mM.
Collapse
Affiliation(s)
- Run Yuan
- State
Key Laboratory of Marine Resource Utilization in South China Sea,
School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Bingdong Yan
- State
Key Laboratory of Marine Resource Utilization in South China Sea,
School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Caiyan Lai
- State
Key Laboratory of Marine Resource Utilization in South China Sea,
School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Xiaohong Wang
- State
Key Laboratory of Marine Resource Utilization in South China Sea,
School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Yang Cao
- State
Key Laboratory of Marine Resource Utilization in South China Sea,
School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Jinchun Tu
- State
Key Laboratory of Marine Resource Utilization in South China Sea,
School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Yi Li
- State
Key Laboratory of Marine Resource Utilization in South China Sea,
School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Qiang Wu
- The
Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory
of Emergency and Trauma of Ministry of Education, Research Unit of
Island Emergency Medicine, Chinese Academy of Medical Sciences (No.
2019RU013), Hainan Medical University, Haikou 571199, P. R. China
| |
Collapse
|
12
|
Li X, Zhuang Z, Chai J, Shao R, Wang J, Jiang Z, Zhu S, Gu H, Zhang J, Ma Z, Zhang P, Yan W, Zheng L, Wu K, Zheng X, Zhang L, Zhang J, Wang D, Chen W, Li Y. Atomically Strained Metal Sites for Highly Efficient and Selective Photooxidation. NANO LETTERS 2023; 23:2905-2914. [PMID: 36961203 DOI: 10.1021/acs.nanolett.3c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Strain engineering is an attractive strategy for improving the intrinsic catalytic performance of heterogeneous catalysts. Manipulating strain on the short-range atomic scale to the local structure of the catalytic sites is still challenging. Herein, we successfully achieved atomic strain modulation on ultrathin layered vanadium oxide nanoribbons by an ingenious intercalation chemistry method. When trace sodium cations were introduced between the V2O5 layers (Na+-V2O5), the V-O bonds were stretched by the atomically strained vanadium sites, redistributing the local charges. The Na+-V2O5 demonstrated excellent photooxidation performance, which was approximately 12 and 14 times higher than that of pristine V2O5 and VO2, respectively. Complementary spectroscopy analysis and theoretical calculations confirmed that the atomically strained Na+-V2O5 had a high surficial charge density, improving the activation of oxygen molecules and contributing to the excellent photocatalytic property. This work provides a new approach for the rational design of strain-equipped catalysts for selective photooxidation reactions.
Collapse
Affiliation(s)
- Xinyuan Li
- Energy and Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Energy and Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jing Chai
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ruiwen Shao
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Zhuoli Jiang
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shuwen Zhu
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Hongfei Gu
- Energy and Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jian Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhentao Ma
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Peng Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wensheng Yan
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Xusheng Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Liang Zhang
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiatao Zhang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wenxing Chen
- Energy and Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China
| |
Collapse
|
13
|
Chen R, Gong Y, Xie M, Rao C, Zhou L, Pang Y, Lou H, Yang D, Qiu X. Functionalized Regulation of Metal Defects in ln 2S 3 of p-n Homojunctions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5065-5077. [PMID: 36972499 DOI: 10.1021/acs.langmuir.3c00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The introduction of metal vacancies into n-type semiconductors could efficiently construct intimate contact interface p-n homojunctions to accelerate the separation of photogenerated carriers. In this work, a cationic surfactant occupancy method was developed to synthesize an indium-vacancy (VIn)-enriched p-n amorphous/crystal homojunction of indium sulfide (A/C-IS) for sodium lignosulfonate (SL) degradation. The amount of VIn in the A/C-IS could be regulated by varying the content of added cetyltrimethylammonium bromide (CTAB). Meanwhile, the steric hindrance of CTAB produced mesopores and macropores, providing transfer channels for SL. The degradation rates of A/C-IS to SL were 8.3 and 20.9 times higher than those of crystalline In2S3 and commercial photocatalyst (P25), respectively. The presence of unsaturated dangling bonds formed by VIn reduced the formation energy of superoxide radicals (•O2-). In addition, the inner electric field between the intimate contact interface p-n A/C-IS promoted the migration of electron-hole pairs. A reasonable degradation pathway of SL by A/C-IS was proposed based on the above mechanism. Moreover, the proposed method could also be applicable for the preparation of p-n homojunctions with metal vacancies from other sulfides.
Collapse
Affiliation(s)
- Runlin Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yufeng Gong
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Maoliang Xie
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Cheng Rao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lan Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Liao L, Wang M, Li Z, Wang X, Zhou W. Recent Advances in Black TiO 2 Nanomaterials for Solar Energy Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:468. [PMID: 36770430 PMCID: PMC9921477 DOI: 10.3390/nano13030468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Titanium dioxide (TiO2) nanomaterials have been widely used in photocatalytic energy conversion and environmental remediation due to their advantages of low cost, chemical stability, and relatively high photo-activity. However, applications of TiO2 have been restricted in the ultraviolet range because of the wide band gap. Broadening the light absorption of TiO2 nanomaterials is an efficient way to improve the photocatalytic activity. Thus, black TiO2 with extended light response range in the visible light and even near infrared light has been extensively exploited as efficient photocatalysts in the last decade. This review represents an attempt to conclude the recent developments in black TiO2 nanomaterials synthesized by modified treatment, which presented different structure, morphological features, reduced band gap, and enhanced solar energy harvesting efficiency. Special emphasis has been given to the newly developed synthetic methods, porous black TiO2, and the approaches for further improving the photocatalytic activity of black TiO2. Various black TiO2, doped black TiO2, metal-loaded black TiO2 and black TiO2 heterojunction photocatalysts, and their photocatalytic applications and mechanisms in the field of energy and environment are summarized in this review, to provide useful insights and new ideas in the related field.
Collapse
|
15
|
Wang X, Mayrhofer L, Keunecke M, Estrade S, Lopez-Conesa L, Moseler M, Waag A, Schaefer L, Shi W, Meng X, Chu J, Fan Z, Shen H. Low-Energy Hydrogen Ions Enable Efficient Room-Temperature and Rapid Plasma Hydrogenation of TiO 2 Nanorods for Enhanced Photoelectrochemical Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204136. [PMID: 36192163 DOI: 10.1002/smll.202204136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Hydrogenation is a promising technique to prepare black TiO2 (H-TiO2 ) for solar water splitting, however, there remain limitations such as severe preparation conditions and underexplored hydrogenation mechanisms to inefficient hydrogenation and poor photoelectrochemical (PEC) performance to be overcome for practical applications. Here, a room-temperature and rapid plasma hydrogenation (RRPH) strategy that realizes low-energy hydrogen ions of below 250 eV to fabricate H-TiO2 nanorods with controllable disordered shell, outperforming incumbent hydrogenations, is reported. The mechanisms of efficient RRPH and enhanced PEC activity are experimentally and theoretically unraveled. It is discovered that low-energy hydrogen ions with fast subsurface transport kinetics and shallow penetration depth features, enable them to directly penetrate TiO2 via unique multiple penetration pathways to form controllable disordered shell and suppress bulk defects, ultimately leading to improved PEC performance. Furthermore, the hydrogenation-property experiments reveal that the enhanced PEC activity is mainly ascribed to increasing band bending and bulk defect suppression, compared to reported H-TiO2 , a superior photocurrent density of 2.55 mA cm-2 at 1.23 VRHE is achieved. These findings demonstrate a sustainable strategy which offers great promise of TiO2 and other oxides to achieve further-improved material properties for broad practical applications.
Collapse
Affiliation(s)
- Xiaodan Wang
- Fraunhofer Institute for Surface Engineering and Thin Films, Bienroder Weg 54E, 38108, Braunschweig, Germany
| | - Leonhard Mayrhofer
- Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108, Freiburg, Germany
| | - Martin Keunecke
- Fraunhofer Institute for Surface Engineering and Thin Films, Bienroder Weg 54E, 38108, Braunschweig, Germany
| | - Sonia Estrade
- Department d'Electrònica, Universitat de Barcelona, c/Martí Franquès 1, Barcelona, 08028, Spain
| | - Lluis Lopez-Conesa
- Department d'Electrònica, Universitat de Barcelona, c/Martí Franquès 1, Barcelona, 08028, Spain
| | - Michael Moseler
- Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108, Freiburg, Germany
| | - Andreas Waag
- Institute for Semiconductor Technology, TU Braunschweig, Hans-Sommer-Strasse 66, 38106, Braunschweig, Germany
| | - Lothar Schaefer
- Fraunhofer Institute for Surface Engineering and Thin Films, Bienroder Weg 54E, 38108, Braunschweig, Germany
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China
| | - Xiangjian Meng
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Yu Tian Road 500, Shanghai, 200083, China
| | - Junhao Chu
- Institute of Optoelectronics, Fudan University, Song Hu Road 2005, Shanghai, 200438, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Hao Shen
- Fraunhofer Institute for Surface Engineering and Thin Films, Bienroder Weg 54E, 38108, Braunschweig, Germany
| |
Collapse
|
16
|
Meng Y, Sun J, Guo Y, Chen J, Lou Y. Two-dimensional polymerized carbon nitride coupled with (0 0 1)-facets-exposed titanium dioxide S-scheme heterojunction for photocatalytic degradation of norfloxacin. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Zhang M, Xu W, Ma CL, Yu J, Liu YT, Ding B. Highly Active and Selective Electroreduction of N 2 by the Catalysis of Ga Single Atoms Stabilized on Amorphous TiO 2 Nanofibers. ACS NANO 2022; 16:4186-4196. [PMID: 35266398 DOI: 10.1021/acsnano.1c10059] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The electroreduction of N2 under ambient conditions has emerged as one of the most promising technologies in chemistry, since it is a greener way to make NH3 than the traditional Haber-Bosch process. However, it is greatly challenged with a low NH3 yield and faradaic efficiency (FE) because of the lack of highly active and selective catalysts. Inherently, transition (d-block) metals suffer from inferior selectivity due to fierce competition from H2 evolution, while post-transition (p-block) metals exhibit poor activity due to insufficient "π back-donation" behavior. Considering their distinct yet complementary electronic structures, here we propose a strategy to tackle the activity and selectivity challenge through the atomic dispersion of p-block metal on an all-amorphous transition-metal matrix. To address the activity issue, lotus-root-like amorphous TiO2 nanofibers are synthesized which, different from vacancy-engineered TiO2 nanocrystals reported previously, possess abundant intrinsic oxygen vacancies (VO) together with under-coordinated dangling bonds in nature, resulting in significantly enhanced N2 activation and electron transport capacity. To address the selectivity issue, well-isolated single atoms (SAs) of Ga are successfully synthesized through the confinement effect of VO, resulting in Ga-VO reactive sites with the maximum availability. It is revealed by density functional theory calculations that Ga SAs are favorable for the selective adsorption of N2 at the catalyst surface, while VO can facilitate N2 activation and reduction subsequently. Benefiting from this coupled activity/selectivity design, high NH3 yield (24.47 μg h-1 mg-1) and FE (48.64%) are achieved at an extremely low overpotential of -0.1 V vs RHE.
Collapse
Affiliation(s)
- Meng Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Wanping Xu
- Shanghai Frontiers Science Center of Advanced Textiles, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Chun-Lan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jianyong Yu
- Shanghai Frontiers Science Center of Advanced Textiles, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yi-Tao Liu
- Shanghai Frontiers Science Center of Advanced Textiles, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- Shanghai Frontiers Science Center of Advanced Textiles, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
18
|
Hydrogenated Amorphous Titania with Engineered Surface Oxygen Vacancy for Efficient Formaldehyde and Dye Removals under Visible-Light Irradiation. NANOMATERIALS 2022; 12:nano12050742. [PMID: 35269228 PMCID: PMC8911576 DOI: 10.3390/nano12050742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 01/19/2023]
Abstract
Hydrogenated crystalized TiO2−x with oxygen vacant (OV) doping has attracted considerable attraction, owing to its impressive photoactivity. However, amorphous TiO2, as a common allotrope of titania, is ignored as a hydrogenated templet. In this work, hydrogenated amorphous TiO2−x (HAm-TiO2−x) with engineered surface OV and high surface area (176.7 cm2 g−1) was first prepared using a unique liquid plasma hydrogenation strategy. In HAm-TiO2−x, we found that OV was energetically retained in the subsurface region; in particular, the subsurface OV-induced energy level preferred to remain under the conduction band (0.5 eV) to form a conduction band tail and deep trap states, resulting in a narrow bandgap (2.36 eV). With the benefits of abundant light absorption and efficient photocarrier transportation, HAm-TiO2−x coated glass has demonstrated superior visible-light-driven self-cleaning performances. To investigate its formaldehyde photodegradation under harsh indoor conditions, HAm-TiO2−x was used to decompose low-concentration formaldehyde (~0.6 ppm) with weak-visible light (λ = 600 nm, power density = 0.136 mW/cm2). Thus, HAm-TiO2−x achieved high quantum efficiency of 3 × 10−6 molecules/photon and photoactivity of 92.6%. The adsorption capabilities of O2 (−1.42 eV) and HCHO (−1.58 eV) in HAm-TiO2−x are both largely promoted in the presence of subsurface OV. The surface reaction pathway and formaldehyde decomposition mechanism over HAm-TiO2−x were finally clarified. This work opened a promising way to fabricate hydrogenated amorphous photocatalysts, which could contribute to visible-light-driven photocatalytic environmental applications.
Collapse
|
19
|
Qiu SY, Wang C, Gu LL, Wang KX, Gao XT, Gao J, Jiang Z, Gu J, Zhu XD. Hierarchically porous TiO2@C membrane with oxygen vacancy: A novel platform for enhancing catalytic conversion of polysulfides. Dalton Trans 2022; 51:2855-2862. [DOI: 10.1039/d1dt04067g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the case of high sulfur loading or high current discharge, constructing sulfur composite cathode by the traditional coating preparation process is difficult to solve the intractable problems of the...
Collapse
|
20
|
Feng C, Wu P, Li Q, Liu J, Wang D, Liu B, Wang T, Hu H, Xue G. Amorphization and defect engineering in constructing ternary composite Ag/PW 10V 2/am-TiO 2−x for enhanced photocatalytic nitrogen fixation. NEW J CHEM 2022. [DOI: 10.1039/d1nj05917c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ag/PW10V2/am-TiO2−x was designed by decorating OVs-enriched am-TiO2−x with Ag NPs and PW10V2. The formed Z-scheme heterojunction, Ag–am-TiO2−x interface and plentiful surface OVs account for its high photocatalytic efficiency in nitrogen fixation.
Collapse
Affiliation(s)
- Caiting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, P. R. China
| | - Panfeng Wu
- School of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an, 710065, P. R. China
| | - Qinlong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, P. R. China
| | - Jiquan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, P. R. China
| | - Danjun Wang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry & Chemical Engineering, Yan’an University, Yan’an, 716000, P. R. China
| | - Bin Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, P. R. China
| | - Tianyu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, P. R. China
| | - Huaiming Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, P. R. China
| | - Ganglin Xue
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, P. R. China
| |
Collapse
|
21
|
Feng G, Hu M, Yuan S, Nan J, Zeng H. Hydrogenated Amorphous TiO 2-x and Its High Visible Light Photoactivity. NANOMATERIALS 2021; 11:nano11112801. [PMID: 34835567 PMCID: PMC8625909 DOI: 10.3390/nano11112801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022]
Abstract
Hydrogenated crystalline TiO2 with oxygen vacancy (OV) defect has been broadly investigated in recent years. Different from crystalline TiO2, hydrogenated amorphous TiO2−x for advanced photocatalytic applications is scarcely reported. In this work, we prepared hydrogenated amorphous TiO2−x (HA-TiO2−x) using a unique liquid plasma hydrogenation strategy, and demonstrated its highly visible-light photoactivity. Density functional theory combined with comprehensive analyses was to gain fundamental understanding of the correlation among the OV concentration, electronic band structure, photon capturing, reactive oxygen species (ROS) generation, and photocatalytic activity. One important finding was that the narrower the bandgap HA-TiO2−x possessed, the higher photocatalytic efficiency it exhibited. Given the narrow bandgap and extraordinary visible-light absorption, HA-TiO2−x showed excellent visible-light photodegradation in rhodamine B (98.7%), methylene blue (99.85%), and theophylline (99.87) within two hours, as well as long-term stability. The total organic carbon (TOC) removal rates of rhodamine B, methylene blue, and theophylline were measured to 55%, 61.8%, and 50.7%, respectively, which indicated that HA-TiO2−x exhibited high wastewater purification performance. This study provided a direct and effective hydrogenation method to produce reduced amorphous TiO2−x which has great potential in practical environmental remediation.
Collapse
Affiliation(s)
- Guang Feng
- Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (G.F.); (M.H.); (S.Y.)
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Mengyun Hu
- Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (G.F.); (M.H.); (S.Y.)
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China;
| | - Shuai Yuan
- Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (G.F.); (M.H.); (S.Y.)
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Junyi Nan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China;
| | - Heping Zeng
- Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (G.F.); (M.H.); (S.Y.)
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China;
- CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai 201800, China
- Jinan Institute of Quantum Technology, Jinan 250101, China
- Correspondence:
| |
Collapse
|