1
|
Zhang J, Ma L, Hou Y, Ouyang H, Hong H, Kim K, Kang H, Chu Z. Nanodiamond-Based Sensing: A revolution for biosensors in capturing elusive bio-signals in living cells. Adv Drug Deliv Rev 2025; 221:115590. [PMID: 40246241 DOI: 10.1016/j.addr.2025.115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/25/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Cells constantly produce elusive bio-signals, such as cellular forces, free radicals, and molecular interactions, that are important for understanding diseases and treatment effects. However, detecting these signals is challenging because of issues with sensitivity, specificity, and the complexity of biological systems. Owing to their unique properties, nanodiamonds have emerged as a promising platform for detecting such elusive bio-signals, providing enhanced precision and effectiveness in diagnostics and therapies. In this review, we explore the detection of intracellular elusive bio-signals using nitrogen-vacancy (NV) centers in nanodiamonds, presenting case studies on their applications in cell force, free radicals, molecular interactions, and nanoscale thermometry. Moreover, we explore the design and applications of nanodiamonds as nanocarriers in quantum sensors and drug delivery systems.
Collapse
Affiliation(s)
- Jiahua Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Linjie Ma
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Haoyi Ouyang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Hyunsik Hong
- Department of Materials Science and Engineering and College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Kanghyeon Kim
- Department of Materials Science and Engineering and College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, Seoul 02841, Republic of Korea; College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong, China.
| |
Collapse
|
2
|
Nguyen MD, Hoijang S, Fuller M, Deng L, Chinwangso P, DeTellem D, Robles Hernandez FC, Chu CW, Hadjiev VG, Phan MH, Lee TR. Fine-Tuning the Superparamagnetic Properties of FeO@Fe 3O 4 Core/Shell Nanoparticles and Superclusters by Controlling Size and Shape. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28597-28608. [PMID: 40322943 DOI: 10.1021/acsami.5c04288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Fine-tuning the superparamagnetic (SPM) properties of iron oxide nanoparticles (NPs) through precise control over size, shape, and assembly into superclusters is essential for advanced biomedical and electronic applications. We first analyzed the size-dependent magnetic properties of FeO@Fe3O4 core/shell NPs in both spherical and cubic shapes prepared via the thermal decomposition of iron(III) oleate. The detailed analyses of structure, composition, and crystallinity confirmed the presence of both FeO and Fe3O4 phases and the formation of the core/shell structure, with an increasing FeO/Fe3O4 phase ratio correlated with larger particle size. Overall, the SPM properties of these core/shell NPs were maintained, although saturation magnetization and varied with size, shape, and FeO/Fe3O4 ratio. Notably, iron oxide nanocubes exhibited enhanced saturation magnetization compared to their spherical counterparts. Next, we introduced a unique strategy to enhance and fine-tune the SPM properties of FeO@Fe3O4 NPs by assembling them into supercluster particles to promote interparticle interaction. By controlling the size and shape of the primary nanocrystals, we demonstrated the creation of SPM superclusters of consistent sizes, including the 150 and 240 nm superclusters reported here, which exhibit different SPM behaviors. Our research presents a synthetic strategy for optimizing the SPM properties of iron oxide NPs and their superclusters across a wide range of magnetically driven applications, especially useful for biomedical technologies.
Collapse
Affiliation(s)
- Minh Dang Nguyen
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Supawitch Hoijang
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Maggie Fuller
- Department of Physics and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Liangzi Deng
- Department of Physics and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Pailinrut Chinwangso
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Derick DeTellem
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | | | - Ching-Wu Chu
- Department of Physics and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Viktor G Hadjiev
- Department of Mechanical Engineering and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
3
|
Kim K, Min S, Thangam R, Tag KR, Lee HJ, Heo J, Jung H, Swe TT, Zare I, Song G, Najafabadi AH, Lee J, Jung HD, Kim JS, Hur S, Song HC, Park SG, Zhang K, Zhao P, Bian L, Kim SH, Yoon J, Ahn JP, Kim HK, Kang H. Dynamic hierarchical ligand anisotropy for competing macrophage regulation in vivo. Bioact Mater 2025; 47:121-135. [PMID: 39897585 PMCID: PMC11787691 DOI: 10.1016/j.bioactmat.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Diverse connective tissues exhibit hierarchical anisotropic structures that intricately regulate homeostasis and tissue functions for dynamic immune response modulation. In this study, remotely manipulable hierarchical nanostructures are tailored to exhibit multi-scale ligand anisotropy. Hierarchical nanostructure construction involves coupling liganded nanoscale isotropic/anisotropic Au (comparable to few integrin molecules-scale) to the surface of microscale isotropic/anisotropic magnetic Fe3O4 (comparable to integrin cluster-scale) and then elastically tethering them to a substrate. Systematic independent tailoring of nanoscale or microscale ligand isotropy versus anisotropy in four different hierarchical nanostructures with constant liganded surface area demonstrates similar levels of integrin molecule bridging and macrophage adhesion on the nanoscale ligand isotropy versus anisotropy. Conversely, the levels of integrin cluster bridging across hierarchical nanostructures and macrophage adhesion are significantly promoted by microscale ligand anisotropy compared with microscale ligand isotropy. Furthermore, microscale ligand anisotropy dominantly activates the host macrophage adhesion and pro-regenerative M2 polarization in vivo over the nanoscale ligand anisotropy, which can be cyclically reversed by substrate-proximate versus substrate-distant magnetic manipulation. This unprecedented scale-specific regulation of cells can be diversified by unlimited tuning of the scale, anisotropy, dimension, shape, and magnetism of hierarchical structures to decipher scale-specific dynamic cell-material interactions to advance immunoengineering strategies.
Collapse
Affiliation(s)
- Kanghyeon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyong-Ryol Tag
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyun-Jeong Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongyun Heo
- Center for Theragnosis, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hwapyung Jung
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Thet Thet Swe
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | | | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Hyun-Do Jung
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Sunghoon Hur
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyun-Cheol Song
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sung-Gyu Park
- Department of Nano-Bio Convergence, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, 02841, Republic of Korea
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Se Hoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jae-Pyoung Ahn
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hong-Kyu Kim
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Sathuvan M, Min S, Narayanan K, Gaur A, Hong H, Vivek R, Ganapathy A, Cheong KL, Kang H, Thangam R. β-Cyclodextrin-based materials for 3D printing, cancer therapy, tissue engineering, and wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 500:157272. [DOI: 10.1016/j.cej.2024.157272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Xu H, Kim D, Zhao YY, Kim C, Song G, Hu Q, Kang H, Yoon J. Remote Control of Energy Transformation-Based Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402806. [PMID: 38552256 DOI: 10.1002/adma.202402806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Cancer treatment requires precise tumor-specific targeting at specific sites that allows for high-resolution diagnostic imaging and long-term patient-tailorable cancer therapy; while, minimizing side effects largely arising from non-targetability. This can be realized by harnessing exogenous remote stimuli, such as tissue-penetrative ultrasound, magnetic field, light, and radiation, that enable local activation for cancer imaging and therapy in deep tumors. A myriad of nanomedicines can be efficiently activated when the energy of such remote stimuli can be transformed into another type of energy. This review discusses the remote control of energy transformation for targetable, efficient, and long-term cancer imaging and therapy. Such ultrasonic, magnetic, photonic, radiative, and radioactive energy can be transformed into mechanical, thermal, chemical, and radiative energy to enable a variety of cancer imaging and treatment modalities. The current review article describes multimodal energy transformation where a serial cascade or multiple types of energy transformation occur. This review includes not only mechanical, chemical, hyperthermia, and radiation therapy but also emerging thermoelectric, pyroelectric, and piezoelectric therapies for cancer treatment. It also illustrates ultrasound, magnetic resonance, fluorescence, computed tomography, photoluminescence, and photoacoustic imaging-guided cancer therapies. It highlights afterglow imaging that can eliminate autofluorescence for sustained signal emission after the excitation.
Collapse
Affiliation(s)
- Hai Xu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dahee Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yuan-Yuan Zhao
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Chowon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
6
|
Lu Y, Fan L, Wang J, Hu M, Wei B, Shi P, Li J, Feng J, Zheng Y. Cancer Cell Membrane-Based Materials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306540. [PMID: 37814370 DOI: 10.1002/smll.202306540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Indexed: 10/11/2023]
Abstract
The nanodelivery system provides a novel direction for disease diagnosis and treatment; however, its delivery effectiveness is restricted by the short biological half-life and inadequate tumor targeting. The immune evasion properties and homologous targeting capabilities of natural cell membranes, particularly those of cancer cell membranes (CCM), have gained significant interest. The integration of CCM and nanoparticles has resulted in the emergence of CCM-based nanoplatforms (CCM-NPs), which have gained significant attention due to their unique properties. CCM-NPs not only prolong the blood circulation time of core nanoparticles, but also direct them for homologous tumor targeting. Herein, the history and development of CCM-NPs as well as how these platforms have been used for biomedical applications are discussed. The application of CCM-NPs for cancer therapy will be described in detail. Translational efforts are currently under way and further research to address key areas of need will ultimately be required to facilitate the successful clinical adoption of CCM-NPs.
Collapse
Affiliation(s)
- Yongping Lu
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
- Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Linming Fan
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jun Wang
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Mingxiang Hu
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Baogang Wei
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Ping Shi
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Jinyan Feng
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Yu Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
7
|
Ko MJ, Yoo W, Min S, Zhang YS, Joo J, Kang H, Kim DH. Photonic control of image-guided ferroptosis cancer nanomedicine. Coord Chem Rev 2024; 500:215532. [PMID: 38645709 PMCID: PMC11027759 DOI: 10.1016/j.ccr.2023.215532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Photonic nanomaterials, characterized by their remarkable photonic tunability, empower a diverse range of applications, including cutting-edge advances in cancer nanomedicine. Recently, ferroptosis has emerged as a promising alternative strategy for effectively killing cancer cells with minimizing therapeutic resistance. Novel design of photonic nanomaterials that can integrate photoresponsive-ferroptosis inducers, -diagnostic imaging, and -synergistic components provide significant benefits to effectively trigger local ferroptosis. This review provides a comprehensive overview of recent advancements in photonic nanomaterials for image-guided ferroptosis cancer nanomedicine, offering insights into their strengths, constraints, and their potential as a future paradigm in cancer treatment.
Collapse
Affiliation(s)
- Min Jun Ko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Woojung Yoo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Cambridge, MA 02139, USA
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, IL 60607, USA
| |
Collapse
|
8
|
Ko MJ, Min S, Hong H, Yoo W, Joo J, Zhang YS, Kang H, Kim DH. Magnetic nanoparticles for ferroptosis cancer therapy with diagnostic imaging. Bioact Mater 2024; 32:66-97. [PMID: 37822917 PMCID: PMC10562133 DOI: 10.1016/j.bioactmat.2023.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis offers a novel method for overcoming therapeutic resistance of cancers to conventional cancer treatment regimens. Its effective use as a cancer therapy requires a precisely targeted approach, which can be facilitated by using nanoparticles and nanomedicine, and their use to enhance ferroptosis is indeed a growing area of research. While a few review papers have been published on iron-dependent mechanism and inducers of ferroptosis cancer therapy that partly covers ferroptosis nanoparticles, there is a need for a comprehensive review focusing on the design of magnetic nanoparticles that can typically supply iron ions to promote ferroptosis and simultaneously enable targeted ferroptosis cancer nanomedicine. Furthermore, magnetic nanoparticles can locally induce ferroptosis and combinational ferroptosis with diagnostic magnetic resonance imaging (MRI). The use of remotely controllable magnetic nanocarriers can offer highly effective localized image-guided ferroptosis cancer nanomedicine. Here, recent developments in magnetically manipulable nanocarriers for ferroptosis cancer nanomedicine with medical imaging are summarized. This review also highlights the advantages of current state-of-the-art image-guided ferroptosis cancer nanomedicine. Finally, image guided combinational ferroptosis cancer therapy with conventional apoptosis-based therapy that enables synergistic tumor therapy is discussed for clinical translations.
Collapse
Affiliation(s)
- Min Jun Ko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunsik Hong
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojung Yoo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, 02139, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, IL, 60607, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
9
|
Gong J, Hu J, Yan X, Xiang L, Chen S, Yang H, Chen Z, Hou Q, Song Y, Xu Y, Liu D, Ji C, Qin Q, Sun H, Peng J, Cao B, Lu Y. Injectable Hydrogels Including Magnetic Nanosheets for Multidisciplinary Treatment of Hepatocellular Carcinoma via Magnetic Hyperthermia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300733. [PMID: 37452437 DOI: 10.1002/smll.202300733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/03/2023] [Indexed: 07/18/2023]
Abstract
Relapse and unresectability have become the main obstacle for further improving hepatocellular carcinoma (HCC) treatment effect. Currently, single therapy for HCC in clinical practice is limited by postoperative recurrence, intraoperative blood loss and poor patient outcomes. Multidisciplinary therapy has been recognized as the key to improving the long-term survival rate for HCC. However, the clinical application of HCC synthetic therapy is restricted by single functional biomaterials. In this study, a magnetic nanocomposite hydrogel (CG-IM) with iron oxide nanoparticle-loaded mica nanosheets (Iron oxide nanoparticles@Mica, IM) is reported. This biocompatible magnetic hydrogel integrated high injectability, magnetocaloric property, mechanical robustness, wet adhesion, and hemostasis, leading to efficient HCC multidisciplinary therapies including postoperative tumor margin treatment and percutaneous locoregional ablation. After minimally invasive hepatectomy of HCC, the CG-IM hydrogel can facilely seal the bleeding hepatic margin, followed by magnetic hyperthermia ablation to effectively prevent recurrence. In addition, CG-IM hydrogel can inhibit unresectable HCC by magnetic hyperthermia through the percutaneous intervention under ultrasound guidance.
Collapse
Affiliation(s)
- Jinyu Gong
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Jinlong Hu
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, P. R. China
| | - Xu Yan
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Luyao Xiang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Sheng Chen
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Huai Yang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Zichao Chen
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Qingbing Hou
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, P. R. China
| | - Yonghong Song
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Yunjun Xu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China
| | - Dongquan Liu
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, P. R. China
| | - Chaofei Ji
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, P. R. China
| | - Qin Qin
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, P. R. China
| | - Haiyi Sun
- The First Clinical College, Anhui Medical University, Hefei, 230022, P. R. China
| | - Junbin Peng
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, P. R. China
| | - Baoqiang Cao
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, P. R. China
| | - Yang Lu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| |
Collapse
|
10
|
Xia B, Gao X, Qian J, Li S, Yu B, Hao Y, Wei B, Ma T, Wu H, Yang S, Zheng Y, Gao X, Guo L, Gao J, Yang Y, Zhang Y, Wei Y, Xue B, Jin Y, Luo Z, Zhang J, Huang J. A Novel Superparamagnetic Multifunctional Nerve Scaffold: A Remote Actuation Strategy to Boost In Situ Extracellular Vesicles Production for Enhanced Peripheral Nerve Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305374. [PMID: 37652460 DOI: 10.1002/adma.202305374] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Extracellular vesicles (EVs) have inherent advantages over cell-based therapies in regenerative medicine because of their cargos of abundant bioactive cues. Several strategies are proposed to tune EVs production in vitro. However, it remains a challenge for manipulation of EVs production in vivo, which poses significant difficulties for EVs-based therapies that aim to promote tissue regeneration, particularly for long-term treatment of diseases like peripheral neuropathy. Herein, a superparamagnetic nanocomposite scaffold capable of controlling EVs production on-demand is constructed by incorporating polyethyleneglycol/polyethyleneimine modified superparamagnetic nanoparticles into a polyacrylamide/hyaluronic acid double-network hydrogel (Mag-gel). The Mag-gel is highly sensitive to a rotating magnetic field (RMF), and can act as mechano-stimulative platform to exert micro/nanoscale forces on encapsulated Schwann cells (SCs), an essential glial cell in supporting nerve regeneration. By switching the ON/OFF state of the RMF, the Mag-gel can scale up local production of SCs-derived EVs (SCs-EVs) both in vitro and in vivo. Further transcriptome sequencing indicates an enrichment of transcripts favorable in axon growth, angiogenesis, and inflammatory regulation of SCs-EVs in the Mag-gel with RMF, which ultimately results in optimized nerve repair in vivo. Overall, this research provides a noninvasive and remotely time-scheduled method for fine-tuning EVs-based therapies to accelerate tissue regeneration, including that of peripheral nerves.
Collapse
Affiliation(s)
- Bing Xia
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
- Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xue Gao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Jiaqi Qian
- College of Chemical Engineering, Fuzhou University, Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Shengyou Li
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Beibei Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710032, P. R. China
| | - Yiming Hao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Bin Wei
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Teng Ma
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Haining Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Shijie Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710032, P. R. China
| | - Yi Zheng
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xueli Gao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lingli Guo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Jianbo Gao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Yujie Yang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Yongfeng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710032, P. R. China
| | - Yitao Wei
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Borui Xue
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Yan Jin
- Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
11
|
Jiang H, Tian H, Wang Z, Li B, Chen R, Luo K, Lu S, Nice EC, Zhang W, Huang C, Zhou Y, Zheng S, Gao F. Laser-activatable oxygen self-supplying nanoplatform for efficiently overcoming colorectal cancer resistance by enhanced ferroptosis and alleviated hypoxic microenvironment. Biomater Res 2023; 27:92. [PMID: 37742011 PMCID: PMC10518107 DOI: 10.1186/s40824-023-00427-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most deadly cancer worldwide, with chemo-resistance remaining a major obstacle in CRC treatment. Notably, the imbalance of redox homeostasis-mediated ferroptosis and the modulation of hypoxic tumor microenvironment are regarded as new entry points for overcoming the chemo-resistance of CRC. METHODS Inspired by this, we rationally designed a light-activatable oxygen self-supplying chemo-photothermal nanoplatform by co-assembling cisplatin (CDDP) and linoleic acid (LA)-tailored IR820 via enhanced ferroptosis against colorectal cancer chemo-resistance. In this nanoplatform, CDDP can produce hydrogen peroxide in CRC cells through a series of enzymatic reactions and subsequently release oxygen under laser-triggered photothermal to alleviate hypoxia. Additionally, the introduced LA can add exogenous unsaturated fatty acids into CRC cells, triggering ferroptosis via oxidative stress-related peroxidized lipid accumulation. Meanwhile, photothermal can efficiently boost the rate of enzymatic response and local blood flow, hence increasing the oxygen supply and oxidizing LA for enhanced ferroptosis. RESULTS This nanoplatform exhibited excellent anti-tumor efficacy in chemo-resistant cell lines and showed potent inhibitory capability in nude mice xenograft models. CONCLUSIONS Taken together, this nanoplatform provides a promising paradigm via enhanced ferroptosis and alleviated hypoxia tumor microenvironment against CRC chemo-resistance.
Collapse
Affiliation(s)
- Hao Jiang
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Hailong Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Chen
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Kangjia Luo
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Shuaijun Lu
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Wei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- The First Hospital of Ningbo University, Ningbo, 315020, China
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuping Zhou
- The First Hospital of Ningbo University, Ningbo, 315020, China.
| | - Shaojiang Zheng
- Hainan Cancer Center and Tumor Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| | - Feng Gao
- The First Hospital of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
12
|
Eom YS, Park JH, Kim TH. Recent Advances in Stem Cell Differentiation Control Using Drug Delivery Systems Based on Porous Functional Materials. J Funct Biomater 2023; 14:483. [PMID: 37754897 PMCID: PMC10532449 DOI: 10.3390/jfb14090483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
The unique characteristics of stem cells, which include self-renewal and differentiation into specific cell types, have paved the way for the development of various biomedical applications such as stem cell therapy, disease modelling, and drug screening. The establishment of effective stem cell differentiation techniques is essential for the effective application of stem cells for various purposes. Ongoing research has sought to induce stem cell differentiation using diverse differentiation factors, including chemicals, proteins, and integrin expression. These differentiation factors play a pivotal role in a variety of applications. However, it is equally essential to acknowledge the potential hazards of uncontrolled differentiation. For example, uncontrolled differentiation can give rise to undesirable consequences, including cancerous mutations and stem cell death. Therefore, the development of innovative methods to control stem cell differentiation is crucial. In this review, we discuss recent research cases that have effectively utilised porous functional material-based drug delivery systems to regulate stem cell differentiation. Due to their unique substrate properties, drug delivery systems based on porous functional materials effectively induce stem cell differentiation through the steady release of differentiation factors. These ground-breaking techniques hold considerable promise for guiding and controlling the fate of stem cells for a wide range of biomedical applications, including stem cell therapy, disease modelling, and drug screening.
Collapse
Affiliation(s)
| | | | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea; (Y.-S.E.); (J.-H.P.)
| |
Collapse
|
13
|
Wang X, Yao C, Yao X, Lin J, Li R, Huang K, Lin W, Long X, Dai C, Dong J, Yu X, Huang W, Weng W, Wang Q, Ouyang H, Cheng K. Dynamic photoelectrical regulation of ECM protein and cellular behaviors. Bioact Mater 2023; 22:168-179. [PMID: 36203959 PMCID: PMC9529514 DOI: 10.1016/j.bioactmat.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
Dynamic regulation of cell-extracellular matrix (ECM)-material interactions is crucial for various biomedical applications. In this study, a light-activated molecular switch for the modulation of cell attachment/detachment behaviors was established on monolayer graphene (Gr)/n-type Silicon substrates (Gr/Si). Initiated by light illumination at the Gr/Si interface, pre-adsorbed proteins (bovine serum albumin, ECM proteins collagen-1, and fibronectin) underwent protonation to achieve negative charge transfer to Gr films (n-doping) through π-π interactions. This n-doping process stimulated the conformational switches of ECM proteins. The structural alterations in these ECM interactors significantly reduced the specificity of the cell surface receptor-ligand interaction (e.g., integrin recognition), leading to dynamic regulation of cell adhesion and eventual cell detachment. RNA-sequencing results revealed that the detached bone marrow mesenchymal stromal cell sheets from the Gr/Si system manifested regulated immunoregulatory properties and enhanced osteogenic differentiation, implying their potential application in bone tissue regeneration. This work not only provides a fast and feasible method for controllable cells/cell sheets harvesting but also gives new insights into the understanding of cell-ECM-material communications. A light-activated molecular switch for regulation of cell attachment/detachment behaviors was established on (Gr/Si) substrates. Light-induced charge transfer from ECM protein to Gr/Si through π-π interactions, resulting in the conformational alteration of ECM proteins. Structural changes in ECM weakened the binding between RGD and integrin, inducing cell detachment. This work provides a feasible method for cell harvesting and improves the understanding of cell-ECM-material communications.
Collapse
Affiliation(s)
- Xiaozhao Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Cai Yao
- School of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xudong Yao
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, 322000, China
| | - Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Rui Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Kun Huang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Weiming Lin
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Xiaojun Long
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Chao Dai
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
| | - Jiajun Dong
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
| | - Xuegong Yu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Wenwen Huang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Qi Wang
- School of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
- Corresponding author. Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
- Corresponding author.
| |
Collapse
|
14
|
Hakariya M, Arisaka Y, Masuda H, Yoda T, Iwata T, Yui N. Suppressed Migration and Enhanced Cisplatin Chemosensitivity in Human Cancer Cell Lines by Tuning the Molecular Mobility of Supramolecular Biomaterials. Macromol Biosci 2023; 23:e2200438. [PMID: 36461103 DOI: 10.1002/mabi.202200438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Indexed: 12/04/2022]
Abstract
Cancer cells recognize physical cues transmitted from the surrounding microenvironment, and accordingly alter the migration and chemosensitivity. Cell adhesive biomaterials with tunable physical properties can contribute to the understanding of cancer cell responses, and development of new cancer therapies. Previously, it was reported that polyrotaxane-based surfaces with molecular mobility effectively modulate cellular functions via the yes-associated protein (YAP)-related signaling pathway. In the present study, the impact of molecular mobility of polyrotaxane surfaces on the migration and chemosensitivity of lung (A549), pancreatic (BxPC-3), and breast cancer (MDA-MB-231) cell lines is investigated, and it is found that the cellular spreading of adherent A549 and BxPC-3 cells and nuclear YAP translocation are promoted on low-mobility surfaces, suggesting that cancer cells alter their subcellular YAP localization in response to molecular mobility. Furthermore, low-mobility surfaces suppress cellular migration more than high-mobility surfaces. Additionally, low-mobility surfaces promote the cisplatin chemosensitivity of each cancer cell line to a greater extent than high-mobility surfaces. These results suggest that the molecular mobility of polyrotaxane surfaces suppresses cellular migration and enhances chemosensitivity via the subcellular translocation of YAP in cancer cells. Biointerfaces based on polyrotaxanes can thus be a new platform for elucidating cancer cell migration and chemoresistance mechanisms.
Collapse
Affiliation(s)
- Masahiro Hakariya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Hiroki Masuda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| |
Collapse
|
15
|
Marino A, Battaglini M, Tapeinos C, Larrañaga A, Ciofani G. Innovative nanotechnology tools for the functional control and tracking of human stem cells. MATERIALS TODAY ADVANCES 2022; 16:100298. [DOI: 10.1016/j.mtadv.2022.100298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Ko MJ, Hong H, Choi H, Kang H, Kim D. Multifunctional Magnetic Nanoparticles for Dynamic Imaging and Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Min Jun Ko
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
| | - Hyunsik Hong
- Department of Materials Science and Engineering Korea University Seoul 02841 Republic of Korea
| | - Hyunjun Choi
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
- Department of Bioengineering University of Illinois at Chicago Chicago IL 60607 USA
| | - Heemin Kang
- Department of Materials Science and Engineering Korea University Seoul 02841 Republic of Korea
- College of Medicine Korea University Seoul 02841 Republic of Korea
| | - Dong‐Hyun Kim
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
- Department of Bioengineering University of Illinois at Chicago Chicago IL 60607 USA
- Department of Biomedical Engineering McCormick School of Engineering Northwestern University Evanston IL 60208 USA
- Robert H. Lurie Comprehensive Cancer Center Northwestern University Chicago Illinois 60611 USA
| |
Collapse
|
17
|
Yang L, Conley BM, Yoon J, Rathnam C, Pongkulapa T, Conklin B, Hou Y, Lee KB. High-Content Screening and Analysis of Stem Cell-Derived Neural Interfaces Using a Combinatorial Nanotechnology and Machine Learning Approach. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9784273. [PMID: 36204248 PMCID: PMC9513834 DOI: 10.34133/2022/9784273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
A systematic investigation of stem cell-derived neural interfaces can facilitate the discovery of the molecular mechanisms behind cell behavior in neurological disorders and accelerate the development of stem cell-based therapies. Nevertheless, high-throughput investigation of the cell-type-specific biophysical cues associated with stem cell-derived neural interfaces continues to be a significant obstacle to overcome. To this end, we developed a combinatorial nanoarray-based method for high-throughput investigation of neural interface micro-/nanostructures (physical cues comprising geometrical, topographical, and mechanical aspects) and the effects of these complex physical cues on stem cell fate decisions. Furthermore, by applying a machine learning (ML)-based analytical approach to a large number of stem cell-derived neural interfaces, we comprehensively mapped stem cell adhesion, differentiation, and proliferation, which allowed for the cell-type-specific design of biomaterials for neural interfacing, including both adult and human-induced pluripotent stem cells (hiPSCs) with varying genetic backgrounds. In short, we successfully demonstrated how an innovative combinatorial nanoarray and ML-based platform technology can aid with the rational design of stem cell-derived neural interfaces, potentially facilitating precision, and personalized tissue engineering applications.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brian M. Conley
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinho Yoon
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
18
|
Sang X, Gao T, Liu X, Shen Y, Chang L, Fu S, Yang H, Yang H, Mu W, Liang S, Zhang Z, Zhang N, Liu Y. Two-Wave Variable Nanotheranostic Agents for Dual-Mode Imaging-Guided Photo-Induced Triple-Therapy for Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201834. [PMID: 35918610 PMCID: PMC9507363 DOI: 10.1002/advs.202201834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Photothermal therapy (PTT) is a promising strategy for cancer treatment, but its clinical application relies heavily on accurate tumor positioning and effective combination. Nanotheranostics has shown superior application in precise tumor positioning and treatment, bringing potential opportunities for developing novel PTT-based therapies. Here, a nanotheranostic agent is proposed to enhance magnetic resonance imaging (MRI)/ near-infrared fluorescence imaging (NIRFI) imaging-guided photo-induced triple-therapy for cancer. Thermosensitive liposomes co-loaded with SPIONs/IR780 and Abemaciclib (SIA-TSLs), peptide ACKFRGD, and click group 2-cyano-6-amino-benzothiazole (CABT) are co-modified on the surface of SIA-TSLs to form SIA-αTSLs. ACKFRGD can be hydrolyzed to expose the 1, 2-thiolamino groups in the presence of cathepsin B in tumors, which click cycloaddition with the cyano group on CABT, resulting in the formation of SIA-αTSLs aggregates. The aggregation of SIA-αTSLs in tumors enhances the MRI/NIRFI imaging capability and enables precise PTT. Photo-induced triple-therapy enhances precision cancer therapy. First, PTT ablates specific tumors and induces ICD via localized photothermal. Second, local tumor heating promotes the rupture of SIA-αTSLs, which release Abemaciclib to block the tumor cell cycle and inhibit Tregs proliferation. Third, injecting GM-CSF into tumor tissue leads to recruitment of dendritic cells and initiation of antitumor immunity. Collectively, these results present a promising nanotheranostic strategy for future cancer therapy.
Collapse
Affiliation(s)
- Xiao Sang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Tong Gao
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Xiaoqing Liu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Yelong Shen
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical University324 Jingwu Weiqi RoadJinanShandong Province250021China
| | - Lili Chang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Shunli Fu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Han Yang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Huizhen Yang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Weiwei Mu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Shuang Liang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Zipeng Zhang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Na Zhang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Yongjun Liu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| |
Collapse
|
19
|
Kim Y, Koo TM, Thangam R, Kim MS, Jang WY, Kang N, Min S, Kim SY, Yang L, Hong H, Jung HJ, Koh EK, Patel KD, Lee S, Fu HE, Jeon YS, Park BC, Kim SY, Park S, Lee J, Gu L, Kim DH, Kim TH, Lee KB, Jeong WK, Paulmurugan R, Kim YK, Kang H. Submolecular Ligand Size and Spacing for Cell Adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110340. [PMID: 35476306 DOI: 10.1002/adma.202110340] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Cell adhesion occurs when integrin recognizes and binds to Arg-Gly-Asp (RGD) ligands present in fibronectin. In this work, submolecular ligand size and spacing are tuned via template-mediated in situ growth of nanoparticles for dynamic macrophage modulation. To tune liganded gold nanoparticle (GNP) size and spacing from 3 to 20 nm, in situ localized assemblies of GNP arrays on nanomagnetite templates are engineered. 3 nm-spaced ligands stimulate the binding of integrin, which mediates macrophage-adhesion-assisted pro-regenerative polarization as compared to 20 nm-spaced ligands, which can be dynamically anchored to the substrate for stabilizing integrin binding and facilitating dynamic macrophage adhesion. Increasing the ligand size from 7 to 20 nm only slightly promotes macrophage adhesion, not observed with 13 nm-sized ligands. Increasing the ligand spacing from 3 to 17 nm significantly hinders macrophage adhesion that induces inflammatory polarization. Submolecular tuning of ligand spacing can dominantly modulate host macrophages.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Thomas Myeongseok Koo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Institute for High Technology Materials and Devices, Korea University, Seoul, 02841, Republic of Korea
| | - Myeong Soo Kim
- Institute for High Technology Materials and Devices, Korea University, Seoul, 02841, Republic of Korea
| | - Woo Young Jang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Nayeon Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seong Yeol Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Hyunsik Hong
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hee Joon Jung
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Evanston, IL, 60208, USA
- NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
| | - Eui Kwan Koh
- Seoul Center, Korea Basic Science Institute, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Kapil D Patel
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Institute for High Technology Materials and Devices, Korea University, Seoul, 02841, Republic of Korea
| | - Sungkyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hong En Fu
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yoo Sang Jeon
- Institute of Engineering Research, Korea University, Seoul, 02841, Republic of Korea
| | - Bum Chul Park
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Institute for High Technology Materials and Devices, Korea University, Seoul, 02841, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Luo Gu
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Woong Kyo Jeong
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Green Manufacturing Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
20
|
Kim S, Kim J, Im J, Kim M, Kim T, Wang SX, Kim D, Lee JR. Magnetic supercluster particles for highly sensitive magnetic biosensing of proteins. Mikrochim Acta 2022; 189:256. [PMID: 35697882 PMCID: PMC9192248 DOI: 10.1007/s00604-022-05354-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
A strategy is reported to improve the detection limits of current giant magnetoresistance (GMR) biosensors by augmenting the effective magnetic moment that the magnetic tags on the biosensors can exert. Magnetic supercluster particles (MSPs), each of which consists of ~ 1000 superparamagnetic cores, are prepared by a wet-chemical technique and are utilized to improve the limit of detection of GMR biosensors down to 17.6 zmol for biotin as a target molecule. This value is more than four orders of magnitude lower than that of the conventional colorimetric assay performed using the same set of reagents except for the signal transducer. The applicability of MSPs in immunoassay is further demonstrated by simultaneously detecting vascular endothelial growth factor (VEGF) and C-reactive protein (CRP) in a duplex assay format. MSPs outperform commercially available magnetic nanoparticles in terms of signal intensity and detection limit.
Collapse
Affiliation(s)
- Songeun Kim
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Junyoung Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jisoo Im
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Minah Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Taehyeong Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Shan X Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Dokyoon Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea.
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
21
|
Yang L, Conley BM, Rathnam C, Cho HY, Pongkulapa T, Conklin B, Lee KB. Predictive Biophysical Cue Mapping for Direct Cell Reprogramming Using Combinatorial Nanoarrays. ACS NANO 2022; 16:5577-5586. [PMID: 35301847 DOI: 10.1021/acsnano.1c10344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biophysical cues, such as nanotopographies of extracellular matrix (ECM), are key cell regulators for direct cell reprogramming. Therefore, high-throughput methods capable of systematically screening a wide range of biophysical cue-regulated cell reprogramming are increasingly needed for tissue engineering and regenerative medicine. Here, we report the development of a dynamic laser interference lithography (DIL) to generate large-scale combinatorial biophysical cue (CBC) arrays with diverse micro/nanostructures at higher complexities than most current arrays. Using CBC arrays, a high-throughput cell mapping method is further demonstrated for the systematic investigation of biophysical cue-mediated direct cell reprogramming. This CBC array-based high-throughput cell screening approach facilitates the rapid identification of unconventional hierarchical nanopatterns that induce the direct reprogramming of human fibroblasts into neurons through epigenetic modulation mechanisms. In this way, we successfully demonstrate DIL for generating highly complex CBC arrays and establish CBC array-based cell screening as a valuable strategy for systematically investigating the role of biophysical cues in cell reprogramming.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Brian M Conley
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Hyeon-Yeol Cho
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
22
|
Park HJ, Hong H, Thangam R, Song MG, Kim JE, Jo EH, Jang YJ, Choi WH, Lee MY, Kang H, Lee KB. Static and Dynamic Biomaterial Engineering for Cell Modulation. NANOMATERIALS 2022; 12:nano12081377. [PMID: 35458085 PMCID: PMC9028203 DOI: 10.3390/nano12081377] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
In the biological microenvironment, cells are surrounded by an extracellular matrix (ECM), with which they dynamically interact during various biological processes. Specifically, the physical and chemical properties of the ECM work cooperatively to influence the behavior and fate of cells directly and indirectly, which invokes various physiological responses in the body. Hence, efficient strategies to modulate cellular responses for a specific purpose have become important for various scientific fields such as biology, pharmacy, and medicine. Among many approaches, the utilization of biomaterials has been studied the most because they can be meticulously engineered to mimic cellular modulatory behavior. For such careful engineering, studies on physical modulation (e.g., ECM topography, stiffness, and wettability) and chemical manipulation (e.g., composition and soluble and surface biosignals) have been actively conducted. At present, the scope of research is being shifted from static (considering only the initial environment and the effects of each element) to biomimetic dynamic (including the concepts of time and gradient) modulation in both physical and chemical manipulations. This review provides an overall perspective on how the static and dynamic biomaterials are actively engineered to modulate targeted cellular responses while highlighting the importance and advance from static modulation to biomimetic dynamic modulation for biomedical applications.
Collapse
Affiliation(s)
- Hyung-Joon Park
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
| | - Hyunsik Hong
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
| | - Ramar Thangam
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Min-Gyo Song
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Ju-Eun Kim
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Eun-Hae Jo
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Yun-Jeong Jang
- Department of Biomedical Engineering, Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Won-Hyoung Choi
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Min-Young Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Heemin Kang
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Correspondence: (H.K.); (K.-B.L.)
| | - Kyu-Back Lee
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
- Correspondence: (H.K.); (K.-B.L.)
| |
Collapse
|
23
|
Yang L, Patel KD, Rathnam C, Thangam R, Hou Y, Kang H, Lee KB. Harnessing the Therapeutic Potential of Extracellular Vesicles for Biomedical Applications Using Multifunctional Magnetic Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104783. [PMID: 35132796 PMCID: PMC9344859 DOI: 10.1002/smll.202104783] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/12/2022] [Indexed: 04/14/2023]
Abstract
Extracellular vesicles (e.g., exosomes) carrying various biomolecules (e.g., proteins, lipids, and nucleic acids) have rapidly emerged as promising platforms for many biomedical applications. Despite their enormous potential, their heterogeneity in surfaces and sizes, the high complexity of cargo biomolecules, and the inefficient uptake by recipient cells remain critical barriers for their theranostic applications. To address these critical issues, multifunctional nanomaterials, such as magnetic nanomaterials, with their tunable physical, chemical, and biological properties, may play crucial roles in next-generation extracellular vesicles (EV)-based disease diagnosis, drug delivery, tissue engineering, and regenerative medicine. As such, one aims to provide cutting-edge knowledge pertaining to magnetic nanomaterials-facilitated isolation, detection, and delivery of extracellular vesicles and their associated biomolecules. By engaging the fields of extracellular vesicles and magnetic nanomaterials, it is envisioned that their properties can be effectively combined for optimal outcomes in biomedical applications.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Kapil D. Patel
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Pis cataway, NJ 08854, USA
| |
Collapse
|
24
|
Integrating Soft Hydrogel with Nanostructures Reinforces Stem Cell Adhesion and Differentiation. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Biophysical cues can regulate stem cell behaviours and have been considered as critical parameters of synthetic biomaterials for tissue engineering. In particular, hydrogels have been utilized as promising biomimetic and biocompatible materials to emulate the microenvironment. Therefore, well-defined mechanical properties of a hydrogel are important to direct desirable phenotypes of cells. Yet, limited research pays attention to engineering soft hydrogel with improved cell adhesive property, which is crucial for stem cell differentiation. Herein, we introduce silica nanoparticles (SiO2 NPs) onto the surface of methacrylated hyaluronic (MeHA) hydrogel to manipulate the presentation of cell adhesive ligands (RGD) clusters, while remaining similar bulk mechanical properties (2.79 ± 0.31 kPa) to that of MeHA hydrogel (3.08 ± 0.68 kPa). RGD peptides are either randomly decorated in the MeHA hydrogel network or on the immobilized SiO2 NPs (forming MeHA–SiO2). Our results showed that human mesenchymal stem cells exhibited a ~1.3-fold increase in the percentage of initial cell attachment, a ~2-fold increase in cell spreading area, and enhanced expressions of early-stage osteogenic markers (RUNX2 and alkaline phosphatase) for cells undergoing osteogenic differentiation with the osteogenic medium on MeHA–SiO2 hydrogel, compared to those cultured on MeHA hydrogel. Importantly, the cells cultivated on MeHA–SiO2 expressed a ~5-fold increase in nuclear localization ratio of the yes-associated protein, which is known to be mechanosensory in stem cells, compared to the cells cultured on MeHA hydrogel, thereby promoting osteogenic differentiation of stem cells. These findings demonstrate the potential use of nanomaterials into a soft polymeric matrix for enhanced cell adhesion and provide valuable guidance for the rational design of biomaterials for implantation.
Collapse
|
25
|
Thangam R, Paulmurugan R, Kang H. Functionalized Nanomaterials as Tailored Theranostic Agents in Brain Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:18. [PMID: 35009968 PMCID: PMC8746658 DOI: 10.3390/nano12010018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
Functionalized nanomaterials of various categories are essential for developing cancer nano-theranostics for brain diseases; however, some limitations exist in their effectiveness and clinical translation, such as toxicity, limited tumor penetration, and inability to cross blood-brain and blood-tumor barriers. Metal nanomaterials with functional fluorescent tags possess unique properties in improving their functional properties, including surface plasmon resonance (SPR), superparamagnetism, and photo/bioluminescence, which facilitates imaging applications in addition to their deliveries. Moreover, these multifunctional nanomaterials could be synthesized through various chemical modifications on their physical surfaces via attaching targeting peptides, fluorophores, and quantum dots (QD), which could improve the application of these nanomaterials by facilitating theranostic modalities. In addition to their inherent CT (Computed Tomography), MRI (Magnetic Resonance Imaging), PAI (Photo-acoustic imaging), and X-ray contrast imaging, various multifunctional nanoparticles with imaging probes serve as brain-targeted imaging candidates in several imaging modalities. The primary criteria of these functional nanomaterials for translational application to the brain must be zero toxicity. Moreover, the beneficial aspects of nano-theranostics of nanoparticles are their multifunctional systems proportioned towards personalized disease management via comprising diagnostic and therapeutic abilities in a single biodegradable nanomaterial. This review highlights the emerging aspects of engineered nanomaterials to reach and deliver therapeutics to the brain and how to improve this by adopting the imaging modalities for theranostic applications.
Collapse
Affiliation(s)
- Ramar Thangam
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Department of Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea
| |
Collapse
|