1
|
Wang L, Chen Z, Liu Y, Devasenathipathy R, Li D, Huang D, Huang Q, Lu L, Huang Z, Chen DH, Fan Y, Chen W. Spatially synthesized fluorine-modified graphene improves double times higher capacitance than theoretical capacitance of graphene in alkaline medium. J Colloid Interface Sci 2025; 691:137418. [PMID: 40147371 DOI: 10.1016/j.jcis.2025.137418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The practically low energy density limits the large-scale application of graphene in supercapacitors. Here, we propose a space-confined method for the preparation of fluorine-modified graphene (FG) by using fluorine-containing groups (PF6- or BF4-) as co-intercalated ions and reactants. The semi-ionic C-F bonds in FG contribute a brilliant capacitive performance in both acidic and alkaline electrolytes. Particularly, in alkaline medium, the FG electrode exhibited an ultrahigh specific capacitance (1210 F g-1), surpassing 2 orders of the theoretical capacitance value of graphene. Meanwhile, the FG-assembled symmetrical supercapacitor device (FG-SSD) possesses ultrahigh energy density (418.7 Wh kg-1) and power density (2 kW kg-1) in acidic medium, highlighting the practical application of supercapacitors. Theoretical calculations revealed an increased electrochemical double layer capacitance and amplified the electrochemical window of FG-SSD. This work demonstrates a spatially confined method for the preparation of functional graphene and its spectacular potential for supercapacitor-related electronics.
Collapse
Affiliation(s)
- Limin Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhenxiang Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yongchun Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Rajkumar Devasenathipathy
- Center of Molecular Medicine and Dianostics (COMManD), Saveetha Dental College and Hospitals, SIMTS, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Dan Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dujuan Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qiulan Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liujie Lu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ziyi Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Du-Hong Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Youjun Fan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
2
|
Xue Y, Li K, Shen Y, Miao S, Sang D, Chen W. Elucidating the enhanced charge storage mechanism in mechanically pretreated banana peel biochar: Endogenization of exogenous dopants onto lignocellulose for elevated O/N active sites. Int J Biol Macromol 2025; 312:143910. [PMID: 40350132 DOI: 10.1016/j.ijbiomac.2025.143910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/27/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
In this study, an innovative endogenization technique for the endogenization of exogenous dopants in lignocellulose from banana biomass, namely mechanical ball milling (MBM) pretreatment, is employed for the efficient synthesis of highly dispersed nitrogen/oxygen-doped biochar electrodes. The endogenization effect of MBM on exogenous melamine/KHCO3 dopants (EMKDs) and its enhanced mechanism for storage performance are thoroughly investigated. Results show the MBM-pretreated biochar exhibits superior pseudocapacitive activity, energy density (26.26 Wh·kg-1) and lifespan stability of 10,000 cycles, far surpassing those pretreated by impregnation and stirring methods. The excellent properties are attributed to the MBM-induced uniformly dispersed active centers, greatly promoting the formation of honeycomb-like structure, graphitization, pyrrolic-N (55.02 %) and C=O (52.20 %). FTIR and XPS results confirm the high energy MBM process facilitates the cleavage of ether oxygen bonds, thereby enabling EMKDs to graft uniformly onto lignocellulose structure, and inducing more generation of highly dispersed specific N/O functional groups by further promotion of KHCO3-induced mediated sp2-C and π-π* at high temperature. Furthermore, both experimental and theoretical investigations confirm that pyrrolic-N and C=O as key pseudocapacitance active sites, with their synergistic effect significantly enhancing the redox reactivity, conductivity and pseudocapacitance. The findings offer an effective endogenization pretreatment strategy for high performance biochar electrode.
Collapse
Affiliation(s)
- Yan Xue
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Kunquan Li
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China.
| | - Yifeng Shen
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Shengsheng Miao
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Dazhi Sang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Wei Chen
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| |
Collapse
|
3
|
Zhao Z, Zhang P, Zhao Y, Wang L, Zhang J, Bu F, Zhou W, Zhao R, Zhang X, Lv Z, Liu Y, Xia Y, Zhang W, Zhao T, Chao D, Li W, Zhao D. Versatile synthesis of uniform mesoporous superparticles from stable monomicelle units. Nat Protoc 2025; 20:1310-1351. [PMID: 39537994 DOI: 10.1038/s41596-024-01073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/13/2024] [Indexed: 11/16/2024]
Abstract
Superstructures with architectural complexity and unique functionalities are promising for a variety of practical applications in many fields, including mechanics, sensing, photonics, catalysis, drug delivery and energy storage/conversion. In the past five years, a number of attempts have been made to build superparticles based on amphiphilic polymeric micelle units, but most have failed owing to their inherent poor stability. Determining how to stabilize micelles and control their superassembly is critical to obtaining the desired mesoporous superparticles. Here we provide a detailed procedure for the preparation of ultrastable polymeric monomicelle building units, the creation of a library of ultrasmall organic-inorganic nanohybrids, the modular superassembly of monomicelles into hierarchical superstructures and creation of novel multilevel mesoporous superstructures. The protocol enables precise control of the number of monomicelle units and the derived mesopores for superparticles. We show that ultrafine nanohybrids display enhanced mechanical antipressure performance compared with pristine polymeric micelles, and describe the functional characterization of mesoporous superstructures that exhibit excellent oxygen reduction reactivity. Except for the time (4.5 d) needed for the preparation of the triblock polystyrene-block-poly(4-vinylpyridine)-block-poly(ethylene oxide) PS-PVP-PEO or the polystyrene-block-poly(acrylic acid)-block-poly(ethylene oxide) (PS-PAA-PEO) copolymer, the synthesis of the ultrastable monomicelle, ultrafine organic-inorganic nanohybrids, hierarchical superstructures and mesoporous superparticles require ~6, 30, 8 and 24 h, respectively. The time needed for all characterizations and applications are 18 and 10 h, respectively.
Collapse
Affiliation(s)
- Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
| | - Pengfei Zhang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Yujuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Lipeng Wang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Jie Zhang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Fanxing Bu
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Wanhai Zhou
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Ruizheng Zhao
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Xingmiao Zhang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Zirui Lv
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Yupu Liu
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Yuan Xia
- School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an, China
| | - Wei Zhang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Tiancong Zhao
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Dongliang Chao
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Wei Li
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China.
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Ye C, Zhou X, Tang S. An Azo Polymer with Abundant Active Sites and Extended Conjugation as a Stable Cathode for High-Performance Zinc-Organic Batteries. Angew Chem Int Ed Engl 2025; 64:e202501743. [PMID: 39953932 DOI: 10.1002/anie.202501743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
Developing stable cathodes with high capacity and rapid redox kinetics is pivotal for aqueous zinc-organic batteries (ZOBs). A huge challenge lies in balancing the density of active sites and electronic conductivity of organic cathodes. Herein, an azo polymer from 4,5,9,10-pyrene-tetraone (PTAP) possessing high active components and extended conjugated structure was achieved. The extended conjugated system linked by the azo groups facilitates extensive electron delocalization and a low band gap, which endows the PTAP with enhanced electronic conductivity reaching 4.26×10-3 S m-1. The azo groups themselves serve as active centers for two-electron transfer, leading to a significant increase in the density of redox-active sites and charge storage efficiency. Moreover, strong intramolecular interactions and unique solvation structure bolster the anti-solubility of PTAP. Consequently, PTAP-based ZOBs exhibited high reversible capacities and rate performance, delivering 442.45 mAh g-1 at 0.2 A g-1 and maintaining 248.61 mAh g-1 even at 10 A g-1. Additionally, a ZOB showed remarkable long-term stability after cycling over 900 hours at 5 A g-1. Mechanistic studies further revealed that multi-step coupling of carbonyl and azo groups accompanied by the Zn2+/H+ dual-ion insertion is responsible for rapid 12-electron transfer in PTAP. This work provides new insight into the rational design of advanced organic cathodes for high capacity and long life ZOBs.
Collapse
Affiliation(s)
- Chengwei Ye
- Key National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Modern Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - XiaoYa Zhou
- Key National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Modern Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Shaochun Tang
- Key National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Modern Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
5
|
Lu K, Jing H, Jia H, Qiang H, Wang F, Shi M, Xia M. Defect-rich N, S Co-doped porous carbon with hierarchical channel network for ultrafast capacitive deionization. J Colloid Interface Sci 2025; 679:262-272. [PMID: 39366256 DOI: 10.1016/j.jcis.2024.09.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Developing an eco-friendly and effective approach for preparing N, S co-doped hierarchical porous carbons (NSHPC) for capacitive deionization (CDI) is a huge task for desalination. Herein, NSHPCSKK with interconnected hierarchical pore structures, manufactured via self-activation/co-activation of sodium lignosulfonate (SLS) encapsulation using KNO3-KHCO3 activators, inducing N, S co-doping. Different from NSHPCS and NSHPCSK, NSHPCSKK exhibits the highest specific surface area (SBET, 2264.67 m2/g) and a unique hierarchical pore structure (mesoporous volume/pore volume (Vmeso/ Vpore), 0.65). Small-angle X-ray scattering (SAXS) and scanning electron microscopy (SEM) both reveal the complex interconnected pore structure of NSHPCSKK. Regional Raman imaging conjugated with XPS reveals the presence of extensively distributed N, S co-doped defect structures, providing NSHPCSKK with excellent wettability and electrochemical performance. DFT calculations indicate that the N, S co-doping at the defect sites depicts excellent adsorption capability. Eventually, NSHPCSKK acquired an impressive salt adsorption capacity (SAC) of 20.5 mg/g and the highest average salt adsorption rate (ASAR) of 12.1 mg/g/min, indicating its superior desalting performance. In-situ Raman spectroscopy confirms NSHPCSKK's rapid ion regeneration mechanism. The research introduces a span-new NSHPC synthesis strategy for fabricating advanced NSHPC with rapid desalination response for upgrading CDI desalination.
Collapse
Affiliation(s)
- Keren Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haiyan Jing
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huijuan Jia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hua Qiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Mingxing Shi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
6
|
Chen Y, Song Z, Lv Y, Gan L, Liu M. NH 4+-Modulated Cathodic Interfacial Spatial Charge Redistribution for High-Performance Dual-Ion Capacitors. NANO-MICRO LETTERS 2025; 17:117. [PMID: 39869242 PMCID: PMC11772636 DOI: 10.1007/s40820-025-01660-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025]
Abstract
Compared with Zn2+, the current mainly reported charge carrier for zinc hybrid capacitors, small-hydrated-sized and light-weight NH4+ is expected as a better one to mediate cathodic interfacial electrochemical behaviors, yet has not been unraveled. Here we propose an NH4+-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn2+/NH4+ co-storage for boosting Zinc hybrid capacitors. Owing to the hierarchical cationic solvated structure in hybrid Zn(CF3SO3)2-NH4CF3SO3 electrolyte, high-reactive Zn2+ and small-hydrate-sized NH4(H2O)4+ induce cathodic interfacial Helmholtz plane reconfiguration, thus effectively enhancing the spatial charge density to activate 20% capacity enhancement. Furthermore, cathodic interfacial adsorbed hydrated NH4+ ions afford high-kinetics and ultrastable C‧‧‧H (NH4+) charge storage process due to a much lower desolvation energy barrier compared with heavy and rigid Zn(H2O)62+ (5.81 vs. 14.90 eV). Consequently, physical uptake and multielectron redox of Zn2+/NH4+ in carbon cathode enable the zinc capacitor to deliver high capacity (240 mAh g-1 at 0.5 A g-1), large-current tolerance (130 mAh g-1 at 50 A g-1) and ultralong lifespan (400,000 cycles). This study gives new insights into the design of cathode-electrolyte interfaces toward advanced zinc-based energy storage.
Collapse
Affiliation(s)
- Yumin Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
7
|
Mu D, Lin H, Jiang X, Wang Z, Wang W, Zhang H. Ultrahigh-Power Carbon-Based Supercapacitors through Order-Disorder Balance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411996. [PMID: 39865912 DOI: 10.1002/smll.202411996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/06/2025] [Indexed: 01/28/2025]
Abstract
Although carbon-based supercapacitors (SCs) hold the advantages of high-power and large-current characteristics, they are difficult to realize ultrahigh-power density (> 200 kW kg-1) and maintain almost constant energy density at ultrahigh power. This limitation is mainly due to the difficulty in balancing the structural order related to the electrical conductivity of carbon materials and the structural disorder related to the pore structure. Herein, we design a novel super-structured tubular carbon (SSTC) with a crosslinked porous conductive network to solve the structure order-disorder tradeoff effect in carbon materials. The direct conversion of CO2 in combination with appropriate annealing treatment tailored SSTC that exhibits considerably high conductivity (≈19300 S m-1) along with an optimal mesoporous structure. Consequently, SSTC-based SCs show impressive ultrahigh-power and high-energy features as demonstrated from three aspects. First, SSTC-1000-based SCs with organic electrolytes deliver a maximum power density of 1138.8 kW kg-1. Second, the energy density retention is up to 84.6% as the power density increases from 0.7 to 280 kW kg-1. Third, SSTC-1000-based SC exhibits excellent ultrahigh-power durability as demonstrated by 93.7% capacitance retention after 100000 cycles at 200 A g-1.
Collapse
Affiliation(s)
- Dali Mu
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - He Lin
- Fujian Provincial Engineering Research Center for Advanced High-Temperature Superconducting Materials, The College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China
| | - Xinglin Jiang
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhihan Wang
- Fujian Provincial Engineering Research Center for Advanced High-Temperature Superconducting Materials, The College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China
| | - Wentao Wang
- School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Haitao Zhang
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610031, China
- Institute of Hydrogen & Energy Storage Technology, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
8
|
Zhang J, Qin F, Zuo P, Shen W. Supermolecule-Opitimized Defect Engineering of Rich Nitrogen-Doped Porous Carbons for Advanced Zinc-Ion Hybrid Capacitors. CHEMSUSCHEM 2025; 18:e202401311. [PMID: 39158369 DOI: 10.1002/cssc.202401311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/20/2024]
Abstract
Pitch-based porous carbons with adjustable surface chemical property and controllable pore structure are regarded as promising cathode materials for aqueous zinc-ion hybrid capacitors (ZIHCs), while its disordered carbon matrix and microstructure as well as insufficient surface defects often result in low Zn2+-storage capacity and poor rate capability of ZIHCs. Herein, a synergetic strategy of self-assembled supermolecule and enriched defective carbon engineering was developed to achieve ultrahigh edge-nitrogen doping for ZIHCs. The crystallite defects and surface structure of porous carbon could be effectively achieved through grafting electronegative oxygen-containing small molecules and high-level nitrogen-containing functional groups between modified polycyclic aromatic hydrocarbon and supermolecule framework. The optimized three-dimensional carbon structure delivered high capacity of 218 mAh g-1 at 0.2 A g-1, fast charge/discharge capability, enhanced energy density (165.4 Wh kg-1) and superior cycling stability (95 % retention after 10000 cycles as cathode of ZIHCs). This provided new insight into the controllable synthesis of carbon cathodes for ZIHCs and expects to prepare functional porous carbon by supermolecules and special precursors.
Collapse
Affiliation(s)
- Juan Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fangfang Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China
| | - Pingping Zuo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China
| | - Wenzhong Shen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China
| |
Collapse
|
9
|
Huang Q, Hu C, Qin Y, Jin Y, Huang L, Sun Y, Song Z, Xie F. Designing Heterodiatomic Carbon Hydrangea Superstructures via Machine Learning-Regulated Solvent-Precursor Interactions for Superior Zinc Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405940. [PMID: 39180267 DOI: 10.1002/smll.202405940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Carbon superstructures with exquisite morphologies and functionalities show appealing prospects in energy realms, but the systematic tailoring of their microstructures remains a perplexing topic. Here, hydrangea-shaped heterodiatomic carbon superstructures (CHS) are designed using a solution phase manufacturing route, wherein machine learning workflow is applied to screen precursor-matched solvent for optimizing solvent-precursor interaction. Based on the established solubility parameter model and molecular growth kinetics simulation, ethanol as the optimal solvent stimulates thermodynamic solubilization and growth of polymeric intermediates to evoke CHS. Featured with surface-active motifs and consecutive charge transfer paths, CHS allows high accessibility of zincophilic sites and fast ion migration with low energy barriers. A anion-cation hybrid charge storage mechanism of CHS cathode is disclosed, which entails physical alternate uptake of Zn2+/CF3SO3 - ions at electroactive sites and chemical bipedal redox of Zn2+ ions with carbonyl/pyridine motifs. Such a beneficial electrochemistry contributes to all-round improvement in Zn-ion storage, involving excellent capacities (231 mAh g-1 at 0.5 A g-1; 132 mAh g-1 at 50 A g-1), high energy density (152 Wh kg-1), and long-lasting cyclability (100 000 cycles). This work expands the design versatilities of superstructure materials and will accelerate experimental procedures during carbon manufacturing through machine learning in the future.
Collapse
Affiliation(s)
- Qi Huang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Chengmin Hu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yang Qin
- Department of Mechanical Engineering, College of Engineering and Applied Science, University of Wisconsin Milwaukee, Milwaukee, WI, 53211, USA
| | - Yaowei Jin
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Lu Huang
- Department of Stomatology, Hangzhou Ninth People's Hospital, Hangzhou, 311225, P. R. China
| | - Yaojie Sun
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China
- Shanghai Engineering Research Center for Artificial Intelligence and Integrated Energy System, Fudan University, Shanghai, 200433, P. R. China
| | - Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Fengxian Xie
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China
- Shanghai Engineering Research Center for Artificial Intelligence and Integrated Energy System, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
10
|
Zhao Z, Zhang W, Wang D, Li L, Liang Q, Li W, Lu C, Jo Yoo S, Kim JG, Chen Z, Li Y, Zou X, Liu F, Zhou X, Song K, Li J, Zheng W. Ostwald-Ripening Induced Interfacial Protection Layer Boosts 1,000,000-Cycled Hydronium-Ion Battery. Angew Chem Int Ed Engl 2024:e202414420. [PMID: 39271463 DOI: 10.1002/anie.202414420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Collapsing and degradation of active materials caused by the electrode/electrolyte interface instability in aqueous batteries are one of the main obstacles that mitigate the capacity. Herein by reversing the notorious side reactions include the loss and dissolution of electrode materials, as we applied Ostwald ripening (OR) in the electrochemical cycling of a copper hexacyanoferrate electrode in a hydronium-ion batteries, the dissolved Cu and Fe ions undergo a crystallization process that creates a stable interface layer of cross-linked cubes on the electrode surface. The layer exposed the low-index crystal planes (100) and (110) through OR-induced electrode particle growth, supplemented by vacancy-ordered (100) superlattices that facilitated ion migration. Our design stabilized the electrode-electrolyte interface considerably, achieving a cycle life of one million cycles with capacity retention of 91.6 %, and a capacity retention of 91.7 % after 3000 cycles for a full battery.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 130012, Changchun, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 130012, Changchun, China
| | - Dong Wang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 130012, Changchun, China
| | - Lin Li
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 130012, Changchun, China
| | - Qing Liang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 130012, Changchun, China
| | - Wenwen Li
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 130012, Changchun, China
| | - Chang Lu
- Gatan Inc. AMETEK Commercial Enterprise (Shanghai) Co., LTD, 200131, Shanghai, China
| | - Seung Jo Yoo
- Center for Research Equipment, Electron Microscopy & Spectroscopy Analysis Team, Korea Basic Science Institute, 34133, Daejeon, South Korea
| | - Jin-Gyu Kim
- Center for Research Equipment, Electron Microscopy & Spectroscopy Analysis Team, Korea Basic Science Institute, 34133, Daejeon, South Korea
| | - Zhongjun Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Yujin Li
- College of earth science, Jilin university, 130061, Changchun, China
| | - Xu Zou
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 130012, Changchun, China
| | - Fuxi Liu
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 130012, Changchun, China
| | - Xinyan Zhou
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 130012, Changchun, China
| | - Kexin Song
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 130012, Changchun, China
| | - Jingjuan Li
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 130012, Changchun, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 130012, Changchun, China
| |
Collapse
|
11
|
Song Z, Miao L, Lv Y, Gan L, Liu M. Non-Metal Ion Storage in Zinc-Organic Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310319. [PMID: 38477446 PMCID: PMC11109623 DOI: 10.1002/advs.202310319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Zinc-organic batteries (ZOBs) are receiving widespread attention as up-and-coming energy-storage systems due to their sustainability, operational safety and low cost. Charge carrier is one of the critical factors affecting the redox kinetics and electrochemical performances of ZOBs. Compared with conventional large-sized and sluggish Zn2+ storage, non-metallic charge carriers with small hydrated size and light weight show accelerated interfacial dehydration and fast reaction kinetics, enabling superior electrochemical metrics for ZOBs. Thus, it is valuable and ongoing works to build better ZOBs with non-metallic ion storage. In this review, versatile non-metallic cationic (H+, NH4 +) and anionic (Cl-, OH-, CF3SO3 -, SO4 2-) charge carriers of ZOBs are first categorized with a brief comparison of their respective physicochemical properties and chemical interactions with redox-active organic materials. Furthermore, this work highlights the implementation effectiveness of non-metallic ions in ZOBs, giving insights into the impact of ion types on the metrics (capacity, rate capability, operation voltage, and cycle life) of organic cathodes. Finally, the challenges and perspectives of non-metal-ion-based ZOBs are outlined to guild the future development of next-generation energy communities.
Collapse
Affiliation(s)
- Ziyang Song
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Ling Miao
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Yaokang Lv
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji UniversityShanghai200092P. R. China
| |
Collapse
|
12
|
Zheng ZL, Wu MM, Zeng X, Zhu XW, Luo D, Chen XL, Chen YF, Yang GZ, Bin DS, Zhou XP, Li D. Facile Fabrication of Hollow Nanoporous Carbon Architectures by Controlling MOF Crystalline Inhomogeneity for Ultra-Stable Na-Ion Storage. Angew Chem Int Ed Engl 2024; 63:e202400012. [PMID: 38340327 DOI: 10.1002/anie.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
Hollow nanoporous carbon architectures (HNCs) present significant utilitarian value for a wide variety of applications. Facile and efficient preparation of HNCs has long been pursued but still remains challenging. Herein, we for the first time demonstrate that single-component metal-organic frameworks (MOFs) crystals, rather than the widely reported hybrid ones which necessitate tedious operations for preparation, could enable the facile and versatile syntheses of functional HNCs. By controlling the growth kinetics, the MOFs crystals (STU-1) are readily engineered into different shapes with designated styles of crystalline inhomogeneity. A subsequent one-step pyrolysis of these MOFs with intraparticle difference can induce a simultaneous self-hollowing and carbonization process, thereby producing various functional HNCs including yolk-shell polyhedrons, hollow microspheres, mesoporous architectures, and superstructures. Superior to the existing methods, this synthetic strategy relies only on the complex nature of single-component MOFs crystals without involving tedious operations like coating, etching, or ligand exchange, making it convenient, efficient, and easy to scale up. An ultra-stable Na-ion battery anode is demonstrated by the HNCs with extraordinary cyclability (93 % capacity retention over 8000 cycles), highlighting a high level of functionality of the HNCs.
Collapse
Affiliation(s)
- Ze-Lin Zheng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Ming-Min Wu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xian Zeng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xiao-Wei Zhu
- School of Chemistry and Environment, Guangdong Engineering Technology Developing Center of High-Performance CCL, Jiaying University, Meizhou, Guangdong, 514015, China
| | - Dong Luo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xue-Ling Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Yan-Fei Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Guo-Zhan Yang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - De-Shan Bin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
13
|
Chai E, Huang L, Jiao L, Xiao Z, Zhang X, Wang Y. A multicomponent triformylphoroglucinol-based covalent organic framework for overall hydrogen peroxide photosynthesis. Chem Commun (Camb) 2024; 60:3405-3408. [PMID: 38440822 DOI: 10.1039/d4cc00511b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A multicomponent covalent organic framework (COF-Tfp-BpyDaaq) integrating bipyridine with diaminoanthraquinone through a triformylphoroglucinol linkage was synthesized for the first time as a photocatalyst for overall H2O2 photosynthesis. It exhibits enhanced photo-charge separation and H2O2 production rate over its two-component counterparts, demonstrating the pivotal role of multicomponent synthesis in designing efficient photocatalysts.
Collapse
Affiliation(s)
- Erchong Chai
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, P. R. China
| | - Lanting Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, P. R. China
| | - Lei Jiao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiwei Xiao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.
| | - Xiang Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Hu C, Qin Y, Song Z, Liu P, Miao L, Duan H, Lv Y, Xie L, Liu M, Gan L. π-Conjugated molecule mediated self-doped hierarchical porous carbons via self-stacking interaction for high-energy and ultra-stable zinc-ion hybrid capacitors. J Colloid Interface Sci 2024; 658:856-864. [PMID: 38157610 DOI: 10.1016/j.jcis.2023.12.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Understanding the self-stacking interactions in precursors can facilitate the preparation of high-performance carbon materials and promote the commercial application of zinc ion hybrid capacitors (ZIHCs). Here, a π-conjugated molecule mediated pyrolysis strategy is presented to prepare carbon materials. Taking intermolecular force simulation (reduced density gradient plots) as a guide, the relationship between the self-stacking interactions in π-conjugated molecules and the structural parameters of carbon materials can be extrapolated. The resultant self-doped hierarchical porous carbons (NHPCs) derived from 1, 8, 4, 5-naphthalenetetracarboxdiimide with suitable self-stacking interactions empower the highest specific surface areas (2038 m2/g) and surface opening macropores. The NHPCs-based ZIHCs deliver a high capacity of 220 mAh/g, a high energy density of 149.5 Wh kg-1 and a super-stable cycle lifespan with 93.2 % capacity retention after 200, 000 cycles. The excellent electrochemical performance roots in the superior hierarchical porous structure with surface opening macropores, which guarantees the structural stability of carbon cathodes upon repeated rounds. Meanwhile, the heteroatom doping further relieves the kinetics concern of Zn2+ uptake/removal to enhance O-Zn-N binding particularly at high discharge currents. Besides, the proton-assisted Zn2+ dual-ion storage mechanism plays an essential role in the energy storage process. This work demonstrates a facile synthesis method and advances the fundamental understanding of its dual-ion storage mechanism.
Collapse
Affiliation(s)
- Chengmin Hu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yang Qin
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ziyang Song
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Pingxuan Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ling Miao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Hui Duan
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Mingxian Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Lihua Gan
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
15
|
Zhao J, Liu X, Zhang C, Zhang P, Jiang C, Lin J, Liu Z, Deng K. Supramolecular polymers with dual energy storage mechanism for high-performance supercapacitors. J Colloid Interface Sci 2024; 658:783-794. [PMID: 38154241 DOI: 10.1016/j.jcis.2023.12.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
In this paper, we prepared the supramolecular polymers (MWCNT-APP-s) with a dual energy storage mechanism as the electrode materials by the coordination of four transition metal ions with the small molecule chelator (APP) and functionalized carbon nanotubes, respectively. Among four MWCNT-APP-s, MWCNT-APP-Fe has the characteristics of moderate micropore/mesopore, significant hydrophobicity, redox property and functional groups. Interestingly, the redox reaction of Fe3+/Fe2+ and -CN-/-CN- transformation give MWCNT-APP-Fe an energy storage basis of pseudocapacitance, while MWCNTs and the micro/mesopore structure in MWCNT-APP-Fe provide a double-layer energy storage platform. As expected, on base of the dual energy storage mechanism, the symmetric supercapacitor assembled with MWCNT-APP-Fe has a higher specific capacity (Cs, 421 F g-1 at 1 mV s-1) as well as a long-lasting stability of 94.8% capacity retention with 99% Coulombic efficiency after 10,000 cycles at 20 mV s-1. More notably, the relevant aqueous Zn2+ hybrid supercapacitor provides a high capacity (Cm) of 191 mAh g-1 at 0.5 A g-1 and a long duration of over 2000 cycles at 50 A g-1, with a capacity retention of 92.4%. In summary, MWCNT-APP-Fe with a dual energy storage mechanism enables a potential application as an electrode material for high-performance supercapacitor.
Collapse
Affiliation(s)
- Jingyuan Zhao
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Xu Liu
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Chunfang Zhang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Pengfei Zhang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Chaojie Jiang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Jiayu Lin
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Zhenyan Liu
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Kuilin Deng
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
16
|
Li X, Cai C, Hu P, Zhang B, Wu P, Fan H, Chen Z, Zhou L, Mai L, Fan HJ. Gradient Pores Enhance Charge Storage Density of Carbonaceous Cathodes for Zn-Ion Capacitor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2400184. [PMID: 38348892 DOI: 10.1002/adma.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Engineering carbonaceous cathode materials with adequately accessible active sites is crucial for unleashing their charge storage potential. Herein, activated meso-microporous shell carbon (MMSC-A) nanofibers are constructed to enhance the zinc ion storage density by forming a gradient-pore structure. A dominating pore size of 0.86 nm is tailored to cater for the solvated [Zn(H2 O)6 ]2+ . Moreover, these gradient porous nanofibers feature rapid ion/electron dual conduction pathways and offer abundant active surfaces with high affinity to electrolyte. When employed in Zn-ion capacitors (ZICs), the electrode delivers significantly enhanced capacity (257 mAh g-1 ), energy density (200 Wh kg-1 at 78 W kg-1 ), and cyclic stability (95% retention after 10 000 cycles) compared to nonactivated carbon nanofibers electrode. A series of in situ characterization techniques unveil that the improved Zn2+ storage capability stems from size compatibility between the pores and [Zn(H2 O)6 ]2+ , the co-adsorption of Zn2+ , H+ , and SO4 2- , as well as reversible surface chemical interaction. This work presents an effective method to engineering meso-microporous carbon materials toward high energy-density storage, and also offers insights into the Zn2+ storage mechanism in such gradient-pore structures.
Collapse
Affiliation(s)
- Xinyuan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Congcong Cai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ping Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Peijie Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Hao Fan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhuo Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, Hubei, 441000, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, Hubei, 441000, P. R. China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
17
|
Zhu X, Zhang Y, Man Z, Lu W, Chen W, Xu J, Bao N, Chen W, Wu G. Microfluidic-Assembled Covalent Organic Frameworks@Ti 3 C 2 T x MXene Vertical Fibers for High-Performance Electrochemical Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307186. [PMID: 37619540 DOI: 10.1002/adma.202307186] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The delicate design of innovative and sophisticated fibers with vertical porous skeleton and eminent electrochemical activity to generate directional ionic pathways and good faradic charge accessibility is pivotal but challenging for realizing high-performance fiber-shaped supercapacitors (FSCs). Here, hierarchically ordered hybrid fiber combined vertical-aligned and conductive Ti3 C2 Tx MXene (VA-Ti3 C2 Tx ) with interstratified electroactive covalent organic frameworks LZU1 (COF-LZU1) by one-step microfluidic synthesis is developed. Due to the incorporation of vertical channels, abundant redox active sites and large accessible surface area throughout the electrode, the VA-Ti3 C2 Tx @COF-LZU1 fibers express exceptional gravimetric capacitance of 787 F g-1 in a three-electrode system. Additionally, the solid-state asymmetric FSCs deliver a prominent energy density of 27 Wh kg-1 , capacitance of 398 F g-1 and cycling life of 20 000 cycles. The key to high energy storage ability originates from the decreased ions adsorption energy and ameliorative charge density distribution in vertically aligned and active hybrid fiber, accelerating ions transportation/accommodation and interfacial electrons transfer. Benefiting from excellent electrochemical performance, the FSCs offer sufficient energy supply to power watches, flags, and digital display tubes as well as be integrated with sensors to detect pulse signals, which opens a promising route for architecting advanced fiber toward the carbon neutrality market beyond energy-storage technology.
Collapse
Affiliation(s)
- Xiaolin Zhu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Yang Zhang
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Zengming Man
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Wei Chen
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Wenxing Chen
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Guan Wu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| |
Collapse
|
18
|
Hu R, Jiao L, Liang H, Feng Z, Gao B, Wang XF, Song XZ, Liu LZ, Tan Z. Engineering Interfacial Built-in Electric Field in Polymetallic Phosphide Heterostructures for Superior Supercapacitors and Electrocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304132. [PMID: 37381650 DOI: 10.1002/smll.202304132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Herein, a patterned rod-like CoP@NiCoP core-shell heterostructure is designed to consist of CoP nanowires cross-linked with NiCoP nanosheets in tight strings. The interfacial interaction within the heterojunction between the two components generates a built-in electric field that adjusts the interfacial charge state and create more active sites, accelerating the charge transfer and improving supercapacitor and electrocatalytic performance. The unique core-shell structure suppresses the volume expansion during charging and discharging, achieving excellent stability. As a result, CoP@NiCoP exhibits a high specific capacitance of 2.9 F cm-2 at a current density of 3 mA cm-2 and a high ion diffusion rate (Dion is 2.95 × 10-14 cm2 s-1 ) during charging/discharging. The assembled asymmetric supercapacitor CoP@NiCoP//AC exhibits a high energy density of 42.2 Wh kg-1 at a power density of 126.5 W kg-1 and excellent stability with a capacitance retention rate of 83.8% after 10 000 cycles. Furthermore, the modulated effect induced by the interfacial interaction also endows the self-supported electrode with excellent electrocatalytic HER performance with an overpotential of 71 mV at 10 mA cm-2 . This research may provide a new perspective on the generation of built-in electric field through the rational design of heterogeneous structures for improving the electrochemical and electrocatalytical performance.
Collapse
Affiliation(s)
- Ruiyuan Hu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Lei Jiao
- Key Laboratory of Materials Modification by Laser Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Hongjian Liang
- Key Laboratory of Materials Modification by Laser Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Zhifang Feng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Bin Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiao-Feng Wang
- Key Laboratory of Materials Modification by Laser Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Xue-Zhi Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Li-Zhao Liu
- Key Laboratory of Materials Modification by Laser Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Zhenquan Tan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
19
|
Lan J, Li K, Yang L, Lin Q, Duan J, Zhang S, Wang X, Chen J. Hierarchical Nano-Electrocatalytic Reactor for High Performance Polysulfides Redox Flow Batteries. ACS NANO 2023; 17:20492-20501. [PMID: 37787504 DOI: 10.1021/acsnano.3c07085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The aqueous polysulfides is an important Earth-abundant and multielectron redox couple to construct high capacity density and low-cost aqueous redox flow batteries (RFB) ; nevertheless, the sluggish conversion and kinetic behavior of S2-/Sx2- result in a low power density output and poor active material utilizations. Herein, we present nanoconfined self-assembled ordered hierarchical porous Co and N codoped carbon (OHP-Co/NC) as an electrocatalytic reactor to enhance the mass transfer and redox activity of aqueous polysulfides. Finite element method simulation proves that the OHP-Co/NC with interconnected macropores and mesopores exhibits an enhanced mass transfer and delivers a larger redox electrolyte utilization of 50.1% compared to 23.3% of conventional Co/NC. Notably, the OHP-Co/NC obtained at 850 °C delivers the smallest redox peak potential difference (ΔE = 99 mV). Comparison studies of in operando Raman for aqueous polysulfides in the redox electrolyte and in situ electrochemical Raman on the single OHP-Co/NC particle for the adsorbed polysulfides were carried out. And it confirms that the OHP-Co/NC-850 catalyst has a strong adsorption of S42- and can retard the strong disproportionation and hydrolysis behavior of polysulfides on the electrocatalyst interface. Therefore, the polysulfide/ferrocyanide RFB with an OHP-Co/NC-850 based membrane-electrode assembly (MEA) exhibited a high power density of 110 mW cm-2, as well as a steady capacity retention over 99.7% in 300 cycles.
Collapse
Affiliation(s)
- Jinji Lan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ke Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Le Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qingquan Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jinzhuo Duan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shu Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiang Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiajia Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
20
|
Wang Y, Duan Y, Liang X, Tang L, Sun L, Wang R, Wei S, Huang H, Yang P, Hu H. Hierarchical Porous Activated Carbon Derived from Coconut Shell for Ultrahigh-Performance Supercapacitors. Molecules 2023; 28:7187. [PMID: 37894667 PMCID: PMC10609479 DOI: 10.3390/molecules28207187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
In this research, we successfully produced hierarchical porous activated carbon from biowaste employing one-step KOH activation and applied as ultrahigh-performance supercapacitor electrode materials. The coconut shell-derived activated carbon (CSAC) features a hierarchical porous structure in a honeycomb-like morphology, leading to a high specific surface area (2228 m2 g-1) as well as a significant pore volume (1.07 cm3 g-1). The initial test with the CSAC electrode, conducted in a 6 M KOH loaded symmetric supercapacitor, demonstrated an ultrahigh capacitance of 367 F g-1 at a current density of 0.2 A g-1 together with 92.09% retention after 10,000 cycles at 10 A g-1. More impressively, the zinc-ion hybrid supercapacitor using CSAC as a cathode achieves a high-rate capability (153 mAh g-1 at 0.2 A g-1 and 75 mAh g-1 at 10 A g-1), high energy density (134.9 Wh kg-1 at 175 W kg-1), as well as exceptional cycling stability (93.81% capacity retention after 10,000 cycles at 10 A g-1). Such work thus illuminates a new pathway for converting biowaste-derived carbons into materials for ultrahigh-performance energy storge applications.
Collapse
Affiliation(s)
- Yawei Wang
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, China; (X.L.); (L.T.); (L.S.); (R.W.); (H.H.); (P.Y.)
| | - Yuhui Duan
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China;
| | - Xia Liang
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, China; (X.L.); (L.T.); (L.S.); (R.W.); (H.H.); (P.Y.)
| | - Liang Tang
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, China; (X.L.); (L.T.); (L.S.); (R.W.); (H.H.); (P.Y.)
| | - Lei Sun
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, China; (X.L.); (L.T.); (L.S.); (R.W.); (H.H.); (P.Y.)
| | - Ruirui Wang
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, China; (X.L.); (L.T.); (L.S.); (R.W.); (H.H.); (P.Y.)
| | - Shunhang Wei
- School of Mathematical Information, Shaoxing University, Shaoxing 312000, China;
| | - Huanan Huang
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, China; (X.L.); (L.T.); (L.S.); (R.W.); (H.H.); (P.Y.)
| | - Pinghua Yang
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, China; (X.L.); (L.T.); (L.S.); (R.W.); (H.H.); (P.Y.)
| | - Huanan Hu
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, China; (X.L.); (L.T.); (L.S.); (R.W.); (H.H.); (P.Y.)
| |
Collapse
|
21
|
Song Z, Miao L, Lv Y, Gan L, Liu M. NH 4 + Charge Carrier Coordinated H-Bonded Organic Small Molecule for Fast and Superstable Rechargeable Zinc Batteries. Angew Chem Int Ed Engl 2023; 62:e202309446. [PMID: 37507839 DOI: 10.1002/anie.202309446] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 07/30/2023]
Abstract
Organic small molecules as high-capacity cathodes for Zn-organic batteries have inspired numerous interests, but are trapped by their easy-dissolution in electrolytes. Here we knit ultrastable lock-and-key hydrogen-bonding networks between 2, 7-dinitropyrene-4, 5, 9, 10-tetraone (DNPT) and NH4 + charge carrier. DNPT with octuple-active carbonyl/nitro centers (H-bond acceptor) are redox-exclusively accessible for flexible tetrahedral NH4 + ions (H-bond donator) but exclude larger and rigid Zn2+ , due to a lower activation energy (0.14 vs. 0.31 eV). NH4 + coordinated H-bonding chemistry conquers the stability barrier of DNPT in electrolyte, and gives fast diffusion kinetics of non-metallic charge carrier. A stable two-step 4e- NH4 + coordination with DNPT cathode harvests a high capacity (320 mAh g-1 ), a high-rate capability (50 A g-1 ) and an ultralong life (60,000 cycles). This finding points to a new paradigm for H-bond stabilized organic small molecules to design advanced zinc batteries.
Collapse
Affiliation(s)
- Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ling Miao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
22
|
Qiu Z, Liu Z, Lu X, Zhang S, Yan Y, Chi C, Huangfu C, Wang G, Gao P, Chi W, Xu Z, Wei T, Fan Z. Dual Molecules Cooperatively Confined In-Between Edge-oxygen-rich Graphene Sheets as Ultrahigh Rate and Stable Electrodes for Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302316. [PMID: 37119477 DOI: 10.1002/smll.202302316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Noncovalent modification of carbon materials with redox-active organic molecules has been considered as an effective strategy to improve the electrochemical performance of supercapacitors. However, their low loading mass, slow electron transfer rate, and easy dissolution into the electrolyte greatly limit further practical applications. Herein, this work reports dual molecules (1,5-dihydroxyanthraquinone (DHAQ) and 2,6-diamino anthraquinone (DAQ)) cooperatively confined in-between edge-oxygen-rich graphene sheets as high-performance electrodes for supercapacitors. Cooperative electrostatic-interaction on the edge-oxygen sites and π-π interaction in-between graphene sheets lead to the increased loading mass and structural stability of dual molecules. Moreover, the electron tunneling paths constructed between edge-oxygen groups and dual molecules can effectively boost the electron transfer rate and redox reaction kinetics, especially at ultrahigh current densities. As a result, the as-obtained electrode exhibits a high capacitance of 507 F g-1 at 0.5 A g-1 , and an unprecedented rate capability (203 F g-1 at 200 A g-1 ). Moreover, the assembled symmetrical supercapacitor achieves a high energy density of 17.1 Wh kg-1 and an ultrahigh power density of 140 kW kg-1 , as well as remarkable stability with a retention of 86% after 50 000 cycles. This work may open a new avenue for the efficient utilization of organic materials in energy storage and conversion.
Collapse
Affiliation(s)
- Zhipeng Qiu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Zheng Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Xiaolong Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Su Zhang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Yingchun Yan
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Chunlei Chi
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Chao Huangfu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Guanwen Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Pengfei Gao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Weihao Chi
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Zheng Xu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Tong Wei
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Zhuangjun Fan
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| |
Collapse
|
23
|
Zhang W, Zhang Y, Ni W, Zhang S. Versatile Synthesis of Carbon Materials using Protic Ionic Liquids and Salts as Precursors. CHEM REC 2023; 23:e202300064. [PMID: 37098871 DOI: 10.1002/tcr.202300064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/30/2023] [Indexed: 04/27/2023]
Abstract
Carbon materials (CMs) hold immense potential for applications across a wide range of fields. However, current precursors often confront limitations such as low heteroatom content, poor solubility, or complicated preparation and post-treatment procedures. Our research has unveiled that protic ionic liquids and salts (PILs/PSs), generated from the neutralization of organic bases with protonic acids, can function as economical and versatile small-molecule carbon precursors. The resultant CMs display attractive features, including elevated carbon yield, heightened nitrogen content, improved graphitic structure, robust thermal stability against oxidation, and superior conductivity, even surpassing that of graphite. These properties can be elaborate modulated by varying the molecular structure of PILs/PSs. In this Personal Account, we summarize recent developments in PILs/PSs-derived CMs, with a particular focus on the correlations between precursor structure and the physicochemical properties of CMs. We aim to impart insights into the foreseeable controlled synthesis of advanced CMs.
Collapse
Affiliation(s)
- Wei Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Yan Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Wenpeng Ni
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| |
Collapse
|
24
|
Zhang M, Xu T, Wang D, Yao T, Xu Z, Liu Q, Shen L, Yu Y. A 3D-Printed Proton Pseudocapacitor with Ultrahigh Mass Loading and Areal Energy Density for Fast Energy Storage at Low Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209963. [PMID: 36626913 DOI: 10.1002/adma.202209963] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/06/2023] [Indexed: 06/09/2023]
Abstract
The sluggish ionic transport in thick electrodes and freezing electrolytes has limited electrochemical energy storage devices in lots of harsh environments for practical applications. Here, a 3D-printed proton pseudocapacitor based on high-mass-loading 3D-printed WO3 anodes, Prussian blue analog cathodes, and anti-freezing electrolytes is developed, which can achieve state-of-the-art electrochemical performance at low temperatures. Benefiting from the cross-scale 3D electrode structure using a 3D printing direct ink writing technique, the 3D-printed cathode realizes an ultrahigh areal capacitance of 7.39 F cm-2 at a high areal mass loading of 23.51 mg cm-2 . Moreover, the 3D-printed pseudocapacitor delivers an areal capacitance of 3.44 F cm-2 and excellent areal energy density (1.08 mWh cm-2 ). Owing to the fast ion kinetics in 3D electrodes and the high ionic conductivity of the hybrid electrolyte, the 3D-printed supercapacitor delivers 61.3% of the room-temperature capacitance even at -60 °C. This work provides an effective strategy for the practical applications of energy storage devices with complex physical structure at extreme temperatures.
Collapse
Affiliation(s)
- Miaoran Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Tiezhu Xu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Di Wang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Tengyu Yao
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Zhenming Xu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Qingsheng Liu
- School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Laifa Shen
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
25
|
Bismuth oxyformate microspheres assembled by ultrathin nanosheets as an efficient negative material for aqueous alkali battery. J Colloid Interface Sci 2023; 639:96-106. [PMID: 36804797 DOI: 10.1016/j.jcis.2023.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
A negative electrode with high capacity and rate capability is essential to match the capacity of a positive electrode and maximize the overall charge storage performance of an aqueous alkali battery (AAB). Due to the 3-electron redox reactions within a wide negative potential range, bismuth (Bi)-based compounds are recognized as efficient negative electrode materials. Herein, hierarchically structured bismuth oxyformate (BiOCOOH) assembled by ultrathin nanosheets was prepared by a solvothermal reaction for application as negative material for AAB. Given the efficient ion diffusion channels and sufficient exposure of the inner surface area, as well as the pronounced 3-electron redox activity of Bi species, the BiOCOOH electrode offered a high specific capacity (Cs, 229 ± 4 mAh g-1 at 1 A g-1) and superior rate capability (198 ± 6 mAh g-1 at 10 A g-1) within 0 ∼ -1 V. When pairing with the Ni3S2-MoS2 battery electrode, the AAB delivered a high energy density (Ecell, 217 mWh cm-2 at a power density (Pcell) of 661 mW cm-2), showing the potential of such a novel BiOCOOH negative material in battery-type charge storage.
Collapse
|
26
|
Song Z, Miao L, Ruhlmann L, Lv Y, Li L, Gan L, Liu M. Proton-Conductive Supramolecular Hydrogen-Bonded Organic Superstructures for High-Performance Zinc-Organic Batteries. Angew Chem Int Ed Engl 2023; 62:e202219136. [PMID: 36695445 DOI: 10.1002/anie.202219136] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
With fast (de)coordination kinetics, the smallest and the lightest proton stands out as the most ideal charge carrier for aqueous Zn-organic batteries (ZOBs). Hydrogen-bonding networks with rapid Grotthuss proton conduction is particularly suitable for organic cathodes, yet not reported. We report the supramolecular self-assembly of cyanuric acid and 1,3,5-triazine-2,4,6-triamine into organic superstructures through in-plane H-bonds and out-of-plane π-π interaction. The supramolecular superstructures exhibit highly stable lock-and-key H-bonding networks with an ultralow activation energy for protonation (0.09 eV vs. 0.25 eV of zincification). Then, high-kinetics H+ coordination is prior to Zn2+ into protophilic C=O sites via a two-step nine-electron reaction. The assembled ZOBs show high-rate capability (135 mAh g-1 at 150 A g-1 ), high energy density (267 Wh kg-1 cathode ) and ultra-long life (50 000 cycles at 10 A g-1 ), becoming the state-of-the-art ZOBs in comprehensive performances.
Collapse
Affiliation(s)
- Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ling Miao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Laurent Ruhlmann
- Institut de Chimie (UMR au CNRS n°7177), Université de Strasbourg, 4 rue Blaise Pascal CS 90032, 67081, Strasbourg Cedex, France
| | - Yaokang Lv
- Institut de Chimie (UMR au CNRS n°7177), Université de Strasbourg, 4 rue Blaise Pascal CS 90032, 67081, Strasbourg Cedex, France.,College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
27
|
Zhang Q, Deng C, Huang Z, Zhang Q, Chai X, Yi D, Fang Y, Wu M, Wang X, Tang Y, Wang Y. Dual-Silica Template-Mediated Synthesis of Nitrogen-Doped Mesoporous Carbon Nanotubes for Supercapacitor Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205725. [PMID: 36585360 DOI: 10.1002/smll.202205725] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
1D carbon nanotubes have been widely applied in many fields, such as catalysis, sensing and energy storage. However, the long tunnel-like pores and relatively low specific surface area of carbon nanotubes often restrict their performance in certain applications. Herein, a dual-silica template-mediated method to prepare nitrogen-doped mesoporous carbon nanotubes (NMCTs) through co-depositing polydopamine (both carbon and nitrogen precursors) and silica nanoparticles (the porogen for mesopore formation) on a silica nanowire template is proposed. The obtained NMCTs have a hierarchical pore structure of large open mesopores and tubular macropores, a high specific surface area (1037 m2 g-1 ), and homogeneous nitrogen doping. The NMCT-45 (prepared at an interval time of 45 min) shows excellent performance in supercapacitor applications with a high capacitance (373.6 F g-1 at 1.0 A g-1 ), excellent rate capability, high energy density (11.6 W h kg-1 at a power density of 313 W kg-1 ), and outstanding cycling stability (98.2% capacity retention after 10 000 cycles at 10 A g-1 ). Owing to the unique tubular morphology, hierarchical porosity and homogeneous N-doping, the NMCT also has tremendous potential in electrochemical catalysis and sensing applications.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Chao Deng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Zaimei Huang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Qingcheng Zhang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Xiaocheng Chai
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Deliang Yi
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yuanyuan Fang
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Minying Wu
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Xingdong Wang
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria, 3169, Australia
| | - Yi Tang
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Yajun Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325027, P. R. China
| |
Collapse
|
28
|
Liu H, Zhang F, Lin X, Wu J, Huang J. A hierarchical integrated 3D carbon electrode derived from gingko leaves via hydrothermal carbonization of H 3PO 4 for high-performance supercapacitors. NANOSCALE ADVANCES 2023; 5:786-795. [PMID: 36756496 PMCID: PMC9890899 DOI: 10.1039/d2na00758d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/02/2023] [Accepted: 12/06/2022] [Indexed: 05/20/2023]
Abstract
Electrochemical ultracapacitors derived from green and sustainable materials could demonstrate superior energy output and an ultra-long cycle life owing to large accessible surface area and obviously shortened ion diffusion pathways. Herein, we have established an efficient strategy to fabricate porous carbon (GLAC) from sustainable gingko leaf precursors by a facile hydrothermal activation of H3PO4 and low-cost pyrolysis. In this way, GLAC with a hierarchically porous structure exhibits extraordinary adaptability toward a high energy/power supercapacitor (∼709 F g-1 at 1 A g-1) in an aqueous electrolyte (1 M KOH). Notably, the GLAC-2-based supercapacitor displays an ultra-high stability of ∼98.24% even after 10 000 cycles (10 A g-1) and an impressive energy density as large as ∼71 W h kg-1 at a power density of 1.2 kW kg-1. The results provide new insights that the facile synthetic procedure coupled with the excellent performance contributes to great potential for future application in the electrochemical energy storage field.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| | - Fumin Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| | - Xinyu Lin
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| | - Jinggao Wu
- Key Laboratory of Rare Earth Optoelectronic Materials & Devices, College of Chemistry and Materials Engineering, Huaihua University Huaihua 418000 PR China
| | - Jing Huang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| |
Collapse
|
29
|
Sun A, Ren P, Jin Y, Chen Z, Wang F, Ren F. N/O co-doped micropores carbon derived from a solvent-free synthesized polymer for high-performance supercapacitor. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Wang J, Li X, Wang X, Zhang Y, Zhang B, Xing Z, Li X, Tian K, Wang H, Guo W. Controlled Synthesis of a Hierarchically Porous N‐Doped Carbon Material with Dominantly Pyrrolic Nitrogen Using a Self‐Sacrificial SBA‐15 Template for Increased Supercapacitance. ChemistrySelect 2022. [DOI: 10.1002/slct.202203398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Junyan Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Xinta Li
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Xinyu Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Yu Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Bosen Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Zhankun Xing
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Xueai Li
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Kesong Tian
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Haiyan Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Wanchun Guo
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| |
Collapse
|
31
|
Bao Y, Xu H, Zhu Y, Chen P, Zhang Y, Chen Y. 2,6-diaminoanthraquinone anchored on functionalized biomass porous carbon boosts electrochemical stability for metal-free redox supercapacitor electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
32
|
Chen G, Hu Z, Su H, Zhang J, Wang D. Ultrahigh level heteroatoms doped carbon nanosheets as cathode materials for Zn-ion hybrid capacitor: the indispensable roles of B containing functional groups. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Mian MM, Kamana IML, An X, Abbas SC, Ahommed MS, He Z, Ni Y. Cellulose nanofibers as effective binders for activated biochar-derived high-performance supercapacitors. Carbohydr Polym 2022; 301:120353. [DOI: 10.1016/j.carbpol.2022.120353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
|
34
|
Li G, Chen Y, Yan L, Gong Q, Chen G, Yang L, Wu Q, Wang X, Hu Z. The Composite-Template Method to Construct Hierarchical Carbon Nanocages for Supercapacitors with Ultrahigh Energy and Power Densities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107082. [PMID: 35218132 DOI: 10.1002/smll.202107082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
3D hierarchical carbon nanocages (hCNC) are becoming new platforms for advanced energy storage and conversion due to their unique structural characteristics, especially the combination of multiscale pore structure with high conductivity of sp2 carbon frameworks, which can promote the mass/charge synergetic transfer in various electrochemical processes. Herein, the MgO@ZnO composite-template method is developed to construct hCNC and nitrogen-doped hCNC (hNCNC), which integrates the advantages of the in situ MgO template method and ZnO self-sacrificing template method. The hierarchical MgO template provides the scaffold for depositing carbon nanocages, while the self-sacrificing ZnO template helps create abundant micropores while promoting the graphitization degree, so that the microstructures of the products are effectively regulated. The optimized hCNC and hNCNC have an increased specific surface area and conductivity, which can further boost the mass/charge synergetic transfer. As the electrode materials of supercapacitors, the optimal hCNC(hNCNC) exhibits a high specific capacitance of 281(348) F g-1 in KOH and 276(297) F g-1 in EMIMBF4 electrolytes at 1 A g-1 . The ultrahigh energy and power densities are realized, accompanied by a high-rate capability and long cycling stability. The record-high energy densities of 141.8-71.4 Wh kg-1 are achieved in EMIMBF4 at power densities of 10.0-250.4 kW kg-1 .
Collapse
Affiliation(s)
- Guochang Li
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yiqun Chen
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lijie Yan
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qinghua Gong
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guanghai Chen
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
35
|
Jiang M, Chen J, Zhang Y, Song N, Jiang W, Yang J. Assembly: A Key Enabler for the Construction of Superior Silicon-Based Anodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203162. [PMID: 36045088 PMCID: PMC9596840 DOI: 10.1002/advs.202203162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Silicon (Si) is regarded as the most promising anode material for high-energy lithium-ion batteries (LIBs) due to its high theoretical capacity, and low working potential. However, the large volume variation during the continuous lithiation/delithiation processes easily leads to structural damage and serious side reactions. To overcome the resultant rapid specific capacity decay, the nanocrystallization and compound strategies are proposed to construct hierarchically assembled structures with different morphologies and functions, which develop novel energy storage devices at nano/micro scale. The introduction of assembly strategies in the preparation process of silicon-based materials can integrate the advantages of both nanoscale and microstructures, which significantly enhance the comprehensive performance of the prepared silicon-based assemblies. Unfortunately, the summary and understanding of assembly are still lacking. In this review, the understanding of assembly is deepened in terms of driving forces, methods, influencing factors and advantages. The recent research progress of silicon-based assembled anodes and the mechanism of the functional advantages for assembled structures are reviewed from the aspects of spatial confinement, layered construction, fasciculate structure assembly, superparticles, and interconnected assembly strategies. Various feasible strategies for structural assembly and performance improvement are pointed out. Finally, the challenges and integrated improvement strategies for assembled silicon-based anodes are summarized.
Collapse
Affiliation(s)
- Miaomiao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Junliang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Yingbing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Nan Song
- State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Institute of Functional MaterialsDonghua UniversityShanghai201620China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Institute of Functional MaterialsDonghua UniversityShanghai201620China
| |
Collapse
|
36
|
Wang Y, Zeng Y, Zhu J, Yang C, Huang H, Chen X, Wang R, Yan P, Wei S, Liu M, Zhu D. From dual-aerogels with semi-interpenetrating polymer network structure to hierarchical porous carbons for advanced supercapacitor electrodes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Wang L, Peng M, Chen J, Hu T, Yuan K, Chen Y. Eliminating the Micropore Confinement Effect of Carbonaceous Electrodes for Promoting Zn-Ion Storage Capability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203744. [PMID: 35951671 DOI: 10.1002/adma.202203744] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Zinc-ion capacitors (ZICs) are promising technology for large-scale energy storage by integrating the attributes of supercapacitors and zinc-ion batteries. Unfortunately, the insufficient Zn2+ -storage active sites of carbonaceous cathode materials and the mismatch of pore sizes with charge carriers lead to unsatisfactory Zn2+ storage capability. Herein, new insights for boosting Zn2+ storage capability of activated nitrogen-doped hierarchical porous carbon materials (ANHPC-x) are reported by effectively eliminating the micropore confinement effect and synchronously elevating the utilization of active sites. Therefore, the best-performed ANHPC-2 delivers impressive electrochemical properties for ZICs in terms of excellent capacity (199.1 mAh g-1 ), energy density (155.2 Wh kg-1 ), and durability (65 000 cycles). Systematic ex situ characterizations together with in situ electrochemical quartz crystal microbalance and Raman spectra measurements reveal that the remarkable electrochemical performance is assigned to the synergism of the Zn2+ , H+ , and SO4 2- co-adsorption mechanism and reversible chemical adsorption. Furthermore, the ANHPC-2-based quasi-solid-state ZIC demonstrates excellent electrochemical capability with an ultralong lifespan of up to 100 000 cycles. This work not only provides a promising strategy to improve the Zn2+ storage capability of carbonaceous materials but also sheds lights on charge-storage mechanism and advanced electrode materials' design for ZICs toward practical applications.
Collapse
Affiliation(s)
- Li Wang
- College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Mengke Peng
- College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Jierui Chen
- College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Ting Hu
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Kai Yuan
- College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
38
|
Huang Q, Cong Y, Xu Z. In situ constructed multilayer graphene structure enabling improved supercapacitive charge storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Song Z, Miao L, Duan H, Ruhlmann L, Lv Y, Zhu D, Li L, Gan L, Liu M. Anionic Co-insertion Charge Storage in Dinitrobenzene Cathodes for High-Performance Aqueous Zinc-Organic Batteries. Angew Chem Int Ed Engl 2022; 61:e202208821. [PMID: 35781762 DOI: 10.1002/anie.202208821] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 12/11/2022]
Abstract
Highly active and stable cathodes are critical for aqueous Zn-organic batteries with high capacity, fast redox kinetics, and long life. We herein report para-, meta-, and ortho-dinitrobenzene (p-, m-, and o-DB) containing two successive two-electron processes, as cathode materials to boost the battery performance. Theoretical and experimental studies reveal that nitro constitutional isomerism is key to zincophilic activity and redox kinetics. p-DB hosted in carbon nanoflower harvests a high capacity of 402 mAh g-1 and a superior stability up to 25 000 cycles at 5 A g-1 , giving a Zn-organic battery with a high energy density of 230 Wh kg-1 . An anionic co-insertion charge storage mechanism is proposed, entailing a two-step (de)coordination of Zn(CF3 SO3 )+ with nitro oxygen. Besides, dinitrobenzene can be electrochemically optimized by side group regulation via implanting electron-withdrawing motifs. This work opens a new window to design multielectron nitroaromatics for Zn-organic batteries.
Collapse
Affiliation(s)
- Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ling Miao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Hui Duan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Laurent Ruhlmann
- Institut de Chimie (UMR au CNRS n°7177), Université de Strasbourg, 4 rue Blaise Pascal CS 90032, 67081, Strasbourg Cedex, France
| | - Yaokang Lv
- Institut de Chimie (UMR au CNRS n°7177), Université de Strasbourg, 4 rue Blaise Pascal CS 90032, 67081, Strasbourg Cedex, France.,College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Dazhang Zhu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
40
|
Sun MY, Xu H, Meng YT, Chen XM, Lu M, Yu H, Zhang CB. Facile design and synthesis of a nickel disulfide/zeolitic imidazolate framework-67 composite material with a robust cladding structure for high-efficiency supercapacitors. RSC Adv 2022; 12:23912-23921. [PMID: 36093240 PMCID: PMC9400587 DOI: 10.1039/d2ra04317c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this paper, a core-shell structure nickel disulfide and ZIF-67 composite electrode material (NiS2/ZIF-67) was synthesized by a two-step method. Firstly, spherical NiS2 was synthesized by a hydrothermal method, dispersed in methanol, then reacted and coated by adding cobalt ions and 2-methylimidazole to obtain the NiS2/ZIF-67 core-shell composite. The NiS2/ZIF-67 composite shows a high specific capacitance (1297.9 F g-1 at 1 A g-1) and excellent cycling durability (retaining 110.0% after 4000 cycles at 5 A g-1). Furthermore, the corresponding hybrid supercapacitor (NiS2/ZIF-67//AC HSC) has an energy density of 9.5 W h kg-1 at 411.1 W kg-1 (6 M KOH) and remarkable cycling stability (maintaining 133.3% after 5000 cycles). Its excellent electrochemical performance may be due to the core-shell structure and the synergistic effect between the transition metal sulfide and metal-organic framework. These results indicate that the NiS2/ZIF-67 composite as an electrode material with a core-shell structure has potential application in high-efficiency supercapacitors.
Collapse
Affiliation(s)
- Ming-Yuan Sun
- School of Chemical Engineering, Northeast Electric Power University Jilin 132000 P. R. China
| | - Hao Xu
- Xinjiang Shihezi Vocational Technical College Xinjiang 832000 P. R. China
| | - Yun-Tong Meng
- School of Chemical Engineering, Northeast Electric Power University Jilin 132000 P. R. China
| | - Xue-Mei Chen
- School of Chemical Engineering, Northeast Electric Power University Jilin 132000 P. R. China
| | - Min Lu
- School of Chemical Engineering, Northeast Electric Power University Jilin 132000 P. R. China
| | - Hao Yu
- School of Chemical Engineering, Northeast Electric Power University Jilin 132000 P. R. China
| | - Chun-Bo Zhang
- Electric Power Research Institute of State Grid Jilin Electric Power Co., LTD Jilin 132000 P. R. China
| |
Collapse
|
41
|
Rahman AU, Zarshad N, Jianghua W, Shah M, Ullah S, Li G, Tariq M, Ali A. Sodium Pre-Intercalation-Based Na 3-δ-MnO 2@CC for High-Performance Aqueous Asymmetric Supercapacitor: Joint Experimental and DFT Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2856. [PMID: 36014721 PMCID: PMC9414395 DOI: 10.3390/nano12162856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical energy storage devices are ubiquitous for personal electronics, electric vehicles, smart grids, and future clean energy demand. SCs are EES devices with excellent power density and superior cycling ability. Herein, we focused on the fabrication and DFT calculations of Na3-δ-MnO2 nanocomposite, which has layered MnO2 redox-active sites, supported on carbon cloth. MnO2 has two-dimensional diffusion channels and is not labile to structural changes during intercalation; therefore, it is considered the best substrate for intercalation. Cation pre-intercalation has proven to be an effective way of increasing inter-layered spacing, optimizing the crystal structure, and improving the relevant electrochemical behavior of asymmetric aqueous supercapacitors. We successfully established Na+ pre-intercalated δ-MnO2 nanosheets on carbon cloth via one-pot hydrothermal synthesis. As a cathode, our prepared material exhibited an extended potential window of 0-1.4 V with a remarkable specific capacitance of 546 F g-1(300 F g-1 at 50 A g-1). Moreover, when this cathode was accompanied by an N-AC anode in an asymmetric aqueous supercapacitor, it illustrated exceptional performance (64 Wh kg-1 at a power density of 1225 W kg-1) and incomparable potential window of 2.4 V and 83% capacitance retention over 10,000 cycles with a great Columbic efficiency.
Collapse
Affiliation(s)
- Anis Ur Rahman
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nighat Zarshad
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wu Jianghua
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Muslim Shah
- Department of Chemistry, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Sana Ullah
- Department of Chemistry, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Muhammad Tariq
- Department of PCB, Bayazid Rokhan Institute of Higher Studies, Kabul 1002, Afghanistan
| | - Asad Ali
- Department of Chemistry, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| |
Collapse
|
42
|
Liu J, Ren L, Luo J, Song J. Microwave synthesis of NiSe/NiTe2 nanocomposite grown in situ on Ni foam for all-solid-state asymmetric supercapacitors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Zhou X, Zhu L, Yang Y, Xu L, Qian X, Zhou J, Dong W, Jiang M. High-yield and nitrogen self-doped hierarchical porous carbon from polyurethane foam for high-performance supercapacitors. CHEMOSPHERE 2022; 300:134552. [PMID: 35405196 DOI: 10.1016/j.chemosphere.2022.134552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 05/06/2023]
Abstract
Confronted with the environmental pollution and energy crisis issues, upcycling of waste plastics for energy-storage applications has attracted broad interest. Polyurethane (PUR) is a potential candidate for the preparation of N-doped carbon materials. However, its low carbon yield limits the utilization of PUR waste. In this study, PUR foam was converted into N-doped hierarchical porous carbon (NHPC) through an autogenic atmosphere pyrolysis (AAP)-KOH activation approach. An ultra-high carbon yield of 55.0% was achieved through AAP, which is more than 17 times the carbon yield of conventional pyrolysis of PUR. AAP converted 83.2% of C and 61.0% of N in PUR into derived carbon material. The high conversion rate and self-doping effect can increase the environmental and economic benefits of this approach. KOH activation significantly increased the specific surface area of carbon materials to 2057 m2 g-1 and incorporated hierarchical porous structure and O-containing functional groups to the carbon materials. The obtained NHPCs were applied to improve the performance of supercapacitors. The electrochemical measurement revealed that NHPCs exhibited a high specific capacitance of 342 F g-1 (133 F cm-3) at 0.5 A g-1, low resistance, and outstanding cycling stability. The energy density and power density of the supercapacitor were improved to 11.3 W h kg-1 and 250 W kg-1, respectively. This research developed a possible solution to plastic pollution and energy shortage.
Collapse
Affiliation(s)
- Xiaoli Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| | - Liyao Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| | - Yue Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| | - Lijie Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| | - Xiujuan Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| | - Jie Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
44
|
B/N/O/Zn doped porous carbon materials for supercapacitor with high performance. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Wang D, Sun Z, Han X. Eutectic salt induced self-activation technique for porous graphene-like carbon nanosheets as the high-capacity cathodes for Zn-ion hybrid supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
46
|
Xie K, Xia K, Ding X, Fang L, Liu X, Zhang X. Facile preparation of 3D porous agar-based heteroatom-doped carbon aerogels for high-energy density supercapacitors. RSC Adv 2022; 12:20975-20982. [PMID: 35919134 PMCID: PMC9302333 DOI: 10.1039/d2ra03685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
The fabrication of heteroatom-doped porous carbon materials with high electrical conductivity and large specific surface area via an environmentally friendly route is critical and challenging. Herein, nitrogen and oxygen co-doped agar porous carbon (APC) was developed for supercapacitors via a one-step carbonization method with agar as the raw material and ammonia as the activator and nitrogen source. APC outperformed pectin porous carbon, tamarind porous carbon, and the previously reported carbon-based supercapacitors with a high capacitance retention of 72% even from 0.5 A g-1 to 20 A g-1 and excellent cycling stability in 6 M KOH solution (retained after 10 000 cycles) with a rate of over 98.5%. Furthermore, the APC electrode-based symmetric device exhibited an impressive energy density of 20.4 W h kg-1 and an ultra-high power density of 449 W kg-1 in 1 M Na2SO4 electrolyte together with excellent cycling stability (103.2% primary capacitance retentivity after 10 000 cycles). This study offers a novel method for the synthesis of nitrogen heteroatom-doped hierarchical porous carbon materials for performance-enhanced energy storage devices.
Collapse
Affiliation(s)
- Kaijun Xie
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| | - Kai Xia
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| | - Xin Ding
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| | - Long Fang
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| | - Xiaodong Zhang
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| |
Collapse
|
47
|
Qin Y, Miao L, Mansuer M, Hu C, Lv Y, Gan L, Liu M. Spatial Confinement Strategy for Micelle-Size-Mediated Modulation of Mesopores in Hierarchical Porous Carbon Nanosheets with an Efficient Capacitive Response. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33328-33339. [PMID: 35830692 DOI: 10.1021/acsami.2c08342] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Commercial supercapacitors using available carbon products have long been criticized for the under-utilization of their prominent specific surface area (SSA). In terms of carbonaceous electrode optimization, excessive improvement in SSA observed in the gaseous atmosphere might have little effect on the final performance because cracked/inaccessible pore alleys considerably block the direct electrolyte ion transport in a practical electrochemical environment. Herein, mesopore-adjustable hierarchically porous carbon nanosheets are fabricated based on a micelle-size-mediated spatial confinement strategy. In this strategy, hydrophobic trimethylbenzene in different volumes of the solvent can mediate the interfacial assembly with a carbon precursor and porogen segment through π-π bonding and van der Waals interaction to yield micelles with good dispersity and the diameter varying from 119 to 30 nm. With an increasing solvent volume, the corresponding diffusion coefficient (3.1-14.3 m2 s-1) of as-obtained smaller micelles increases, which makes adjacent micelles gather rapidly and then grow along the radial direction of oligomer aggregates to eventually form mesopores on hierarchically porous carbon nanosheets (MNC150-4.5). Thanks to the pore-expansion effect of trimethylbenzene, the mesoporous volume can be adjusted from 28.8 to 40.0%. Mesopores on hierarchically porous carbon nanosheets endow MNC150-4.5 with an enhanced electrochemically active surface area of 819.5 m2 g-1, which gives rise to quick electrolyte accessibility and a correspondingly immediate capacitive response of 338 F g-1 at 0.5 A g-1 in a three-electrode system. Electrolyte transport through pathways within MNC150-4.5 ultimately enables the symmetric cell to deliver a high energy output of 50.4 Wh kg-1 at 625 W kg-1 in a 14 m LiOTF electrolyte and 95% capacitance retention after 100,000 cycles, which show its superior electrochemical performance over representative carbon-based supercapacitors with aqueous electrolytes in recent literature.
Collapse
Affiliation(s)
- Yang Qin
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Ling Miao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Mulati Mansuer
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Chengmin Hu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
48
|
Song Z, Miao L, Duan H, Ruhlmann L, Lv Y, Zhu D, Li L, Gan L, Liu M. Anionic Co‐insertion Charge Storage in Dinitrobenzene Cathodes for High‐Performance Aqueous Zinc−Organic Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ziyang Song
- Tongji University School of Chemical Science and Engineering 1239 Siping Road 200092 Shanghai CHINA
| | - Ling Miao
- Tongji University School of Chemical Science and Engineering 1239 Siping Road 200092 Shanghai CHINA
| | - Hui Duan
- Tongji University School of Chemical Science and Engineering 1239 Siping Road 200092 Shanghai CHINA
| | | | - Yaokang Lv
- Zhejiang University of Technology College of Chemical Engineering Hangzhou 310014 Hangzhou CHINA
| | - Dazhang Zhu
- Tongji University School of Chemical Science and Engineering 1239 Siping Road 200092 Shanghai CHINA
| | - Liangchun Li
- Tongji University School of Chemical Science and Engineering 200092 Shanghai CHINA
| | - Lihua Gan
- Tongji University School of Chemical Science and Engineering 200092 Shanghai CHINA
| | - Mingxian Liu
- Tongji University School of Chemical Science and Engineering 1239 Siping Road 200092 Shanghai CHINA
| |
Collapse
|
49
|
Li PH, Wei YM, Wu CW, Yang C, Jiang B, Wu WJ. Lignin-based composites for high-performance supercapacitor electrode materials. RSC Adv 2022; 12:19485-19494. [PMID: 35865574 PMCID: PMC9257773 DOI: 10.1039/d2ra02200a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
With the rapid development of the global economy, the depletion of fossil fuels and the intensification of environmental pollution, there is an increasingly urgent need for new and green electrochemical energy storage technologies in society. In this thesis, ligninsulfonate/polyaniline nanocomposites were synthesized by in situ chemical oxidation using aniline as the monomer, lignin as the template and dopant, and ammonium persulfate as the oxidant. The results showed that the average diameter of the ligninsulfonate/polyaniline nanocomposite was 85 nm, and the composite electrode exhibited good electron conduction ability and excellent capacitive performance by ligninsulfonate doping. The electrode material showed the best electrochemical performance when the ligninsulfonate addition was 0.1 g. The specific capacitance can reach 553.7 F g-1 under the current density of charge/discharge 1 A g-1, which is higher than that of the pure PANI electrode. The composite electrode material has good multiplicative performance and cycling stability, and the capacitance retention rate can be maintained at 68.01% after 5000 cycles at a charge/discharge current density of 10 A g-1 (three-electrode system), and the capacitance retention rate can be maintained at 54.84% after 5000 cycles at a charge/discharge current density of 5 A g-1 (two-electrode system).
Collapse
Affiliation(s)
- Peng-Hui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 P. R. China
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Yu-Meng Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Cai-Wen Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 P. R. China
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Chi Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 P. R. China
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Wen-Juan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 P. R. China
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| |
Collapse
|
50
|
Che X, Yang J, Liu S, Wang M, He S, Qiu J. Multilayer-Dense Porous Carbon Nanosheets with High Volumetric Capacitance for Supercapacitors. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaogang Che
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Juan Yang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Siyu Liu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Man Wang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Songjie He
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|