1
|
Miao C, Shi X, Li Z, Zhang X, Wang X, Yang D, Wang Q. Norfloxacin-Derived Carbon Dots with Rich Electron Pyrrolic Nitrogen for Copper Corrosion Inhibition and Antibacterial Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8951-8964. [PMID: 40132165 DOI: 10.1021/acs.langmuir.5c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The coexisting anticorrosion and antibacterial functions are of great significance for the marine industry. Controllable surface negative charge and wettability of pyrrolic nitrogen-doped carbon dots (NCDs) derived from the single antibiotic norfloxacin precursor with a special nitrogen heterocyclic structure were successfully fabricated through the hydrothermal route. The incorporated functional groups and chemical bonds, surface charge, mechanism of pyrrole nitrogen ring formation at the molecular level, and antibacterial properties of NCDs were revealed by FTIR, XPS, zeta potential, LC-MS, and electrochemical techniques. The present corrosion efficiency (96.1%) in 3.5 wt % NaCl saline solution in the presence of air and N2 or UO22+ is higher than most previously reported values. The proposed electron transfer corrosion mechanism suggests that the negative charge domains of NCDs were strengthened by the saltwater electron sink effect to repel chlorine and simultaneously a large number of electrons of NCDs were injected into copper as the electron reservoir based on energy-level matching, thereby avoiding Cu0 oxidization. Current works provide a guideline for exploring novel eco-friendly and highly efficient NCD corrosion inhibitor materials with antibacterial properties for safeguarding metals in seawater.
Collapse
Affiliation(s)
- Caiqin Miao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyue Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zhijian Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | | | - Xinzhi Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Chongqing Research Institute of HIT, Chongqing 400714, China
| | - Depeng Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
2
|
Pan D, Han Z, Lei J, Niu Y, Liu H, Shin S, Liu C, Guo Z. Core-shell structured BN/SiO 2 nanofiber membrane featuring with dual-effect thermal management and flame retardancy for extreme space thermal protection. Sci Bull (Beijing) 2025; 70:722-732. [PMID: 39827028 DOI: 10.1016/j.scib.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
With the rapid progress of aerospace frontier engineering, the extreme space thermal environment has brought severe challenges to astronauts' space suits, putting forward higher requirements for thermal protection materials. On this basis, a unique core-shell structured hexagonal boron nitride (h-BN)/silicon dioxide (SiO2) nanofiber membrane (HS) was prepared using the coaxial electrospinning method, of which both the thermal insulation SiO2 nanofiber cortex and the passive radiation cooling (PRC) h-BN nanofiber core make it a promising dual-effect thermal management material. Especially, when the amount of h-BN is 0.9 g, the resultant HS (HS0.9) exhibits astonishing low thermal conductivity of 0.026 W m-1 K-1 and high reflectivity and emissivity of exceeding 90% over an extremely wide range. The expected dual-effect thermal management performance enables the HS to have an ideal cooling effect under both high sunlight intensity and strong light radiation. In addition, HS also shows excellent flame retardant performance arising from the excellent high-temperature stability of h-BN and SiO2. What is more, the tensile strength of HS0.9 was also significantly increased from 0.42 to 7.2 MPa by encapsulating polyimide through vacuum filtration. Therefore, the research results of this work provide innovative highlights for high-temperature protection in daily life and even extreme space environments.
Collapse
Affiliation(s)
- Duo Pan
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Ziyuan Han
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Junting Lei
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yutao Niu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hu Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, China.
| | - Sunmi Shin
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Chuntai Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhanhu Guo
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| |
Collapse
|
3
|
Feng Y, Wang X, Dai Y, Feng S, Li L, You R. Silk Nanofibers/Carbon Nanotube Conductive Aerogel. Macromol Rapid Commun 2025; 46:e2400702. [PMID: 39545858 DOI: 10.1002/marc.202400702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Natural silk nanofibers (SNF) are attractive conductive substrates due to their high aspect ratio, outstanding mechanical strength, excellent biocompatibility, and controllable degradability. However, the inherently non-conductivity severely restricts the potential sensor application of SNF-based aerogels. In this work, the conductive nanofibrous aerogels with low-density achieved through freeze-drying by dispersing carbon nanotubes (CNT) into SNF suspension. The addition of CNT significantly increases the conductivity with improved mechanical properties of composite aerogels. SEM results reveal that the distinct hierarchical structure comprising micropores and nanofibrous networks within the pores is formed when CNT content reached 30%. Furthermore, increased cell viability suggested the excellent biocompatibility of SNF-CNT-based conductive aerogel for tissue-engineering applications. Subsequently, the elastic water-borne polyurethane (WPU) is incorporated to SNF-CNT system to construct aerogel with good sensing properties. The introduction of WPU demonstrates enhanced compressive performances and an exceptionally high elastic recovery ratio of 99.8%, thereby exhibiting a stable and lossless strain-sensing signal output at 5% strain. This study provides a feasible choice and strategy for exploring the potential application of SNF in functional aerogels.
Collapse
Affiliation(s)
- Yanfei Feng
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Xiaotian Wang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Yunfeng Dai
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Siying Feng
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Lechen Li
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Renchuan You
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| |
Collapse
|
4
|
Deng K, Luo R, Chen Y, Liu X, Xi Y, Usman M, Jiang X, Li Z, Zhang J. Electrical Stimulation Therapy - Dedicated to the Perfect Plastic Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409884. [PMID: 39680745 DOI: 10.1002/advs.202409884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Tissue repair and reconstruction are a clinical difficulty. Bioelectricity has been identified as a critical factor in supporting tissue and cell viability during the repair process, presenting substantial potential for clinical application. This review delves into various sources of electrical stimulation and identifies appropriate electrode materials for clinical use. It also highlights the biological mechanisms of electrical stimulation at both the subcellular and cellular levels, elucidating how these interactions facilitate the repair and regeneration processes across different organs. Moreover, specific electrode materials and stimulation sources are outlined, detailing their impact on cellular activity. The future development trends are projected from two perspectives: the optimization of equipment performance and the fulfillment of clinical demands, focusing on the feasibility, safety, and cost-effectiveness of technologies.
Collapse
Affiliation(s)
- Kexin Deng
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ruizeng Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaoqiang Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanyin Xi
- A Breast Disease Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Muhammad Usman
- Department of Plastic Surgery and Burn, Central Hospital Affiliated with Chongqing University of Technology, Chongqing, 400054, P.R. China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhou Li
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
5
|
Wang J, Bi S, Wei L, Shen Y, Meng F, Zhang Y, Tan X. Unveiling the critical roles of nascent MnO 2 in accelerating permanganate carbocatalysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136439. [PMID: 39531815 DOI: 10.1016/j.jhazmat.2024.136439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
To probe the underlying mechanisms of carbocatalysis in enhanced permanganate (PM) oxidation and identify the exact roles of nascent MnO2, graphene aerogels (GA) were fabricated to activate PM for naproxen (NPX) degradation. All the three GA samples could accelerate NPX oxidation by PM, the rate constants and reaction stoichiometric efficiency (RSE) followed the order of GA900 > GA600 > GA300. Mechanistic studies revealed that Mn(VI), Mn(V) and Mn(III) were not the major reactive species involved in NPX oxidation, but highlighted the essential contribution of electron transfer pathway (ETP) mediated directly by GA and indirectly by nascent MnO2. For GA300 with strong electron-donating capability, it mainly served as the electron donor for PM decomposition, and indirectly oxidized NPX via nascent MnO2 mediated ETP, thereby exhibiting inferior RSE as well as mediocre recycling performance. GA600 and GA900 could serve as the electron shuttle to directly mediate the ETP for NPX degradation, the nascent MnO2 accumulated on GA framework during the reaction would also mediate the ETP from NPX to PM, thus displaying an obvious accelerating recycling performance. This work provides novel insights into the structure-dominated PM carbocatalysis, which contributes better to development of promising carbocatalysts and utilization of nascent MnO2.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Simeng Bi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Li Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fanpeng Meng
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Xiaoyao Tan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China; Department of Chemical Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
6
|
Denk J, Liao X, Dulle M, Schafföner S, Förster S, Greiner A, Motz G, Agarwal S. Synergistic enhancement of thermomechanical properties and oxidation resistance in aligned Co-continuous carbon-ceramic hybrid fibers. MATERIALS HORIZONS 2024; 11:5777-5785. [PMID: 39290061 DOI: 10.1039/d4mh00956h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Carbon fibers are highly valued for their lightweight characteristics, outstanding mechanical properties, and cost-efficiency. However, their limited oxidation resistance and low thermomechanical stability in hot air impose constraints on their utilization. Here, we present an approach to simultaneously achieve high thermomechanical properties and high-temperature oxidation resistance in carbon-ceramic hybrid fibers featuring a highly aligned co-continuous topological structure through a continuous process. These hybrid fibers exhibit superior mechanical properties compared to pure carbon fibers with the same diameter (20 μm), including a tensile strength of 2.0 ± 0.2 GPa, Young's modulus of 175 ± 34 GPa, and elongation at break of 1.3 ± 0.2%. Moreover, when subjected to thermal exposure under stress loading conditions in air, the ceramic constituents form a protective oxidized ceramic layer that effectively mitigates thermal oxidation and mechanical loading effects at elevated temperatures, surpassing the performance of carbon fibers. Our discovery offers a promising avenue for bridging the performance gap between cost-effective high-strength carbon fibers and expensive SiC counterparts with exceptional oxidation resistance, which can be applied in many fields wherever high thermomechanical loading and oxidation-resistant properties are important.
Collapse
Affiliation(s)
- Jakob Denk
- Chair of Ceramic Materials Engineering, University of Bayreuth, Bayreuth 95440, Germany.
| | - Xiaojian Liao
- Macromolecular Chemistry 2 and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95440, Germany.
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Martin Dulle
- JCNS-1 Neutron Scattering and Soft Matter, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Stefan Schafföner
- Chair of Ceramic Materials Engineering, University of Bayreuth, Bayreuth 95440, Germany.
| | - Stephan Förster
- JCNS-1 Neutron Scattering and Soft Matter, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Andreas Greiner
- Macromolecular Chemistry 2 and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95440, Germany.
| | - Günter Motz
- Chair of Ceramic Materials Engineering, University of Bayreuth, Bayreuth 95440, Germany.
| | - Seema Agarwal
- Macromolecular Chemistry 2 and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95440, Germany.
| |
Collapse
|
7
|
Miao C, Wang Q, Yang S, Tang Y, Liu X, Lu S. Hydrothermal route upcycling surgical masks into dual-emitting carbon dots as ratiometric fluorescent probe for Cr (VI) and corrosion inhibitor in saline solution. Talanta 2024; 275:126070. [PMID: 38678920 DOI: 10.1016/j.talanta.2024.126070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024]
Abstract
Exploration effective route to convert plastic waste into valuable carbon dots with bifunction of metal fluorescence monitoring and corrosion protection in seawater is promising. Herein, using "white-pollution" polypropylene surgical masks as a single precursor, dual-emitting carbon dots (CDs) with excellent ratiometric fluorescent sensitivity and corrosion inhibitor efficiency were fabricated with high yield (∼100 %) by a one-pot in situ acid oxidation hydrothermal strategy without post-treatment and organic solvents. Chemical, structural, morphological, optical properties and the Cr (VI) detection and Cu inhibition mechanism of the synthesized CDs had been systematically studied. Furthermore, a dual-response-OFF proportional fluorescent probe had been developed for the detection of the analyte Cr (VI) with a low detection limit of 24 nM. Additionally, the corrosion inhibition efficiency of the prepared CDs reached approximately 94.01 % for Cu substrate in 3.5 wt% NaCl electrolyte under a CDs concentration of 200 mg/L, which is higher than that of most previous reports.
Collapse
Affiliation(s)
- Caiqin Miao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Qun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Shuang Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yihui Tang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiyan Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Songtao Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
8
|
Zheng YQ, Sun PX, Zhang XY, Li NW, Wu L, Luan D, Zhang X, Lou XWD, Yu L. Decoration of Ag Species into Reduced Graphene Oxide Foam as a Superelastic and Robust Host toward Stable Zn Metal Anodes under Dwell-Fatigue Condition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405906. [PMID: 38943439 DOI: 10.1002/adma.202405906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/15/2024] [Indexed: 07/01/2024]
Abstract
Deep-sea equipment usually operates under dwell-fatigue condition, which means the equipped energy storage devices must survive under the changing pressure. Special mechanical designs should be considered to maintain the electrochemical performance of electrodes under this extreme condition. In this work, an effective assembly strategy is proposed to accommodate the dwell-fatigue loading using Ag decorated reduced graphene oxide (rGO) foam (denoted as AGF) as a superelastic and robust Zn host. The wet-press assembly process enables the formation of highly porous and robust framework. The strong synergetic effect between rGO and Ag further guarantees AGF's superelasticity and ultrahigh mechanical strength. Meanwhile, the homogeneously distributed Ag species on the rGO sheets act as zincophilic sites to effectively facilitate Zn plating. Furthermore, AGF offers enough space to address the expansion during the charge and discharge cycles. As expected, the symmetrical cell using this AGF@Zn host demonstrates a long lifespan over 400 h at a depth-of-discharge of 50%. It is worth mentioning that the superelastic AGF host realizes stable Zn plating/stripping under varying pressures.
Collapse
Affiliation(s)
- Ya Qi Zheng
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peng Xiao Sun
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xin Yu Zhang
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Nian Wu Li
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lili Wu
- School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Xitian Zhang
- School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Le Yu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
9
|
Liu S, Wang A, Liu Y, Zhou W, Wen H, Zhang H, Sun K, Li S, Zhou J, Wang Y, Jiang J, Li B. Catalytically Active Carbon for Oxygen Reduction Reaction in Energy Conversion: Recent Advances and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308040. [PMID: 38581142 PMCID: PMC11165562 DOI: 10.1002/advs.202308040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Indexed: 04/08/2024]
Abstract
The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.
Collapse
Affiliation(s)
- Shuling Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Yanyan Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Hao Wen
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Huanhuan Zhang
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Shuqi Li
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Jingjing Zhou
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Yongfeng Wang
- Center for Carbon‐based Electronics and Key Laboratory for the Physics and Chemistry of NanodevicesSchool of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Baojun Li
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| |
Collapse
|
10
|
Zeng Q, Runowski M, Xue J, Luo L, Marciniak L, Lavín V, Du P. Pressure-Induced Remarkable Spectral Red-Shift in Mn 2+ -Activated NaY 9 (SiO 4 ) 6 O 2 Red-Emitting Phosphors for High-Sensitive Optical Manometry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308221. [PMID: 38103000 PMCID: PMC10916622 DOI: 10.1002/advs.202308221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Indexed: 12/17/2023]
Abstract
To settle the low sensitivity of luminescent manometers, the Mn2+ -activated NaY9 (SiO4 )6 O2 red-emitting phosphors with splendid pressure sensing performances are developed. Excited by 408 nm, the resulting products emit bright red emission originating from 4 T1 (4 G) → 6 A1 transition of Mn2+ , in which the optimal concentration of the activator ion is ≈1 mol%. Moreover, the admirable thermal stability of the developed phosphors is studied and confirmed by the temperature-dependent emission spectra, based on which the activation energy is derived to be 0.275 eV. By analyzing the pressure-dependent Raman spectra, the structural stability of the synthesized compounds at extreme conditions is verified. Furthermore, the designed phosphors exhibit remarkable spectral red-shift at elevated pressure. Especially, as pressure increases from 0.75 to 7.16 GPa, the emission band centroid shifts from 617.2 to 663.4 nm, resulting in a high sensitivity (dλ/dP) of 7.00 nm GPa-1 , whereas the full width at half maximum (FWHM) increases from 83.0 to 110.6 nm, leading to the ultra-high sensitivity (dFWHM/dP) of 10.13 nm GPa-1 . These achievements manifest that the designed red-emitting phosphors are appropriate for ultrasensitive optical manometry. More importantly, the developed manometer is a current global leader in sensitivity, when operating in the band-width mode, that is, FWHM.
Collapse
Affiliation(s)
- Qifeng Zeng
- School of Physical Science and TechnologyNingbo UniversityNingboZhejiang315211China
| | - Marcin Runowski
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61–614Poland
| | - Junpeng Xue
- School of ScienceJiangsu University of Science and TechnologyZhenjiang212100China
| | - Laihui Luo
- School of Physical Science and TechnologyNingbo UniversityNingboZhejiang315211China
| | - Lukasz Marciniak
- Institute of Low Temperature and Structure ResearchPolish Academy of SciencesOkólna 2Wrocław50–422Poland
| | - Víctor Lavín
- Departamento de FísicaMALTA‐Consilider TeamUniversidad de La LagunaApartado de Correos 456San Cristóbal de La LagunaSanta Cruz de TenerifeE‐38200Spain
| | - Peng Du
- School of Physical Science and TechnologyNingbo UniversityNingboZhejiang315211China
| |
Collapse
|
11
|
Wu J, Wu Y, Wang L, Ye H, Lu J, Li Y. Challenges and Advances in Rechargeable Batteries for Extreme-Condition Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308193. [PMID: 37847882 DOI: 10.1002/adma.202308193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Indexed: 10/19/2023]
Abstract
Rechargeable batteries are widely used as power sources for portable electronics, electric vehicles and smart grids. Their practical performances are, however, largely undermined under extreme conditions, such as in high-altitude drones, ocean exploration and polar expedition. These extreme environmental conditions not only bring new challenges for batteries but also incur unique battery failure mechanisms. To fill in the gap, it is of great importance to understand the battery failure mechanisms under different extreme conditions and figure out the key parameters that limit battery performances. In this review, the authors start by investigating the key challenges from the viewpoints of ionic/charge transfer, material/interface evolution and electrolyte degradation under different extreme conditions. This is followed by different engineering approaches through electrode materials design, electrolyte modification and battery component optimization to enhance practical battery performances. Finally, a short perspective is provided about the future development of rechargeable batteries under extreme conditions.
Collapse
Affiliation(s)
- Jialing Wu
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Yunling Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hualin Ye
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanguang Li
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| |
Collapse
|
12
|
Atinafu DG, Kim YU, Kim S, Kang Y, Kim S. Advances in Biocarbon and Soft Material Assembly for Enthalpy Storage: Fundamentals, Mechanisms, and Multimodal Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2305418. [PMID: 37967349 DOI: 10.1002/smll.202305418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/24/2023] [Indexed: 11/17/2023]
Abstract
High-value-added biomass materials like biocarbon are being actively pursued integrating them with soft materials in a broad range of advanced renewable energy technologies owing to their advantages, such as lightweight, relatively low-cost, diverse structural engineering applications, and high energy storage potential. Consequently, the hybrid integration of soft and biomass-derived materials shall store energy to mitigate intermittency issues, primarily through enthalpy storage during phase change. This paper introduces the recent advances in the development of natural biomaterial-derived carbon materials in soft material assembly and its applications in multidirectional renewable energy storage. Various emerging biocarbon materials (biochar, carbon fiber, graphene, nanoporous carbon nanosheets (2D), and carbon aerogel) with intrinsic structures and engineered designs for enhanced enthalpy storage and multimodal applications are discussed. The fundamental design approaches, working mechanisms, and feature applications, such as including thermal management and electromagnetic interference shielding, sensors, flexible electronics and transparent nanopaper, and environmental applications of biocarbon-based soft material composites are highlighted. Furthermore, the challenges and potential opportunities of biocarbon-based composites are identified, and prospects in biomaterial-based soft materials composites are presented.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Uk Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungeun Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yujin Kang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
13
|
Wang M, Liu H, Fan K. Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. SMALL METHODS 2023; 7:e2301049. [PMID: 37817364 DOI: 10.1002/smtd.202301049] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Nanozymes show great promise in enhancing disease biomarker sensing by leveraging their physicochemical properties and enzymatic activities. These qualities facilitate signal amplification and matrix effects reduction, thus boosting biomarker sensing performance. In this review, recent studies from the last five years, concentrating on disease biomarker detection improvement through nanozyme-based biosensing are examined. This enhancement primarily involves the modulations of the size, morphology, doping, modification, electromagnetic mechanisms, electron conduction efficiency, and surface plasmon resonance effects of nanozymes for increased sensitivity. In addition, a comprehensive description of the synthesis and tuning strategies employed for nanozymes has been provided. This includes a detailed elucidation of their catalytic mechanisms in alignment with the fundamental principles of enhanced sensing technology, accompanied by the presentation of quantitatively analyzed results. Moreover, the diverse applications of nanozymes in strip sensing, colorimetric sensing, electrochemical sensing, and surface-enhanced Raman scattering have been outlined. Additionally, the limitations, challenges, and corresponding recommendations concerning the application of nanozymes in biosensing have been summarized. Furthermore, insights have been offered into the future development and outlook of nanozymes for biosensing. This review aims to serve not only as a reference for enhancing the sensitivity of nanozyme-based biosensors but also as a catalyst for exploring nanozyme properties and their broader applications in biosensing.
Collapse
Affiliation(s)
- Mengting Wang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
14
|
Li S, Tian H, Fan Y, Wang C, Li X, Chen X, Shao J. Micropatterned Fluororubber-Based Dry Adhesive for Pan-Semiconductor Production Line with Complicated Operating Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14474-14486. [PMID: 37774416 DOI: 10.1021/acs.langmuir.3c02443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The efficient and safe manipulation of precision materials (such as thin and fragile wafers and glass substrates for flat panel displays) under complicated operating conditions with vacuum, high temperature, and low preload stress is an essential task for pan-semiconductor production lines. However, current manipulation approaches such as suction-based gripping (invalid under vacuum conditions) and mechanical clamping (stress concentration at the contact interfaces) are challenged to satisfy such complex requirements. Herein, fluororubber (FKM) is employed as an adhesive material to overcome such challenges due to its outstanding thermostability, availability under vacuum environments, and high adhesion at low contacting preloads. However, the adhesion of the FKM film decreases significantly with increasing temperature (decrease by 84.83% at 245 °C). Consequently, a micropatterned FKM-based dry adhesive (MFA) fabricated by laser etching is developed. The experimental results reveal that MFAs are efficient in restraining adhesion attenuation at high temperatures (minimum 15% decrease at 245 °C). The numerical analysis and in situ observations reveal the mechanism of the MFAs in restraining adhesion attenuation. The contamination-free and high adhesion at low contacting preload of MFAs can be of great interest in pan-semiconductor production lines that require complicated operating conditions on temperature, vacuum, and interface stress.
Collapse
Affiliation(s)
- Shuai Li
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongmiao Tian
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yu Fan
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chunhui Wang
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiangming Li
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoliang Chen
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinyou Shao
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
15
|
Szczepankowska J, Khachatryan G, Khachatryan K, Krystyjan M. Carbon Dots-Types, Obtaining and Application in Biotechnology and Food Technology. Int J Mol Sci 2023; 24:14984. [PMID: 37834430 PMCID: PMC10573487 DOI: 10.3390/ijms241914984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Materials with a "nano" structure are increasingly used in medicine and biotechnology as drug delivery systems, bioimaging agents or biosensors in the monitoring of toxic substances, heavy metals and environmental variations. Furthermore, in the food industry, they have found applications as detectors of food adulteration, microbial contamination and even in packaging for monitoring product freshness. Carbon dots (CDs) as materials with broad as well as unprecedented possibilities could revolutionize the economy, if only their synthesis was based on low-cost natural sources. So far, a number of studies point to the positive possibilities of obtaining CDs from natural sources. This review describes the types of carbon dots and the most important methods of obtaining them. It also focuses on presenting the potential application of carbon dots in biotechnology and food technology.
Collapse
Affiliation(s)
- Joanna Szczepankowska
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| | - Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| |
Collapse
|
16
|
Gao Z, Xu L, Jiao X, Li X, He C, Wang HZ, Sun C, Hou PX, Liu C, Cheng HM. Strong Connection of Single-Wall Carbon Nanotube Fibers with a Copper Substrate Using an Intermediate Nickel Layer. ACS NANO 2023; 17:18290-18298. [PMID: 37706683 DOI: 10.1021/acsnano.3c05374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Lightweight carbon nanotube fibers (CNTFs) with high electrical conductivity and high tensile strength are considered to be an ideal wiring medium for a wide range of applications. However, connecting CNTFs with metals by soldering is extremely difficult due to the nonreactive nature and poor wettability of CNTs. Here we report a strong connection between single-wall CNTFs (SWCNTFs) and a Cu matrix by introducing an intermediate Ni layer, which enables the formation of mechanically strong and electrically conductive joints between SWCNTFs and a eutectic Sn-37Pb alloy. The electrical resistance change rate (ΔR/R0) of Ni-SWCNTF/solder-Cu interconnects only decreases ∼29.8% after 450 thermal shock cycles between temperatures of -196 and 150 °C, which is 8.2 times lower than that without the Ni layer. First-principles calculations indicate that the introduction of the Ni layer significantly improves the heterogeneous interfacial bond strength of the Ni-SWCNTF/solder-Cu connections.
Collapse
Affiliation(s)
- Zhaoqing Gao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Lele Xu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Xinyu Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Xin Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Chengjian He
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Hao-Zike Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Chunyang Sun
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- Faculty of Materials Science and Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
17
|
Li L, Sun T, Lu S, Chen Z, Xu S, Jian M, Zhang J. Graphene Interlocking Carbon Nanotubes for High-Strength and High-Conductivity Fibers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5701-5708. [PMID: 36661854 DOI: 10.1021/acsami.2c21518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Carbon nanotubes (CNTs) are promising building blocks for the fabrication of novel fibers with structural and functional properties. However, the mechanical and electrical performances of carbon nanotube fibers (CNTFs) are far lower than the intrinsic properties of individual CNTs. Exploring methods for the controllable assembly and continuous preparation of high-performance CNTFs is still challenging. Herein, a graphene/chlorosulfonic acid-assisted wet-stretching method is developed to produce highly densified and well-aligned graphene/carbon nanotube fibers (G/CNTFs) with excellent mechanical and electrical performances. Graphene with small size and high quality can bridge the adjacent CNTs to avoid the interfacial slippage under deformation, which facilitates the formation of a robust architecture with abundant conductive pathways. Their ordered structure and enhanced interfacial interactions endow the fibers with both high strength (4.7 GPa) and high electrical conductivity (more than 2 × 106 S/m). G/CNTF-based lightweight wires show good flexibility and knittability, and the high-performance fiber heaters exhibit ultrafast electrothermal response over 1000 °C/s and a low operation voltage of 3 V. This method paves the way for optimizing the microstructures and producing high-strength and high-conductivity CNTFs, which are promising candidates for the high-value fiber-based applications.
Collapse
Affiliation(s)
- Lijun Li
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Tongzhao Sun
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Shichao Lu
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Zhuo Chen
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Shichen Xu
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Muqiang Jian
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Jin Zhang
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|