1
|
Tong J, Xie X, Gao J, Geng Y, Li Y, Huang S, Sun C, Qiu H, Bai Y, Xiao X, Li Y, Shan GG, Wang H. Dendritic donor engineering to optimize second near-infrared photothermal agents for in situ photothermal therapy. J Colloid Interface Sci 2025; 689:137190. [PMID: 40068535 DOI: 10.1016/j.jcis.2025.02.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
Small organic photothermal agents (PTAs) with dual photothermal and imaging functions in the second near-infrared (NIR-II) window present a promising strategy for deep tumor treatment, however, fluorescence quenching conventional PTAs and low photothermal conversion efficiency (PCE) present obstacles to their widespread application. In this study, a novel "dendritic donor engineering" strategy was employed to design NIR-II organic PTAs (named DCTBBT and TCTBBT) with donor-π-acceptor-π-donor features and aggregation-induced emission (AIE) activity. Owing to the fine-tuning of the dendritic donors, the close co-facial packing of the central π-backbone was disrupted, effectively avoiding fluorescence quenching caused by π-π aggregation, which facilitated molecule-free motions in aggregate state, and as a result, the DCTBBT nanoparticles (NPs) demonstrated a PCE of 59.8 %. Besides, both in vitro and in vivo evaluations demonstrate that DCTBBT NPs exhibit superior antitumor efficacy by the photothermal therapy (PTT). This study provides valuable insights into the development of advanced NIR-II PTAs for practical applications in phototheranostics.
Collapse
Affiliation(s)
- Jialin Tong
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xiaohan Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Jing Gao
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Yun Geng
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Yuancheng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Shanshan Huang
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Chunyi Sun
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Hang Qiu
- Clinical Laboratory Technology, West China Clinical Medical College of Sichuan University, Sichuan 610041, PR China
| | - Yujie Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xiyan Xiao
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China.
| | - Yuanyuan Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| | - Guo-Gang Shan
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| |
Collapse
|
2
|
Miao N, Kang Z, Wang Z, Yu W, Liu T, Kong LZ, Zheng Y, Ding C, Zhang Z, Zhong C, Fang Q, Li K. Mitochondrial reactive oxygen species promote cancer metastasis and tumor microenvironment immunosuppression through gasdermin D. Cell Death Discov 2025; 11:219. [PMID: 40324993 PMCID: PMC12053750 DOI: 10.1038/s41420-025-02516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/10/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025] Open
Abstract
Although recent research has established that gasdermin D (GSDMD), a factor that drives pyroptosis, is essential for cell death and inflammation, its involvement in cancer metastasis has yet to be elucidated. In this study, GSDMD was significantly increased in lung neutrophils at the metastatic stage from a murine orthotropic 4T1 breast cancer model. Moreover, the N terminal domain from cleaved GSDMD exhibited a positive correlation with increased mitochondrial reactive oxygen species (mROS) and serum high mobility group box 1 (HMGB-1) levels. Mechanistically, mROS inhibition significantly suppressed GSDMD-N oligomerization and pore formation. In addition, the activation of GSDMD significantly enhanced the formation of neutrophil extracellular traps (NETs) following treatment with Cathepsin C. Within a murine orthotopic breast cancer model using 4T1 cell line, the inhibition of GSDMD through the application of LDC7559 significantly attenuated the metastatic spread of breast cancer to the lung. In addition, knockout of GSDMD reduced lung metastasis in E0771 intravenous injection murine model. Furthermore, inhibition of GSDMD reduced the number of myeloid derived suppressor cells (MDSC) in the metastatic lung of breast cancer mouse model, while concurrently increasing both the percentage and total cell count of CD8+ T cells, suggesting that mitochondrial dysfunction-dependent GSDMD activation promotes tumor microenvironment immunosuppression and NETs. GSDMD represents a promising therapeutic target for mitigating the metastatic progression of breast cancer to the lung.
Collapse
Affiliation(s)
- Naijun Miao
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, China
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengchun Kang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zhuning Wang
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenyan Yu
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, China
| | - Ting Liu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ling-Zhijie Kong
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, China
| | - Ying Zheng
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, China
| | - Changli Ding
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, China
| | - Zhiyong Zhang
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, China
| | - Chen Zhong
- Department of Medical Oncology, The 960th Hospital of the PLA Joint Logistice Support Force, Jinan, 250031, Shandong, China.
| | - Qingliang Fang
- Department of Radiation Oncology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, China.
| |
Collapse
|
3
|
Wu H, Li Y, Shi L, Liu Y, Shen J. New Advances in Periodontal Functional Materials Based on Antibacterial, Anti-Inflammatory, and Tissue Regeneration Strategies. Adv Healthc Mater 2025; 14:e2403206. [PMID: 39895157 DOI: 10.1002/adhm.202403206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/17/2025] [Indexed: 02/04/2025]
Abstract
With the global population aging, awareness of oral health is rising. Periodontitis, a widespread bacterial infectious disease, is gaining attention. Current novel biomaterials address key clinical issues like bacterial infection, gum inflammation, tooth loosening, and loss, focusing on antibacterial, anti-inflammatory, and tissue regeneration properties. However, strategies that integrate the advantages of these biomaterials to achieve synergistic therapeutic effects by clearing oral biofilms, inhibiting inflammation activation, and restoring periodontal soft and hard tissue functions remain very limited. Recent studies highlight the link between periodontitis and systemic diseases, underscoring the complexity of the periodontal disease. There is an urgent need to find comprehensive treatment plans that address clinical requirements. Whether by integrating new biomaterials to enhance existing periodontal treatments or by developing novel approaches to replace traditional therapies, these efforts will drive advancements in periodontitis treatment. Therefore, this review compares novel biomaterials with traditional treatments. It highlights the design concepts and mechanisms of these functional materials, focusing on their antibacterial, anti-inflammatory, and tissue regeneration properties, and discusses the importance of developing comprehensive treatment strategies. This review aims to provide guidance for emerging periodontitis research and to promote the development of precise and efficient treatment strategies.
Collapse
Affiliation(s)
- Haoyue Wu
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuanfeng Li
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jing Shen
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| |
Collapse
|
4
|
Hou L, Li S, Qi Y, Liu J, Cui Z, Liu X, Zhang Y, Wang N, Zhao Y. Advancing Efficiency in Solar-Driven Interfacial Evaporation: Strategies and Applications. ACS NANO 2025; 19:9636-9683. [PMID: 40056136 DOI: 10.1021/acsnano.4c16998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Solar-driven interfacial evaporation (SDIE) has emerged as a promising technology for addressing global water scarcity by utilizing solar-thermal conversion and evaporation at the air/material/water interface. The exceptional performance of these systems has attracted significant interest; it is imperative to establish rigorous and scientific standards for evaluating effectiveness, optimizing system design, and ensuring efficient practical applications. In this Review, we propose consensus criteria for accurately assessing system performance and guiding future advancements. We then explore the fundamental mechanisms driving system synergy, emphasizing how material compositions, microscopic hierarchical material structures, and macroscopic three-dimensional spatial architecture designs enhance solar absorption and photothermal conversion; balance heat confinement with water pathway optimization; manage salt resistance; and regulate enthalpy during vaporization. These matched coordination strategies are crucial for maximizing the target SDIE efficiency. Additionally, we investigate the practical applications of SDIE technologies, focusing on cutting-edge progress and versatile water purification, combined with atmospheric water harvesting, salt collection, electric generation, and photothermal deicing. Finally, we highlight the challenges and exciting opportunities for advancing research, emphasizing future efforts to integrate fundamental principles, system-level collaboration, and application-driven approaches to boost sustainable and highly efficient water and energy technologies. By linking system performance evaluation with optimization strategies for influencing factors, we offer a comprehensive overview of the field and a future outlook that promotes highly efficient clean water production and synergistic applications.
Collapse
Affiliation(s)
- Lanlan Hou
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Shuai Li
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Yingqun Qi
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Jingchong Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhimin Cui
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Xiaofei Liu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Ying Zhang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Nü Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yong Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
5
|
Xin Y, Yu Y, Wu M, Su M, Elsabahy M, Qu X, Gao H. Tumor and intratumoral pathogen cascade-targeting photothermal nanotherapeutics for boosted immunotherapy of colorectal cancer. J Control Release 2025; 379:574-591. [PMID: 39832745 DOI: 10.1016/j.jconrel.2025.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Clinical benefits of immunotherapy in colorectal cancer (CRC) are limited due to the low immunogenicity and immunosuppressive tumor microenvironment. Fusobacterium nucleatum (Fn) is discovered to colonize CRC tumors and dampen immunotherapy by fostering an immunosuppressive TME. Herein, a controllable "Shielding-deshielding" N-acetylgalactosamine (GalNAc)-derived photothermal nanotherapeutic is developed to mediate cascade targeting toward tumor and intratumoral Fn for enhanced photothermal-immunotherapy. This nanotherapeutic can in situ generate near infrared-II laser-activatable photothermal agent by reacting with endogenous hydrogen sulfide in CRC. The Schiff bond-tethered hyaluronic acid coating not only facilitates precise localization within CRC but shieldes GalNAc-mediated liver targeting, which can be deshielded upon a slightly acidic TME to anchor Fn by binding to its lectin Fap2. This cascade-targeting nanotherapeutic enables efficacious tumor accumulation and reinforces photothermal therapy (PTT) efficacy. Notably, PTT efficiently induces immunogenic cell death in CRC cells, leading to augmented immunogenicity and CD8+ T cell activation. Meanwhile, synchronous eradication of Fn facilitates M1 macrophage polarization, and promotes intratumoral infiltration of CD8+ T cell by reducing succinic acid level, thereby further boosting antitumor immunity against both primary and distant tumors. Overall, this study involving cascade targeting-reinforced PTT and intratumoral microorganism modulation offers new insight into effective CRC immunotherapy.
Collapse
Affiliation(s)
- Youtao Xin
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yunjian Yu
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Mengdi Wu
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Meihui Su
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Mahmoud Elsabahy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
6
|
Fang L, Chen Z, Dai J, Pan Y, Tu Y, Meng Q, Diao Y, Yang S, Guo W, Li L, Liu J, Wen H, Hua K, Hang L, Fang J, Meng X, Ma P, Jiang G. Recent Advances in Strategies to Enhance Photodynamic and Photothermal Therapy Performance of Single-Component Organic Phototherapeutic Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409157. [PMID: 39792832 PMCID: PMC11831458 DOI: 10.1002/advs.202409157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/04/2024] [Indexed: 01/12/2025]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising treatment options, showcasing immense potential in addressing both oncologic and nononcologic diseases. Single-component organic phototherapeutic agents (SCOPAs) offer advantages compared to inorganic or multicomponent nanomedicine, including better biosafety, lower toxicity, simpler synthesis, and enhanced reproducibility. Nonetheless, how to further improve the therapeutic effectiveness of SCOPAs remains a challenging research area. This review delves deeply into strategies to improve the performance of PDT or PTT by optimizing the structural design of SCOPAs. These strategies encompass augmenting reactive oxygen species (ROS) generation, mitigating oxygen dependence, elevating light absorption capacity, broadening the absorption region, and enhancing the photothermal conversion efficiency (PCE). Additionally, this review also underscores the ideal strategies for developing SCOPAs with balanced PDT and PTT. Furthermore, the potential synergies are highlighted between PDT and PTT with other treatment modalities such as ferroptosis, gas therapy, chemotherapy, and immunotherapy. By providing a comprehensive analysis of these strategies, this review aspires to serve as a valuable resource for clinicians and researchers, facilitating the wider application and advancement of SCOPAs-mediated PDT and PTT.
Collapse
Affiliation(s)
- Laiping Fang
- Guangdong Second Provincial General HospitalSchool of MedicineJinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Zengzhen Chen
- State Key Laboratory of Cryogenic Science and TechnologyTechnical Institute of Physics and ChemistryChinese Academy of SciencesZhongguancun East Road 29Beijing100190P. R. China
| | - Jianan Dai
- College of Information TechnologyJilin Normal UniversityHaifeng Street 1301Siping136000P. R. China
| | - Yujin Pan
- Department of Hepatobiliary and Pancreatic SurgeryHenan Provincial People's HospitalWeiwu Road 7Zhengzhou450003P. R. China
| | - Yike Tu
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Qi Meng
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesRenmin Street 5625Changchun130012P. R. China
| | - Yanzhao Diao
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Shuaibo Yang
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Wei Guo
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Liming Li
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Jinwu Liu
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Hua Wen
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Kelei Hua
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Lifeng Hang
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Jin Fang
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Xianwei Meng
- State Key Laboratory of Cryogenic Science and TechnologyTechnical Institute of Physics and ChemistryChinese Academy of SciencesZhongguancun East Road 29Beijing100190P. R. China
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesRenmin Street 5625Changchun130012P. R. China
| | - Guihua Jiang
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| |
Collapse
|
7
|
Gao Y, Zhang Y, Ma Y, Li X, Wang Y, Chen H, Wan Y, Huang Z, Liu W, Wang P, Wang L, Lee CS, Li S. NIR-II-activated whole-cell vaccine with ultra-efficient semiconducting diradical oligomers for breast carcinoma growth and metastasis inhibition. Acta Pharm Sin B 2025; 15:1159-1170. [PMID: 40177542 PMCID: PMC11959919 DOI: 10.1016/j.apsb.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 04/05/2025] Open
Abstract
High-performance phototheranostics with combined photothermal therapy and photoacoustic imaging have been considered promising approaches for efficient cancer diagnosis and treatment. However, developing phototheranostic materials with efficient photothermal conversion efficiency (PCE), especially over the second near-infrared window (NIR-II, 1000-1700 nm), remains challenging. Herein, we report an ultraefficient NIR-II-activated nanomedicine with phototheranostic and vaccination capability for highly efficient in vivo tumor elimination and metastasis inhibition. The NIR-II nanomedicine of a semiconducting biradical oligomer with a motor-flexible design was demonstrated with a record-breaking PCE of 87% upon NIR-II excitation. This nanomedicine inherently features extraordinary photothermal stability, good biocompatibility, and excellent photoacoustic performance, contributing to high-contrast photoacoustic imaging in living mice and high-performance photothermal elimination of tumors. Moreover, a whole-cell vaccine based on a NIR-II nanomedicine with NIR-II-activated performance was further designed to remotely activate the antitumor immunologic memory and effectively inhibit tumor occurrence and metastasis in vivo, with good biosafety. Thus, this work paves a new avenue for designing NIR-II active semiconducting biradical materials as a promising theranostics platform and further promotes the development of NIR-II nanomedicine for personalized cancer treatment.
Collapse
Affiliation(s)
- Yijian Gao
- College of Pharmaceutical Sciences, the Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Yachao Zhang
- Key Laboratory of Biomedical Imaging Science and System, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yujie Ma
- College of Pharmaceutical Sciences, the Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xiliang Li
- College of Pharmaceutical Sciences, the Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Yu Wang
- College of Pharmaceutical Sciences, the Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Huan Chen
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yingpeng Wan
- College of Pharmaceutical Sciences, the Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Zhongming Huang
- College of Pharmaceutical Sciences, the Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Weimin Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Hong Kong SAR 999077, China
| | - Pengfei Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Hong Kong SAR 999077, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Shengliang Li
- College of Pharmaceutical Sciences, the Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Su D, Jiang Z, Xu Y, Li J, Qi Q, Gong Y, Wang H, Zhao Z, Zhao X, Zhou J. Molecular design of ternary copolymers with high photothermal performance in the near-infrared window for effective treatment of gliomas in vivo. Acta Biomater 2025; 192:302-314. [PMID: 39674238 DOI: 10.1016/j.actbio.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Photothermal therapy (PTT) is a promising approach for treating glioblastoma multiforme (GBM) with minimal invasiveness and favorable outcomes. Conjugated polymers as photothermal agents offer stability, biocompatibility, and adjustable absorption capacity. However, existing polymers face limitations in achieving high photothermal conversion efficiency and strong absorbance in the near-infrared (NIR) region, posing a risk of damaging healthy tissues surrounding GBM during precise PTT. Herein, a molecular design strategy was developed to create a series of ternary copolymers by incorporating various π-conjugated molecules into both the main chain and side chain. Through this approach, PDTT-253, with rational molar contents of three units and a relatively minor twisted architecture between donors and π-bridges, demonstrated strong NIR absorbance and high PCE of 85.1 % at 808 nm. Furthermore, PDTT-253 nanoparticles exhibited exceptional photothermal stability, photostability, and prolonged storage validity period. In vitro studies revealed high biocompatibility and strong NIR photothermal killing efficacy of PDTT-253 NPs when incubated with U87 cells. Following the injection of PDTT-253 NPs into U87 glioma-bearing mice, a single 808 nm laser irradiation treatment resulted in the inhibition of glioma growth, with the ablated glioma being entirely detached from the surrounding normal tissue after PTT treatment, leading to a comprehensive cure. These results suggest that photostable and biocompatible ternary copolymer nanoparticles based on PDTT-253 show promise for PTT therapy in brain tumors through in situ injection and NIR irradiation. STATEMENT OF SIGNIFICANCE: A molecular design strategy was developed to create a series of ternary copolymers by incorporating various π-conjugated molecules into the conjugated skeleton. Through this approach, PDTT-253, with rational molar contents of three units and a relatively minor twisted architecture between donors and π-bridges, demonstrated enhanced near-infrared (NIR) absorbance and photothermal conversion efficiency of 85.1 % at 808 nm. Furthermore, PDTT-253 nanoparticles exhibited exceptional photothermal stability, high biocompatibility, and strong NIR photothermal killing efficacy against U87 cells. Following the injection of PDTT-253 NPs into U87 glioma-bearing mice, a single 808 nm laser irradiation treatment resulted in the inhibition of glioma growth, with the ablated glioma being entirely detached from the surrounding normal tissue after photothermal therapy treatment, leading to a comprehensive cure.
Collapse
Affiliation(s)
- Deliang Su
- College of Material, Chemistry and Chemical Engineering, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Zhongxiu Jiang
- College of Material, Chemistry and Chemical Engineering, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Yating Xu
- College of Material, Chemistry and Chemical Engineering, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, PR China
| | - Qiang Qi
- College of Material, Chemistry and Chemical Engineering, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Yi Gong
- College of Material, Chemistry and Chemical Engineering, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Hongdi Wang
- College of Material, Chemistry and Chemical Engineering, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, PR China.
| | - Xiaofeng Zhao
- College of Material, Chemistry and Chemical Engineering, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.
| | - Jian Zhou
- College of Material, Chemistry and Chemical Engineering, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.
| |
Collapse
|
9
|
Wang B, Li L, Liu Y, Xie Z, Deng S, Men X, Wu C, Chen H, Xiao J. Semiconducting Polymer Dots for Dual-Wavelength Differential Background-Suppressed Photoacoustic Imaging. Adv Healthc Mater 2024; 13:e2400517. [PMID: 38760889 DOI: 10.1002/adhm.202400517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Photoacoustic imaging (PAI) can sensitively detect regions and substances with strong optical absorption, which means that diseased tissue can be imaged with high contrast in the presence of surrounding healthy tissue through the photoacoustic effect. However, its signal intensity and resolution may be limited by background signals generated by endogenous chromophores such as melanin and hemoglobin. A feasible method for practical application of this so-called background-suppressed PAI is still lacking. In this work, a dual-wavelength differential background noise-suppressed photoacoustic tomography is developed based on organic semiconducting polymer dots (Pdots). The Pdots have a strong absorption peak at 945 nm, and then the absorption decreases sharply with the increase of wavelength, and the absorption intensity drops to only about a quarter of the original value at 1050 nm. The present system significantly suppresses the strong background noise of blood through dual-wavelength differential PAI, enabling precise monitoring of the distribution information of theranostic agents in diseased tissues. The signal-to-noise ratio of the theranostic agent distribution map is increased by about 20 dB. This work provides a platform for real-time and accurate monitoring of tumors and drugs, which helps avoid damage to healthy tissue during treatment and has clinical significance in cancer treatment.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
| | - Lingfeng Li
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
| | - Ye Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhuojun Xie
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
| | - Sile Deng
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
| | - Xiaoju Men
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
| | - Changfeng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Haobin Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
| | - Jiaying Xiao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410083, China
- Shenzhen Research Institute, Central South University, Shenzhen, 518057, China
| |
Collapse
|
10
|
Zhou Y, Li D, Yue X, Shi Y, Li C, Wang Y, Chen Y, Liu Q, Ding D, Wang D, Shen J. Enhancing Root Canal Therapy with NIR-II Semiconducting Polymer AIEgen and Low-Concentration Sodium Hypochlorite Synergy. Adv Healthc Mater 2024:e2401434. [PMID: 39171782 DOI: 10.1002/adhm.202401434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Despite significant efforts to eliminate bacterial biofilm within root canals, achieving effective disinfection remains challenging due to the complex anatomy and limitations of disinfectants. In this study, a second near-infrared (NIR-II) semiconducting polymer with aggregation-induced emission (AIE) properties, named PIDT-TBT, is deliberately designed and synthesized. This proposes an AIE luminogen-based sterilization strategy in synergy with a low concentration of sodium hypochlorite (NaClO). Water-dispersible PIDT-TBT nanoparticles (NPs) are prepared, demonstrating good biocompatibility, as well as photothermal and photodynamic properties. Subsequent antibacterial tests show that PIDT-TBT NPs exhibit excellent bactericidal effects against three bacterial strains: Staphylococcus aureus, Streptococcus mutans, and Enterococcus faecalis, upon 808 nm laser irradiation. In synergy with a low concentration of NaClO (0.5%) solution, PIDT-TBT NPs significantly improves the outcome of root canal treatment under 808 nm laser irradiation in a human extracted tooth root canal infection model. Additionally, it is found that PIDT-TBT NPs combine with a low concentration of NaClO solution could safely dissolve dentin debris and further increase the efficiency of root canal preparation by altering the elemental composition of the inner root canal wall.
Collapse
Affiliation(s)
- Yuanzhu Zhou
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| | - Dan Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xin Yue
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| | - Yang Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Frontiers Science Center for Cell Responses, Tianjin, 300071, P. R. China
| | - Cong Li
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| | - Yuhan Wang
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| | - Yao Chen
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, P. R. China
| | - Dan Ding
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Frontiers Science Center for Cell Responses, Tianjin, 300071, P. R. China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jing Shen
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| |
Collapse
|
11
|
Zhao L, Zhu H, Duo YY, Wang ZG, Pang DW, Liu SL. A Cyanine with 83.2% Photothermal Conversion Efficiency and Absorption Wavelengths over 1200 nm for Photothermal Therapy. Adv Healthc Mater 2024; 13:e2304421. [PMID: 38780250 DOI: 10.1002/adhm.202304421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Indexed: 05/25/2024]
Abstract
Developing small-molecule photothermal agents (PTAs) with good near-infrared-II (NIR-II) response for deeper tissue penetration and minimizing damage to healthy tissues has attracted much attention in photothermal therapy (PTT). However, concentrating ultra-long excitation wavelengths and high photothermal conversion efficiencies (PCEs) into a single organic small molecule is still challenging due to the lack of suitable molecular structures. Here, six polymethine cyanine molecules based on the structure of indocyanine green are synthesized by increasing the conjugated structure of the two-terminal indole salts and the number of rigid methine units, and incorporating longer alkyl side chains into the indole salts. Ultimately, IC-1224 is obtained with an absorption wavelength of more than 1200 nm, which has a high PCE up to 83.2% in the NIR-II window and exhibits excellent PTT tumor ablation performance. This provides a high-performance NIR-II-responsive PTA, and offers further possibilities for the application of PTT in biomedical fields.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - You-Yang Duo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
12
|
Wan Y, Chen W, Liu Y, Lee KW, Gao Y, Zhang D, Li Y, Huang Z, Luo J, Lee CS, Li S. Neutral Cyanine: Ultra-Stable NIR-II Merocyanines for Highly Efficient Bioimaging and Tumor-Targeted Phototheranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405966. [PMID: 38771978 DOI: 10.1002/adma.202405966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Fluorescence imaging (FLI)-guided phototheranostics using emission from the second near-infrared (NIR-II) window show significant potential for cancer diagnosis and treatment. Clinical imaging-used polymethine ionic indocyanine green (ICG) dye is widely adopted for NIR fluorescence imaging-guided photothermal therapy (PTT) research due to its exceptional photophysical properties. However, ICG has limitations such as poor photostability, low photothermal conversion efficiency (PCE), short-wavelength emission peak, and liver-targeting issues, which restrict its wider use. In this study, two ionic ICG derivatives are transformed into neutral merocyanines (mCy) to achieve much-enhanced performance for NIR-II cancer phototheranostics. Initial designs of two ionic dyes show similar drawbacks as ICG in terms of poor photostability and low photothermal performance. One of the modified neutral molecules, mCy890, shows significantly improved stability, an emission peak over 1000 nm, and a high photothermal PCE of 51%, all considerably outperform ICG. In vivo studies demonstrate that nanoparticles of the mCy890 can effectively accumulate at the tumor sites for cancer photothermal therapy guided by NIR-II fluorescence imaging. This research provides valuable insights into the development of neutral merocyanines for enhanced cancer phototheranostics.
Collapse
Affiliation(s)
- Yingpeng Wan
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Weilong Chen
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Ying Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Ka-Wai Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yijian Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Di Zhang
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yuqing Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhongming Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Jingdong Luo
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong, SAR, 999077, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
13
|
Zhao X, Sun M, Cao X, Xu J, Li X, Zhao X, Lu H. Near-Infrared Light-Driving Organic Photothermal Agents with an 88.9% Photothermal Conversion Efficiency for Image-Guided Synergistic Phototherapy. Adv Healthc Mater 2024; 13:e2400201. [PMID: 38519419 DOI: 10.1002/adhm.202400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Photothermal agents (PTAs) with desirable near-infrared (NIR) absorption and excellent photothermal conversion efficiency (PCE) are ideal candidates for cancer treatment. However, numerous PTAs still require high-intensity and long-duration laser irradiation to completely ablate the tumor during the photothermal therapy (PTT) process, resulting in light damage to healthy skin and tissue as well as limiting their biomedical applications. Integrating intense NIR absorption and high PCE into a single small-molecule PTA is an important prerequisite for realizing efficient PTT, but is a serious challenge. Herein, a series of donor-acceptor type PTAs (CC1 to NC4) are designed through a molecular engineering strategy. Theoretical calculations and experimental results show that the NIR absorption and photothermal effect from CC1 to NC4 are significantly enhanced as expected. Notably, NC4 nanoparticles exhibit intense NIR absorption, superhigh PCE of up to 88.9% for PTT, photoacoustic imaging and photothermal imaging, and effective reactive oxygen species generation for photodynamic therapy (PDT). The superior PTT/PDT synergistic phototherapeutic efficacy is well demonstrated by the complete elimination of tumor in vivo upon one-time, low-intensity, and short-duration laser irradiation (808 nm, 330 mW cm-2, and 3 min). This work provides a valuable guideline for rational design of PTAs for cancer phototherapy.
Collapse
Affiliation(s)
- Xilin Zhao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Mengxin Sun
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiaohan Cao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiashuai Xu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiaoyu Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiaowei Zhao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hongguang Lu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
14
|
Teng X, Liu T, Zhao G, Liang Y, Li P, Li F, Li Q, Fu J, Zhong C, Zou X, Li L, Qi L. A novel exosome-based multifunctional nanocomposite platform driven by photothermal-controlled release system for repair of skin injury. J Control Release 2024; 371:258-272. [PMID: 38815704 DOI: 10.1016/j.jconrel.2024.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Currently, exosomes showed appropriate potential in the repair of skin injury. However, the functions of the exosomes could be compromised rapidly due to their short half-life and high clearance rate in vivo. In addition, the controlled release of effective concentrations of exosomes could increase the utilization efficiency of exosomes in wound healing. Accordingly, the design of an effective system for the controlled delivery of exosomes during the wound treatment period was necessary. In this contribution, we designed a novel exosome-based multifunctional nanocomposite platform with photothermal-controlled release performance for the repair of skin injury. Based on the agarose hydrogel, two-dimensional Ti3C2 (Ti3C2 MXene) and human umbilical cord mesenchymal stem cell (hucMSC)-derived exosomes, the as-prepared platform (i.e., hucMSC-derived exosome/Ti3C2 MXene hydrogel) was synthesized for the first time. Apart from possessing injectability, the hucMSC-derived exosome/Ti3C2 MXene hydrogel utilized the excellent photothermal effect of Ti3C2 MXene and proper phase transition performance of agarose hydrogel to provide a photothermal-controlled release system for the hucMSC-derived exosomes, which was beneficial for the personalized on-demand drug delivery. Importantly, the hucMSC-derived exosomes maintained their inherent structure and activity after being released from the Ti3C2 MXene hydrogel. Additionally, the as-prepared hydrogel with multifunctional performance also presented remarkable biocompatibility and photothermal-antibacterial property, and could efficiently accelerate wound healing by promoting cell proliferation, angiogenesis, collagen deposition, and reducing the level of inflammation at the wound site. The results suggested that the exosome-based multifunctional nanocomposite platform with great potential for wound healing would make significant advances in the revolution of traditional treatment methods in skin injury.
Collapse
Affiliation(s)
- Xu Teng
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China.
| | - Tao Liu
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China; DALI University, Dali 671000, China
| | - Guifang Zhao
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China; Department of Pathology, Jilin Medical University, Jilin 130013, China
| | - Yaru Liang
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Pengdong Li
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Fengjin Li
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Qiguang Li
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Jiacai Fu
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China; DALI University, Dali 671000, China
| | - Chengming Zhong
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Xiaohui Zou
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Linhai Li
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China.
| | - Ling Qi
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China.
| |
Collapse
|
15
|
Yao Y, Sun X, Zhang Z, Yu H, Yang X, Ding D, Gao X. Azulene-Containing Bis(squaraine) Dyes: Design, Synthesis and Aggregation Behaviors. Chemistry 2024; 30:e202400474. [PMID: 38456559 DOI: 10.1002/chem.202400474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
The relationship among chemical structure, physicochemical property and aggregation behavior of organic functional material is an important research topic. Here, we designed and synthesized three bis(squaraine) dyes BSQ1, BSQ2 and BSQ3 through the combination of two kinds of unsymmetrical azulenyl squaraine monomers. Their physicochemical properties were investigated in both molecular and aggregate states. Generally, BSQ1 displayed different assembly behaviors from BSQ2 and BSQ3. Upon fabrication into nanoparticles, BSQ1 tend to form J-aggregates while BSQ2 and BSQ3 tend to form H-aggregates in aqueous medium. When in the form of thin films, three bis(squaraine) dyes all adopted J-aggregation packing modes while only BSQ1 presented the most significant rearrangement of aggregate structures as well as the improvement in the carrier mobilities upon thermal annealing. Our research highlights the discrepancy of aggregation behaviors originating from the molecular structure and surrounding circumstances, providing guidance for the molecular design and functional applications of squaraines.
Collapse
Affiliation(s)
- Yiming Yao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P.R. China
| | - Xuan Sun
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Zuyuan Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Haoyun Yu
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Xiaodi Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Xike Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P.R. China
| |
Collapse
|
16
|
Cheng S, Wang KH, Zhou L, Sun ZJ, Zhang L. Tailoring Biomaterials Ameliorate Inflammatory Bone Loss. Adv Healthc Mater 2024; 13:e2304021. [PMID: 38288569 DOI: 10.1002/adhm.202304021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Indexed: 05/08/2024]
Abstract
Inflammatory diseases, such as rheumatoid arthritis, periodontitis, chronic obstructive pulmonary disease, and celiac disease, disrupt the delicate balance between bone resorption and formation, leading to inflammatory bone loss. Conventional approaches to tackle this issue encompass pharmaceutical interventions and surgical procedures. Nevertheless, pharmaceutical interventions exhibit limited efficacy, while surgical treatments impose trauma and significant financial burden upon patients. Biomaterials show outstanding spatiotemporal controllability, possess a remarkable specific surface area, and demonstrate exceptional reactivity. In the present era, the advancement of emerging biomaterials has bestowed upon more efficacious solutions for combatting the detrimental consequences of inflammatory bone loss. In this review, the advances of biomaterials for ameliorating inflammatory bone loss are listed. Additionally, the advantages and disadvantages of various biomaterials-mediated strategies are summarized. Finally, the challenges and perspectives of biomaterials are analyzed. This review aims to provide new possibilities for developing more advanced biomaterials toward inflammatory bone loss.
Collapse
Affiliation(s)
- Shi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Kong-Huai Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| |
Collapse
|
17
|
Gao H, Yao Y, Li C, Zhang J, Yu H, Yang X, Shen J, Liu Q, Xu R, Gao X, Ding D. Fused Azulenyl Squaraine Derivatives Improve Phototheranostics in the Second Near-Infrared Window by Concentrating Excited State Energy on Non-Radiative Decay Pathways. Angew Chem Int Ed Engl 2024; 63:e202400372. [PMID: 38445354 DOI: 10.1002/anie.202400372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
The second near-infrared (NIR-II) theranostics offer new opportunities for precise disease phototheranostic due to the enhanced tissue penetration and higher maximum permissible exposure of NIR-II light. However, traditional regimens lacking effective NIR-II absorption and uncontrollable excited-state energy decay pathways often result in insufficient theranostic outcomes. Herein a phototheranostic nano-agent (PS-1 NPs) based on azulenyl squaraine derivatives with a strong NIR-II absorption band centered at 1092 nm is reported, allowing almost all absorbed excitation energy to dissipate through non-radiative decay pathways, leading to high photothermal conversion efficiency (90.98 %) and strong photoacoustic response. Both in vitro and in vivo photoacoustic/photothermal therapy results demonstrate enhanced deep tissue cancer theranostic performance of PS-1 NPs. Even in the 5 mm deep-seated tumor model, PS-1 NPs demonstrated a satisfactory anti-tumor effect in photoacoustic imaging-guided photothermal therapy. Moreover, for the human extracted tooth root canal infection model, the synergistic outcomes of the photothermal effect of PS-1 NPs and 0.5 % NaClO solution resulted in therapeutic efficacy comparable to the clinical gold standard irrigation agent 5.25 % NaClO, opening up possibilities for the expansion of NIR-II theranostic agents in oral medicine.
Collapse
Affiliation(s)
- Heqi Gao
- College of Physics and Optoelectronic Engineering, College of Materials Science and Engineering, Center for AIE Research, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, and College of Life Sciences, Nankai University, Tianjin, 300071, P.R. China
| | - Yiming Yao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P.R. China
| | - Cong Li
- Central Laboratory of Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, P.R. China
| | - Jingtian Zhang
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, and College of Life Sciences, Nankai University, Tianjin, 300071, P.R. China
| | - Haoyun Yu
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Xiaodi Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Jing Shen
- Central Laboratory of Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, P.R. China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, P.R. China
| | - Ruitong Xu
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Xike Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P.R. China
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, and College of Life Sciences, Nankai University, Tianjin, 300071, P.R. China
- Central Laboratory of Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, P.R. China
| |
Collapse
|
18
|
Sun X, Xu L, Xu HD, Xie L, Wang R, Yang Z, Zhan W, Shen S, Liang G. Intracellular Nitroreductase-Triggered "On" and "Enhanced" Photoacoustic Signals for Sensitive Imaging of Tumor Hypoxia. Adv Healthc Mater 2024; 13:e2303472. [PMID: 37985951 DOI: 10.1002/adhm.202303472] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/04/2023] [Indexed: 11/22/2023]
Abstract
Current molecular photoacoustic (PA) probes are designed with either stimulus-turned "on" or assembly-enhanced signals to trace biological analytes/events. PA probes based on the nature-derived click reaction between 2-cyano-6-aminobenzothiazole (CBT) and cysteine (Cys) (i.e., CBT-Cys click reaction) possess both "turn-on" and "enhanced" PA signals; and thus, should have higher sensitivity. Nevertheless, such PA probes, particularly those for sensitive imaging of tumor hypoxia, remain scarce. Herein, a PA probe NI-Cys(StBu)-Dap(IR780)-CBT (NI-C-CBT) is rationally designed, which after being internalized by hypoxic tumor cells, is cleaved by nitroreductase under the reduction condition to yield cyclic dimer C-CBT-Dimer to turn the PA signal "ON" and subsequently assembled into nanoparticles C-CBT-NPs with additionally enhanced PA signal ("Enhanced"). NI-C-CBT exhibits 1.7-fold "ON" and 3.2-fold overall "Enhanced" PA signals in vitro. Moreover, it provides 1.9-fold and 2.8-fold overall enhanced PA signals for tumor hypoxia imaging in HeLa cells and HeLa tumor-bearing mice, respectively. This strategy is expected to be widely applied to design more "smart" PA probes for sensitive imaging of important biological events in vivo in near future.
Collapse
Affiliation(s)
- Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Lingling Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hai-Dong Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Limin Xie
- Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, 325027, China
| | - Rui Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zhimou Yang
- Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, 325027, China
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Shurong Shen
- Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, 325027, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
19
|
Wang Y, Xie Y, Xue N, Xu H, Zhang D, Ji N, Chen Q. TSG-6 Inhibits the NF-κB Signaling Pathway and Promotes the Odontogenic Differentiation of Dental Pulp Stem Cells via CD44 in an Inflammatory Environment. Biomolecules 2024; 14:368. [PMID: 38540786 PMCID: PMC10968114 DOI: 10.3390/biom14030368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/17/2025] Open
Abstract
In pulpitis, dentinal restorative processes are considerably associated with undifferentiated mesenchymal cells in the pulp. This study aimed to investigate strategies to improve the odonto/osteogenic differentiation of dental pulp stem cells (DPSCs) in an inflammatory environment. After pretreatment of DPSCs with 20 ng/mL tumor necrosis factor-induced protein-6 (TSG-6), DPSCs were cultured in an inflammation-inducing solution. Real-time polymerase chain reaction and Western blotting were performed to measure the expression levels of nuclear factor kappa B (NF-κB) and odonto/osteogenic differentiation markers, respectively. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were used to assess cell proliferation and activity. Subcutaneous ectopic osteogenesis and mandibular bone cultures were performed to assess the effects of TSG-6 in vivo. The expression levels of odonto/osteogenic markers were higher in TSG-6-pre-treated DPSCs than nontreated DPSCs, whereas NF-κB-related proteins were lower after the induction of inflammation. An anti-CD44 antibody counteracted the rescue effect of TSG-6 on DPSC activity and mineralization in an inflammatory environment. Exogenous administration of TSG-6 enhanced the anti-inflammatory properties of DPSCs and partially restored their mineralization function by inhibiting NF-κB signaling. The mechanism of action of TSG-6 was attributed to its interaction with CD44. These findings reveal novel mechanisms by which DPSCs counter inflammation and provide a basis for the treatment of pulpitis.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yulang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ningning Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dunfang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Chen L, Peng M, Li H, Zhou J, He W, Hu R, Ye F, Li Y, Shi L, Liu Y. Metal-Phenolic Network with Pd Nanoparticle Nodes Synergizes Oxidase-Like and Photothermal Properties to Eradicate Oral Polymicrobial Biofilm-Associated Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306376. [PMID: 37944993 DOI: 10.1002/adma.202306376] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Designing an effective treatment strategy to combat oral diseases caused by complex polymicrobial biofilms remains a great challenge. Herein, a series of metal-phenolic network with Pd nanoparticle nodes using polyphenols as stabilizers and reducing agents is constructed. Among them, sulfonated lignin-Pd (SLS-Pd) with ultrafine size palladium nanoparticles and broadband near infrared absorption exhibit excellent oxidase-like activity and stable photothermal effect. In vitro experiments demonstrate that the superoxide radical generated by SLS-Pd oxidase-like activity exhibits selective antibacterial effects, while its photothermal effect induced hyperthermia exhibits potent antifungal properties. This difference is further elucidated by RNA-sequencing analysis and all-atom simulation. Moreover, the SLS-Pd-mediated synergistic antimicrobial system exhibits remarkable efficacy in combating various biofilms and polymicrobial biofilms. By establishing a root canal model and an oropharyngeal candidiasis model, the feasibility of the synergistic antimicrobial system in treating oral biofilm-related infections is further validated. This system provides a promising therapeutic approach for polymicrobial biofilm-associated infections in the oral cavity.
Collapse
Affiliation(s)
- Lei Chen
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengna Peng
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Huaping Li
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Jianan Zhou
- Department of Orthodontics School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Wei He
- Department of Orthodontics School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Rongdang Hu
- Department of Orthodontics School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Fangfu Ye
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuanfeng Li
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
21
|
Zhou B, Chen H, Ji C, Yin M. Regulating steric hindrances of perylenediimide to construct NIR photothermal J-aggregates with a large red-shift. NANOSCALE 2023; 15:17350-17355. [PMID: 37873593 DOI: 10.1039/d3nr03571a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Perylene diimide (PDI)-based photothermal agents (PTAs) possess excellent stability and high photothermal conversion efficiency. However, developing PDIs with strong near-infrared absorption under biological conditions remains a challenge. In this study, we introduce a novel approach to facilitate the formation of J-aggregate-based PTAs with significantly red-shifted absorption by modulating steric hindrances of PDIs. PDIA, featuring larger steric hindrances at the bay position and smaller steric hindrances at the imide position, self-assembles into J-aggregates which exhibit a remarkable red-shift of over 100 nm. After encapsulation by DPSE-PEG, PDIA nanoparticles (PDIA-NPs) demonstrated a uniform and stable size, while retaining their significant red-shift. In vitro experiments demonstrated the great potential of PDIA-NPs in photothermal therapies for tumors and thrombi under 808 nm laser irradiation. This research provides valuable insights into the design of stable J-aggregates based on PDIs suitable for biological applications, paving the way for the development of more effective PTAs.
Collapse
Affiliation(s)
- Bingcheng Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongtao Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
22
|
Diao S, Shi W, Liu Y, Liang T, Xu Z, Zhou W, Xie C, Fan Q. Iron-chelated semiconducting oligomer nanoparticles for NIR-II fluorescence imaging-guided enhanced chemodynamic/photothermal combination therapy. J Mater Chem B 2023; 11:9290-9299. [PMID: 37727138 DOI: 10.1039/d3tb01305g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Chemodynamic therapy (CDT) has attracted increasing attention owing to its high tumor specificity and low number of side effects. However, the low absolute concentration of reactive oxygen species (ROS) within tumor cells restricts the CDT efficacy. Herein, we use dihydroartemisinin (DHA) to enhance the CDT efficacy and combine photothermal therapy (PTT) to further improve the anticancer effect. To achieve such a goal, an iron-containing semiconducting oligomer nanoparticle (DHA@FePSOD) is prepared by loading DHA into a Fe3+-chelated NIR-II fluorescent semiconducting oligomer (FePSOD). The Fe3+ ion within DHA@FePSOD can be reduced to the Fe2+ ion by glutathione (GSH) and subsequently catalyze the decomposition of hydrogen peroxide (H2O2) into the highly toxic hydroxyl radical (˙OH) for CDT. The loaded DHA may be further reduced by Fe2+ and generate a DHA radical to enhance the CDT efficacy. In addition, DHA@FePSOD shows a good photothermal effect and intense NIR-II fluorescence signal under 808 nm laser irradiation. Both in vitro and in vivo studies prove the better anticancer effect of DHA@FePSOD than FePSOD, which is attributed to the loaded DHA. Furthermore, DHA@FePSOD can effectively accumulate into a tumor and delineate the tumor via NIR-II fluorescence imaging. This study thus provides an efficient approach for developing a NIR-II fluorescence imaging-guided enhanced chemodynamic/photothermal combination therapeutic nanoplatform.
Collapse
Affiliation(s)
- Shanchao Diao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wenheng Shi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yaxin Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Tingting Liang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Zhiwei Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wen Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Chen Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
23
|
Hu L, Shi L, Hu T, Chen P, Guo T, Wang C, Yang R, Ying L. Enhanced photothermal therapy performance of D-A conjugated polymers based on [1,2,3]triazolo[4,5- g]quinoxaline by manipulating molecular motion. J Mater Chem B 2023; 11:8985-8993. [PMID: 37702077 DOI: 10.1039/d3tb01438j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Donor-acceptor (D-A) conjugated polymers can favor the nonradiative thermal dissipation process, due to the formation of an intramolecular charge transfer (ICT) state resulting from the electron cloud delocalization of the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital). Thus, to realize a high extinction coefficient and excellent photothermal conversion ability for a single photothermal agent, donor-acceptor type conjugated polymers PBDT-QTz and PCDT-QTz, comprising a new electron-deficient unit 2-(2-decyltetradecyl)-6,7-dimethyl-2H-[1,2,3]triazolo [4,5-g] quinoxaline (QTz) as the acceptor and 4,8-di(thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (BDT) or 4H-cyclopenta[2,1-b:3,4-b'] dithiophene (CDT) as the donor, are designed and synthesized by manipulating intramolecular motion. The high extinction coefficient of 28.5 L g-1 cm-1 at 850 nm and the optimal photothermal conversion efficiency of 64.3% under an 808 nm laser are achieved based on PBDT-QTz. Consequently, PBDT-QTz nanoparticles can be successfully used for both in vitro and in vivo experiments. After intravenous administration and 808 nm laser irradiation, HeLa tumor-bearing mice achieve complete tumor remission without recurrence. The results provide an efficient photothermal agent by manipulating molecular motion.
Collapse
Affiliation(s)
- Liwen Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Linrui Shi
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Tianze Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Peiling Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Ting Guo
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Chunxiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen, University, Guangzhou 510060, China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
- South China Institute of Collaborative Innovation, Dongguan 523808, China
| |
Collapse
|
24
|
Zhang L, Song A, Yang QC, Li SJ, Wang S, Wan SC, Sun J, Kwok RTK, Lam JWY, Deng H, Tang BZ, Sun ZJ. Integration of AIEgens into covalent organic frameworks for pyroptosis and ferroptosis primed cancer immunotherapy. Nat Commun 2023; 14:5355. [PMID: 37660063 PMCID: PMC10475094 DOI: 10.1038/s41467-023-41121-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
Immunogenic programmed cell death, such as pyroptosis and ferroptosis, efficiently induces an acute inflammatory response and boosts antitumor immunity. However, the exploration of dual-inducers, particularly nonmetallic inducers, capable of triggering both pyroptosis and ferroptosis remains limited. Here we show the construction of a covalent organic framework (COF-919) from planar and twisted AIEgen-based motifs as a dual-inducer of pyroptosis and ferroptosis for efficient antitumor immunity. Mechanistic studies reveal that COF-919 displays stronger near-infrared light absorption, lower band energy, and longer lifetime to favor the generation of reactive oxygen species (ROS) and photothermal conversion, triggering pyroptosis. Because of its good ROS production capability, it upregulates intracellular lipid peroxidation, leading to glutathione depletion, low expression of glutathione peroxidase 4, and induction of ferroptosis. Additionally, the induction of pyroptosis and ferroptosis by COF-919 effectively inhibits tumor metastasis and recurrence, resulting in over 90% tumor growth inhibition and cure rates exceeding 80%.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Chemistry, and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Luojiashan, Wuhan, 430072, China
| | - An Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Shu-Jin Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Shu-Cheng Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jianwei Sun
- Department of Chemistry, and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Luojiashan, Wuhan, 430072, China.
| | - Ben Zhong Tang
- Department of Chemistry, and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
25
|
Xiong Y, Rao Y, Hu J, Luo Z, Chen C. Nanoparticle-Based Photothermal Therapy for Breast Cancer Noninvasive Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305140. [PMID: 37561994 DOI: 10.1002/adma.202305140] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Rapid advancements in materials science and nanotechnology, intertwined with oncology, have positioned photothermal therapy (PTT) as a promising noninvasive treatment strategy for cancer. The breast's superficial anatomical location and aesthetic significance render breast cancer a particularly pertinent candidate for the clinical application of PTT following melanoma. This review comprehensively explores the research conducted on the various types of nanoparticles employed in PTT for breast cancer and elaborates on their specific roles and mechanisms of action. The integration of PTT with existing clinical therapies for breast cancer is scrutinized, underscoring its potential for synergistic outcomes. Additionally, the mechanisms underlying PTT and consequential modifications to the tumor microenvironment after treatment are elaborated from a medical perspective. Future research directions are suggested, with an emphasis on the development of integrative platforms that combine multiple therapeutic approaches and the optimization of nanoparticle synthesis for enhanced treatment efficacy. The goal is to push the boundaries of PTT toward a comprehensive, clinically applicable treatment for breast cancer.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Yan Rao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, Hubei, 430000, P. R. China
| | - Jiawei Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Zixuan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| |
Collapse
|
26
|
Jiang T, Su W, Li Y, Jiang M, Zhang Y, Xian CJ, Zhai Y. Research Progress on Nanomaterials for Tissue Engineering in Oral Diseases. J Funct Biomater 2023; 14:404. [PMID: 37623649 PMCID: PMC10455101 DOI: 10.3390/jfb14080404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Due to their superior antibacterial properties, biocompatibility and high conductivity, nanomaterials have shown a broad prospect in the biomedical field and have been widely used in the prevention and treatment of oral diseases. Also due to their small particle sizes and biodegradability, nanomaterials can provide solutions for tissue engineering, especially for oral tissue rehabilitation and regeneration. At present, research on nanomaterials in the field of dentistry focuses on the biological effects of various types of nanomaterials on different oral diseases and tissue engineering applications. In the current review, we have summarized the biological effects of nanoparticles on oral diseases, their potential action mechanisms and influencing factors. We have focused on the opportunities and challenges to various nanomaterial therapy strategies, with specific emphasis on overcoming the challenges through the development of biocompatible and smart nanomaterials. This review will provide references for potential clinical applications of novel nanomaterials in the field of oral medicine for the prevention, diagnosis and treatment of oral diseases.
Collapse
Affiliation(s)
- Tong Jiang
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Wen Su
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yan Li
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Mingyuan Jiang
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yonghong Zhang
- Department of Orthopaedics, The 2nd Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Cory J. Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| |
Collapse
|
27
|
Wang Q, Zhang X, Tang Y, Xiong Y, Wang X, Li C, Xiao T, Lu F, Xu M. High-Performance Hybrid Phototheranostics for NIR-IIb Fluorescence Imaging and NIR-II-Excitable Photothermal Therapy. Pharmaceutics 2023; 15:2027. [PMID: 37631241 PMCID: PMC10457990 DOI: 10.3390/pharmaceutics15082027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Photothermal therapy operated in the second near-infrared (NIR-II, 1000-1700 nm) window and fluorescence imaging in the NIR-IIb (1500-1700 nm) region have become the most promising techniques in phototheranostics. Their combination enables simultaneous high-resolution optical imaging and deep-penetrating phototherapy, which is essential for high-performance phototheranostics. Herein, carboxyl-functionalized small organic photothermal molecules (Se-TC) and multi-layered NIR-IIb emissive rare-earth-doped nanoparticles (NaYF4:Yb,Er,Ce@NaYF4:Yb,Nd@NaYF4, RENP) were rationally designed and successfully synthesized. Then, high-performance hybrid phototheranostic nanoagents (Se-TC@RENP@F) were easily constructed through the coordination between Se-TC and RENP and followed by subsequent F127 encapsulation. The carboxyl groups of Se-TC can offer strong binding affinity towards rare-earth-doped nanoparticles, which help improving the stability of Se-TC@RENP@F. The multilayered structure of RENP largely enhance the NIR-IIb emission under 808 nm excitation. The obtained Se-TC@RENP@F exhibited high 1064 nm absorption (extinction coefficient: 24.7 L g-1 cm-1), large photothermal conversion efficiency (PCE, 36.9%), good NIR-IIb emission (peak: 1545 nm), as well as great photostability. Upon 1064 nm laser irradiation, high hyperthermia can be achieved to kill tumor cells efficiently. In addition, based on the excellent NIR-IIb emission of Se-TC@RENP@F, in vivo angiography and tumor detection can be realized. This work provides a distinguished paradigm for NIR-IIb-imaging-guided NIR-II photothermal therapy and establishes an artful strategy for high-performance phototheranostics.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xinmin Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Youguang Tang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanwei Xiong
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xu Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Chunlai Li
- Department of Liver Surgery, Shanghai Institute of Transplantation, Shanghai Engineering Research Center of Transplantation and Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tangxin Xiao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Feng Lu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Mengze Xu
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
28
|
Zheng Q, Duan Z, Zhang Y, Huang X, Xiong X, Zhang A, Chang K, Li Q. Conjugated Polymeric Materials in Biological Imaging and Cancer Therapy. Molecules 2023; 28:5091. [PMID: 37446753 DOI: 10.3390/molecules28135091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Conjugated polymers (CPs) have attracted much attention in the fields of chemistry, medicine, life science, and material science. Researchers have carried out a series of innovative researches and have made significant research progress regarding the unique photochemical and photophysical properties of CPs, expanding the application range of polymers. CPs are polymers formed by the conjugation of multiple repeating light-emitting units. Through precise control of their structure, functional molecules with different properties can be obtained. Fluorescence probes with different absorption and emission wavelengths can be obtained by changing the main chain structure. By modifying the side chain structure with water-soluble groups or selective recognition molecules, electrostatic interaction or specific binding with specific targets can be achieved; subsequently, the purpose of selective recognition can be achieved. This article reviews the research work of CPs in cell imaging, tumor diagnosis, and treatment in recent years, summarizes the latest progress in the application of CPs in imaging, tumor diagnosis, and treatment, and discusses the future development direction of CPs in cell imaging, tumor diagnosis, and treatment.
Collapse
Affiliation(s)
- Qinbin Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zhuli Duan
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ying Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xinqi Huang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xuefan Xiong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ang Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| | - Kaiwen Chang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiong Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| |
Collapse
|
29
|
Li T, Luo Y, Wu S, Xia X, Zhao H, Xu X, Luo X. Super-Rapid In Situ Formation of a Silver Ion-Induced Supramolecular Hydrogel with Efficient Antibacterial Activity for Root Canal Disinfection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37321566 DOI: 10.1021/acsami.3c03335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supramolecular hydrogels prepared using low-molecular-weight gelators have attracted considerable attention for biomedical applications. However, in situ supramolecular hydrogels are limited in terms of their prolonged gelation time and/or unstable nature at high temperatures. In this study, we constructed a stable supramolecular Ag-isoG hydrogel through super-rapid in situ formation, wherein hydrogelation process occurred instantaneously upon mixing isoG and Ag+ within 1 s under ambient conditions. Interestingly, unlike most nucleoside-based supramolecular hydrogels, this Ag-isoG hydrogel remains stable even at a high temperature (100 °C). Moreover, the as-designed hydrogel demonstrated significant antibacterial activity against Staphylococcus aureus and the oral bacterium Streptococcus mutans owing to the strong chelating ability of Ag ions, and the hydrogel exhibited relatively low cytotoxicity in root canal and an easy removal feature by saline. The hydrogel was then applied to a root canal infection model, which demonstrated strong antibacterial activity against Enterococcus faecalis, with performance even better than that of the regular calcium hydroxide paste. This feature makes the Ag-isoG hydrogel a prospective alternative material as intracanal medicaments for root canal treatment.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yu Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Shihong Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xin Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiaobo Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
30
|
Xu W, Yu Y, Li K, Shen L, Liu X, Chen Y, Feng J, Wang W, Zhao W, Shao J, Ma B, Wu J, Ge S, Liu H, Li J. Surface-Confined Piezocatalysis Inspired by ROS Generation of Mitochondria Respiratory Chain for Ultrasound-Driven Noninvasive Elimination of Implant Infection. ACS NANO 2023; 17:9415-9428. [PMID: 37134103 DOI: 10.1021/acsnano.3c01480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Implant-associated infections (IAI) are great challenges to medical healthcare and human wellness, yet current clinical treatments are limited to the use of antibiotics and physical removal of infected tissue or the implant. Inspired by the protein/membrane complex structure and its generation of reactive oxygen species in the mitochondria respiration process of immune cells during bacteria invasion, we herein propose a metal/piezoelectric nanostructure embedded on the polymer implant surface to achieve efficient piezocatalysis for combating IAI. The piezoelectricity-enabled local electron discharge and the induced oxidative stress generated at the implant-bacteria interface can efficiently inhibit the activity of the attachedStaphylococcus aureusby cell membrane disruption and sugar energy exhaustion, possess high biocompatibility, and eliminate the subcutaneous infection by simply applying the ultrasound stimulation. For further demonstration, the treatment of root canal reinfection with simplified procedures has been achieved by using piezoelectric gutta-percha implanted in ex vivo human teeth. This surface-confined piezocatalysis antibacterial strategy, which takes advantage of the limited infection interspace, easiness of polymer processing, and noninvasiveness of sonodynamic therapy, has potential applications in IAI treatment.
Collapse
Affiliation(s)
- Wenxiu Xu
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Yang Yu
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Kai Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Lanbo Shen
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Xiaoyi Liu
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Yi Chen
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Junkun Feng
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Wenjun Wang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Weiwei Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Jinlong Shao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Baojin Ma
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Junling Wu
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Shaohua Ge
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
31
|
Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023. [PMID: 37133878 DOI: 10.1021/acs.chemrev.3c00159] [Citation(s) in RCA: 338] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.
Collapse
Affiliation(s)
- Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Ruan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System & Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jingtian Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Runfang Fu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Hongxing Xu
- School of Physics and Technology and School of Microelectronics, Wuhan University, Wuhan 430072, Hubei, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan, China
- Wuhan Institute of Quantum Technology, Wuhan 430205, Hubei, China
| |
Collapse
|
32
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
33
|
Li T, Wu M, Wei Q, Xu D, He X, Wang J, Wu J, Chen L. Conjugated Polymer Nanoparticles for Tumor Theranostics. Biomacromolecules 2023; 24:1943-1979. [PMID: 37083404 DOI: 10.1021/acs.biomac.2c01446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Water-dispersible conjugated polymer nanoparticles (CPNs) have demonstrated great capabilities in biological applications, such as in vitro cell/subcellular imaging and biosensing, or in vivo tissue imaging and disease treatment. In this review, we summarized the recent advances of CPNs used for tumor imaging and treatment during the past five years. CPNs with different structures, which have been applied to in vivo solid tumor imaging (fluorescence, photoacoustic, and dual-modal) and treatment (phototherapy, drug carriers, and synergistic therapy), are discussed in detail. We also demonstrated the potential of CPNs as cancer theranostic nanoplatforms. Finally, we discussed current challenges and outlooks in this field.
Collapse
Affiliation(s)
- Tianyu Li
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Mengqi Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Qidong Wei
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Dingshi Xu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuehan He
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiasi Wang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, SAR, China
| | - Lei Chen
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
34
|
Huang S, Qi M, Chen Y. Photonics-based treatments: Mechanisms and applications in oral infectious diseases. Front Microbiol 2023; 14:948092. [PMID: 36846804 PMCID: PMC9950554 DOI: 10.3389/fmicb.2023.948092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Infectious diseases remain a serious global challenge threatening human health. Oral infectious diseases, a major neglected global problem, not only affect people's lifestyles but also have an intimate association with systemic diseases. Antibiotic therapy is a common treatment. However, the emergence of new resistance problems hindered and enhanced the complication of the treatment. Currently, antimicrobial photodynamic therapy (aPDT) has long been the topic of intense interest due to the advantage of being minimally invasive, low toxicity, and high selectivity. aPDT is also becoming increasingly popular and applied in treating oral diseases such as tooth caries, pulpitis, periodontal diseases, peri-implantitis, and oral candidiasis. Photothermal therapy (PTT), another phototherapy, also plays an important role in resisting resistant bacterial and biofilm infections. In this mini-review, we summarize the latest advances in photonics-based treatments of oral infectious diseases. The whole review is divided into three main parts. The first part focuses on photonics-based antibacterial strategies and mechanisms. The second part presents applications for photonics-based treatments of oral infectious diseases. The last part discusses present problems in current materials and future perspectives.
Collapse
Affiliation(s)
- Shan Huang
- Department of Stomatology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Manlin Qi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China,*Correspondence: Manlin Qi, ✉
| | - Yingxue Chen
- Department of Stomatology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| |
Collapse
|
35
|
Liu J, Xiong Y, Gao Y, Xu X, Chen K, Shen Q, Huang W, Fan Q, Wang Q. Molecular Oligomerization and Donor Engineering Strategies for Achieving Superior NIR-II Fluorescence Imaging and Thermotherapy under 1064 nm Laser Irradiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205640. [PMID: 36366913 DOI: 10.1002/smll.202205640] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
An enormous challenge still exists for designing molecules with the second near-infrared (NIR-II, 1000-1700 nm) window absorption, NIR-II fluorescence emission, and batch-to-batch reproducibility, which is the premise for high-performance NIR-II phototheranostics. Although organic small molecules and polymers have been largely explored for phototheranostics, it is difficult to satisfy the above three elements simultaneously. In this work, molecular oligomerization (the general structure is S-D-A-D'-A-D-S) and donor engineering (changing the donor linker D') strategies are applied to design phototheranostic agents. Such strategies are proved to be efficient in adjusting molecular configuration and energy level, affecting the optical and thermal properties. Three oligomers (O-T, O-DT, and O-Q) are further prepared into water-soluble nanoparticles (NPs). Particularly, the O-T NPs exhibit a higher molar extinction coefficient at 1064 nm (≈4.3-fold of O-DT NPs and ≈4.8-fold of O-Q NPs). Furthermore, the O-T NPs show the highest NIR-II fluorescence brightness and heating capacity (PCE = 73%) among the three NPs under 1064 nm laser irradiation and served as agents for NIR-II imaging guided in vivo photothermal therapy. Overall, by using molecular oligomerization and donor engineering strategies, a powerful example of constructing high-performance NIR-II phototheranostics for clinical translation is given.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yanwei Xiong
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yicong Gao
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xingpeng Xu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Kai Chen
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Qingming Shen
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Quli Fan
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Qi Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| |
Collapse
|
36
|
Kamya E, Lu Z, Cao Y, Pei R. Effective design of organic luminogens for near-infrared-II fluorescence imaging and photo-mediated therapy. J Mater Chem B 2022; 10:9770-9788. [PMID: 36448479 DOI: 10.1039/d2tb01903e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Due to their electron coupling capability, organic luminescent materials exhibit powerful optoelectronic features that are responsible for their light-harvesting and light-amplification properties. The extensive modification of conjugated systems has shown significant improvement in their photonic properties thus broadening their applicability in photo-mediated imaging and photo-based treatment. Organic luminogens with emission in the near-infrared second region are found attractive not only for their deeper penetrating power but also for accurate visual imaging superiority with higher temporal resolution and spatial resolution suitable for tumor precision treatment. In this review, we underscore the latest development in organic luminogens (conjugated polymers and small molecules), focusing on chemical design, molecular engineering, and their applications in the scope of bioimaging followed by photo-assisted treatment, including photodynamic therapy (PDT), photothermal therapy (PTT), and immunotherapy ablation. Organic luminogens integrated with an aggregation-induced emission feature significantly optimize their physicochemical properties to act as quintessential nanoplatforms for controllable image-guided therapy. In conclusion, we clarify the limitations and challenges and provide insights into how to design organic dyes with improved safety for potential clinical applications.
Collapse
Affiliation(s)
- Edward Kamya
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China. .,CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, People's Republic of China
| | - Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China. .,CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, People's Republic of China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, People's Republic of China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China. .,CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou, 215123, People's Republic of China
| |
Collapse
|
37
|
Qu J, Zhang Y, Cai Z, Tong B, Xie H, Dong Y, Shi J. An acceptor-shielding strategy of photosensitizers for enhancing the generation efficiency of type I reactive oxygen species and the related photodynamic immunotherapy. NANOSCALE 2022; 14:14064-14072. [PMID: 36053244 DOI: 10.1039/d2nr02273g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing efficient photosensitizers (PSs) that can generate type I reactive oxygen species (ROS) under illumination is considered an effective way to improve photodynamic therapy (PDT) outcomes due to the hypoxic nature of the tumor environment, but also is very challenging. Herein, a new PS of the multiarylpyrrole (MAP) derivative with a typical donor-acceptor structure was synthesized to efficiently generate type I ROS by using an acceptor-shielding strategy in their aggregated state. The enhanced generation mechanism of type I ROS originated from its ultralong triplet lifetime and the narrow singlet-triplet energy gap of the MAP. More importantly, type I ROS can transform protumoral M2 macrophages (M2) into antitumoral M1 macrophages (M1), which showed synergistic immunotherapy in in vivo experiments. Therefore, introducing shielding groups into acceptors provides general guidance for developing efficient PSs in the aggregation state for clinical PDT.
Collapse
Affiliation(s)
- Jiamin Qu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yahui Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China.
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Haiyan Xie
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
38
|
Song J, Hong L, Zou X, Alshawwa H, Zhao Y, Zhao H, Liu X, Si C, Zhang Z. A Self-Supplying H 2O 2 Modified Nanozyme-Loaded Hydrogel for Root Canal Biofilm Eradication. Int J Mol Sci 2022; 23:ijms231710107. [PMID: 36077503 PMCID: PMC9456354 DOI: 10.3390/ijms231710107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The success of root canal therapy depends mainly on the complete elimination of the root canal bacterial biofilm. The validity and biocompatibility of root canal disinfectant materials are imperative for the success of root canal treatment. However, the insufficiency of the currently available root canal disinfectant materials highlights that more advanced materials are still needed. In this study, a nanozyme-loaded hydrogel (Fe3O4-CaO2-Hydrogel) was modified and analyzed as a root canal disinfectant material. Fe3O4-CaO2-Hydrogel was fabricated and examined for its release profile, biocompatibility, and antibacterial activity against E. faecalis and S. sanguis biofilms in vitro. Furthermore, its efficiency in eliminating the root canal bacterial biofilm removal in SD rat teeth was also evaluated. The results in vitro showed that Fe3O4-CaO2-Hydrogel could release reactive oxygen species (ROS). Moreover, it showed good biocompatibility, disrupting bacterial cell membranes, and inhibiting exopolysaccharide production (p < 0.0001). In addition, in vivo results showed that Fe3O4-CaO2-Hydrogel strongly scavenged on root canal biofilm infection and prevented further inflammation expansion (p < 0.05). Altogether, suggesting that Fe3O4-CaO2-Hydrogel can be used as a new effective biocompatible root canal disinfectant material. Our research provides a broad prospect for clinical root canal disinfection, even extended to other refractory infections in deep sites.
Collapse
Affiliation(s)
- Jiazhuo Song
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Lihua Hong
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
| | - Xinying Zou
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Hamed Alshawwa
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Yuanhang Zhao
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Hong Zhao
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Xin Liu
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Chao Si
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Zhimin Zhang
- Department of Endodontics, School of Dentistry, Jilin University, Changchun 130021, China
- Correspondence:
| |
Collapse
|
39
|
Xu N, Zhang X, Qi T, Wu Y, Xie X, Chen F, Shao D, Liao J. Biomedical applications and prospects of temperature‐orchestrated photothermal therapy. MEDCOMM – BIOMATERIALS AND APPLICATIONS 2022; 1. [DOI: 10.1002/mba2.25] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/10/2022] [Indexed: 01/06/2025]
Abstract
AbstractPhotothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since the photothermal killing of cells/bacteria showed different patterns of death depending on the varying temperature in PTT, the temperature change of PTT is vital to cell/tissue response in scientific research and clinical application. On one hand, mild PTT has received substantial attention in the treatment of cancer and soft/hard tissue repair. On the other hand, the high temperature induced by PTT is capable of antibacterial capacity, which is better than conventional antibiotic therapy with drug resistance. Herein, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, mainly covering the temperature ranges of 40–42°C, 43–50°C, and over 50°C. We highlight the biological mechanism of PTT and the latest progress in the treatment of different diseases. Finally, we conclude by discussing the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT. Given a deep understanding of the interaction between temperature and biology, rationally designed biomaterials with sophisticated photothermal responsiveness will benefit the outcomes of personalized PTT toward various diseases.
Collapse
Affiliation(s)
- Nuo Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Tingting Qi
- Department of Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xi Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau China
| | - Dan Shao
- School of Medicine South China University of Technology Guangzhou Guangdong China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
40
|
Wang Q, Xia H, Xiong Y, Zhang X, Cai J, Chen C, Gao Y, Lu F, Fan Q. Simple Preparation of Near-infrared-II Organic Small Molecule-based Phototheranostics by Manipulation of the Electron-donating Unit. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22060267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|