1
|
Edward A, Ettlinger R, Janczuk ZZ, Hua G, Morris RE, Kay ER. Chemospecific Heterostructure and Heteromaterial Assembly of Metal-Organic Framework Nanoparticles. J Am Chem Soc 2025; 147:5114-5124. [PMID: 39882727 PMCID: PMC11826876 DOI: 10.1021/jacs.4c15261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
Nanoparticles of highly porous metal-organic frameworks (MOFs) are some of the most exciting nanomaterials under development, with potential applications that range from biomedicine and catalysis to adsorption technologies. However, our synthetic methodologies to functionalize and manipulate MOF nanoparticles (NPs) are less well developed than they might be. Here we create MOF NPs derivatized with hydrazone units on their exterior, enabling chemospecific reversible dynamic covalent modification of structures on the external surface. Pairwise combinations of nanometer-sized building blocks with complementary dynamic covalent surface units can be used to prepare heterostructure assemblies (i.e., two MOFs with different structures and morphologies) and heteromaterial assemblies (a MOF with a nanoparticle of another kind, in this case gold) in which the directional molecular-level dynamic covalent links demand intimate mixing of the two nanoscale components. Crucially, the defining characteristic of the MOF components─their porosity─is minimally affected by the external functionalization and interparticle linking. The development of atomically precise dynamic covalent functionalization on the external surface of MOF NPs opens up new avenues for programmable frameworks with responsive behaviors and modular assembly of porous materials with precise control over the spatial organization of multiple nanoscale building blocks.
Collapse
Affiliation(s)
- Ailsa
K. Edward
- EaStCHEM
School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
| | - Romy Ettlinger
- EaStCHEM
School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
- TUM School
of Natural Sciences, Technical University
of Munich, Lichtenbergstr.
4, Garching b. München 85748, Germany
| | - Zuzanna Z. Janczuk
- EaStCHEM
School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
| | - Guoxiong Hua
- EaStCHEM
School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
| | - Russell E. Morris
- EaStCHEM
School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
| | - Euan R. Kay
- EaStCHEM
School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
| |
Collapse
|
2
|
Geng L, Qiao Y, Sun R, Guo L, Li ZQ, Ma Y, Yu MH, Chang Z, Bu XH. Solution-Processable Metal-Organic Framework Featuring Highly Tunable Dynamic Aggregation States. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415511. [PMID: 39623789 DOI: 10.1002/adma.202415511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Indexed: 01/30/2025]
Abstract
The limited processability of metal-organic frameworks (MOFs) is hindered flexibility in the manipulation of their aggregation state and applications. Therefore, achieving highly processable MOFs is of great significance but a challenging goal. Herein, a facile strategy is presented for achieving the construction of solution-processable Mg-based MOF, NKU-Mg-1, allowing for dynamic control of the aggregation state through dynamic self-assembly (DySA) process and reversible circularly polarized luminescence (CPL) switcher modulation. Notably, micron-sized crystals of NKU-Mg-1 can be readily dispersed in water to form nano-sized colloids, triggered by the dynamic COO-Mg coordination bonding interruption by the competitive H2O-Mg bonding. Accordingly, the aggregation state of the colloid MOF can be readily tuned from 50-80 nm up to 1000 nm, in turn enabling control of aggregation-dependent emission. Specially, the solid-phase aggregation can be controlled via structural transitions between 3D NKU-Mg-1-rec-1 and 2D NKU-Mg-1-rec-2 nano-crystals, as confirmed by 3D electron diffraction. Furthermore, benefiting from its highly dynamic tunable aggregation nature, the rational incorporation of the chiral module confers significant CPL activity (glum up to 0.01). Importantly, controllable dynamic aggregation enables reversible switching of the CPL activity by precisely regulating the aggregation states. The solution-processable and dynamic aggregation-tunable features endow it highly promising for applications.
Collapse
Affiliation(s)
- Lin Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
| | - Yang Qiao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Rui Sun
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Linshuo Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Ze-Qi Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Ze Chang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
3
|
Zhang Q, Zhang J, Qiu J, Chen C, Yang Z, Li W, Wang M, Li T, Wu W, Wang J. Detecting the Conduction Property of Proton Carriers at Different Relative Humidity Based on Postsynthetic MOF Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67697-67705. [PMID: 39591662 DOI: 10.1021/acsami.4c13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Exploring the transfer ability of proton carriers at different relative humidity (RH) is vital for the rational design and development of high-performance proton exchange membranes (PEMs). However, the highly humidity-dependent transfer channel and random carrier distribution disqualify most membrane materials. Herein, a series of MIL-53 metal-organic framework (MOF) nanosheets with stable, quantifiable pore structures and different conducting groups are prepared through postsynthetic ligand exchange, followed by spin coating to assemble lamellar membranes. We demonstrated that proper binding energy between the carrier group and water molecule is favorable for proton transfer based on the vehicle mechanism at low RH. Particularly, strong binding energy traps water molecules, hindering proton transfer even though the carrier possesses a higher proton dissociation constant. Thus, at 20% RH and 80 °C, AlBDC-COOH attains a higher proton conductivity of 13.6 mS cm-1 than AlBDC-SO3H (11.9 mS cm-1). In contrast, with an incremental content of water, the available diffusion space of water molecules progressively diminishes, leading to a reduced diffusion ability and thus a lower contribution of vehicle transfer. Accordingly, jump transfer becomes the dominant proton conduction process, and the abundant hydrogen bond networks in the AlBDC-SO3H membrane provide more proton transfer paths and thus a higher proton conductivity of 73.1 mS cm-1 at 80 °C and 100% RH, over 1 order of magnitude higher than that of the pristine Al-BDC membrane (6.2 mS cm-1). This study may shed light on the functional group selection of PEMs targeting different operation conditions.
Collapse
Affiliation(s)
- Qingqing Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jie Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Junjie Qiu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chongchong Chen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Zhirong Yang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wenpeng Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Mingchao Wang
- Yutong Bus Co., Ltd., Zhengzhou, Henan 450061, P. R. China
| | - Tengfei Li
- Yutong Bus Co., Ltd., Zhengzhou, Henan 450061, P. R. China
| | - Wenjia Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
4
|
Wu X, Tian X, Zhang W, Peng X, Zhou S, Buenconsejo PJS, Li Y, Xiao S, Tao J, Zhang M, Yuan H. Solution-Processable MOF-on-MOF System Constructed via Template-Assisted Growth for Ultratrace H 2S Detection. Angew Chem Int Ed Engl 2024; 63:e202410411. [PMID: 39187431 DOI: 10.1002/anie.202410411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Conductive metal-organic frameworks (c-MOFs) hold promise for highly sensitive sensing systems due to their conductivity and porosity. However, the fabrication of c-MOF thin films with controllable morphology, thickness, and preferential orientation remains a formidable yet ubiquitous challenge. Herein, we propose an innovative template-assisted strategy for constructing MOF-on-MOF (Ni3(HITP)2/NUS-8 (HITP: 2,3,6,7,10,11-hexamino-tri (p-phenylene))) systems with good electrical conductivity, porosity, and solution processability. Leveraging the 2D nature and solution processability of NUS-8, we achieve the controllable self-assembly of Ni3(HITP)2 on NUS-8 nanosheets, producing solution-processable Ni3(HITP)2/NUS-8 nanosheets with a film conductivity of 1.55×10-3 S ⋅ cm-1 at room temperature. Notably, the excellent solution processability facilitates the fabrication of large-area thin films and printing of intricate patterns with good uniformity, and the Ni3(HITP)2/NUS-8-based system can monitor finger bending. Gas sensors based on Ni3(HITP)2/NUS-8 exhibit high sensitivity (LOD~6 ppb) and selectivity towards ultratrace H2S at room temperature, attributed to the coupling between Ni3(HITP)2 and NUS-8 and the redox reaction with H2S. This approach not only unlocks the potential of stacking different MOF layers in a sequence to generate functionalities that cannot be achieved by a single MOF, but also provides novel avenues for the scalable integration of MOFs in miniaturized devices with salient sensing performance.
Collapse
Affiliation(s)
- Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xin Tian
- School of Information Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Siyuan Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Pio John S Buenconsejo
- Facility for Analysis Characterization Testing Simulation (FACTS), Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yi Li
- State Key Laboratory of Power Grid Environmental Protection (School of Electrical Engineering and Automation), Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection (School of Electrical Engineering and Automation), Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Jifang Tao
- School of Information Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
5
|
Sun L, Huang X, Kong Y, Jia J, Zhu G. Hydrogen storage in a sandwich structure by assembly of BNs and MOFs. Chem Commun (Camb) 2024; 60:11976-11979. [PMID: 39347585 DOI: 10.1039/d4cc02583k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hybrid NUS-8/BNs with a sandwich-like structure were synthesized by layered h-BNs and MOF-NUS-8 via assembly. Thanks to the more abundant exposed binding sites and partial ionic bonding properties of BN, the NUS-8/BN exhibits greatly improved H2 adsorption capacity, which is 1.7 times that of h-BN nanosheets.
Collapse
Affiliation(s)
- Lu Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Xiaojia Huang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Yihan Kong
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Jiangtao Jia
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
6
|
Tang WQ, Cheng Y, Zhu JP, Zhou YQ, Xu M, Gu ZY. Successively Controlling Nanoscale Wrinkles of Ultrathin 2D Metal-Organic Frameworks Nanosheets. Angew Chem Int Ed Engl 2024; 63:e202409588. [PMID: 39060222 DOI: 10.1002/anie.202409588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
The wrinkles are pervasive in ultrathin two-dimensional (2D) materials, but the regulation of wrinkles is rarely explored systematically. Here, we employed a series of carboxylic acids (from formic acid to octanoic acid) to control the wrinkles of Zr-BTB (BTB=1, 3, 5-(4-carboxylphenyl)-benzene) metal-organic framework (MOF) nanosheet. The wrinkles at the micrometer scale were observed with transmission electron microscopy. Furthermore, high-angle annular dark-field (HAADF) images showed lattice distortion in many nanoscale regions, which was precisely matched to the nano-wrinkles. With the changes of hydrophilicity/hydrophobicity, MOF-MOF and MOF-solvent interactions were possibly synergistically regulated and wrinkles with different sizes were obtained, which was supported by HAADF, molecular dynamics, and density functional theory calculation. Different wrinkle sizes resulted in different pore sizes between the Zr-BTB nanosheet interlayers, providing highly-oriented thin films and the successive optimization of kinetic diffusion pathways, proved by grazing-incidence wide-angle X-ray scattering and nitrogen adsorption. The most suitable wrinkle pore from Zr-BTB-C4 exhibited highly efficient chromatographic separation of the substituted benzene isomers. Our work provides a rational route for the modulation of nanoscale wrinkles and their stacked pores of MOF nanosheets and improves the separation abilities of MOFs.
Collapse
Affiliation(s)
- Wen-Qi Tang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Cheng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jian-Ping Zhu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ye-Qin Zhou
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
7
|
Lin TC, Wu KC, Chang JW, Chen YL, Tsai MD, Kung CW. Immobilization of europium and terbium ions with tunable ratios on a dispersible two-dimensional metal-organic framework for ratiometric photoluminescence detection of D 2O. Dalton Trans 2024; 53:11426-11435. [PMID: 38904074 DOI: 10.1039/d4dt01178c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A two-dimensional zirconium-based metal-organic framework (2D Zr-MOF), ZrBTB (BTB = 1,3,5-tri(4-carboxyphenyl)benzene), is used as a platform to simultaneously immobilize terbium ions and europium ions with tunable ratios on its hexa-zirconium nodes by a post-synthetic modification. The crystallinity, morphology, porosity and photoluminescence (PL) properties of the obtained 2D Zr-MOFs with various europium-to-terbium ratios are investigated. With the energy transfer from the excited BTB linker to the installed terbium ions and the energy transfer from terbium ions to europium ions, a low loading of immobilized europium ions and a high loading of surrounding terbium ions in the 2D Zr-MOF result in the optimal PL emission intensities of europium; this phenomenon is not observable for the physical mixture of both terbium-installed ZrBTB and europium-installed ZrBTB. The role of installed terbium ions as efficient mediators for the energy transfer from the excited BTB linker to the installed europium ion is confirmed by quantifying PL quantum yields. As a demonstration, these materials with modulable PL characteristics are applied for the ratiometric detection of D2O in water, with the use of the stable emission from the BTB linker as the reference. With the strong emission of immobilized europium ions and the good dispersity in aqueous solutions, the optimal bimetal-installed ZrBTB, Eu-Tb-ZrBTB(1 : 10), can achieve the sensing performance outperforming those of the terbium-installed ZrBTB, europium-installed ZrBTB and the physical mixture of both.
Collapse
Affiliation(s)
- Tzu-Chi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - Kuan-Chu Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - Jhe-Wei Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - You-Liang Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - Meng-Dian Tsai
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| |
Collapse
|
8
|
Li WH, Li N, Wang XL, Wang W, Zhang H, Xu Q. Solution-Processable Route for Large-Area Uniform 2D Semiconductor Nanofilms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311361. [PMID: 38381007 DOI: 10.1002/smll.202311361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Indexed: 02/22/2024]
Abstract
The semiconductor thin film engineering technique plays a key role in the development of advanced electronics. Printing uniform nanofilms on freeform surfaces with high efficiency and low cost is significant for actual industrialization in electronics. Herein, a high-throughput colloidal printing (HTCP) strategy is reported for fabricating large-area and uniform semiconductor nanofilms on freeform surfaces. High-throughput and uniform printing rely on the balance of atomization and evaporation, as well as the introduced thermal Marangoni flows of colloidal dispersion, that suppresses outward capillary flows. Colloidal printing with in situ heating enables the fast fabrication of large-area semiconductor nanofilms on freeform surfaces, such as SiO2/Si, Al2O3, quartz glass, poly(ethylene terephthalate) (PET), Al foil, plastic tube, and Ni foam, expanding their technological applications where substrates are essential. The printed SnS2 nanofilms are integrated into thin-film semiconductor gas sensors with one of the fastest responses (8 s) while maintaining the highest sensitivity (Rg/Ra = 21) (toward 10 ppm NO2), as well as an ultralow limit of detection (LOD) of 46 ppt. The ability to print uniform semiconductor nanofilms on freeform surfaces with high-throughput promises the development of next-generation electronics with low cost and high efficiency.
Collapse
Affiliation(s)
- Wen-Hua Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xiao-Li Wang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Wenjuan Wang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Haobing Zhang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
9
|
Wu P, Li Y, Yang A, Tan X, Chu J, Zhang Y, Yan Y, Tang J, Yuan H, Zhang X, Xiao S. Advances in 2D Materials Based Gas Sensors for Industrial Machine Olfactory Applications. ACS Sens 2024; 9:2728-2776. [PMID: 38828988 DOI: 10.1021/acssensors.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The escalating development and improvement of gas sensing ability in industrial equipment, or "machine olfactory", propels the evolution of gas sensors toward enhanced sensitivity, selectivity, stability, power efficiency, cost-effectiveness, and longevity. Two-dimensional (2D) materials, distinguished by their atomic-thin profile, expansive specific surface area, remarkable mechanical strength, and surface tunability, hold significant potential for addressing the intricate challenges in gas sensing. However, a comprehensive review of 2D materials-based gas sensors for specific industrial applications is absent. This review delves into the recent advances in this field and highlights the potential applications in industrial machine olfaction. The main content encompasses industrial scenario characteristics, fundamental classification, enhancement methods, underlying mechanisms, and diverse gas sensing applications. Additionally, the challenges associated with transitioning 2D material gas sensors from laboratory development to industrialization and commercialization are addressed, and future-looking viewpoints on the evolution of next-generation intelligent gas sensory systems in the industrial sector are prospected.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yi Li
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Aijun Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Xiangyu Tan
- Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan 650217, China
| | - Jifeng Chu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Yifan Zhang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongxu Yan
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Ju Tang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
10
|
Wu P, Geng S, Wang X, Zhang X, Li H, Zhang L, Shen Y, Zha B, Zhang S, Huo F, Zhang W. Exfoliation of Metal-Organic Frameworks to Give 2D MOF Nanosheets for the Electrocatalytic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2024; 63:e202402969. [PMID: 38407381 DOI: 10.1002/anie.202402969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The structure and properties of materials are determined by a diverse range of chemical bond formation and breaking mechanisms, which greatly motivates the development of selectively controlling the chemical bonds in order to achieve materials with specific characteristics. Here, an orientational intervening bond-breaking strategy is demonstrated for synthesizing ultrathin metal-organic framework (MOF) nanosheets through balancing the process of thermal decomposition and liquid nitrogen exfoliation. In such approach, proper thermal treatment can weaken the interlayer bond while maintaining the stability of the intralayer bond in the layered MOFs. And the following liquid nitrogen treatment results in significant deformation and stress in the layered MOFs' structure due to the instant temperature drop and drastic expansion of liquid N2, leading to the curling, detachment, and separation of the MOF layers. The produced MOF nanosheets with five cycles of treatment are primarily composed of nanosheets that are less than 10 nm in thickness. The MOF nanosheets exhibit enhanced catalytic performance in oxygen evolution reactions owing to the ultrathin thickness without capping agents which provide improved charge transfer efficiency and dense exposed active sites. This strategy underscores the significance of orientational intervention in chemical bonds to engineer innovative materials.
Collapse
Affiliation(s)
- Peng Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Shuang Geng
- School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Xinyu Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Xinglong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Hongfeng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Lulu Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Baoli Zha
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Suoying Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| |
Collapse
|
11
|
Lu C, Chen X. Ultrafast Ion Transfer of Metal-Organic Framework Interface for Highly Efficient Energy Storage. NANO LETTERS 2024; 24:3267-3272. [PMID: 38416580 DOI: 10.1021/acs.nanolett.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Flexible supercapacitors are favorable for wearable electronics. However, their high-rate capability and mechanical properties are limited because of unsatisfactory ion transfer kinetics and interfacial modulus mismatch inside devices. Here, we develop a metal-organic framework interface with superior electrical and mechanical properties for supercapacitors. The interfacial mechanism facilitates ultrafast ion transfer with an energy barrier reduction of 43% compared with that of conventional transmembrane transport. It delivers high specific capacity at a wide rate range and exhibits ultrastability beyond 30000 charge-discharge cycles. Furthermore, meliorative modulus mismatch benefited from ultrathin interface design that improves mechanical properties of flexible supercapacitors. It delivers a stable energy supply under various mechanical conditions like bending and twisting status and displays ultrastable mechanical properties with performance retention of 95.5% after 10 000 bending cycles. The research paves the way for interfacial engineering for ultrastable electrochemical devices.
Collapse
Affiliation(s)
- Chao Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xi Chen
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
12
|
Lv Y, Dai Z, Chen Y, Lu Y, Zhang X, Yu J, Zhai W, Yu Y, Wen Z, Cui Y, Liu W. Two-Dimensional Sulfonate-Functionalized Metal-Organic Framework Membranes for Efficient Lithium-Ion Sieving. NANO LETTERS 2024; 24:2782-2788. [PMID: 38411082 DOI: 10.1021/acs.nanolett.3c04773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Two-dimensional (2D) membranes have shown promising potential for ion-selective separation but often suffer from the trade-off between permeability and selectivity. Herein, we report an ultrathin 2D sulfonate-functionalized metal-organic framework (MOF) membrane for efficient lithium-ion sieving. The narrow pores with angstrom precision in the MOF assist hydrated ions to partially remove the hydration shell, according to different hydration energies. The abundant sulfonate groups in the MOF channels serve as hopping sites for fast lithium-ion transport, contributing to a high Li-ion permeability. Then, the difference in affinity of the Li+, Na+, K+, and Mg2+ ions to the terminal sulfonate groups further enhances the Li-ion selectivity. The reported ultrathin MOF membrane overcomes the trade-off between permeability and selectivity and opens up a new avenue for highly permselective membranes.
Collapse
Affiliation(s)
- Yinjie Lv
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Zhongqin Dai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yu Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Xinshui Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Jiameng Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Wenbo Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Zhaoyin Wen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yuanyuan Cui
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
13
|
Xie H, Yuan H, Xu L. Direct Synthesis of Metal-Organic Framework Sols: Advances and Perspectives. Chem Asian J 2023:e202300845. [PMID: 37885350 DOI: 10.1002/asia.202300845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
The intrinsic lack of processability in the conventional nano/microcrystalline powder form of metal-organic frameworks (MOFs) greatly limits their application in various fields. Synthesis of MOFs with certain flowability make them promising for multitudinous applications. The direct synthesis strategy represents one of the simplest and efficient method for synthesizing solution processable MOF sols/suspensions, compared with other approaches, for instance, the post-synthesis surface modification, the direct dispersion of MOFs in hindered ionic liquids, as well as the calcination method toward a few MOFs with melting behavior. This article reviews the recent direct synthesis strategies of solution processable MOF sols and their typical applications in different fields. The direct synthesis strategies of MOF sols can be classified into two categories: particle size reduction strategy, and selective coordination strategy. The synthesis mechanism of different strategies and the factors affecting the formation of sols are summarized. The application of solution processable MOF sols in different fields are introduced, showing great application potentials. Furthermore, the challenges faced by the direct synthesis of MOF sols and the main methods to deal with the challenges are emphasized, and the future development trend is prospected.
Collapse
Affiliation(s)
- Hongshen Xie
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471003, China
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Liujie Xu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471003, China
- National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
14
|
Abstract
The demand for monitoring chemical and physical information surrounding, air quality, and disease diagnosis has propelled the development of devices for gas sensing that are capable of translating external stimuli into detectable signals. Metal-organic frameworks (MOFs), possessing particular physiochemical properties with designability in topology, specific surface area, pore size and/or geometry, potential functionalization, and host-guest interactions, reveal excellent development promises for manufacturing a variety of MOF-coated sensing devices for multitudinous applications including gas sensing. The past years have witnessed tremendous progress on the preparation of MOF-coated gas sensors with superior sensing performance, especially high sensitivity and selectivity. Although limited reviews have summarized different transduction mechanisms and applications of MOF-coated sensors, reviews summarizing the latest progress of MOF-coated devices under different working principles would be a good complement. Herein, we summarize the latest advances of several classes of MOF-based devices for gas sensing, i.e., chemiresistive sensors, capacitors, field-effect transistors (FETs) or Kelvin probes (KPs), electrochemical, and quartz crystal microbalance (QCM)-based sensors. The surface chemistry and structural characteristics were carefully associated with the sensing behaviors of relevant MOF-coated sensors. Finally, challenges and future prospects for long-term development and potentially practical application of MOF-coated sensing devices are pointed out.
Collapse
Affiliation(s)
- Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
15
|
Yuan H, Li K, Shi D, Yang H, Yu X, Fan W, Buenconsejo PJS, Zhao D. Large-Area Fabrication of Ultrathin Metal-Organic Framework Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211859. [PMID: 36852540 DOI: 10.1002/adma.202211859] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/13/2023] [Indexed: 05/05/2023]
Abstract
Metal-organic framework (MOF)-based membranes, featuring potential molecular sieving effects and therefore capable of surmounting the ubiquitous trade-off between membrane selectivity and permeability, hold great promise for multitudinous chemical separations. Nevertheless, it remains highly challenging for the large-area fabrication of ultrathin MOF membranes with variable thickness, great homogeneity, and preferential orientation. Herein, this work reports the facile fabrication of ultrathin (down to 20 nm) NUS-8 membranes in large-area (>200 cm2 ) yet with great homogeneity and texture along (00l) direction due to the superior solution processability of the as-synthesized NUS-8 nanosheets. The resultant NUS-8 membranes with good adhesion properties and certain flexibility exhibit excellent rejections (>98% for Mg2+ and Al3+ , and dyes with molecular weights larger than 585.5 g mol-1 ) toward aqueous separation of various metal ions and dyes at modest permeance (1-3.2 L m-2 h-1 bar-1 ) due to the well-aligned structures. Such separation performance outstands among polymetric membranes, thin-film composite membranes, mixed matrix membranes, and other MOF membranes reported in the literature. The separation mechanism is reasonably discussed based on the experimental and theoretical results. This study opens up novel perspectives for preparing ultrathin and large-area MOF membranes using the solution processability of MOFs.
Collapse
Affiliation(s)
- Hongye Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Dongchen Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Xin Yu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Weidong Fan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Pio John S Buenconsejo
- Facility for Analysis Characterization Testing Simulation (FACTS), Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
16
|
Li Y, Wang WX. Internalization of the Metal-Organic Framework MIL-101(Cr)-NH 2 by a Freshwater Alga and Transfer to Zooplankton. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:118-127. [PMID: 36503235 DOI: 10.1021/acs.est.2c03780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The common metal-organic framework (MOF) MIL-101(Cr)-NH2 has attracted considerable attention due to its great potential applications in the environmental field. Nevertheless, its behavior and fate in aquatic systems are unknown. This study quantified and visualized the interactions of MIL-101(Cr)-NH2 with the freshwater phytoplanktonic alga Chlamydomonas reinhardtii and its potential trophic transfer to zooplankton. The unicellular alga absorbed and accumulated the MOF by surface attachment, forming agglomerates and eventually cosettling out from water. Bioimaging revealed that MIL-101(Cr)-NH2 was internalized by the algal cells and mainly occurred in the pyrenoid. Without algae in a freshwater system, MIL-101(Cr)-NH2 was ingested by Daphnia magna, showing steadily increasing concentrations approaching 1-9% of dry body weight. Addition of algae substantially suppressed D. magna uptake of MIL-101(Cr)-NH2 by 63.8-97.9%. Such inhibition could be explained by the competitive uptake of MOF by the algae and the inductive effects of algal food on MOF elimination by D. magna. The MOF (≤1 mg/L) ingested by D. magna was centered in the gut regions, whereas large MOF or algae-MOF aggregates were adsorbed onto the carapace and appendages, including the antennae, at 10 mg/L. Overall, the algae were the major targets for MIL-101(Cr)-NH2, with nearly all algal cells settling out at 10 mg/L within 24 h. The possibility of trophic transfer of MIL-101(Cr)-NH2 to D. magna in aquatic systems with algae present was limited due to its low accumulation potential and short retention time in D. magna.
Collapse
Affiliation(s)
- Yiling Li
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, People's Republic of China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, People's Republic of China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| |
Collapse
|
17
|
Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Kulachenkov N, Barsukova M, Alekseevskiy P, Sapianik AA, Sergeev M, Yankin A, Krasilin AA, Bachinin S, Shipilovskikh S, Poturaev P, Medvedeva N, Denislamova E, Zelenovskiy PS, Shilovskikh VV, Kenzhebayeva Y, Efimova A, Novikov AS, Lunev A, Fedin VP, Milichko VA. Dimensionality Mediated Highly Repeatable and Fast Transformation of Coordination Polymer Single Crystals for All-Optical Data Processing. NANO LETTERS 2022; 22:6972-6981. [PMID: 36018814 DOI: 10.1021/acs.nanolett.2c01770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A family of coordination polymers (CPs) based on dynamic structural elements are of great fundamental and commercial interest addressing modern problems in controlled molecular separation, catalysis, and even data processing. Herein, the endurance and fast structural dynamics of such materials at ambient conditions are still a fundamental challenge. Here, we report on the design of a series of Cu-based CPs [Cu(bImB)Cl2] and [Cu(bImB)2Cl2] with flexible ligand bImB (1,4-bis(imidazol-1-yl)butane) packed into one- and two-dimensional (1D, 2D) structures demonstrating dimensionality mediated flexibility and reversible structural transformations. Using the laser pulses as a fast source of activation energy, we initiate CP heating followed by anisotropic thermal expansion and 0.2-0.8% volume changes with the record transformation rates from 2220 to 1640 s-1 for 1D and 2D CPs, respectively. The endurance over 103 cycles of structural transformations, achieved for the CPs at ambient conditions, allows demonstrating optical fiber integrated all-optical data processing.
Collapse
Affiliation(s)
- Nikita Kulachenkov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Marina Barsukova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pavel Alekseevskiy
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Aleksandr A Sapianik
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Maxim Sergeev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Andrei Yankin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Andrei A Krasilin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Ioffe Institute, St. Petersburg 194021, Russia
| | - Semyon Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Sergei Shipilovskikh
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | - Petr Poturaev
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | - Natalia Medvedeva
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | | | - Pavel S Zelenovskiy
- Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg 620000, Russia
| | | | - Yuliya Kenzhebayeva
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Anastasiia Efimova
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Alexander S Novikov
- Saint Petersburg State University, Saint Petersburg 198504, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Artem Lunev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Institut Jean Lamour, Universit de Lorraine, UMR CNRS 7198, 54011 Nancy, France
| |
Collapse
|
19
|
Xu M, Cai P, Meng SS, Yang Y, Zheng DS, Zhang QH, Gu L, Zhou HC, Gu ZY. Linker Scissoring Strategy Enables Precise Shaping of Metal-Organic Frameworks for Chromatographic Separation. Angew Chem Int Ed Engl 2022; 61:e202207786. [PMID: 35723492 DOI: 10.1002/anie.202207786] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 12/29/2022]
Abstract
Precise shaping of metal-organic frameworks (MOFs) is significant in both fundamental coordination chemistry and practical applications, such as catalysis, separation, and biomedicine. Herein, we demonstrated a linker scissoring strategy for precisely shaping MOFs through surface conformational pairing. In this strategy, the bidentate linkers which were designed according to the original tetratopic ligands and the coordination environment of MOF surfaces, were utilized as the covering agents. The shape of these covering agents and the surface conformation of metals onto MOFs restricted them to coordinate on specific MOF facets thus precisely controlling the shape of the MOFs. Different shapes of PCN-608 from nanoplate (PCN-NP) to nanorod (PCN-NR) have been targeted by adding different bidentate linkers. The universality of this strategy was demonstrated by controlling the shapes of the NU-MOFs from nanoplate to nanorod. This strategy provides a new guiding principle to synthesize MOF nanocrystals with controlled shapes.
Collapse
Affiliation(s)
- Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - De-Sheng Zheng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qing-Hua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
20
|
Xu M, Cai P, Meng SS, Yang Y, Zeng DS, Zhang QH, Gu L, Zhou HC, Gu ZY. Linker Scissoring Strategy Enables Precise Shaping of Metal‐Organic Frameworks for Chromatographic Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming Xu
- Nanjing Normal University chemistry CHINA
| | - Peiyu Cai
- Texas A&M University chemistry UNITED STATES
| | | | - Yihao Yang
- Texas A&M University chemistry UNITED STATES
| | | | | | - Lin Gu
- Chinese Academy of Sciences physics CHINA
| | - Hong-Cai Zhou
- Texas A&M University College Station: Texas A&M University Department of Chemistry Corner of Ross and Spence StreetsP O Box 30012 77842-3012 College Station UNITED STATES
| | | |
Collapse
|
21
|
Nicks J, Foster JA. Post-exfoliation functionalisation of metal-organic framework nanosheets via click chemistry. NANOSCALE 2022; 14:6220-6227. [PMID: 35403656 DOI: 10.1039/d2nr00346e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The liquid exfoliation of layered metal-organic frameworks (MOFs) to form nanosheets (MONs) exposes buried functional groups making them useful in a range of sensing and catalytic applications. Here we show how high yielding click reactions can be used post-exfoliation to systematically modify the surface chemistry of MONs allowing for tuning of their surface properties and their use in new applications. A layered amino-functionalised framework is converted through conventional post-synthetic functionalisation of the bulk MOF to form azide functionalised frameworks of up to >99% yield. Ultrasonic liquid exfoliation is then used to form few-layer nanosheets, which are further functionalised through post exfoliation functionalisation using Cu(I)-catalysed azide-alkyne cycloaddition reactions. Here we demonstrate the advantages of post-exfoliation functionalisation in enabling: (1) a range of functional groups to be incorporated in high yields; (2) tuning of nanosheet surface properties without the need for extensive recharacterisation; (3) the addition of fluorescent functional groups to enable their use in the sensing of hazardous nitrobenzene. We anticipate that the versatility of different functional groups that can be introduced through high yielding click reactions will lead to advances in the use of MONs and other 2D materials for a variety of applications.
Collapse
Affiliation(s)
- Joshua Nicks
- Department of Chemistry, University of Sheffield, Sheffield, UK.
| | | |
Collapse
|
22
|
Yuan H, Li N, Fan W, Cai H, Zhao D. Metal-Organic Framework Based Gas Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104374. [PMID: 34939370 PMCID: PMC8867161 DOI: 10.1002/advs.202104374] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Indexed: 05/08/2023]
Abstract
The ever-increasing concerns over indoor/outdoor air quality, industrial gas leakage, food freshness, and medical diagnosis require miniaturized gas sensors with excellent sensitivity, selectivity, stability, low power consumption, cost-effectiveness, and long lifetime. Metal-organic frameworks (MOFs), featuring structural diversity, large specific surface area, controllable pore size/geometry, and host-guest interactions, hold great promises for fabricating various MOF-based devices for diverse applications including gas sensing. Tremendous progress has been made in the past decade on the fabrication of MOF-based sensors with elevated sensitivity and selectivity toward various analytes due to their preconcentrating and molecule-sieving effects. Although several reviews have recently summarized different aspects of this field, a comprehensive review focusing on MOF-based gas sensors is absent. In this review, the latest advance of MOF-based gas sensors relying on different transduction mechanisms, for example, chemiresistive, capacitive/impedimetric, field-effect transistor or Kelvin probe-based, mass-sensitive, and optical ones are comprehensively summarized. The latest progress for making large-area MOF films essential to the mass-production of relevant gas sensors is also included. The structural and compositional features of MOFs are intentionally correlated with the sensing performance. Challenges and opportunities for the further development and practical applications of MOF-based gas sensors are also given.
Collapse
Affiliation(s)
- Hongye Yuan
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Nanxi Li
- Institute of MicroelectronicsA*STAR (Agency for Science, Technology and Research)2 Fusionopolis Way, #08‐02 Innovis TowerSingapore138634Singapore
| | - Weidong Fan
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Hong Cai
- Institute of MicroelectronicsA*STAR (Agency for Science, Technology and Research)2 Fusionopolis Way, #08‐02 Innovis TowerSingapore138634Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| |
Collapse
|
23
|
Zhao J, Chen R, Huang J, Wang F, Tao CA, Wang J. Ultrafast Synthesis of Ultrathin Two-Dimensional Metal–Organic Framework Nanosheets with High Space-Time Yield. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c04096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jie Zhao
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| | - Rui Chen
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| | - Jian Huang
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| | - Fang Wang
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| | - Cheng-An Tao
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| | - Jianfang Wang
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
24
|
Zhou H, Zhang L, Wang G, Zhang Y, Wang X, Li M, Fan F, Li Y, Wang T, Zhang X, Fu Y. Fabrication of 2D Metal-Organic Framework Nanosheets with Highly Colloidal Stability and High Yield through Coordination Modulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39755-39762. [PMID: 34380312 DOI: 10.1021/acsami.1c11373] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2D metal-organic frameworks (MOFs) are promising 2D materials with a wide range of applications due to their unique physical and chemical properties. However, 2D MOFs are prone to stacking due to their ultrathin thickness, and the high-yield preparation method of 2D MOFs is highly demanded. In this work, a rapid and scalable method is novelistically presented to prepare 2D MOFs with highly colloidal stability and high yield through coordination modulation at room temperature. A well-ordered CuBDC-MBA nanosheet (BDC, 1,4-benzenedicarboxylic; MBA, 4-methoxybenzoic acid) fabricated by introducing MBA as a modulator exhibits extremely stable colloid suspension for 6 months and the yield of well-dispersed CuBDC-MBA is higher than 88.6%. As MBA successfully participates in synthetic coordination of CuBDC-MBA and is presumably installed on the edge of 2D MOFs with low MBA content due to anisotropic growth, CuBDC-MBA and CuBDC are similar with respect to nanosheet morphology, integrated crystal structure, and porosity. Moreover, well-dispersed CuBDC-MBA shows higher catalytic effectiveness for the cycloaddition reaction of CO2 with 1.5 times higher yield than CuBDC. Thus, this method can provide a new idea based on coordination modulation to directly fabricate 2D MOFs with purposeful properties.
Collapse
Affiliation(s)
- Huazhang Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Liying Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Guizhou Wang
- Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, P. R. China
| | - Yichi Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xuanhe Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Mengchu Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Fuqiang Fan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yunong Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Tieqiang Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xuemin Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|