1
|
Wang H, Zhang W, Sun Y, Xu X, Chen X, Zhao K, Yang Z, Liu H. Nanotherapeutic strategies exploiting biological traits of cancer stem cells. Bioact Mater 2025; 50:61-94. [PMID: 40242505 PMCID: PMC12002948 DOI: 10.1016/j.bioactmat.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells that orchestrate cancer initiation, progression, metastasis, and therapeutic resistance. Despite advances in conventional therapies, the persistence of CSCs remains a major obstacle to achieving cancer eradication. Nanomedicine-based approaches have emerged for precise CSC targeting and elimination, offering unique advantages in overcoming the limitations of traditional treatments. This review systematically analyzes recent developments in nanomedicine for CSC-targeted therapy, emphasizing innovative nanomaterial designs addressing CSC-specific challenges. We first provide a detailed examination of CSC biology, focusing on their surface markers, signaling networks, microenvironmental interactions, and metabolic signatures. On this basis, we critically evaluate cutting-edge nanomaterial engineering designed to exploit these CSC traits, including stimuli-responsive nanodrugs, nanocarriers for drug delivery, and multifunctional nanoplatforms capable of generating localized hyperthermia or reactive oxygen species. These sophisticated nanotherapeutic approaches enhance selectivity and efficacy in CSC elimination, potentially circumventing drug resistance and cancer recurrence. Finally, we present an in-depth analysis of current challenges in translating nanomedicine-based CSC-targeted therapies from bench to bedside, offering critical insights into future research directions and clinical implementation. This review aims to provide a comprehensive framework for understanding the intersection of nanomedicine and CSC biology, contributing to more effective cancer treatment modalities.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Wenjing Zhang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xican Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoyang Chen
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kexu Zhao
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhao Yang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Huiyu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
2
|
Li M, Zhan Y, Li Z, Tu W, Su T, Liu Y, Li J. X-ray-Responsive Semiconducting Polymer siRNA Nanosystems for Orthotopic Glioma Treatment via Silencing the Immunosuppressive Signal. ACS NANO 2025; 19:17247-17260. [PMID: 40315402 DOI: 10.1021/acsnano.4c11892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Gliomas are the most lethal types of adult brain tumors with a devastating prognosis, but many therapies have failed to exert good therapeutic benefits because of the extremely hypoxic and immunosuppressive tumor microenvironment. To address these challenges, we herein present a semiconducting polymer (SP)-based small interfering RNA (siRNA) nanosystem with the loading of oxygen self-supplying perfluorohexane (PFH) and conjugation of siRNA via a singlet oxygen (1O2)-cleavable linker. The nanosystems are further camouflaged with a macrophage membrane to obtain the final RM@SPN-siRNA. RM@SPN-siRNA displays an enhanced enrichment at the orthotopic glioma site due to surface cell membrane camouflaging. PFH provides sufficient oxygen to relieve tumor hypoxia, which boosts the production of 1O2 by the SP working as the radiosensitizer under external X-ray irradiation. The generated 1O2 destroys the 1O2-cleavable linker and disrupts the membrane structure to enable in situ siRNA release at the tumor site and subsequent activatable programmed death ligand-1 (PD-L1) silencing for tumor cells. As a consequence, an immunological effect is triggered to effectively inhibit tumor growths in an orthotopic glioma mouse model. This study offers an X-ray-responsive siRNA nanosystem for precise protein silencing and treatment of deep-seated orthotopic tumors.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yiduo Zhan
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Zichao Li
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ting Su
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jingchao Li
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Zhu H, Ni X, Su J, Qin Y, He X, Liu B, Ding S, Wang H, Zhang X, Huang J, Hu Q, Ma R, Cai J. Multifunctional Mesoporous Silicon Nanoparticles for MRI-Based Diagnostic Imaging and Glioma Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26416-26430. [PMID: 40261325 DOI: 10.1021/acsami.5c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
To overcome the limited efficacy of chemodynamic therapy (CDT) caused by insufficient hydrogen peroxide (H2O2) in the tumor microenvironment, we engineered a glutathione (GSH)-responsive multifunctional nanosystem, HCTG-C, based on hollow mesoporous organosilica nanoparticles. This system integrates tirapazamine (TPZ), glucose oxidase (GOx), in situ-synthesized copper sulfide (CuS), and CT2A glioma cell membrane coating to enable dual tumor-targeted therapy and self-imaging capabilities. The therapeutic mechanism relies on three synergistic cascades: (1) GOx-mediated glucose oxidation to deplete oxygen and generate H2O2, establishing a self-sustaining H2O2 supply; (2) GSH-triggered CuS conversion to Cu(I), amplifying Fenton-like reactions for efficient H2O2-to-reactive oxygen species conversion and ferroptosis induction; and (3) hypoxia-activated TPZ to exert cytotoxic effects, synergizing chemotherapy with CDT. Experimental results demonstrated that HCTG-C achieves real-time MRI monitoring via GSH depletion-driven Cu valence transitions, while its self-replenishing H2O2 and oxygen-activation mechanisms significantly enhance antitumor efficacy against CT2A glioma in vitro and in vivo. By innovatively combining H2O2 self-supply cascades, hypoxia-activated chemotherapy, and ferroptosis-driven CDT, this work presents a paradigm-shifting strategy for self-imaging-guided combinatorial therapy, advancing ferroptosis-based approaches for precision glioma treatment.
Collapse
Affiliation(s)
- Huiru Zhu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiaoying Ni
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Jiaxin Su
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Yong Qin
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Xiaoya He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Bo Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Shuang Ding
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Haoru Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Xiangmin Zhang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Jie Huang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Qian Hu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Ruofei Ma
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| |
Collapse
|
4
|
Zhang Y, Li B, He J, Meng Y, Zhan M, Lu C, Li Y, Niu F, Wen L. Hemoglobin-loaded hollow mesoporous carbon-gold nanocomposites enhance microwave ablation through hypoxia relief. J Nanobiotechnology 2025; 23:326. [PMID: 40307855 PMCID: PMC12042322 DOI: 10.1186/s12951-025-03387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Microwave ablation, as a critical minimally invasive technique for tumor treatment, remains challenging in achieving an optimal balance between incomplete and excessive ablation. In addition to selectively elevating the temperature of tumor lesions through the microwave thermal effect, microwave-responsive nanoparticles can also improve the efficacy of single-session ablation by generating reactive oxygen species (ROS) via the microwave dynamic effect, thereby mitigating the thermal damage to normal tissues caused by high temperature. In this study, ultra-small gold nanoparticles anchored hollow mesoporous carbon nanoparticles (HMCNs) are loaded with hemoglobin (Hb) to serve as microwave ablation nano-sensitizers (HMCN/Au@Hb), which will amplify the microwave dynamic effect by alleviating the hypoxic microenvironment of tumors. Upon microwave irradiation, HMCN/Au@Hb not only improves the microwave-thermal conversion efficiency of tumor lesion but also promotes the ROS generation by increasing oxygen content in the hypoxic tumor microenvironment. More importantly, we found that the hypoxia relief will improve the antitumor response and further enhance the clearance of residual tumor after ablation. Nearly complete ablation was achieved in certain tumor-bearing mice, with no recurrence of the primary tumor observed up to 33 days post-ablation. In comparison to traditional microwave ablation, the survival time of the tumor-bearing mice was significantly extended. Therefore, this work presents an innovative ablation sensitization strategy based on the hypoxia relief and provides a nanosensitizer for microwave ablation integrating great microwave-thermal and dynamic effects along with immune modulation capabilities.
Collapse
Affiliation(s)
- Yitian Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Beijing Institute of Technology, Zhuhai, 519088, China
| | - Bitao Li
- Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, 519000, China
| | - Jiawen He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Beijing Institute of Technology, Zhuhai, 519088, China
| | - Ya Meng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Beijing Institute of Technology, Zhuhai, 519088, China
- Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, 519000, China
| | - Meixiao Zhan
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
| | - Cuixia Lu
- Medical College, Guangxi University, Nanning, 530004, China
| | - Yong Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Beijing Institute of Technology, Zhuhai, 519088, China.
- Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, 519000, China.
| | - Feiyu Niu
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Beijing Institute of Technology, Zhuhai, 519088, China.
| |
Collapse
|
5
|
Zheng J, Lin Z, Li X, Miao F, Maimaitiming T, Ma Y, Wang Z, Gao Y, Xi Z, Zhuang A, Zhang R, Cheng Y, Xia X, Wang Y, Huang Y, Kong X, Luo F, Li H, Yu C, Li W. Tumor Microenvironment-Responsive Nanodrug for Embolotherapy and Enhanced Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14859-14872. [PMID: 40014576 DOI: 10.1021/acsami.4c18502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Embolotherapy is an effective antitumor method, which essentially blocks the oxygen supply and induces hypoxia to treat tumors; however, traditional practices demand high expertise and harbor risks of complications. This study presents a mesoporous polydopamine-based (MPDA) drug delivery platform modified by engineered fusion proteins, which can specifically embolize tumor blood vessels and deliver the hypoxia-activated prodrug tirapazamine (TPZ). The fusion protein consists of an affibody targeting HER-2, a substrate for MMP-2, an RGD tripeptide, and a truncated tissue factor (tTF), which is then connected to MPDA loaded with TPZ. This nanodrug can actively target HER-2, interact with MMP-2 in the tumor microenvironment (TME), and embolize blood vessels; then, under TME acidic circumstances, MPDA releases TPZ, which is activated by hypoxia aggravated by embolization, and kills tumors. This embolization strategy, which is activated only under specific conditions, is extremely safe, and it compensates for the inadequacies of conventional embolization therapy, while also addressing the issue of hypoxia deficiency in hypoxia-activated prodrug therapy.
Collapse
Affiliation(s)
- Jialiang Zheng
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhenhang Lin
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xi Li
- Biostatistics, School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Fenglin Miao
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, China
| | | | - Yuan Ma
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhao Wang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yilai Gao
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhe Xi
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Aobo Zhuang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ruyi Zhang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yingxue Cheng
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiaogang Xia
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yue Wang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Department of Basic Medicine, Putian University, Putian 351100, China
| | - Yan Huang
- Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350001, China
| | - Xu Kong
- Haicang Hospital Affiliated of Xiamen Medical College, Haicang Hospital of Xiamen, Xiamen 361023, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, Xiamen 361102, China
| | - Fanghong Luo
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Huichen Li
- Department of Anorectal Surgery, Hotan People's Hospital, Xinjiang 848000, China
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wengang Li
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
6
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
7
|
Wang H, Hao D, Wu Q, Sun T, Xie Z. A morphologically transformable hypoxia-induced radical anion for tumor-specific photothermal therapy. Acta Pharm Sin B 2024; 14:5407-5417. [PMID: 39807323 PMCID: PMC11725169 DOI: 10.1016/j.apsb.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 01/16/2025] Open
Abstract
Tumor microenvironment activatable therapeutic agents and their effective tumor accumulation are significant for selective tumor treatment. Herein, we provide an unadulterated nanomaterial combining the above advantages. We synthesize a perylene diimide (PDI) molecule substituted by glutamic acid (Glu), which can self-assemble into small spherical nanoparticles (PDI-SG) in aqueous solution. PDI-SG can not only be transformed into nanofibers at low pH conditions but also be reduced to PDI radical anion (PDI·‒), which exhibits strong near-infrared absorption and excellent photothermal performance. More importantly, PDI-SG can also be reduced to PDI·‒ in hypoxic tumors to ablate the tumors and minimize the damage to normal tissues. The morphological transformation from small nanoparticles to nanofibers makes for better tumor accumulation and retention. This work sheds light on the design of tumor microenvironment activatable therapeutics with precise structures for high-performance tumor therapy.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qihang Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Yu N, Zhou J, Xu H, Wang F, Wang X, Tang L, Li J, Wang X, Lu X. Near-infrared photoactivatable three-in-one nanoagents to aggravate hypoxia and enable amplified photo-chemotherapy. BIOMATERIALS ADVANCES 2024; 163:213962. [PMID: 39032435 DOI: 10.1016/j.bioadv.2024.213962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Solid tumors create a hypoxic microenvironment and this character can be utilized for cancer therapy, but the hypoxia levels are insufficient to achieve satisfactory therapeutic benefits. Some tactics have been used to improve hypoxia, which however will cause side effects due to the uncontrolled drug release. We herein report near-infrared (NIR) photoactivatable three-in-one nanoagents (PCT) to aggravate tumor hypoxia and enable amplified photo-combinational chemotherapy. PCT are formed based on a thermal-responsive liposome nanoparticle containing three therapeutic agents: a hypoxia responsive prodrug tirapazamine (TPZ) for chemotherapy, a vascular targeting agent combretastatin A-4 (CA4) for vascular disturbance and a semiconducting polymer for both photodynamic therapy (PDT) and photothermal therapy (PTT). With NIR laser irradiation, PCT generate heat for PTT and destructing thermal-responsive liposomes to achieve activatable releases of TPZ and CA4. Moreover, PCT produce singlet oxygen (1O2) for PDT via consuming tumor oxygen. CA4 can disturb the blood vessels in tumor microenvironment to aggravate the hypoxic microenvironment, which results in the activation of TPZ for amplified chemotherapy. PCT thus enable PTT, PDT and hypoxia-amplified chemotherapy to afford a high therapeutic efficacy to almost absolutely eradicate subcutaneous 4 T1 tumors and effectively inhibit tumor metastases in lung and liver. This work presents an activatable three-in-one therapeutic nanoplatform with remotely controllable and efficient therapeutic actions to treat cancer.
Collapse
Affiliation(s)
- Ningyue Yu
- Department of Nuclear Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Jianhui Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Haiming Xu
- Anorectal surgery Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Liming Tang
- Gastrointestinal Surgery Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Xiaoying Wang
- Office of Hospital Infection and Disease Control and Prevention, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Xia Lu
- Department of Nuclear Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
9
|
Chen Y, Xiang H, Li X, Chen Y, Zhang J. Near-Infrared Laser-Switching DNA Phase Separation Nanoinducer for Glioma Therapy. ACS NANO 2024; 18:24426-24440. [PMID: 39171897 DOI: 10.1021/acsnano.4c07514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
DNA phase separation participates in chromatin packing for the modulation of gene transcription, but the induction of DNA phase separation in living cells for disease treatment faces huge challenges. Herein, we construct a Ru(II)-polypyridyl-loaded upconversion nanoplatform (denoted as UCSNs-R) to achieve the manipulation of DNA phase separation and production of abundant singlet oxygen (1O2) for efficient treatment of gliomas. The utilization of the UCSN not only facilitates high loading of Ru(II)-polypyridyl complexes (RuC) but also promotes the conversion of near-infrared (NIR) laser to ultraviolet light for efficient 1O2 generation. The released RuC exhibit DNA "light-switch" behavior and high DNA binding affinity that induce phase separation of DNA in living cells, thus resulting in DNA damage and suppressing tumor-cell growth. In vivo investigation demonstrates the high capability of UCSNs-R in inhibiting tumor proliferation under NIR laser illumination. This work represents a paradigm for designing a DNA phase separation nanoinducer through integration of the UCSN with Ru(II)-polypyridyl-based complexes for efficient therapy of gliomas.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P. R. China
| | - Huijing Xiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaodan Li
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Shanghai Institute of Materdicine, Shanghai 200051, P. R. China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P. R. China
- National Center for Neurological Disorders, Shanghai 200040, P. R. China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, P. R. China
| |
Collapse
|
10
|
Hao Y, Zhu W, Li J, Lin R, Huang W, Ain QU, Liu K, Wei N, Cheng D, Wu Y, Lv W. Sustained release hypoxia-activated prodrug-loaded BSA nanoparticles enhance transarterial chemoembolization against hepatocellular carcinoma. J Control Release 2024; 372:155-167. [PMID: 38879131 DOI: 10.1016/j.jconrel.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/25/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Transarterial chemoembolization (TACE) is the standard of care for patients with advanced hepatocellular carcinoma (HCC), but facing the problem of low therapeutic effect. Conventional TACE formulations contain Lipiodol (LP) and chemotherapeutic agents characterized by burst release due to the unstable emulsion. Herein, we developed a novel TACE system by inducing bovine serum albumin (BSA) loaded hypoxia-activated prodrug (tirapazamine, TPZ) nanoparticle (BSATPZ) for sustained drug release. In the rabbit VX2 liver cancer model, TACE treatment induced a long-term hypoxic tumor microenvironment as demonstrated by increased expression of HIF-1α in the tumor. BSATPZ nanoparticles combined with LP greatly enhanced the anti-tumor effects of the TACE treatment. Compared to conventional TACE treatment, BSATPZ nanoparticle-based TACE therapy more significantly delayed tumor progression and inhibited the metastases in the lungs. The effects could be partially mediated by the rebuilt immune responses, as BSATPZ nanoparticle can served as an immunogenic cell death (ICD) inducer. Collectively, our results suggest that BSATPZ nanoparticle-based TACE therapy could be a promising strategy to improve clinical outcomes for patients with HCC and provide a preclinical rationale for evaluating TPZ therapy in clinical studies.
Collapse
Affiliation(s)
- Yinghong Hao
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Wenzhi Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230001, China
| | - Jie Li
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Ruirui Lin
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Wenting Huang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Qurat Ul Ain
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Kaicai Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Ning Wei
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Delei Cheng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yi Wu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, 230051, China.
| | - Weifu Lv
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
11
|
Li F, Zhu P, Zheng B, Lu Z, Fang C, Fu Y, Li X. A Customized Biohybrid Presenting Cascade Responses to Tumor Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404901. [PMID: 38723206 DOI: 10.1002/adma.202404901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Indexed: 05/16/2024]
Abstract
Intrinsic characteristics of microorganisms, including non-specific metabolism sites, toxic byproducts, and uncontrolled proliferation constrain their exploitation in medical applications such as tumor therapy. Here, the authors report an engineered biohybrid that can efficiently target cancerous sites through a pre-determined metabolic pathway to enable precise tumor ablation. In this system, DH5α Escherichia coli is engineered by the introduction of hypoxia-inducible promoters and lactate oxidase genes, and further surface-armored with iron-doped ZIF-8 nanoparticles. This bioengineered E. coli can produce and secrete lactate oxidase to reduce lactate concentration in response to hypoxic tumor microenvironment, as well as triggering immune activation. The peroxidase-like functionality of the nanoparticles extends the end product of the lactate metabolism, enabling the conversion of hydrogen peroxide (H2O2) into highly cytotoxic hydroxyl radicals. This, coupled with the transformation of tirapazamine loaded on nanoparticles to toxic benzotriazinyl, culminates in severe tumor cell ferroptosis. Intravenous injection of this biohybrid significantly inhibits tumor growth and metastasis.
Collapse
Affiliation(s)
- Feiyu Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Peipei Zhu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Bingzhu Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zijie Lu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Chao Fang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Yike Fu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Xiang Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| |
Collapse
|
12
|
Hou X, Zhang B, Cheng K, Zhang F, Xie X, Chen W, Tan L, Fan J, Liu B, Xu Q. Engineering Phage Nanocarriers Integrated with Bio-Intelligent Plasmids for Personalized and Tunable Enzyme Delivery to Enhance Chemodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308349. [PMID: 38582522 PMCID: PMC11199971 DOI: 10.1002/advs.202308349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Customizable and number-tunable enzyme delivery nanocarriers will be useful in tumor therapy. Herein, a phage vehicle, T4-Lox-DNA-Fe (TLDF), which adeptly modulates enzyme numbers using phage display technology to remodel the tumor microenvironment (TME) is presented. Regarding the demand for lactic acid in tumors, each phage is engineered to display 720 lactate oxidase (Lox), contributing to the depletion of lactic acid to restructure the tumor's energy metabolism. The phage vehicle incorporated dextran iron (Fe) with Fenton reaction capabilities. H2O2 is generated through the Lox catalytic reaction, amplifying the H2O2 supply for dextran iron-based chemodynamic therapy (CDT). Drawing inspiration from the erythropoietin (EPO) biosynthetic process, an EPO enhancer is constructed to impart the EPO-Keap1 plasmid (DNA) with tumor hypoxia-activated functionality, disrupting the redox homeostasis of the TME. Lox consumes local oxygen, and positive feedback between the Lox and the plasmid promotes the expression of kelch ECH Associated Protein 1 (Keap1). Consequently, the downregulation of the antioxidant transcription factor Nrf2, in synergy with CDT, amplifies the oxidative killing effect, leading to tumor suppression of up to 78%. This study seamlessly integrates adaptable T4 phage vehicles with bio-intelligent plasmids, presenting a promising approach for tumor therapy.
Collapse
Affiliation(s)
- Xiao‐Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Bin Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Xiao‐Ting Xie
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Lin‐Fang Tan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Jin‐Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
- Key Laboratory of Biomedical Photonics (HUST)Ministry of EducationHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
- NMPA Research Base of Regulatory Science for Medical Devices & Institute of Regulatory Science for Medical DevicesHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Qiu‐Ran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized MedicineZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiang310014P. R. China
| |
Collapse
|
13
|
Yan M, Wu S, Wang Y, Liang M, Wang M, Hu W, Yu G, Mao Z, Huang F, Zhou J. Recent Progress of Supramolecular Chemotherapy Based on Host-Guest Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304249. [PMID: 37478832 DOI: 10.1002/adma.202304249] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Chemotherapy is widely recognized as an effective approach for treating cancer due to its ability to eliminate cancer cells using chemotherapeutic drugs. However, traditional chemotherapy suffers from various drawbacks, including limited solubility and stability of drugs, severe side effects, low bioavailability, drug resistance, and challenges in tracking treatment efficacy. These limitations greatly hinder its widespread clinical application. In contrast, supramolecular chemotherapy, which relies on host-guest interactions, presents a promising alternative by offering highly efficient and minimally toxic anticancer drug delivery. In this review, an overview of recent advancements in supramolecular chemotherapy based on host-guest interactions is provided. The significant role it plays in guiding cancer therapy is emphasized. Drawing on a wealth of cutting-edge research, herein, a timely and valuable resource for individuals interested in the field of supramolecular chemotherapy or cancer therapy, is presented. Furthermore, this review contributes to the progression of the field of supramolecular chemotherapy toward clinical application.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Sha Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
14
|
Zhao L, Tan L, Wu Q, Fu C, Ren X, Ren J, Wang Z, Zhang J, Meng X. A two-stage exacerbated hypoxia nanoengineering strategy induced amplifying activation of tirapazamine for microwave hyperthermia-chemotherapy of breast cancer. J Colloid Interface Sci 2024; 659:178-190. [PMID: 38163404 DOI: 10.1016/j.jcis.2023.12.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Microwave hyperthermia (MH) is an emerging treatment for solid tumors, such as breast cancer, due to its advantages of minimally invasive and deep tissue penetration. However, MH induced tumor hypoxia is still an obstacle to breast tumor treatment failure. Therefore, an original nanoengineering strategy was proposed to exacerbate hypoxia in two stages, thereby amplifying the efficiency of activating tirapazamine (TPZ). And a novel microwave-sensitized nanomaterial (GdEuMOF@TPZ, GEMT) is designed. GdEuMOF (GEM) nanoparticles are certified excellent microwave (MW) sensitization performance, thus improving tumor selectivity to achieve MH. Meanwhile MW can aggravate the generation of thrombus and caused local circulatory disturbance of tumor, resulting in the Stage I exacerbated hypoxia environment passively. Due to tumor heterogeneity and uneven hypoxia, GEMT nanoparticles under microwave could actively deplete residual oxygen through the chemical reaction, exacerbating hypoxia level more evenly, thus forming the Stage II of exacerbated hypoxia environment. Consequently, a two-stage exacerbated hypoxia GEMT nanoparticles realize amplifying activation of TPZ, significantly enhance the efficacy of microwave hyperthermia and chemotherapy, and effectively inhibit breast cancer. This research provides insights into the development of progressive nanoengineering strategies for effective breast tumor therapy.
Collapse
Affiliation(s)
- Lirong Zhao
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Longfei Tan
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qiong Wu
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Changhui Fu
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiangling Ren
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jun Ren
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhen Wang
- Laboratory Medicine Center, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jingjie Zhang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xianwei Meng
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
15
|
Zhang QD, Duan QY, Tu J, Wu FG. Thrombin and Thrombin-Incorporated Biomaterials for Disease Treatments. Adv Healthc Mater 2024; 13:e2302209. [PMID: 37897228 DOI: 10.1002/adhm.202302209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Thrombin, a coagulation-inducing protease, has long been used in the hemostatic field. During the past decades, many other therapeutic uses of thrombin have been developed. For instance, burn treatment, pseudoaneurysm therapy, wound management, and tumor vascular infarction (or tumor vasculature blockade therapy) can all utilize the unique and powerful function of thrombin. Based on their therapeutic effects, many thrombin-associated products have been certificated by the Food and Drug Administration, including bovine thrombin, human thrombin, recombinant thrombin, fibrin glue, etc. Besides, several thrombin-based drugs are currently undergoing clinical trials. In this article, the therapeutic uses of thrombin (from the initial hemostasis to the latest cancer therapy), the commercially available drugs associated with thrombin, and the pros and cons of thrombin-based therapeutics (e.g., adverse immune responses related to bovine thrombin, thromboinflammation, and vasculogenic "rebounds") are summarized. Further, the current challenges and possible future research directions of thrombin-incorporated biomaterials and therapies are discussed. It is hoped that this review may provide a valuable reference for researchers in this field and help them to design safer and more effective thrombin-based drugs for fighting against various intractable diseases.
Collapse
Affiliation(s)
- Qiong-Dan Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, Jiangsu, 211189, P. R. China
| | - Qiu-Yi Duan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, Jiangsu, 211189, P. R. China
| | - Jing Tu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, Jiangsu, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, Jiangsu, 211189, P. R. China
| |
Collapse
|
16
|
Yu Q, Zhou J, Liu Y, Li XQ, Li S, Zhou H, Kang B, Chen HY, Xu JJ. DNAzyme-Mediated Cascade Nanoreactor for Cuproptosis-Promoted Pancreatic Cancer Synergistic Therapy. Adv Healthc Mater 2023; 12:e2301429. [PMID: 37548109 DOI: 10.1002/adhm.202301429] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Indexed: 08/08/2023]
Abstract
Cuproptosis, a kind of newly recognized cell death modality, shows enormous prospect in cancer treatment. The inducer of cuproptosis has more advantages in tumor therapy, especially that can trigger cuproptosis and chemodynamic therapy (CDT) simultaneously. However, cuproptosis is restricted to the deficiency of intracellular copper ions and the nonspecific delivery of copper-based ionophores. Therefore, high level delivery, responsive release, and utilizing synergistic-function of inducer become the key on cuproptosis-based oncotherapy. In this work, a cascade nanosystem is constructed for enhanced cuproptosis and CDT. In the weak acidic environment of tumor cells, DNA, zinc ions, and Cu+ can release from the nanosystem. Since Cu+ having superior performance in mediating both Fenton-like reaction and cuproptosis, the released Cu+ induces cuproptosis and CDT efficiently, accompanied by Cu2+ generation. Then Cu2+ can be converted into Cu+ partially by glutathione (GSH) to from a Cu+ supply loop and ensure the synergistic action. Meanwhile, the consumption of GSH also contributes to cuproptosis and CDT in return. Finally, DNA and Zn2+ form DNAzyme to shear catalase-related RNA, resulting in the accumulation of hydrogen peroxide and further enhancing combination therapy. These results provide a promising nanotherapeutic platform and may inspire the design for potential cancer treatment based on cuproptosis.
Collapse
Affiliation(s)
- Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Jie Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Yong Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Shan Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
17
|
Wang C, Xu J, Zhang Y, Nie G. Emerging nanotechnological approaches to regulating tumor vasculature for cancer therapy. J Control Release 2023; 362:647-666. [PMID: 37703928 DOI: 10.1016/j.jconrel.2023.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Abnormal angiogenesis stands for one of the most striking manifestations of malignant tumor. The pathologically and structurally abnormal tumor vasculature facilitates a hostile tumor microenvironment, providing an ideal refuge exclusively for cancer cells. The emergence of vascular regulation drugs has introduced a distinctive class of therapeutics capable of influencing nutrition supply and drug delivery efficacy without the need to penetrate a series of physical barriers to reach tumor cells. Nanomedicines have been further developed for more precise regulation of tumor vasculature with the capacity of co-delivering multiple active pharmaceutical ingredients, which overall reduces the systemic toxicity and boosts the therapeutic efficacy of free drugs. Additionally, precise structure design enables the integration of specific functional motifs, such as surface-targeting ligands, droppable shells, degradable framework, or stimuli-responsive components into nanomedicines, which can improve tissue-specific accumulation, enhance tissue penetration, and realize the controlled and stimulus-triggered release of the loaded cargo. This review describes the morphological and functional characteristics of tumor blood vessels and summarizes the pivotal molecular targets commonly used in nanomedicine design, and then highlights the recent cutting-edge advancements utilizing nanotechnologies for precise regulation of tumor vasculature. Finally, the challenges and future directions of this field are discussed.
Collapse
Affiliation(s)
- Chunling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Sino-Danish Center for Education and Research, Sino-Danish College of UCAS, Beijing 100190, China
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yinlong Zhang
- Sino-Danish Center for Education and Research, Sino-Danish College of UCAS, Beijing 100190, China; School of Nanoscience and Engineering, School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Sino-Danish Center for Education and Research, Sino-Danish College of UCAS, Beijing 100190, China; GBA National Institute for Nanotechnology Innovation, Guangzhou 510530, China.
| |
Collapse
|
18
|
Pan Y, Liu L, He Y, Ye L, Zhao X, Hu Z, Mou X, Cai Y. NIR diagnostic imaging of triple-negative breast cancer and its lymph node metastasis for high-efficiency hypoxia-activated multimodal therapy. J Nanobiotechnology 2023; 21:312. [PMID: 37660121 PMCID: PMC10475188 DOI: 10.1186/s12951-023-02010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) possesses special biological behavior and clinicopathological characteristics, which is highly invasive and propensity to metastasize to lymph nodes, leading to a worse prognosis than other types of breast cancer. Thus, the development of an effective therapeutic method is significant to improve the survival rate of TNBC patients. RESULTS In this work, a liposome-based theranostic nanosystem (ILA@Lip) was successfully prepared by simultaneously encapsulating IR 780 as the photosensitizer and lenvatinib as an anti-angiogenic agent, together with banoxantrone (AQ4N) molecule as the hypoxia-activated prodrug. The ILA@Lip can be applied for the near-infrared (NIR) fluorescence diagnostic imaging of TNBC and its lymph node metastasis for multimodal therapy. Lenvatinib in ILA@Lip can inhibit angiogenesis by cutting oxygen supply, thereby leading to enhanced hypoxia levels. Meanwhile, large amounts of reactive oxygen species (ROS) were produced while IR 780 was irradiated by an 808 nm laser, which also rapidly exhausted oxygen in tumor cells to worsen tumor hypoxia. Through creating an extremely hypoxic in TNBC, the conversion of non-toxic AQ4N to toxic AQ4 was much more efficiency for hypoxia-activated chemotherapy. Cytotoxicity assay of ILA@Lip indicated excellent biocompatibility with normal cells and tissues, but showed high toxicity in hypoxic breast cancer cells. Also, the in vivo tumors treated by the ILA@Lip with laser irradiation were admirably suppressed in both subcutaneous tumor model and orthotopic tumor models. CONCLUSION Utilizing ILA@Lip is a profound strategy to create an extremely hypoxic tumor microenvironment for higher therapeutic efficacy of hypoxia-activated chemotherapy, which realized collective suppression of tumor growth and has promising potential for clinical translation.
Collapse
Affiliation(s)
- Yi Pan
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
| | - Yichen He
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Luyi Ye
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
| | - Xin Zhao
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
| | - Zhiming Hu
- Department of Hepatobiliary Pancreatic Surgery, Zhejiang Provincial Tongde Hospital, Hangzhou, 310012, Zhejiang, China.
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
19
|
Kang X, Zhang Y, Song J, Wang L, Li W, Qi J, Tang BZ. A photo-triggered self-accelerated nanoplatform for multifunctional image-guided combination cancer immunotherapy. Nat Commun 2023; 14:5216. [PMID: 37626073 PMCID: PMC10457322 DOI: 10.1038/s41467-023-40996-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Precise and efficient image-guided immunotherapy holds great promise for cancer treatment. Here, we report a self-accelerated nanoplatform combining an aggregation-induced emission luminogen (AIEgen) and a hypoxia-responsive prodrug for multifunctional image-guided combination immunotherapy. The near-infrared AIEgen with methoxy substitution simultaneously possesses boosted fluorescence and photoacoustic (PA) brightness for the strong light absorption ability, as well as amplified type I and type II photodynamic therapy (PDT) properties via enhanced intersystem crossing process. By formulating the high-performance AIEgen with a hypoxia-responsive paclitaxel (PTX) prodrug into nanoparticles, and further camouflaging with macrophage cell membrane, a tumor-targeting theranostic agent is built. The integration of fluorescence and PA imaging helps to delineate tumor site sensitively, providing accurate guidance for tumor treatment. The light-induced PDT effect could consume the local oxygen and lead to severer hypoxia, accelerating the release of PTX drug. As a result, the combination of PDT and PTX chemotherapy induces immunogenic cancer cell death, which could not only elicit strong antitumor immunity to suppress the primary tumor, but also inhibit the growth of distant tumor in 4T1 tumor-bearing female mice. Here, we report a strategy to develop theranostic agents via rational molecular design for boosting antitumor immunotherapy.
Collapse
Affiliation(s)
- Xiaoying Kang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lu Wang
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
20
|
Xu Y, Liu R, Li R, Zhi X, Yang P, Qian L, Sun D, Liu L, Dai Z. Manipulating Neovasculature-Targeting Capability of Biomimetic Nanodiscs for Synergistic Photoactivatable Tumor Infarction and Chemotherapy. ACS NANO 2023; 17:16192-16203. [PMID: 37555449 DOI: 10.1021/acsnano.3c05463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Tumor infarction therapy is a promising antitumor strategy with the advantages of taking a short therapy duration, less risk of resistance, and effectiveness against a wide range of tumor types. However, its clinical application is largely hindered by tumor recurrence in the surviving rim and the potential risk of thromboembolic events due to nonspecific vasculature targeting. Herein, a neovasculature-targeting synthetic high-density lipoprotein (sHDL) nanodisc loaded with pyropheophorbide-a and camptothecin (CPN) was fabricated for photoactivatable tumor infarction and synergistic chemotherapy. By manipulating the anisotropy in ligand modification of sHDL nanodiscs, CPN modified with neovaculature-targeting peptide on the planes (PCPN) shows up to 7-fold higher cellular uptake compared with that around the edge (ECPN). PCPN can efficiently bind to endothelial cells of tumor vessels, and upon laser irradiation, massive local thrombus can be induced by the photodynamic reaction to deprive nutrition supply. Meanwhile, CPT could be released in response to the tumor reductive environment, thus killing residual tumor cells in the surviving rim to inhibit recurrence. These findings not only offer a powerful approach of synergistic cancer therapy but also suggest the potential of plane-modified sHDL nanodiscs as a versatile drug delivery nanocarrier.
Collapse
Affiliation(s)
- Yunxue Xu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Rui Li
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Xin Zhi
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Peipei Yang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Desheng Sun
- Department of Ultrasound, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Li Liu
- Department of Ultrasound, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Liang S, Yao J, Liu D, Rao L, Chen X, Wang Z. Harnessing Nanomaterials for Cancer Sonodynamic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211130. [PMID: 36881527 DOI: 10.1002/adma.202211130] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Immunotherapy has made remarkable strides in cancer therapy over the past decade. However, such emerging therapy still suffers from the low response rates and immune-related adverse events. Various strategies have been developed to overcome these serious challenges. Therein, sonodynamic therapy (SDT), as a non-invasive treatment, has received ever-increasing attention especially in the treatment of deep-seated tumors. Significantly, SDT can effectively induce immunogenic cell death to trigger systemic anti-tumor immune response, termed sonodynamic immunotherapy. The rapid development of nanotechnology has revolutionized SDT effects with robust immune response induction. As a result, more and more innovative nanosonosensitizers and synergistic treatment modalities are established with superior efficacy and safe profile. In this review, the recent advances in cancer sonodynamic immunotherapy are summarized with a particular emphasis on how nanotechnology can be explored to harness SDT for amplifying anti-tumor immune response. Moreover, the current challenges in this field and the prospects for its clinical translation are also presented. It is anticipated that this review can provide rational guidance and facilitate the development of nanomaterials-assisted sonodynamic immunotherapy, helping to pave the way for next-generation cancer therapy and eventually achieve a durable response in patients.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jianjun Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
22
|
Fu LH, Wu XY, He J, Qi C, Lin J, Huang P. Biomimetic Nanoplatform with H 2O 2 Homeostasis Disruption and Oxidative Stress Amplification for Enhanced Chemodynamic Therapy. Acta Biomater 2023; 162:44-56. [PMID: 36934891 DOI: 10.1016/j.actbio.2023.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/04/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Chemodynamic therapy (CDT) is a powerful cancer treatment strategy by producing excessive amount of reactive oxygen species (ROS) to kill cancer cells. However, the inadequate hydrogen peroxide (H2O2) supply and antioxidant defense systems in tumor tissue significantly impair the therapeutic effect of CDT, hindering its further applications. Herein, we present an intelligent nanoplatform with H2O2 homeostasis disruption and oxidative stress amplification properties for enhanced CDT. This nanoplatform is obtained by encapsulating glucose oxidase (GOx) in a pH- and glutathione (GSH)-responsive degradable copper doped-zeolitic imidazolate framework (Cu-ZIF8), followed by loading of 3-amino-1,2,4-triazole (3AT) and modification of hyaluronic acid (HA) for tumor targeting delivery. The GOx@Cu-ZIF8-3AT@HA not only reduces energy supply and increases H2O2 level by exhausting intratumoral glucose, but also disturbs tumor antioxidant defense systems by inhibiting the activity of catalase and depleting intracellular GSH, resulting in disrupted H2O2 homeostasis in tumor. Moreover, the elevated H2O2 will transform into highly toxic •OH by Cu+ that generated from redox reaction between Cu2+ and GSH, amplifying the oxidative stress to enhance the CDT efficacy. Consequently, GOx@Cu-ZIF8-3AT@HA has significantly inhibited the 4T1 xenograft tumor growth without discernible side effects, which provides a promising strategy for cancer management. STATEMENT OF SIGNIFICANCE: The inadequate hydrogen peroxide (H2O2) level and antioxidant defense system in tumor tissues significantly impair the therapeutic effect of chemodynamic therapy (CDT). Herein, we developed an intelligent nanoplatform with H2O2 homeostasis disruption and oxidative stress amplification properties for enhanced CDT. In this nanoplatform, glucose oxidase (GOx) could exhaust intratumoral glucose to reduce energy supply accompanied with production of H2O2, while the suppression of catalase activity by 3-amino-1,2,4-triazole (3AT) and depletion of glutathione by Cu2+ would weaken the antioxidant defense system of tumors. Ultimately, the raised H2O2 level would convert to highly toxic hydroxyl radical (•OH) by Fenton-like reaction, amplifying the CDT efficacy. This work provides a promising strategy for cancer management.
Collapse
Affiliation(s)
- Lian-Hua Fu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xin-Yue Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jin He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chao Qi
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
23
|
Yin J, Wang C, Zhao L, Xu K, Guo Y, Song X, Shao J, Xu H, Dong X. Acidity-responsive nanoplatforms aggravate tumor hypoxia via multiple pathways for amplified chemotherapy. Biomaterials 2023; 296:122094. [PMID: 36933458 DOI: 10.1016/j.biomaterials.2023.122094] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Since the hypoxia tumor microenvironment (TME) will not only limit the treatment effect but also cause tumor recurrence and metastasis, intratumoral aggravated hypoxia level induced by vascular embolization is one of the major challenges in tumor therapy. The chemotherapeutic effect of hypoxia-activated prodrugs (HAPs) could be enhanced by the intensified hypoxia, the combination of tumor embolization and HAP-based chemotherapy exhibits a promising strategy for cancer therapy. Herein, an acidity-responsive nanoplatform (TACC NP) with multiple pathways to benefit the hypoxia-activated chemotherapy is constructed by loading the photosensitizer Chlorin e6 (Ce6), thrombin (Thr), and AQ4N within the calcium phosphate nanocarrier via a simple one-pot method. In the acidic TME, TACC NPs could be degraded to release Thr and Ce6, resulting in the destruction of tumor vessels and consumption of intratumoral oxygen under laser irradiation. Therefore, the intratumoral hypoxia level could be significantly aggravated, further leading to the enhanced chemotherapeutic effect of AQ4N. With the guidance of in vivo fluorescence imaging, the TACC NPs exhibited excellent tumor embolization/photodynamic/prodrug synergistic therapeutic effects with good biosafety.
Collapse
Affiliation(s)
- Jiajia Yin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Chenxi Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Lei Zhao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Kang Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yuxin Guo
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China; School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
24
|
Yan M, Zhou J. Pillararene-Based Supramolecular Polymers for Cancer Therapy. Molecules 2023; 28:molecules28031470. [PMID: 36771136 PMCID: PMC9919256 DOI: 10.3390/molecules28031470] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Supramolecular polymers have attracted considerable interest due to their intriguing features and functions. The dynamic reversibility of noncovalent interactions endows supramolecular polymers with tunable physicochemical properties, self-healing, and externally stimulated responses. Among them, pillararene-based supramolecular polymers show great potential for biomedical applications due to their fascinating host-guest interactions and easy modification. Herein, we summarize the state of the art of pillararene-based supramolecular polymers for cancer therapy and illustrate its developmental trend and future perspective.
Collapse
|
25
|
Yu Q, Zhou J, Song J, Zhou H, Kang B, Chen HY, Xu JJ. A Cascade Nanoreactor of Metal-Protein-Polyphenol Capsule for Oxygen-Mediated Synergistic Tumor Starvation and Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206592. [PMID: 36437115 DOI: 10.1002/smll.202206592] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Starvation therapy kills tumor cells via consuming glucose to cut off their energy supply. However, since glucose oxidase (GOx)-mediated glycolysis is oxygen-dependent, the cascade reaction based on GOx faces the challenge of a hypoxic tumor microenvironment. By decomposition of glycolysis production of H2 O2 into O2 , starvation therapy can be enhanced, but chemodynamic therapy is limited. Here, a close-loop strategy for on demand H2 O2 and O2 delivery, release, and recycling is proposed. The nanoreactor (metal-protein-polyphenol capsule) is designed by incorporating two native proteins, GOx and hemoglobin (Hb), in polyphenol networks with zeolitic imidazolate framework as sacrificial templates. Glycolysis occurs in the presence of GOx with O2 consumption and the produced H2 O2 reacts with Hb to produce highly cytotoxic hydroxyl radicals (•OH) and methemoglobin (MHb) (Fenton reaction). Benefiting from the different oxygen carrying capacities of Hb and MHb, oxygen on Hb is rapidly released to supplement its consumption during glycolysis. Glycolysis and Fenton reactions are mutually reinforced by oxygen supply, consuming more glucose and producing more hydroxyl radicals and ultimately enhancing both starvation therapy and chemodynamic therapy. This cascade nanoreactor exhibits high efficiency for tumor suppression and provides an effective strategy for oxygen-mediated synergistic starvation therapy and chemodynamic therapy.
Collapse
Affiliation(s)
- Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jie Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Juan Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
26
|
Yao SY, Yue YX, Ying AK, Hu XY, Li HB, Cai K, Guo DS. An Antitumor Dual-Responsive Host-Guest Supramolecular Polymer Based on Hypoxia-Cleavable Azocalix[4]arene. Angew Chem Int Ed Engl 2023; 62:e202213578. [PMID: 36353747 DOI: 10.1002/anie.202213578] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 11/11/2022]
Abstract
The exploitation of specific guests which can respond to external stimuli is the main approach for the construction of stimuli-responsive supramolecular polymers (SPs) based on host-guest interactions. Most functional guests, however, fail to manifest stimuli-responses. Herein, a hypoxia-responsive dimeric azocalixarene (D-SAC4A) with outstanding hosting properties was used as the macrocyclic building block for the preparation of host stimuli-responsive SPs. Since azocalixarenes can also be compatible with stimuli-responsive guests, an antitumor drug, camptothecin (CPT), was chosen and linked via a disulfide-containing linker to afford a glutathione (GSH)-responsive ditropic guest (D-CPT). A unique dual-responsive SP was obtained by 1 : 1 mixing of D-SAC4A and D-CPT in water, which further assembled into SP nanoparticles (DSPNs). DSPNs displayed outstanding stability against dilution and biological interferants, as well as precise CPT-release under GSH and hypoxia conditions. In vitro and in vivo experiments demonstrated the good biosafety and tumor-suppressive effects of DSPNs.
Collapse
Affiliation(s)
- Shun-Yu Yao
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yu-Xin Yue
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - An-Kang Ying
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Kang Cai
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
27
|
Xu Q, Lan X, Lin H, Xi Q, Wang M, Quan X, Yao G, Yu Z, Wang Y, Yu M. Tumor microenvironment-regulating nanomedicine design to fight multi-drug resistant tumors. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1842. [PMID: 35989568 DOI: 10.1002/wnan.1842] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 01/31/2023]
Abstract
The tumor microenvironment (TME) is a very cunning system that enables tumor cells to escape death post-traditional antitumor treatments through the comprehensive effect of different factors, thereby leading to drug resistance. Deep insights into TME characteristics and tumor resistance encourage the construction of nanomedicines that can remodel the TME against drug resistance. Tremendous interest in combining TME-regulation measurement with traditional tumor treatment to fight multidrug-resistant tumors has been inspired by the increasing understanding of the role of TME reconstruction in improving the antitumor efficiency of drug-resistant tumor therapy. This review focuses on the underlying relationships between specific TME characteristics (such as hypoxia, acidity, immunity, microorganisms, and metabolism) and drug resistance in tumor treatments. The exciting antitumor activities strengthened by TME regulation are also discussed in-depth, providing solutions from the perspective of nanomedicine design. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Qinqin Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xinyue Lan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.,Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Huimin Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiye Xi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Manchun Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaolong Quan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhiqiang Yu
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, People's Republic of China
| | - Yongxia Wang
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, People's Republic of China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
28
|
Sun T, Li J, Zeng C, Luo C, Luo X, Li H. Banoxantrone Coordinated Metal-Organic Framework for Photoacoustic Imaging-Guided High Intensity Focused Ultrasound Therapy. Adv Healthc Mater 2023; 12:e2202348. [PMID: 36281898 DOI: 10.1002/adhm.202202348] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Indexed: 01/18/2023]
Abstract
Photoacoustic (PA) imaging with high spatial resolution has great potential as desired monitoring means in the high-intensity focused ultrasound (HIFU) surgery of tumor. However, its penetration depth in the tissue is insufficient for achieving accurate intraoperative navigation, leading to residual tumor tissue. Nanomedicine provides a new opportunity for PA imaging to guide HIFU surgery. Studies have found that the hypoxic heterogeneity of tumor is effectively reversed by HIFU. Herein, a specific metal-organic framework nanosystem, constructed by coordination of banoxantrone (AQ4N) and Mn2+ , is designed based on HIFU to reverse the hypoxic heterogeneity of tumors. It can provide exogenous light-absorbing substances, thus improving the penetrability of PA imaging signal through the deep tissue and achieving clearer PA imaging for guiding HIFU surgery. In turn, AQ4N, in the hypoxic homogenous environment of the tumor provided by HIFU, is activated sequentially to specifically treat the residual hypoxic tumor cells. This combination treatment manifests higher tumor suppressors activation and lower expression of genes related to tumor progression. This strategy addresses the dissatisfaction with PA imaging-guided HIFU therapy and is promising for translation into a clinical combination regimen.
Collapse
Affiliation(s)
- Tingyu Sun
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Jingnan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Chao Zeng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Chengyan Luo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xirui Luo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Huanan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
29
|
Han P, Zhang L, Fu Y, Fu Y, Huang J, He J, Ni P, Khan T, Jiao Y, Yang Z, Zhou R. A dual-response drug delivery system with X-ray and ROS to boost the anti-tumor efficiency of TPZ via enhancement of tumor hypoxia levels. NANOSCALE 2022; 15:237-247. [PMID: 36472214 DOI: 10.1039/d2nr04021b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The selective anti-tumor activity and less toxic nature of hypoxia-activated prodrugs including tirapazamine (TPZ) are harbored by hypoxia levels in tumors, the inadequacy of which leads to failure in clinical trials. Thus, the development of effective clinical applications of TPZ requires advanced strategies to intensify hypoxia levels in tumors effectively and safely. In this study, we designed and fabricated a paclitaxel (PTX)-loaded dual-response delivery system with a low dose (e.g., 2 Gy) of X-ray and reactive oxygen species on the basis of diselenide block copolymers. Upon the external X-ray stimulus, the system accurately released encapsulated PTX at tumor sites and remarkably improved tumor hypoxia levels by causing severe damage to tumor blood vessels. Subsequently, these enhanced tumor hypoxia levels effectively activated the reduction of TPZ into benzotriazinyl free radicals, which significantly improved the antitumor efficacy of our system against 4T1 breast cancer cells with an initial tumor volume of 500 mm3. Moreover, the dual-stimulus coordinated and controlled release of PTX was found to largely avoid the off-target effects of PTX on normal cells while exhibiting very limited side effects in experimental mice. The current novel strategy for regulating tumor hypoxia levels offers an effective and safe way to activate TPZ for the treatment of large solid tumors.
Collapse
Affiliation(s)
- Panli Han
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| | - Lianxue Zhang
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| | - Yaqi Fu
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| | - Youyu Fu
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| | - Jianxiang Huang
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, China
| | - Taimoor Khan
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Zaixing Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| | - Ruhong Zhou
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
30
|
Dong Z, Liang P, Guan G, Yin B, Wang Y, Yue R, Zhang X, Song G. Overcoming Hypoxia‐Induced Ferroptosis Resistance via a
19
F/
1
H‐MRI Traceable Core‐Shell Nanostructure. Angew Chem Int Ed Engl 2022; 61:e202206074. [DOI: 10.1002/anie.202206074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Peng Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guoqiang Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Youjuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
31
|
Ding C, Chen C, Zeng X, Chen H, Zhao Y. Emerging Strategies in Stimuli-Responsive Prodrug Nanosystems for Cancer Therapy. ACS NANO 2022; 16:13513-13553. [PMID: 36048467 DOI: 10.1021/acsnano.2c05379] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Prodrugs are chemically modified drug molecules that are inactive before administration. After administration, they are converted in situ to parent drugs and induce the mechanism of action. The development of prodrugs has upgraded conventional drug treatments in terms of bioavailability, targeting, and reduced side effects. Especially in cancer therapy, the application of prodrugs has achieved substantial therapeutic effects. From serendipitous discovery in the early stage to functional design with pertinence nowadays, the importance of prodrugs in drug design is self-evident. At present, studying stimuli-responsive activation mechanisms, regulating the stimuli intensity in vivo, and designing nanoscale prodrug formulations are the major strategies to promote the development of prodrugs. In this review, we provide an outlook of recent cutting-edge studies on stimuli-responsive prodrug nanosystems from these three aspects. We also discuss prospects and challenges in the future development of such prodrugs.
Collapse
Affiliation(s)
- Chendi Ding
- Clinical Research Center, Maoming People's Hospital, 101 Weimin Road, Maoming 525000, China
- School of Medicine, Jinan University, 855 Xingye East Road, Guangzhou 510632, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Chunbo Chen
- Clinical Research Center, Maoming People's Hospital, 101 Weimin Road, Maoming 525000, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
32
|
Li S, Ma Z, Zhang K, Zhang W, Song Z, Wang W, Yu X, Han H. A Two-Pronged Strategy for Enhanced Deep-Tumor Penetration and NIR-II Multimodal Imaging-Monitored Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41684-41694. [PMID: 36097391 DOI: 10.1021/acsami.2c08930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The second near-infrared (NIR-II)-induced photothermal therapy (PTT) has attracted a great deal of attention in recent years due to its non-invasiveness and because it uses less energy. However, the penetration of photothermal agents into solid tumors is seriously impeded by the dense-tumor extracellular matrix (ECM) containing cross-linked hyaluronic acid (HA), thereby compromising the ultimate therapeutic effects. Herein, acid-labile metal-organic frameworks were employed as nanocarriers to efficiently mineralize hyaluronidase (HAase) and encapsulate Ag2S nanodots by a one-pot approach under mild conditions. The obtained nanocomposites (AHZ NPs) maintained enzyme activity and changed in size to prolong blood circulation and complete delivery of the cargo to the tumor. Moreover, the released HAase could specifically break out the HA to loosen ECM and enable the Ag2S nanodots to breeze through the tumor matrix space and gain access to the deep tumor. Under near-infrared laser irradiation, the AHZ NPs displayed remarkable fluorescence, outstanding photoacoustic signals, and excellent photothermal properties in the whole tumor. This work offers a promising two-pronged strategy via a decrease in nanoparticle size and the degradation of dense ECM for NIR-II multimodal imaging-guided PTT of deep tumors.
Collapse
Affiliation(s)
- Shuting Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kai Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Weiyun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, HuaZhong Agricultural University, Wuhan 430070, Hubei, P. R. China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, HuaZhong Agricultural University, Wuhan 430070, Hubei, P. R. China
| | - Ximiao Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- State Key Laboratory of Agricultural Microbiology, College of Science, HuaZhong Agricultural University, Wuhan 430070, Hubei, P. R. China
| |
Collapse
|
33
|
Wang J, Ye J, Lv W, Liu S, Zhang Z, Xu J, Xu M, Zhao C, Yang P, Fu Y. Biomimetic Nanoarchitectonics of Hollow Mesoporous Copper Oxide-Based Nanozymes with Cascade Catalytic Reaction for Near Infrared-II Reinforced Photothermal-Catalytic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40645-40658. [PMID: 36040363 DOI: 10.1021/acsami.2c11634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biomimetic nanozyme with natural enzyme-like activities has drawn extensive attention in cancer therapy, while its application was hindered by the limited catalytic efficacy in the complicated tumor microenvironment (TME). Herein, a hybrid biomimetic nanozyme combines polydopamine-decorated CuO with a natural enzyme of glucose oxidase (GOD), among which CuO is endowed with a high loading rate (47.1%) of GOD due to the elaborately designed hollow mesoporous structure that is constructed to maximize the cascade catalytic efficacy. In the TME, CuO could catalyze endogenous H2O2 into O2 for relieving tumor hypoxia and improving the catalytic efficacy of GOD. Whereafter, the amplified glucose oxidation induces starvation therapy, and the generated H2O2 and H+ enhance the catalytic activity of CuO. Significantly, the tumor-specific chemodynamic therapy (CDT) could be realized when CuO degraded into Cu2+ in acidic and reductive TME. Furthermore, the photothermal therapy with high photothermal conversion efficiency (30.2%) is achieved under NIR-II laser (1064 nm) excitation, which could reinforce the generation of reactive oxygen species (•OH and •O2-). The TME initiates the biochemical reaction cycle of CuO, O2, and GOD, which couples with an NIR-II-induced thermal effect to realize O2-promoted starvation and photothermal-chemodynamic combined therapy. This hybrid biomimetic nanozyme enlightens the further development of nanozymes in multimodal cancer therapy.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Wubin Lv
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Zhiyong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, P. R. China
| | - Miaojun Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yujie Fu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
34
|
Vascular disrupting agent-induced amplification of tumor targeting and prodrug activation boosts anti-tumor efficacy. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
35
|
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022; 15:132. [PMID: 36096856 PMCID: PMC9469622 DOI: 10.1186/s13045-022-01320-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.
Collapse
Affiliation(s)
- Hailong Tian
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tingting Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiayan Shi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Edouard C Nice
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China
| | - Na Xie
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China.
| | - Canhua Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
36
|
Shen R, Peng L, Zhou W, Wang D, Jiang Q, Ji J, Hu F, Yuan H. Anti-angiogenic nano-delivery system promotes tumor vascular normalizing and micro-environment reprogramming in solid tumor. J Control Release 2022; 349:550-564. [PMID: 35841997 DOI: 10.1016/j.jconrel.2022.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Aberrant tumor vasculature leads to the malignant tumor microenvironment (TME) for tumor progression. Research has found temporary tumor vascular normalization after treated with low-dose anti-angiogenic agents, however, has paid little attention to prolonging the normalization window and its further influence on tumor tissue. Based on the dose- and time-dependent effect of anti-angiogenic agents, we developed V@LDL NPs, a nano-delivery system sustainedly releasing Vandetanib, an anti-VEGFR2 inhibitor, to control the dose of drug to the normalizing level, and prove its stable tumor vascular normalizing effect in 4 T1 breast cancer model. Furthermore, long-term normalized vasculature could improve tumor perfusion, then provide a circulation to reverse abnormalities in TME, such as hypoxia and heterogeneity, and also inhibit tumor progression. Our findings demonstrate that stable tumor vascular normalization could be a considerable strategy for long-term change to remodel TME and probably result in a therapeutic benefit to anti-cancer treatment, which could be achieved by anti-angiogenic nano-delivery system.
Collapse
Affiliation(s)
- Ruoyu Shen
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Lijun Peng
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Wentao Zhou
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Ding Wang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Qi Jiang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Jian Ji
- Department of Polymer Science and Engineering, Zhejiang University, 38 Zhe Da Road, Hangzhou 310027, Zhejiang Province, People's Republic of China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China.
| |
Collapse
|
37
|
Dong H, Yang D, Hu Y, Song X. Recent advances in smart nanoplatforms for tumor non-interventional embolization therapy. J Nanobiotechnology 2022; 20:337. [PMID: 35858896 PMCID: PMC9301833 DOI: 10.1186/s12951-022-01548-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/10/2022] [Indexed: 11/10/2022] Open
Abstract
Tumor embolization therapy has attracted great attention due to its high efficiency in inhibiting tumor growth by cutting off tumor nutrition and oxygen supply by the embolic agent. Although transcatheter arterial embolization (TAE) is the mainstream technique in the clinic, there are still some limitations to be considered, especially the existence of high risks and complications. Recently, nanomaterials have drawn wide attention in disease diagnosis, drug delivery, and new types of therapies, such as photothermal therapy and photodynamic therapy, owing to their unique optical, thermal, convertible and in vivo transport properties. Furthermore, the utilization of nanoplatforms in tumor non-interventional embolization therapy has attracted the attention of researchers. Herein, the recent advances in this area are summarized in this review, which revealed three different types of nanoparticle strategies: (1) nanoparticles with active targeting effects or stimuli responsiveness (ultrasound and photothermal) for the safe delivery and responsive release of thrombin; (2) tumor microenvironment (copper and phosphate, acidity and GSH/H2O2)-responsive nanoparticles for embolization therapy with high specificity; and (3) peptide-based nanoparticles with mimic functions and excellent biocompatibility for tumor embolization therapy. The benefits and limitations of each kind of nanoparticle in tumor non-interventional embolization therapy will be highlighted. Investigations of nanoplatforms are undoubtedly of great significance, and some advanced nanoplatform systems have arrived at a new height and show potential applications in practical applications.
Collapse
Affiliation(s)
- Heng Dong
- Nanjing Stomatological Hospital, Medical School of Nanjing University Jiangsu, 30 Zhongyang Road, 210008, Nanjing, China
| | - Dongliang Yang
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Yanling Hu
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China.
- Nanjing Polytechnic Institute, 210048, Nanjing, China.
| | - Xuejiao Song
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China.
| |
Collapse
|
38
|
Xie H, Li W, Liu H, Chen Y, Ma M, Wang Y, Luo Y, Song D, Hou Q, Lu W, Bai Y, Li B, Ma J, Huang C, Yang T, Liu Z, Zhao X, Ding P. Erythrocyte Membrane-Coated Invisible Acoustic-Sensitive Nanoparticle for Inducing Tumor Thrombotic Infarction by Precisely Damaging Tumor Vascular Endothelium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201933. [PMID: 35789094 DOI: 10.1002/smll.202201933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Selective induction of tumor thrombus infarction is a promising antitumor strategy. Non-persistent embolism due to non-compacted thrombus and activated fibrinolytic system within the tumor large blood vessels and tumor margin recurrence are the main therapeutic bottlenecks. Herein, an erythrocyte membrane-coated invisible acoustic-sensitive nanoparticle (TXA+DOX/PFH/RBCM@cRGD) is described, which can induce tumor thrombus infarction by precisely damaging tumor vascular endothelium. It is revealed that TXA+DOX/PFH/RBCM@cRGD can effectively accumulate on the endothelial surface of tumor vessels with the help of the red blood cell membrane (RBCM) stealth coating and RGD cyclic peptide (cRGD), which can be delivered in a targeted manner as nanoparticle missiles. As a kind of phase-change material, perfluorohexane (PFH) nanodroplets possess excellent acoustic responsiveness. Acoustic-sensitive missiles can undergo an acoustic phase transition and intense cavitation with response to low-intensity focused ultrasound (LIFU), damaging the tumor vascular endothelium, rapidly initiating the coagulation cascade, and forming thromboembolism in the tumor vessels. The drugs loaded in the inner water phase are released explosively. Tranexamic acid (TXA) inhibits the fibrinolytic system, and doxorubicin (DOX) eliminates the margin survival. In summary, a stealthy and acoustically responsive multifunctional nanoparticle delivery platform is successfully developed for inducing thrombus infarction by precisely damaging tumor vascular endothelium.
Collapse
Affiliation(s)
- Huichao Xie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wan Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yongfeng Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mengrui Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yichen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yucen Luo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Di Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qianqian Hou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenwen Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu Bai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bao Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jizhuang Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chi Huang
- Ultrasound Department of Shengjing Hospital, China Medical University, Shenyang, 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, 04401, USA
| | - Zhining Liu
- Ultrasound Department, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| |
Collapse
|
39
|
A prodrug hydrogel with tumor microenvironment and near-infrared light dual-responsive action for synergistic cancer immunotherapy. Acta Biomater 2022; 149:334-346. [PMID: 35779775 DOI: 10.1016/j.actbio.2022.06.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022]
Abstract
Immunotherapy has been used for cancer treatment, while it faces the common dilemmas of low therapeutic efficacy and serious immunotoxicity. In this study, we report the construction of a tumor microenvironment and near-infrared (NIR) light dual-responsive prodrug hydrogel for cancer synergistic immunotherapy in a more effective and safe manner. Such prodrug hydrogels were in-situ formed via calcium-induced gelation of alginate solution containing protoporphyrin IX (PpIX)-modified iron oxide (Fe3O4) nanoparticles and programmed death ligand 1 antibody (aPD-L1) prodrug nanoparticles crosslinked by reactive oxygen species (ROS)-responsive linkers. PpIX served as a photosensitizer to produce singlet oxygen (1O2) under NIR laser irradiation for photodynamic therapy (PDT), and Fe3O4 nanoparticles mediated chemodynamic therapy (CDT) to generate hydroxyl radical (·OH) via Fenton reaction in the tumor microenvironment. In view of the cumulative actions of PDT and CDT, amplified ROS was generated to not only induce immunogenic cell death (ICD), but also destroy ROS-responsive linkers to achieve on-demand release of aPD-L1 from prodrug nanoparticles. Boosted antitumor immunity was elicited in tumor-bearing mice due to the aPD-L1-mediated immune checkpoint blocking. As a result, the prodrug hydrogel-based synergistic immunotherapy could almost treat bilateral tumors and prevent lung and liver metastasis using 4T1 tumor mouse models. This study thus offers a dual-responsive prodrug hydrogel platform for precision cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Via calcium-induced gelation of alginate, we constructed a prodrug hydrogel with tumor microenvironment and near-infrared light dual-responsive action for synergistic cancer immunotherapy. Such hydrogels can achieve on-demand release of aPD-L1 upon photoactivation in the tumor microenvironment. Through mediating photodynamic and chemodynamic therapy, the prodrug hydrogels can induce enhanced immunogenic cell death and synergistically improve the efficacy of aPD-L1-mediated immune checkpoint blocking. The prodrug hydrogel-based synergistic therapy almost deracinates the primary and distant tumors, and prevents lung and liver metastasis in tumor mouse models.
Collapse
|
40
|
Liu Z, Zhang Y, Shen N, Sun J, Tang Z, Chen X. Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect. Adv Drug Deliv Rev 2022; 183:114138. [PMID: 35143895 DOI: 10.1016/j.addr.2022.114138] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
Abstract
Nanomedicine greatly improves the efficiency in the delivery of antitumor drugs into the tumor, but insufficient tumoral penetration impairs the therapeutic efficacy of most nanomedicines. Vascular disrupting agent (VDA) nanomedicines are distributed around the tumor vessels due to the low tissue penetration in solid tumors, and the released drugs can selectively destroy immature tumor vessels and block the supply of oxygen and nutrients, leading to the internal necrosis of the tumors. VDAs can also improve the vascular permeability of the tumor, further increasing the extravasation of VDA nanomedicines in the tumor site, markedly reducing the dependence of nanomedicines on the enhanced permeability and retention effect (EPR effect). This review highlights the progress of VDA nanomedicines in recent years and their application in cancer therapy. First, the mechanisms of different VDAs are introduced. Subsequently, different strategies of delivering VDAs are described. Finally, multiple combination strategies with VDA nanomedicines in cancer therapy are described in detail.
Collapse
|
41
|
Current Nano-Strategies to Target Tumor Microenvironment to Improve Anti-Tumor efficiency. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Microfluidics Formulated Liposomes of Hypoxia Activated Prodrug for Treatment of Pancreatic Cancer. Pharmaceutics 2022; 14:pharmaceutics14040713. [PMID: 35456547 PMCID: PMC9031349 DOI: 10.3390/pharmaceutics14040713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents as an unmet clinical challenge for drug delivery due to its unique hypoxic biology. Vinblastine-N-Oxide (CPD100) is a hypoxia-activated prodrug (HAP) that selectively converts to its parent compound, vinblastine, a potent cytotoxic agent, under oxygen gradient. The study evaluates the efficacy of microfluidics formulated liposomal CPD100 (CPD100Li) in PDAC. CPD100Li were formulated with a size of 95 nm and a polydispersity index of 0.2. CPD100Li was stable for a period of 18 months when freeze-dried at a concentration of 3.55 mg/mL. CPD100 and CPD100Li confirmed selective activation at low oxygen levels in pancreatic cancer cell lines. Moreover, in 3D spheroids, CPD100Li displayed higher penetration and disruption compared to CPD100. In patient-derived 3D organoids, CPD100Li exhibited higher cell inhibition in the organoids that displayed higher expression of hypoxia-inducible factor 1 alpha (HIF1A) compared to CPD100. In the orthotopic model, the combination of CPD100Li with gemcitabine (GEM) (standard of care for PDAC) showed higher efficacy than CPD100Li alone for a period of 90 days. In summary, the evaluation of CPD100Li in multiple cellular models provides a strong foundation for its clinical application in PDAC.
Collapse
|
43
|
Yang Z, Luo Y, Yu H, Liang K, Wang M, Wang Q, Yin B, Chen H. Reshaping the Tumor Immune Microenvironment Based on a Light-Activated Nanoplatform for Efficient Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108908. [PMID: 34965614 DOI: 10.1002/adma.202108908] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The immunosuppressive tumor microenvironment (TME) always causes poor antitumor immune efficacy, prone to relapse and metastasis. Herein, novel poly(vinylpyrrolidone) (PVP) modified BiFeO3 /Bi2 WO6 (BFO/BWO) with a p-n type heterojunction is constructed for reshaping the immunosuppressive TME. Reactive oxygen species can be generated under light activation by the well-separated hole (h+ )-electron (e- ) pairs owing to the heterojunction in BFO/BWO-PVP NPs. Interestingly, h+ can trigger the decomposition of H2 O2 to generate O2 for alleviating tumor hypoxia, which not only sensitizes photodynamic therapy (PDT) and radiotherapy (RT), but also promotes tumor-associated macrophages (TAMs) polarization from M2 to M1 phenotype, which is beneficial to decrease the expression of HIF-1α. Importantly, such a light-activated nanoplatform, combining with RT can efficiently activate and recruit cytotoxic T lymphocytes to infiltrate in tumor tissues, as well as stimulate TAMs to M1 phenotype, dramatically reverse the immunosuppressive TME into an immunoactive one, and further boost immune memory responses. Moreover, BFO/BWO-PVP NPs also present high performance for computed tomography imaging contrast. Taken together, this work offers a novel paradigm for achieving O2 self-supply of inorganic nanoagents and reshaping of the tumor immune microenvironment for effective inhibition of cancer as well as metastasis and recurrence.
Collapse
Affiliation(s)
- Zebin Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai, 200050, P. R. China
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, P. R. China
| | - Yu Luo
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Longteng Road 333, Shanghai, 201620, P. R. China
| | - Huizhu Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai, 200050, P. R. China
| | - Kaicheng Liang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai, 200050, P. R. China
| | - Miao Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai, 200050, P. R. China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, P. R. China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Urumqi Middle Road 12, Shanghai, 200040, P. R. China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai, 200050, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Sub-lane Xiangshan Road 1, Hangzhou, 310024, P. R. China
| |
Collapse
|
44
|
Wang H, Xue KF, Yang Y, Hu H, Xu JF, Zhang X. In Situ Hypoxia-Induced Supramolecular Perylene Diimide Radical Anions in Tumors for Photothermal Therapy with Improved Specificity. J Am Chem Soc 2022; 144:2360-2367. [DOI: 10.1021/jacs.1c13067] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hua Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ke-Fei Xue
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuchong Yang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hao Hu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Ma Z, Foda MF, Zhao Y, Han H. Multifunctional Nanosystems with Enhanced Cellular Uptake for Tumor Therapy. Adv Healthc Mater 2022; 11:e2101703. [PMID: 34626528 DOI: 10.1002/adhm.202101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Indexed: 11/10/2022]
Abstract
Rapid development of nanotechnology provides promising strategies in biomedicine, especially in tumor therapy. In particular, the cellular uptake of nanosystems is not only a basic premise to realize various biomedical applications, but also a fatal factor for determining the final therapeutic effect. Thus, a systematic and comprehensive summary is necessary to overview the recent research progress on the improvement of nanosystem cellular uptake for cancer treatment. According to the process of nanosystems entering the body, they can be classified into three categories. The first segment is to enhance the accumulation and permeation of nanosystems to tumor cells through extracellular microenvironment stimulation. The second segment is to improve cellular internalization from extracellular to intracellular via active targeting. The third segment is to enhance the intracellular retention of therapeutics by subcellular localization. The major factors in the delivery can be utilized to develop multifunctional nanosystems for strengthening the tumor therapy. Ultimately, the key challenges and prospective in the emerging research frontier are thoroughly outlined. This review is expected to provide inspiring ideas, promising strategies and potential pathways for developing advanced anticancer nanosystems in clinical practice.
Collapse
Affiliation(s)
- Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Mohamed F. Foda
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Department of Biochemistry Faculty of Agriculture Benha University Moshtohor Toukh 13736 Egypt
| | - Yanli Zhao
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
| |
Collapse
|