1
|
Zheng C, Wang Y, Mao H, Zhang J, Yang X, Li J, Zhang D, Wang X, Kang F, Li J. Superexchange interaction regulates Ni/Mn spin states triggering Ni-t 2g/O-2p reductive coupling enabling stable lithium-rich cathode. Nat Commun 2025; 16:3900. [PMID: 40274819 PMCID: PMC12022161 DOI: 10.1038/s41467-025-59159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by irreversible anionic redox, leading to voltage decay, lag, and slow kinetics. In order to solve these problems, we regulate the Ni/Mn spin state in Li1.2Mn0.6Ni0.2O2 by Be doping, which generates the superexchange interaction and activates Ni-t2g orbitals. The activation of Ni-t2g orbitals triggers the reductive coupling mechanism between Ni/O, which improves the reversibility and kinetics of anionic redox. The strong π-type Ni-t2g/O-2p interaction forms a stable Ni-(O-O) configuration, suppressing excessive anion oxidation. In this work, the Be modified cathodes have good cycle stability, 0.04 mAh/g and 0.5 mV decay per cycle over 400 cycles at 1 C (60 min, 250 mA g-1), with a rate performance of 187 mAh/g at 10 C (6 min, 2500 mA g-1), providing a strategy for stabilising oxygen redox chemistry and designing high performance lithium-rich cathodes.
Collapse
Affiliation(s)
- Chaoliang Zheng
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, China
| | - Yaqing Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, China
| | - Huican Mao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, China.
| | - Juan Zhang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, China.
| | - Xiaoxu Yang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, China
| | - Jie Li
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, China
| | - Di Zhang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, China
| | - Xindong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, China
| | - Feiyu Kang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| | - Jianling Li
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
2
|
Zhao G, Yan T, Wang L, Yuan C, Chen T, Wang B, Cheng C, Zeng P, Su Y, Zhang L. A Bifunctional Fibrous Scaffold Implanted with Amorphous Co 2P as both Cathodic and Anodic Stabilizer for High-Performance Li─S Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501153. [PMID: 40167148 DOI: 10.1002/advs.202501153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/01/2025] [Indexed: 04/02/2025]
Abstract
The shuttling of lithium polysulfides (LiPSs) and the formation of lithium dendrites have substantially impeded the practical application of lithium-sulfur (Li─S) batteries. To simultaneously solve these issues, a porous carbon fibrous scaffold embedded with amorphous Co2P (A─Co2P) is designed as both a cathodic and anodic stabilizer to construct high-rate and long-life Li─S batteries. The meticulously designed self-supporting membrane with an integrated carbon network and porous structure offers superior conductivity and copious spaces for uniform Li2S precipitation in the cathode and Li deposition in the anode. Moreover, the incorporated A─Co2P provides abundant unsaturated sites, which can not only facilitate the exposure of active sites but also modulate the electronic configuration for enhanced LiPSs adsorption and catalysis capability. Concurrently, the presence of lithiophilic A─Co2P sites also reinforces the stability of Li anode with the suppressed formation of dendrites. The constructed full Li─S batteries deliver a high areal capacity of 6.6 mAh cm-2 with a sulfur loading of 8.5 mg cm-2 and a low capacity decay rate of 0.047% per cycle after 800 cycles. This work provides a simple yet effective strategy to construct practical Li─S batteries by simultaneously addressing LiPSs shuttling and Li dendrite growth.
Collapse
Affiliation(s)
- Gang Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Tianran Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Lei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Cheng Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Tong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Bin Wang
- China Minmetals Graphite Industry Co., Ltd. (Heilongjiang), Hegang, Heilongjiang, 154100, China
| | - Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Pan Zeng
- Institute for Advanced Study, School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| | - Yude Su
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
3
|
Hao S, Yang J, Li Y, Liu S, Jiang S, He Z. Utilizing Oxygen-Vacancy-Rich Violet Tungsten Oxide Enabling Ultralong Cycling of Nickel-Rich Cathodes at High Voltage. ACS NANO 2025; 19:7263-7272. [PMID: 39935190 DOI: 10.1021/acsnano.4c17374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Nickel-rich cathodes have become widely used recently but tend to become unstable under high voltage, resulting in metal atom rearrangement and oxygen lattice distortions. During high-voltage charging, nickel oxidation weakens oxygen-transition metal bonds, causing oxygen release and increasing risks like thermal runaway. To address these stability issues, we developed an oxygen vacancy-rich WO2.72 coating that promotes oxygen vacancy formation on the particle surface, regulating lattice oxygen release within the bulk phase. Additionally, we conducted a detailed analysis of the inhibition mechanism of lattice oxygen release in electrochemical processes, using methods like EPR, DEMS, XPS, and RIXS. Due to its effective inhibition of oxygen release and enhanced particle mechanical properties, the coating achieved an 80.3% retention rate after 600 cycles at 4.5 V, highlighting its potential for stabilizing nickel-rich cathodes in lithium-ion batteries. This method can also be directly applied to designing other high-energy cathode materials facing stability and capacity challenges.
Collapse
Affiliation(s)
- Shuaipeng Hao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiachao Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Yunjiao Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Shuaiwei Liu
- Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344 Karlsruhe, Germany
| | - Shijie Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Zhenjiang He
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| |
Collapse
|
4
|
Wang D, Zou F, Qi X, Xu S, Mao H, Xiao D, Lu S, Guo B, Lyu Y. Local Structure Regulation for Oxygen Redox and Structure Stability of P2-Type Cathodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411052. [PMID: 39821942 DOI: 10.1002/smll.202411052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/26/2024] [Indexed: 01/19/2025]
Abstract
The local structure plays a crucial role in oxygen redox reactions, which boosts the capacity of layered oxide cathodes for sodium-ion batteries. While studies on local structural ordering have primarily focused on the intra-layer ordering, there has been limited research on the inter-layer stacking for the layered cathode materials for sodium-ion batteries. In this work, the impact of the intra-layer and inter-layer local structural regulation on anionic kinetics and the structure stability are explored through experimental analysis and theoretical calculations. Cu2+ substitution is introduced to adjust the transition metal inter-layer structure of P2-Na0.67Mg0.28Mn0.72O2, obtaining a zig-zag stacked honeycomb superlattice structure in P2- Na0.67Cu0.14Mg0.14Mn0.72O2. The local structure regulation mitigates the cation migration, improves the structure reversibility even at a deeply desodiation state of Na0.05, and the reductive coupling between cationic and anionic redox processes facilitates electron transfer from oxygen to copper ions and governs the properties of electrochemical kinetics and hysteresis. A full cell with hard carbon anode shows commendable energy density at high power density. This study paves an optional path for enhancing the structure stability and dynamics of oxygen redox chemistry in P2-type cathode materials for sodium-ion battery systems.
Collapse
Affiliation(s)
- Dongxiao Wang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Feihu Zou
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Xingguo Qi
- HiNa Battery Technology Co., Ltd, Liyang, 213300, China
| | - Shuyin Xu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Huican Mao
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shigang Lu
- College of Sciences and Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Bingkun Guo
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Yingchun Lyu
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
5
|
Zhang G, Yin X, Ning D, Chai Y, Du R, Hao D, Wang C, Liu X, Gao R, Wang J, Yao X, Li Y, Zhou D. Crystal Modulation of Mn-Based Layered Oxide toward Long-Enduring Anionic Redox with Fast Kinetics for Sodium-Ion Batteries. Angew Chem Int Ed Engl 2025; 64:e202415450. [PMID: 39484729 DOI: 10.1002/anie.202415450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 11/03/2024]
Abstract
Mn-based layered oxide cathodes for sodium-ion batteries with anionic redox reactions hold great potential for energy storage applications due to their ultra-high capacity and cost effectiveness. However, achieving high capacity requires overcoming challenges such as oxygen-redox failure, sluggish kinetics, and structural degradation. Herein, we employ an innovative crystal modulation strategy, using Mn-based Na0.72Li0.24Mn0.76O2 as a representative cathode material, which shows that the highly exposed {010} active facets enable an enhanced rate capability (119.6 mAh g-1 at 10 C) with fast kinetics. Meanwhile, the reinforced Mn-O bond inhibits excessive oxidation of lattice oxygen and O-O cohesion loss, stabilizing and maintaining a long-enduring reversible oxygen-redox activity (100 % high capacity retention after 100 cycles at 0.5 C and 84.28 % retention after 300 cycles at 5 C). Time-resolved operando two-dimensional X-ray diffraction reveals the robust structural stability, zero-strain behavior, and suppressed phase transition with ultra-low volume variation during cycling at different rates (0.1 C: 1.75 %, 1 C: 0.31 %, 5 C: 0.04 %). Additionally, the full cell coupled with hard carbon achieves a high energy density of approximately 211 Wh kg-1 with superior performance. This work highlights the significance of crystal modulation and presents a universal approach in developing Mn-based oxide cathodes with stable anionic redox for high-performance sodium-ion batteries.
Collapse
Affiliation(s)
- Gaoyuan Zhang
- Institute for Clean Energy Technology, North China Electric Power University, 102206, Beijing, P. R. China
| | - XingXing Yin
- School of Materials, Sun Yat-Sen University, 518107, Shenzhen, P R. China
| | - De Ning
- Institute of Advanced Materials Science and Engineering/Faculty of Material Science and Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Yan Chai
- Institute for Clean Energy Technology, North China Electric Power University, 102206, Beijing, P. R. China
| | - Ruijie Du
- Institute for Clean Energy Technology, North China Electric Power University, 102206, Beijing, P. R. China
| | - Dingbang Hao
- Institute for Clean Energy Technology, North China Electric Power University, 102206, Beijing, P. R. China
| | - Chunling Wang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, 102206, Beijing, P. R. China
| | - Xueling Liu
- Institute for Clean Energy Technology, North China Electric Power University, 102206, Beijing, P. R. China
| | - Rui Gao
- Institute for Clean Energy Technology, North China Electric Power University, 102206, Beijing, P. R. China
| | - Jun Wang
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, 518055, Shenzhen, P. R. China
| | - Xiangdong Yao
- School of Advanced Energy, Sun Yat-Sen University Shenzhen Campus, 518107, Shenzhen, P. R. China
| | - Yongli Li
- Institute for Clean Energy Technology, North China Electric Power University, 102206, Beijing, P. R. China
| | - Dong Zhou
- School of Advanced Energy, Sun Yat-Sen University Shenzhen Campus, 518107, Shenzhen, P. R. China
| |
Collapse
|
6
|
Schlappa J, Ghiringhelli G, Van Kuiken BE, Teichmann M, Miedema PS, Delitz JT, Gerasimova N, Molodtsov S, Adriano L, Baranasic B, Broers C, Carley R, Gessler P, Ghodrati N, Hickin D, Hoang LP, Izquierdo M, Mercadier L, Mercurio G, Parchenko S, Stupar M, Yin Z, Martinelli L, Merzoni G, Peng YY, Reuss T, Sreekantan Nair Lalithambika S, Techert S, Laarmann T, Huotari S, Schroeter C, Langer B, Giessel T, Buchheim J, Gwalt G, Sokolov A, Siewert F, Buechner R, Vaz da Cruz V, Eckert S, Liu CY, Sohrt C, Weniger C, Pietzsch A, Neppl S, Senf F, Scherz A, Föhlisch A. The Heisenberg-RIXS instrument at the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:29-45. [PMID: 39705248 PMCID: PMC11708868 DOI: 10.1107/s1600577524010890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/11/2024] [Indexed: 12/22/2024]
Abstract
Resonant inelastic X-ray scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. Also, in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advantage from high-repetition-rate pulsed X-ray sources like the European XFEL. The Heisenberg RIXS instrument is designed for RIXS experiments in the soft X-ray range with energy resolution approaching the Fourier and the Heisenberg limits. It is based on a spherical grating with variable line spacing and a position-sensitive 2D detector. Initially, two gratings were installed to adequately cover the whole photon energy range. With optimized spot size on the sample and small pixel detector the energy resolution can be better than 40 meV (90 meV) at any photon energy below 1000 eV with the high-resolution (high-transmission) grating. At the SCS instrument of the European XFEL the spectrometer can be easily positioned thanks to air pads on a high-quality floor, allowing the scattering angle to be continuously adjusted over the 65-145° range. It can be coupled to two different sample interaction chambers, one for liquid jets and one for solids, each state-of-the-art equipped and compatible for optical laser pumping in collinear geometry. The measured performances, in terms of energy resolution and count rate on the detector, closely match design expectations. The Heisenberg RIXS instrument has been open to public users since the summer of 2022.
Collapse
Affiliation(s)
| | - Giacomo Ghiringhelli
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32I-20133MilanoItaly
- CNR-SPIN, Dipartimento di FisicaPolitecnico di MilanoI-20133MilanoItaly
| | | | | | | | | | | | - Serguei Molodtsov
- European XFELHolzkoppel 4Schenefeld22869Germany
- Institute of Experimental PhysicsTU Bergakademie FreibergLeipziger Str. 2309599FreibergGermany
- Center for Efficient High Temperature Processes and Materials Conversion (ZeHS)TU Bergakademie FreibergWinklerstrasse 509599FreibergGermany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zhong Yin
- European XFELHolzkoppel 4Schenefeld22869Germany
| | - Leonardo Martinelli
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32I-20133MilanoItaly
| | - Giacomo Merzoni
- European XFELHolzkoppel 4Schenefeld22869Germany
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32I-20133MilanoItaly
| | - Ying Ying Peng
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32I-20133MilanoItaly
| | - Torben Reuss
- Deutsches Elektronen-Synchrotron DESYNotkestraße 8522607HamburgGermany
| | - Sreeju Sreekantan Nair Lalithambika
- Deutsches Elektronen-Synchrotron DESYNotkestraße 8522607HamburgGermany
- Institute of X-ray Physics, Göttingen University, Friedrich Hund Platz 1, 37077Göttingen, Germany
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESYNotkestraße 8522607HamburgGermany
- Institute of X-ray Physics, Göttingen University, Friedrich Hund Platz 1, 37077Göttingen, Germany
| | - Tim Laarmann
- Deutsches Elektronen-Synchrotron DESYNotkestraße 8522607HamburgGermany
- The Hamburg Centre for Ultrafast Imaging CUI, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Simo Huotari
- Department of PhysicsUniversity of HelsinkiPO Box 64FI-00014HelsinkiFinland
| | | | | | | | - Jana Buchheim
- Department Optics and Beamlines, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489Berlin, Germany
| | - Grzegorz Gwalt
- Department Optics and Beamlines, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489Berlin, Germany
| | - Andrey Sokolov
- Department Optics and Beamlines, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489Berlin, Germany
| | - Frank Siewert
- Department Optics and Beamlines, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489Berlin, Germany
| | - Robby Buechner
- Institute Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
| | - Vinicius Vaz da Cruz
- Institute Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
| | - Sebastian Eckert
- Institute Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
| | - Chun-Yu Liu
- Institute Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
- University of PotsdamInstitute of Physics and AstronomyKarl-Liebknecht-Straße 24/2514476PotsdamGermany
| | - Christian Sohrt
- Institute Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
| | - Christian Weniger
- Institute Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
| | - Annette Pietzsch
- Institute Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
| | - Stefan Neppl
- University of PotsdamInstitute of Physics and AstronomyKarl-Liebknecht-Straße 24/2514476PotsdamGermany
| | - Friedmar Senf
- University of PotsdamInstitute of Physics and AstronomyKarl-Liebknecht-Straße 24/2514476PotsdamGermany
| | | | - Alexander Föhlisch
- Institute Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 1512489BerlinGermany
- University of PotsdamInstitute of Physics and AstronomyKarl-Liebknecht-Straße 24/2514476PotsdamGermany
| |
Collapse
|
7
|
Cheng C, Zhuo Z, Xia X, Liu T, Shen Y, Yuan C, Zeng P, Cao D, Zou Y, Guo J, Zhang L. Stabilized Oxygen Vacancy Chemistry toward High-Performance Layered Oxide Cathodes for Sodium-Ion Batteries. ACS NANO 2024; 18:35052-35065. [PMID: 39665775 DOI: 10.1021/acsnano.4c14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Anionic redox has emerged as a transformative paradigm for high-energy layered transition-metal (TM) oxide cathodes, but it is usually accompanied by the formation of anionic redox-mediated oxygen vacancies (OVs) due to irreversible oxygen release. Additionally, external factor-induced OVs (defined as intrinsic OVs) also play a pivotal role in the physicochemical properties of layered TM oxides. However, an in-depth understanding of the interplay between intrinsic and anionic redox-mediated OVs and the corresponding regulation mechanism of the dynamic evolution of OVs is still missing. Herein, we disclose the strong interrelationship between these OVs and demonstrate that the presence of intrinsic OVs in the TMO2 layers could induce weak integrity of the TM-O frameworks and unlock additional diffusion paths to trigger the generation and migration of anionic redox-mediated OVs. Accordingly, an OV stabilization strategy is proposed by deliberately introducing high-valence Nb5+, which could serve as an important building block in anchoring the oxygen sublattice and preventing the formation of a percolating OV migration network, thereby suppressing the formation/diffusion of anionic redox-mediated OVs. Consequently, superb structural integrity and improved electrochemical performance with reversible anionic redox chemistry are achieved. This work advances our understanding of the role of OVs for developing high-performance energy storage systems utilizing anionic redox.
Collapse
Affiliation(s)
- Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Zengqing Zhuo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xiao Xia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Tong Liu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yihao Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Cheng Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Pan Zeng
- Institute for Advanced Study, School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Duanyun Cao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Ying Zou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Liu Y, Fu W, Yao S, Wang S, Ji Y, Li J, Shi L, Wang X, Zhang F, Yang J, Liu R, Xie J, Yang Z, Yan YM. Mn─O Covalency as a Lever for Na⁺ Intercalation Kinetics: The Role of Oxygen Edge-Sharing Co Octahedral Sites in MnO₂. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407690. [PMID: 39344210 DOI: 10.1002/smll.202407690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/16/2024] [Indexed: 10/01/2024]
Abstract
The strategic enhancement of manganese-oxygen (Mn─O) covalency is a promising approach to improve the intercalation kinetics of sodium ions (Na⁺) in manganese dioxide (MnO2). In this study, an augmenting Mn─O covalency in MnO2 by strategically incorporating cobalt at oxygen edge-sharing Co octahedral sites is focused on. Both experimental results and density functional theory (DFT) calculations reveal an increased electron polarization from oxygen to manganese, surpassing that directed toward cobalt, thereby facilitating enhanced electron transfer and strengthening covalency. The synthesized Co-MnO2 material exhibits outstanding electrochemical performance, demonstrating a superior specific capacitance of 388 F g-1 at 1 A g-1 and maintaining 97.21% capacity retention after 12000 cycles. Additionally, an asymmetric supercapacitor constructed using Co-MnO2 achieved a high energy density of 35 Wh kg-1 at a power density of 1000 W kg-1, underscoring the efficacy of this material in practical applications. This work highlights the critical role of transition metal-oxygen interactions in optimizing electrode materials and introduces a robust approach to enhance the functional properties of manganese oxides, thereby advancing high-performance energy storage technologies.
Collapse
Affiliation(s)
- Yuanming Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Weijie Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shuyun Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shiyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yingjie Ji
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jingxian Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lanlan Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaojun Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Feike Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jinghua Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Ruilong Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Zhiyu Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yi-Ming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
9
|
Chen S, Cheng C, Xia X, Wang L, Chen T, Shen Y, Zhou X, Xv W, Zhou Z, Zeng P, Zhang L. Reversible Oxygen Redox With Enhanced Structural Stability Through Covalency Modulation for Layered Oxide Cathodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406542. [PMID: 39308242 DOI: 10.1002/smll.202406542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/10/2024] [Indexed: 12/13/2024]
Abstract
P2-type Mn-based layered oxides have emerged as one of the most promising cathode materials for sodium-ion batteries owing to their advantages of facile preparation and high theoretical capacity. However, challenges such as phase transition and irreversible oxygen release during cycling often lead to rapid structural distortion and the formation of oxygen vacancies, ultimately resulting in rapid capacity decay. Herein, a covalency modulation strategy is adopted to address these challenges and successfully achieved a stable P2-type Mn-based layered oxide by introducing strong covalent Ni─O bonds. The robust Ni─O motif plays a crucial role in maintaining the rigidity of transition metal (TM) layered frameworks, which efficiently alleviates the structural distortion and degradation of the coordination environments of local TM sites, thereby achieving durable structural stiffness over extended cycles. In addition, the strong covalent Ni─O bonds can also stabilize the local oxygen environment, effectively suppressing the irreversible oxygen release. Benefiting from these advancements, the as-designed Na0.6Mg0.15Mn0.7Ni0.15O2 cathode displays a full solid-solution behavior with a low volume change of only 0.9% and an enhanced reversibility of lattice oxygen redox (OR) reaction. This investigation emphasizes the crucial role of covalency modulation in regulating OR chemistry and structural integrity to achieve high-energy-density Mn-based layered oxides.
Collapse
Affiliation(s)
- Shuyuan Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiao Xia
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yihao Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xi Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Weidong Xv
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zheng Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Pan Zeng
- Institute for Advanced Study, School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
10
|
Ma R, Song J, Ding H, Han Q, Tang X, Lv F, Wen S, Yin J, Ang EH. Decoding the entropy-stabilized matrix of high-entropy layered double hydroxides: Harnessing strain dynamics for peroxymonosulfate activation and tetracycline degradation. J Colloid Interface Sci 2024; 680:676-688. [PMID: 39580920 DOI: 10.1016/j.jcis.2024.11.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The current understanding of the mechanism of high-entropy layered double hydroxide (LDH) on enhancing the efficiency of activating peroxymonosulfate (PMS) remains limited. This work reveals that a strong strain effect, driven by high entropy, modulates the structure of FeCoNiCuZn-LDH (HE-LDH) as evidenced by geometric phase analysis (GPA) and density functional theory (DFT) calculations. Compared to FeCoNiZn-LDH and FeCoNi-LDH with weaker strain effects, the high entropy-driven strain effect in HE-LDH shortens metal-oxygen-hydrogen (MOH) bond lengths, allows system to be in a constant steady state during catalysis, reduces the leaching of active M-OH sites, and enhances the adsorption capacity of these sites and the excess strain strength of the interfacial stretches the IO-O of the PMS, facilitates reactive oxygen species (·OH, SO4·-, 1O2 and O2·-) generation, and thereby improving the efficiency of PMS in degrading tetracycline (TC). Consequently, HE-LDH demonstrated a 90% TC degradation within 3 min, maintained over 92% TC removal across a wide pH range (3-11), and achieved over 90% degradation performance after 6 cycles. This study reports the first use of high-entropy LDH material as a non-homogeneous catalyst and provides insights into the extremely different catalytic behaviors of high entropy mechanisms for the activation of PMS.
Collapse
Affiliation(s)
- Rongyao Ma
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Song
- Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Huiwei Ding
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qiaofeng Han
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xin Tang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fujian Lv
- Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Shizheng Wen
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223001, China
| | - Jingzhou Yin
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223001, China.
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| |
Collapse
|
11
|
Li N, Zhao E, Zhang Z, Yin W, He L, Wang B, Wang F, Xiao X, Zhao J. Gradient and De-Clustered Anionic Redox Enabled Undetectable O 2 Formation in 4.5 V Sodium Manganese Oxide Cathodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408984. [PMID: 39400472 DOI: 10.1002/adma.202408984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Indexed: 10/15/2024]
Abstract
Anionic redox chemistry presents a promising approach to enhancing the energy density of oxide cathode materials. However, anionic redox reactions invariably lead to O2 formation, either as free gaseous O2 or trapped molecular O2, which destabilizes the material's structure. Here, this critical challenge is addressed by constructing a crystal structure with both gradient redox activity and de-clustered redox-active oxygen. This design strategy is directly validated by operando differential electrochemical mass spectrometry and ex situ 50 K electron paramagnetic resonance, revealing no release of O2 or trapped O2 in the 4.5 V P2-type sodium manganese-based layered oxide. Notably, the material exhibits a highly reversible capacity of 247 mA h g-1 at 20 mA g-1 and exceptional capacity retention of 91.4% after 300 cycles at 300 mA g-1. In situ X-ray diffraction further suggests that the absence of O2 formation suppresses the typical P2-O2 phase transition, resulting in a minimal lattice volume change of only 0.5%. Ex situ neutron diffraction studies and theoretical calculations further elucidate that the locally ordered lattice is well-preserved, attributable to reduced cationic migrations during cycling.
Collapse
Affiliation(s)
- Na Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Enyue Zhao
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Zhigang Zhang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Wen Yin
- Spallation Neutron Source Science Center, Dongguan, Guangdong, 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lunhua He
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Spallation Neutron Source Science Center, Dongguan, Guangdong, 523803, China
| | - Baotian Wang
- Spallation Neutron Source Science Center, Dongguan, Guangdong, 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangwei Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoling Xiao
- College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinkui Zhao
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, Great Bay University, Dongguan, 523808, China
| |
Collapse
|
12
|
Mao Q, Zhang J, Wong D, Yin W, Wang R, Zhang T, Liu X. A Unique Wide-Spacing Fence-Type Superstructure for Robust High-Voltage O3-Type Sodium Layered Cathode. Angew Chem Int Ed Engl 2024; 63:e202404330. [PMID: 38878199 DOI: 10.1002/anie.202404330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Indexed: 07/31/2024]
Abstract
Enhancing the energy density of layered oxide cathode materials is of great significance for realizing high-performance sodium-ion batteries and promoting their commercial application. Lattice oxygen redox at high voltage usually enables a high capacity and energy density. But the structural degradation, severe voltage decay, and the resultant poor cycling performance caused by irreversible oxygen release seriously restrict the practical application. Herein we introduce a novel fence-type superstructure (2a×3a type supercell) into O3-type layered cathode material Na0.9Li0.1Ni0.3Mn0.3Ti0.3O2 and achieve a stable cycling performance at a high voltage of 4.4 V. The fence-type superstructure effectively inhibits the formation of the vacancy clusters resulting from out-of-plane Li migration and in-plane transition metal migration at high voltage due to the wide d-spacing, thereby significantly reducing the irreversible release of lattice oxygen and greatly stabilizing the crystal structure. The cathode exhibits a high energy density of 545 Wh kg-1, a high rate capability (112.8 mAh g-1 at 5 C) and a high cycling stability (85.8 %@200 cycles with a high initial capacity of 148.6 mAh g-1 at 1 C) accompanied by negligible voltage attenuation (98.5 %@200 cycles). This strategy provides a distinct spacing effect of superstructure to design stable high-voltage layered cathode materials for Na-ion batteries.
Collapse
Affiliation(s)
- Qianjiang Mao
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jicheng Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deniz Wong
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Wen Yin
- Spallation Neutron Source Science Center, Dongguan, 523803, P. R. China
| | - Ruoyu Wang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tianran Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangfeng Liu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Dong H, Liu H, Guo YJ, Feng YH, Zhu X, Xu SW, Sui F, Yu L, Liu M, Guo JZ, Yin YX, Xiao B, Wu XL, Guo YG, Wang PF. Lithium Orbital Hybridization Chemistry to Stimulate Oxygen Redox with Reversible Phase Evolution in Sodium-Layered Oxide Cathodes. J Am Chem Soc 2024; 146:22335-22347. [PMID: 39092859 DOI: 10.1021/jacs.4c04814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Searching for high energy-density electrode materials for sodium ion batteries has revealed Na-deficient intercalation compounds with lattice oxygen redox as promising high-capacity cathodes. However, anionic redox reactions commonly encountered poor electrochemical reversibility and unfavorable structural transformations during dynamic (de)sodiation processes. To address this issue, we employed lithium orbital hybridization chemistry to create Na-O-Li configuration in a prototype P2-layered Na43/60Li1/20Mg7/60Cu1/6Mn2/3O2 (P2-NaLMCM') cathode material. That Li+ ions, having low electronegativity, reside in the transition metal slabs serves to stimulate unhybridized O 2p orbitals to facilitate the stable capacity contribution of oxygen redox at high state of charge. The prismatic-type structure evolving to an intergrowth structure of the Z phase at high charging state could be simultaneously alleviated by reducing the electrostatic repulsion of O-O layers. As a consequence, P2-NaLMCM' delivers a high specific capacity of 183.8 mAh g-1 at 0.05 C and good cycling stability with a capacity retention of 80.2% over 200 cycles within the voltage range of 2.0-4.5 V. Our findings provide new insights into both tailoring oxygen redox chemistry and stabilizing dynamic structural evolution for high-energy battery cathode materials.
Collapse
Affiliation(s)
- Haojie Dong
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Haoliang Liu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Yu-Jie Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yi-Hu Feng
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Xu Zhu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Shao-Wen Xu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Fengxiang Sui
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Lianzheng Yu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
- Jiangsu Jufeng New Energy Technology Co. Ltd., Changzhou, Jiangsu 213166, PR China
| | - Mengting Liu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jin-Zhi Guo
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, and Department of Physics, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Ya-Xia Yin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bing Xiao
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, and Department of Physics, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Yu-Guo Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Peng-Fei Wang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
- Jiangsu Jufeng New Energy Technology Co. Ltd., Changzhou, Jiangsu 213166, PR China
| |
Collapse
|
14
|
Wang XZ, Zuo Y, Qin Y, Zhu X, Xu SW, Guo YJ, Yan T, Zhang L, Gao Z, Yu L, Liu M, Yin YX, Cheng Y, Wang PF, Guo YG. Fast Na + Kinetics and Suppressed Voltage Hysteresis Enabled by a High-Entropy Strategy for Sodium Oxide Cathodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312300. [PMID: 38552255 DOI: 10.1002/adma.202312300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Indexed: 04/11/2024]
Abstract
O3-type layered transition metal cathodes are promising energy storage materials due to their sufficient sodium reservoir. However, sluggish sodium ions kinetics and large voltage hysteresis, which are generally associated with Na+ diffusion properties and electrochemical phase transition reversibility, drastically minimize energy density, reduce energy efficiency, and hinder further commercialization of sodium-ion batteries (SIBs). Here, this work proposes a high-entropy tailoring strategy through manipulating the electronic local environment within transition metal slabs to circumvent these issues. Experimental analysis combined with theoretical calculations verify that high-entropy metal ion mixing contributes to the improved reversibility of redox reaction and O3-P3-O3 phase transition behaviors as well as the enhanced Na+ diffusivity. Consequently, the designed O3-Na0.9Ni0.2Fe0.2Co0.2Mn0.2Ti0.15Cu0.05O2 material with high-entropy characteristic could display a negligible voltage hysteresis (<0.09 V), impressive rate capability (98.6 mAh g-1 at 10 C) and long-term cycling stability (79.4% capacity retention over 2000 cycles at 5 C). This work provides insightful guidance in mitigating the voltage hysteresis and facilitating Na+ diffusion of layered oxide cathode materials to realize high-rate and high-energy SIBs.
Collapse
Affiliation(s)
- Xian-Zuo Wang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yuting Zuo
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yuanbin Qin
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xu Zhu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Shao-Wen Xu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yu-Jie Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tianran Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhibin Gao
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Lianzheng Yu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Jiangsu Jufeng New Energy Technology Co. Ltd., Changzhou, Jiangsu, 213166, P. R. China
| | - Mengting Liu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Ya-Xia Yin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yonghong Cheng
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Peng-Fei Wang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Jiangsu Jufeng New Energy Technology Co. Ltd., Changzhou, Jiangsu, 213166, P. R. China
| | - Yu-Guo Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Chen S, Jiao S, Liang Q, Li P, Yin J, Li Q, Yu X, Li Q. Gaining More Insights from Synchrotron-Based X-ray Spectroscopy for Alkali Ion Rechargeable Batteries. Anal Chem 2024; 96:8021-8035. [PMID: 38659100 DOI: 10.1021/acs.analchem.4c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Alkali ion rechargeable batteries play a significant part in portable electronic devices and electronic vehicles. The rapid development of renewable energy technology nowadays demands batteries with even higher energy density for grid storage. To fulfill such demand, extensive research efforts have been devoted to optimizing electrochemical properties as well as developing novel energy storage schemes and designing new systems. In the investigation process, synchrotron-based X-ray spectroscopy plays a vital role in investigating the detailed degradation mechanism and developing novel energy storage schemes. Herein, we critically review the applications of synchrotron-based X-ray spectroscopy in battery research in recent years. This review begins with a discussion of the different scientific issues in alkali ion rechargeable batteries within various time and space scales. Subsequently, the principle of synchrotron-based X-ray spectroscopy is introduced, and the characteristics of various characterization techniques are summarized and compared. Typical application cases of synchrotron-based X-ray spectroscopy are then introduced into battery investigations. The final part presents perspectives in the development direction of both alkali ion rechargeable battery systems and synchrotron-based X-ray spectroscopy in the future.
Collapse
Affiliation(s)
- Supeng Chen
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Sichen Jiao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Liang
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Peirong Li
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Jixiang Yin
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Qinghao Li
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Xiqian Yu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Li
- College of Physics, Qingdao University, Qingdao 266071, China
| |
Collapse
|
16
|
Song M, Ye D, Li W, Lu C, Wu W, Wu X. Interfacial Engineering of P2-Type Ni/Mn-Based Layered Oxides by a Facile Water-Washing Method for Superior Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16120-16131. [PMID: 38511936 DOI: 10.1021/acsami.3c18606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Owing to the strong basicity and reactivity, residual sodium compounds (RSCs) on the surface of Na-based layered oxides for sodium-ion batteries (SIBs) cause the deterioration of the electrochemical performance and processability of the oxide cathode materials. Herein, considering P2-type Na0.66Ni0.26Zn0.07Mn0.67O2 as the model material, the water-washing treatment is proven to be a facile, economic, and highly efficient method to improve the electrochemical performance of P2-type Ni/Mn-based layered oxides. Experimental results show that RSCs on material surfaces can be effectively removed by water washing without causing severe damage to the bulk structure. Notably, water washing triggers the formation of an ultrathin (2-3 nm thick) Na-poor disordered interfacial layer on the surface of Na0.66Ni0.26Zn0.07Mn0.67O2. This layer plays a passivating role in further enhancing the material's resistance to water and reduces the reactivity of the material surface with the electrolyte. These compositional and structural optimizations for P2-type Na0.66Ni0.26Zn0.07Mn0.67O2 effectively suppress the release of gaseous CO2, formation of thick cathode-electrolyte interphase films, and consumption of active Na+, enabling good Na+ transport kinetics during cycling. The water-washed Na0.66Ni0.26Zn0.07Mn0.67O2 exhibits significantly improved cycling stability with a capacity retention of 89.1% at 100 mA g-1 after 100 cycles and rate capability with a discharge capacity of 76.3 mA g-1 at 2000 mA g-1; these values are higher than those of the unwashed Na0.66Ni0.26Zn0.07Mn0.67O2 (83.3%, 71.4 mA h g-1). This work provides fundamental insights into the detrimental effect of RSCs on the electrochemical performance of layered oxides and highlights the importance of regulating interfacial compositions for developing high-performance layered-oxide cathode materials for SIBs.
Collapse
Affiliation(s)
- Miaoyan Song
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Debin Ye
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Weiliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Chen Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Wenwei Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for High-value Utilization of Manganese Resources, Guangxi Normal University for Nationalities, Chongzuo 532200, China
| | - Xuehang Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
17
|
Wang S, Wang L, Sandoval D, Liu T, Zhan C, Amine K. Correlating concerted cations with oxygen redox in rechargeable batteries. Chem Soc Rev 2024; 53:3561-3578. [PMID: 38415295 DOI: 10.1039/d3cs00550j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Rechargeable batteries currently power much of our world, but with the increased demand for electric vehicles (EVs) capable of traveling hundreds of miles on a single charge, new paradigms are necessary for overcoming the limits of energy density, particularly in rechargeable batteries. The emergence of reversible anionic redox reactions presents a promising direction toward achieving this goal; however this process has both positive and negative effects on battery performance. While it often leads to higher capacity, anionic redox also causes several unfavorable effects such as voltage fade, voltage hysteresis, sluggish kinetics, and oxygen loss. However, the introduction of cations with topological chemistry tendencies has created an efficient pathway for achieving long-term oxygen redox with improved kinetics. The cations serve as pillars in the crystal structure and meanwhile can interact with oxygen in ways that affect the oxygen redox process through their impact on the electronic structure. This review delves into a detailed examination of the fundamental physical and chemical characteristics of oxygen redox and elucidates the crucial role that cations play in this process at the atomic and electronic scales. Furthermore, we present a systematic summary of polycationic systems, with an emphasis on their electrochemical performance, in order to provide perspectives on the development of next-generation cathode materials.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Lifan Wang
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - David Sandoval
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| | - Tongchao Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| | - Chun Zhan
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| |
Collapse
|
18
|
Yang T, Li Q, Liu Z, Li T, Wiaderek KM, Liu Y, Yin Z, Lan S, Wang W, Tang Y, Ren Y, Liu Q. Stabilizing the Deep Sodiation Process in Layered Sodium Manganese Cathodes by Anchoring Boron Ions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306533. [PMID: 37730211 DOI: 10.1002/adma.202306533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Advanced high-energy-density sodium-ion batteries (SIBs) are inseparable from cathode materials with high specific capacities. Layered manganese-rich oxides (NaxMnO2, 0.6 ≤ x ≤1) are promising cathode materials owing to their ease of intercalation and extraction of a considerable amount of sodium ions. However, lattice interactions, especially electrostatic repulsive forces and anisotropic stresses, are usually caused by deep desodiatin/sodiation process, resulting in intragranular cracks and capacity degradation in SIBs. Here, boron ions are introduced into the layered structure to build up B─O─Mn bonds. The regulated electronic structure in Na0.637B0.038MnO2 (B-NMO) materials inhibits the deformation of MnO6 octahedra, which finally achieves a gentle structural transition during the deep sodiation process. B-NMO electrode exhibits a high capacity (141 mAh g-1) at 1 C with a capacity retention of 81% after 100 cycles. Therefore, anchoring boron to manganese-rich materials inhibits the detrimental structural evolution of deep sodiation and can be used to obtain excellent cathode materials for SIBs.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhengbo Liu
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Tianyi Li
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Kamila M Wiaderek
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Yingxia Liu
- Department of Systems Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zijia Yin
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Si Lan
- School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Wei Wang
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yu Tang
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yang Ren
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Qi Liu
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
19
|
Jia XB, Wang J, Liu YF, Zhu YF, Li JY, Li YJ, Chou SL, Xiao Y. Facilitating Layered Oxide Cathodes Based on Orbital Hybridization for Sodium-Ion Batteries: Marvelous Air Stability, Controllable High Voltage, and Anion Redox Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307938. [PMID: 37910130 DOI: 10.1002/adma.202307938] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Layered oxides have become the research focus of cathode materials for sodium-ion batteries (SIBs) due to the low cost, simple synthesis process, and high specific capacity. However, the poor air stability, unstable phase structure under high voltage, and slow anionic redox kinetics hinder their commercial application. In recent years, the concept of manipulating orbital hybridization has been proposed to simultaneously regulate the microelectronic structure and modify the surface chemistry environment intrinsically. In this review, the hybridization modes between atoms in 3d/4d transition metal (TM) orbitals and O 2p orbitals near the region of the Fermi energy level (EF) are summarized based on orbital hybridization theory and first-principles calculations as well as various sophisticated characterizations. Furthermore, the underlying mechanisms are explored from macro-scale to micro-scale, including enhancing air stability, modulating high working voltage, and stabilizing anionic redox chemistry. Meanwhile, the origin, formation conditions, and different types of orbital hybridization, as well as its application in layered oxide cathodes are presented, which provide insights into the design and preparation of cathode materials. Ultimately, the main challenges in the development of orbital hybridization and its potential for the production application are also discussed, pointing out the route for high-performance practical sodium layered oxide cathodes.
Collapse
Affiliation(s)
- Xin-Bei Jia
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, China
| | - Jingqiang Wang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, China
| | - Yi-Feng Liu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, China
| | - Yan-Fang Zhu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, China
| | - Jia-Yang Li
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, China
| | - Yan-Jiang Li
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, China
| | - Shu-Lei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, China
| | - Yao Xiao
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, China
| |
Collapse
|
20
|
Cheng C, Yan T, Yuan C, Hu H, Xia X, Shen Y, Zhou X, Zeng P, Zhang L. Regulating Oxygen Redox Chemistry through the Synergistic Effect of Transition-Metal Vacancy and Substitution Element for Layered Oxide Cathodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306695. [PMID: 37857593 DOI: 10.1002/smll.202306695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Indexed: 10/21/2023]
Abstract
Reversible oxygen redox (OR) is considered as a paradigmatic avenue to boost the energy densities of layered oxide cathodes. However, its activation is largely coupled with the local coordination environment around oxygen, which is usually accompanied with irreversible oxygen release and unfavorable structure distortion. Herein, it is revealed that the synergistic effect of transition-metal (TM) vacancy and substitution element for modulating the OR activity and reversibility of layered Na0.67 MnO2 through multimodal operando synchrotron characterizations and electrochemical investigations. It is disclosed that TM vacancy can not only suppress the complicated phase transition but also stimulate the OR activity by creating nonbonding O 2p states via the Na─O─vacancy configurations. Notably, the substitution element plays a decisive role for regulating the reversibility of vacancy-boosted OR activity: the presence of strong Al─O bonds stabilizes the Mn-O motifs by sharing O with Al in the rigid Mn─O─Al frameworks, which mitigates TM migration and oxygen release induced by TM vacancy, leading to enhanced OR reversibility; while the introduction of weak Zn─O bonds exacerbates TM migration and irreversible oxygen release. This work clarifies the critical role of both TM vacancy and substitution element for regulating the OR chemistry, providing an effective avenue for designing high-performance cathodes employing anionic redox.
Collapse
Affiliation(s)
- Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Tianran Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Cheng Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Haolv Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Xiao Xia
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Yihao Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Xi Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Pan Zeng
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
- Institute for Advanced Study, School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
21
|
Zeng A, Jiao J, Zhang H, Zhao E, He T, Xu Z, Xiao X. Slow-Released Cationic Redox Activity Promoted Stable Anionic Redox and Suppressed Jahn-Teller Distortion in Layered Sodium Manganese Oxides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7119-7129. [PMID: 38295308 DOI: 10.1021/acsami.3c16320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Manganese-based layered oxides are considered promising cathodes for sodium ion batteries due to their high capacity and low-cost manganese and sodium resources. Triggering the anionic redox reaction (ARR) can exceed the capacity limitation determined by conventional cationic redox. However, the unstable ARR charge compensation and Jahn-Teller distortion of Mn3+ ions readily result in structural degradation and rapid capacity fade. Here, we report a P2-type Na0.8Li0.2Mn0.7Cu0.1O2 cathode that shows a capacity retention of 84.5% at 200 mA/g after 200 cycles. Combining in situ X-ray diffraction and multi other ex situ characterizations, we reveal that the enhanced cycling stability is ascribed to a slow release of cationic redox activity which can well suppress the Jahn-Teller distortion and favor the ARR reversibility. Furthermore, density-functional theory calculations demonstrate that the inhibited interlayer migration and reduced band gap facilitate the stability and kinetic behavior of ARR. These findings provide a perspective for designing high-energy-density cathode materials with ARR activity.
Collapse
Affiliation(s)
- Ao Zeng
- College of Materials Science and Optoelectronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyue Jiao
- College of Materials Science and Optoelectronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhang
- College of Materials Science and Optoelectronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enyue Zhao
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Tao He
- Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai201304, China
| | - Zhenbang Xu
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, Changchun130033, Jilin, China
| | - Xiaoling Xiao
- College of Materials Science and Optoelectronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Zhu Y, Chen Y, Chen J, Yin J, Sun Z, Zeng G, Wu X, Chen L, Yu X, Luo H, Yan Y, Zhang H, Zhang B, Kuai X, Tang Y, Xu J, Yin W, Qiu Y, Zhang Q, Qiao Y, Sun SG. Lattice Engineering on Li 2 CO 3 -Based Sacrificial Cathode Prelithiation Agent for Improving the Energy Density of Li-Ion Battery Full-Cell. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2312159. [PMID: 38117030 DOI: 10.1002/adma.202312159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/10/2023] [Indexed: 12/21/2023]
Abstract
Developing sacrificial cathode prelithiation technology to compensate for active lithium loss is vital for improving the energy density of lithium-ion battery full-cells. Li2 CO3 owns high theoretical specific capacity, superior air stability, but poor conductivity as an insulator, acting as a promising but challenging prelithiation agent candidate. Herein, extracting a trace amount of Co from LiCoO2 (LCO), a lattice engineering is developed through substituting Li sites with Co and inducing Li defects to obtain a composite structure consisting of (Li0.906 Co0.043 ▫0.051 )2 CO2.934 and ball milled LiCoO2 (Co-Li2 CO3 @LCO). Notably, both the bandgap and Li─O bond strength have essentially declined in this structure. Benefiting from the synergistic effect of Li defects and bulk phase catalytic regulation of Co, the potential of Li2 CO3 deep decomposition significantly decreases from typical >4.7 to ≈4.25 V versus Li/Li+ , presenting >600 mAh g-1 compensation capacity. Impressively, coupling 5 wt% Co-Li2 CO3 @LCO within NCM-811 cathode, 235 Wh kg-1 pouch-type full-cell is achieved, performing 88% capacity retention after 1000 cycles.
Collapse
Affiliation(s)
- Yuanlong Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, 361005, China
| | - Yilong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jianken Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jianhua Yin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhefei Sun
- Country State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Guifan Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaohong Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Leiyu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoyu Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Haiyan Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yawen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Haitang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Baodan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoxiao Kuai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, 361005, China
| | - Yonglin Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Juping Xu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Wen Yin
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Yongfu Qiu
- School of Materials Science and Engineering, Dongguan University of Technology, Guangdong, 523808, China
| | - Qiaobao Zhang
- Country State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yu Qiao
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, 361005, China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
23
|
Fang D, Feng J, Li J, Li J. Using Highly Electronegative Zn to Regulate the Superlattice Structure for the Na-Ion Layered Oxide Cathode with Superior Electrochemical Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55633-55643. [PMID: 37984434 DOI: 10.1021/acsami.3c10991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The introduction of a superlattice structure into layered oxide cathode materials is a novel strategy to improve the structural stability of sodium-ion batteries (SIBs). However, the superlattice structure gradually disappears during cycling, which shortens the long life of SIBs. Here, the highly electronegative Zn is introduced into a P2-type layered oxide to regulate the superlattice structure. The obtained P2-Na0.80Li0.13Ni0.20Zn0.03Mn0.64O2 exhibits excellent cycling performance (the capacity retention is 96.7% after 100 cycles at 0.5C) and rate capability (95.8 mAh g-1 at 5C). Zn effectively inhibits the Li migration and the Mn dissolution, which ensures the integrity of the Li/Mn superlattice structure during long cycling, thus achieving an ultralong cycling life of SIBs. The introduction of Zn dramatically increases the length of the c-axis, leading to a faster de-embedding rate of Na+ and a better diffusion kinetics. Meanwhile, the larger pristine volume can withstand more stress/strain due to the sharp increase in the level of O-O repulsion during the desodiation process. In addition, Raman test results show that Zn can inhibit the Na+/vacancy ordering transition and improve the structural stability. This study confirms the feasibility of a Zn-regulated superlattice structure. It provides inspiration for the construction of stable layered oxide cathode materials for SIBs.
Collapse
Affiliation(s)
- De Fang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiameng Feng
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
| | - Jie Li
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianling Li
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
24
|
Wang Y, Zhao X, Jin J, Shen Q, Hu Y, Song X, Li H, Qu X, Jiao L, Liu Y. Boosting the Reversibility and Kinetics of Anionic Redox Chemistry in Sodium-Ion Oxide Cathodes via Reductive Coupling Mechanism. J Am Chem Soc 2023; 145:22708-22719. [PMID: 37813829 DOI: 10.1021/jacs.3c08070] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Activating anionic redox chemistry in layered oxide cathodes is a paradigmatic approach to devise high-energy sodium-ion batteries. Unfortunately, excessive oxygen redox usually induces irreversible lattice oxygen loss and cation migration, resulting in rapid capacity and voltage fading and sluggish reaction kinetics. Herein, the reductive coupling mechanism (RCM) of uncommon electron transfer from oxygen to copper ions is unraveled in a novel P2-Na0.8Cu0.22Li0.08Mn0.67O2 cathode for boosting the reversibility and kinetics of anionic redox reactions. The resultant strong covalent Cu-(O-O) bonding can efficaciously suppress excessive oxygen oxidation and irreversible cation migration. Consequently, the P2-Na0.8Cu0.22Li0.08Mn0.67O2 cathode delivers a marvelous rate capability (134.1 and 63.2 mAh g-1 at 0.1C and 100C, respectively) and outstanding long-term cycling stability (82% capacity retention after 500 cycles at 10C). The intrinsic functioning mechanisms of RCM are fully understood through systematic in situ/ex situ characterizations and theoretical computations. This study opens a new avenue toward enhancing the stability and dynamics of oxygen redox chemistry.
Collapse
Affiliation(s)
- Yao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Xudong Zhao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Junteng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiuyu Shen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Hu
- Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, Ulm 89081, Germany
| | - Xiaobai Song
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Han Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Xuanhui Qu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yongchang Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Wu X, Chen C, Zhao C, Liu H, Hu B, Li J, Li C, Hu B. Achieving Long-Enduring High-Voltage Oxygen Redox in P2-Structured Layered Oxide Cathodes by Eliminating Nonlattice Oxygen Redox. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300878. [PMID: 37211714 DOI: 10.1002/smll.202300878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Triggering reversible lattice oxygen redox (LOR) in oxide cathodes is a paradigmatic approach to overcome the capacity ceiling determined by orthodox transition-metal (TM) redox. However, the LOR reactions in P2-structured Na-layered oxides are commonly accompanied by irreversible nonlattice oxygen redox (non-LOR) and large local structural rearrangements, bringing about capacity/voltage fading and constantly evolving charge/discharge voltage curves. Herein, a novel Na0.615 Mg0.154 Ti0.154 Mn0.615 ◻0.077 O2 (◻ = TM vacancies) cathode with both NaOMg and NaO◻ local configurations is deliberately designed. Intriguingly, the activating of oxygen redox at middle-voltage region (2.5-4.1 V) via NaO◻ configuration helps in maintaining the high-voltage plateau from LOR (≈4.38 V) and stable charge/discharge voltage curves even after 100 cycles. Hard X-ray absorption spectroscopy (hXAS), solid-state NMR, and electron paramagnetic resonance studies demonstrate that both the involvement of non-LOR at high-voltage and the structural distortions originating from Jahn-Teller distorted Mn3+ O6 at low-voltage are effectively restrained in Na0.615 Mg0.154 Ti0.154 Mn0.615 ◻0.077 O2 . Resultantly, the P2 phase is well retained in a wide electrochemical window of 1.5-4.5 V (vs Na+ /Na), resulting in an extraordinary capacity retention of 95.2% after 100 cycles. This work defines an effective approach to upgrade the lifespan of Na-ion battery with reversible high-voltage capacity provided by LOR.
Collapse
Affiliation(s)
- Xiang Wu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Chen Chen
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Chong Zhao
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Hui Liu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Bei Hu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jingxin Li
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, 230021, P. R. China
| | - Chao Li
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
26
|
Fang K, Tang Y, Liu J, Sun Z, Wang X, Chen L, Wu X, Zhang Q, Zhang L, Qiao Y, Sun SG. Injecting Excess Na into a P2-Type Layered Oxide Cathode to Achieve Presodiation in a Na-Ion Full Cell. NANO LETTERS 2023. [PMID: 37440609 DOI: 10.1021/acs.nanolett.3c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The initial Na loss limits the theoretical specific capacity of cathodes in Na-ion full cell applications, especially for Na-deficient P2-type cathodes. In this study, we propose a presodiation strategy for cathodes to compensate for the initial Na loss in Na-ion full cells, resulting in a higher specific capacity and a higher energy density. By employing an electrochemical presodiation approach, we inject 0.32 excess active Na into P2-type Na0.67Li0.1Fe0.37Mn0.53O2 (NLFMO), aiming to compensate for the initial Na loss in hard carbon (HC) and the inherent Na deficiency of NLFMO. The structure of the NLFMO cathode converts from P2 to P'2 upon active Na injection, without affecting subsequent cycles. As a result, the HC||NLFMOpreNa full cell exhibits a specific capacity of 125 mAh/g, surpassing the value of 61 mAh/g of the HC||NLFMO full cell without presodiation due to the injected active Na. Moreover, the presodiation effect can be achieved through other engineering approaches (e.g., Na-metal contact), suggesting the scalability of this methodology.
Collapse
Affiliation(s)
- Kai Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yonglin Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Junjie Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhefei Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Xiaotong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Leiyu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xiaohong Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Qiaobao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Li Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen 361005, P. R. China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
27
|
Sun Y, Xie J, Fu Z, Zhang H, Yao Y, Zhou Y, Wang X, Wang S, Gao X, Tang Z, Li S, Wang X, Nie K, Yang Z, Yan Y. Boosting CO 2 Electroreduction to C 2H 4 via Unconventional Hybridization: High-Order Ce 4+ 4f and O 2p Interaction in Ce-Cu 2O for Stabilizing Cu . ACS NANO 2023. [PMID: 37410800 DOI: 10.1021/acsnano.3c03952] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Efficient conversion of carbon dioxide (CO2) into value-added materials and feedstocks, powered by renewable electricity, presents a promising strategy to reduce greenhouse gas emissions and close the anthropogenic carbon loop. Recently, there has been intense interest in Cu2O-based catalysts for the CO2 reduction reaction (CO2RR), owing to their capabilities in enhancing C-C coupling. However, the electrochemical instability of Cu+ in Cu2O leads to its inevitable reduction to Cu0, resulting in poor selectivity for C2+ products. Herein, we propose an unconventional and feasible strategy for stabilizing Cu+ through the construction of a Ce4+ 4f-O 2p-Cu+ 3d network structure in Ce-Cu2O. Experimental results and theoretical calculations confirm that the unconventional orbital hybridization near Ef based on the high-order Ce4+ 4f and 2p can more effectively inhibit the leaching of lattice oxygen, thereby stabilizing Cu+ in Ce-Cu2O, compared with traditional d-p hybridization. Compared to pure Cu2O, the Ce-Cu2O catalyst increased the ratio of C2H4/CO by 1.69-fold during the CO2RR at -1.3 V. Furthermore, in situ and ex situ spectroscopic techniques were utilized to track the oxidation valency of copper under CO2RR conditions with time resolution, identifying the well-maintained Cu+ species in the Ce-Cu2O catalyst. This work not only presents an avenue to CO2RR catalyst design involving the high-order 4f and 2p orbital hybridization but also provides deep insights into the metal-oxidation-state-dependent selectivity of catalysts.
Collapse
Affiliation(s)
- Yanfei Sun
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhenzhen Fu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Huiying Zhang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yebo Yao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yixiang Zhou
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaoxuan Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shiyu Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xueying Gao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zheng Tang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shuyuan Li
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaojun Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhiyu Yang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yiming Yan
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
28
|
Jiao J, Song H, Zhao E, Yin W, Xiao X. Quantifying Effects of Ligand-Metal Bond Covalency on Oxygen-Redox Electrochemistry in Layered Oxide Cathodes. Inorg Chem 2023; 62:7045-7052. [PMID: 37113063 DOI: 10.1021/acs.inorgchem.3c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Oxygen-redox electrochemistry is attracting tremendous attention due to its enhanced energy density for layered oxide cathodes. However, quantified effects of ligand-metal bond covalency on the oxygen-redox behaviors are not fully understood, limiting a rational structure design for enhancing the oxygen redox reversibility. Here, using Li2Ru1-xMnxO3 (0 ≤ x ≤ 0.8) which includes both 3d- and 4d-based cations as model compounds, we provide a quantified relation between the ligand-metal bond covalency and oxygen-redox electrochemistry. Supported by theoretical calculations, we reveal a linear positive correlation between the transition metal (TM)-O bond covalency and the overlap area of TM nd and O 2p orbitals. Furthermore, based on the electrochemical tests on the Li2Ru1-xMnxO3 systems, we found that the enhanced TM-O bond covalency can increase the reversibility of oxygen-redox electrochemistry. Due to the strong Ru-O bond covalency, the thus designed Ru-doped Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode shows an enhanced initial coulombic efficiency, increased capacity retention, and suppressed voltage decay during cycling. This systematic study provides a rational structure design principle for the development of oxygen-redox-based layered oxide cathodes.
Collapse
Affiliation(s)
- Jianyue Jiao
- College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongquan Song
- Songshan Lake Materials Laboratory, Dongguan 523808, China
- College of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Enyue Zhao
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Wen Yin
- Spallation Neutron Source Science Center, Dongguan 523803, Guangdong, China
| | - Xiaoling Xiao
- College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Li ZY, Ma X, Sun K, Ruan S, Tian G, Yang W, Yang J, Chen D. Enabling an Excellent Ordering-Enhanced Electrochemistry and a Highly Reversible Whole-Voltage-Range Oxygen Anionic Chemistry for Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17801-17813. [PMID: 36988484 DOI: 10.1021/acsami.2c22670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Though considerable Mg-doped layered cathodes have been exploited, some new differences relative to previous reports can be concluded by doping a heavy dose of Mg via two rational strategies. Unlike the common unit cell of the P63/mmc group by X-ray diffraction, neutron diffraction reveals a large supercell of the P63 group and enhanced ordering for Na11/18Mg1/18[Ni1/4Mg1/9Mn11/18]O2 with Mg occupying both the Na and Mn sites. Compared with only one obvious voltage plateau of Na0.5[Ni0.25Mn0.75]O2 (NNM), Na11/18Mg1/18[Ni1/4Mg1/9Mn11/18]O2 (NMNMM) shows more severe voltage plateaus but with excellent electrochemical performance. Na0.5[Mg0.25Mn0.75]O2 (NMM) with Mg only occupying the Ni site displays a highly reversible whole-voltage-range oxygen redox chemistry and smooth voltage curves without any voltage hysteresis. Cationic Ni2+/Ni4+ couples are responsible for the charge compensations of NNM and NMNMM, while only the oxygen anionic reaction accounts for the capacity of NMM between 2.5 and 4.3 V. Interestingly, the Mn3+/Mn4+ pair contributes all capacity for all cathodes between 1.5 and 2.5 V. All cathodes undergo a double-phase mechanism: an irreversible P2-O2 phase transition for NNM, an enhanced reversible P2-O2 phase transition for NMNMM, and a highly reversible P2-OP4 phase transition for NMM. In addition, the designed cathodes display excellent rate capability and long-term cycling stability but with a large difference in the various voltage ranges of 2.5-4.3 and 1.5-2.5 V, respectively. This work provides a good understanding of ion doping and some new insights into exploiting high-performance materials.
Collapse
Affiliation(s)
- Zheng-Yao Li
- Neutron Scattering Laboratory, Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, People's Republic of China
| | - Xiaobai Ma
- Neutron Scattering Laboratory, Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, People's Republic of China
| | - Kai Sun
- Neutron Scattering Laboratory, Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, People's Republic of China
| | - Shihao Ruan
- Neutron Scattering Laboratory, Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, People's Republic of China
| | - Gengfang Tian
- Neutron Scattering Laboratory, Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, People's Republic of China
| | - Wenyun Yang
- School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Jinbo Yang
- School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Dongfeng Chen
- Neutron Scattering Laboratory, Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, People's Republic of China
| |
Collapse
|
30
|
Wang H, Zhang X, Zhang H, Tian Y, Zhang Q, Zhang X, Yang S, Jia M, Pan H, Sheng C, Yan X. Modulation of Local Charge Distribution Stabilized the Anionic Redox Process in Mn-Based P2-Type Layered Oxides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11691-11702. [PMID: 36812350 DOI: 10.1021/acsami.2c20720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
An anionic redox reaction is an extraordinary method for obtaining high-energy-density cathode materials for sodium-ion batteries (SIBs). The commonly used inactive-element-doped strategies can effectively trigger the O redox activity in several layered cathode materials. However, the anionic redox reaction process is usually accompanied by unfavorable structural changes, large voltage hysteresis, and irreversible O2 loss, which hinders its practical application to a large extent. In the present work, we take the doping of Li elements into Mn-based oxide as an example and reveal the local charge trap around the Li dopant will severely impede O charge transfer upon cycling. To overcome this obstacle, additional Zn2+ codoping is introduced into the system. Theoretical and experimental studies show that Zn2+ doping can effectively release the charge around Li+ and homogeneously distribute it on Mn and O atoms, thus reducing the overoxidation of O and improving the stability of the structure. Furthermore, this change in the microstructure makes the phase transition more reversible. This study aimed to provide a theoretical framework for further improve the electrochemical performance of similar anionic redox systems and provide insights into the activation mechanism of the anionic redox reaction.
Collapse
Affiliation(s)
- Hualu Wang
- School of Material Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Xiaoyu Zhang
- School of Material Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Hou Zhang
- School of Material Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Yinfeng Tian
- School of Material Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Qingqing Zhang
- School of Material Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Xueping Zhang
- School of Material Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Shaokang Yang
- School of Material Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Min Jia
- School of Material Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Hui Pan
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Chuanchao Sheng
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Xiaohong Yan
- School of Material Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| |
Collapse
|
31
|
Lu Z, Zhang J, Zhang Q, Wong D, Yin W, Zhang N, Chen Z, Gu L, Hu Z, Liu X. Oxygen Anion Redox Chemistry Correlated with Spin State in Ni-Rich Layered Cathodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206442. [PMID: 36698260 PMCID: PMC10037688 DOI: 10.1002/advs.202206442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Despite the low cost and high capacity of Ni-rich layered oxides (NRLOs), their widespread implementation in electric vehicles is hindered by capacity decay and O release. These issues originate from chemo-mechanical heterogeneity, which is mainly related to oxygen anion redox (OAR). However, what to tune regarding OAR in NRLOs and how to tune it remains unknown. In this study, a close correlation between the OAR chemistry and Li/Ni antisite defects is revealed. Experiments and calculations show the opposite effects of aggregative and dispersive Li/Ni antisite defects on the NiO6 configuration and Ni spin state in NRLOs. The resulting broad or narrow spans for the energy bands caused by spin states lead to different OAR chemistries. By tuning the Li/Ni antisite defects to be dispersive rather than aggregative, the threshold voltage for triggering OAR is obviously elevated, and the generation of bulk-O2 -like species and O2 release at phase transition nodes is fundamentally restrained. The OAR is regulated from irreversible to reversible, fundamentally addressing structural degradation and heterogeneity. This study reveals the interaction of the Li/Ni antisite defect/OAR chemistry/chemo-mechanical heterogeneity and presents some insights into the design of high-performance NRLO cathodes.
Collapse
Affiliation(s)
- Zhihua Lu
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jicheng Zhang
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of ScienceBeijing100190P. R. China
| | - Deniz Wong
- Dynamics and Transport in Quantum MaterialsHelmholtz‐Zentrum Berlin für Materialen und EnergieAlbert‐Einstein‐Strasse 1512489BerlinGermany
| | - Wen Yin
- Spallation Neutron Source Science CenterDongguan523803P. R. China
| | - Nian Zhang
- Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050P. R. China
| | - Zhongjun Chen
- Lirong ZhengBeijing Synchrotron Radiation FacilityInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of ScienceBeijing100190P. R. China
| | - Zhongbo Hu
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xiangfeng Liu
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- CAS Center for Excellence in Topological Quantum ComputationUniversity of Chinese Academy of SciencesBeijing100190China
| |
Collapse
|
32
|
Chen L, Chiang CL, Wu X, Tang Y, Zeng G, Zhou S, Zhang B, Zhang H, Yan Y, Liu T, Liao HG, Kuai X, Lin YG, Qiao Y, Sun SG. Prolonged lifespan of initial-anode-free lithium-metal battery by pre-lithiation in Li-rich Li 2Ni 0.5Mn 1.5O 4 spinel cathode. Chem Sci 2023; 14:2183-2191. [PMID: 36845937 PMCID: PMC9944687 DOI: 10.1039/d2sc06772b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Anode-free lithium metal batteries (AF-LMBs) can deliver the maximum energy density. However, achieving AF-LMBs with a long lifespan remains challenging because of the poor reversibility of Li+ plating/stripping on the anode. Here, coupled with a fluorine-containing electrolyte, we introduce a cathode pre-lithiation strategy to extend the lifespan of AF-LMBs. The AF-LMB is constructed with Li-rich Li2Ni0.5Mn1.5O4 cathodes as a Li-ion extender; the Li2Ni0.5Mn1.5O4 can deliver a large amount of Li+ in the initial charging process to offset the continuous Li+ consumption, which benefits the cycling performance without sacrificing energy density. Moreover, the cathode pre-lithiation design has been practically and precisely regulated using engineering methods (Li-metal contact and pre-lithiation Li-biphenyl immersion). Benefiting from the highly reversible Li metal on the Cu anode and Li2Ni0.5Mn1.5O4 cathode, the further fabricated anode-free pouch cells achieve 350 W h kg-1 energy density and 97% capacity retention after 50 cycles.
Collapse
Affiliation(s)
- Leiyu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Chao-Lung Chiang
- National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan Republic of China
| | - Xiaohong Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Yonglin Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Guifan Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Shiyuan Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Baodan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Haitang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Yawen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Tingting Liu
- School of Environmental Science and Engineering, Suzhou University of Science and TechnologySuzhou 215009China
| | - Hong-Gang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Xiaoxiao Kuai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China .,Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory) Xiamen 361005 PR China
| | - Yan-Gu Lin
- National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan Republic of China
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China .,Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory) Xiamen 361005 PR China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| |
Collapse
|
33
|
Xia X, Liu T, Cheng C, Li H, Yan T, Hu H, Shen Y, Ju H, Chan TS, Wu Z, Su Y, Zhao Y, Cao D, Zhang L. Suppressing the Dynamic Oxygen Evolution of Sodium Layered Cathodes through Synergistic Surface Dielectric Polarization and Bulk Site-Selective Co-Doping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209556. [PMID: 36493783 DOI: 10.1002/adma.202209556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Utilizing anionic redox activity within layered oxide cathode materials represents a transformational avenue for enabling high-energy-density rechargeable batteries. However, the anionic oxygen redox reaction is often accompanied with irreversible dynamic oxygen evolution, leading to unfavorable structural distortion and thus severe voltage decay and rapid capacity fading. Herein, it is proposed and validated that the dynamic oxygen evolution can be effectively suppressed through the synergistic surface CaTiO3 dielectric coating and bulk site-selective Ca/Ti co-doping for layered Na2/3 Ni1/3 Mn2/3 O2 . The surface dielectric coating layer not only suppresses the surface oxygen release but more importantly inhibits the bulk oxygen migration by creating a reverse electric field through dielectric polarization. Meanwhile, the site-selective doping of oxygen-affinity Ca into Na layers and Ti into transition metal layers effectively stabilizes the bulk oxygen through modulating the O 2p band center and the oxygen migration barrier. Such a strategy also leads to a reversible structural evolution with a low volume change because of the enhanced structural integrality and improved oxygen rigidity. Because of these synergistic advantages, the designed electrode exhibits greatly suppressed voltage decay and capacity fading upon long-term cycling. This study affords a promising strategy for regulating the dynamic oxygen evolution to achieve high-capacity layered cathode materials.
Collapse
Affiliation(s)
- Xiao Xia
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Tong Liu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Hongtai Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Tianran Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Haolv Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Yihao Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Huanxin Ju
- PHI China Analytical Laboratory, CoreTech Integrated Limited, Nanjing, 211111, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Zhenwei Wu
- Institute of Nonequilibrium Systems, School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Yuefeng Su
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China
| | - Yu Zhao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Duanyun Cao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| |
Collapse
|
34
|
Zhang L, Guan C, Zheng J, Li H, Li S, Li S, Lai Y, Zhang Z. Rational design of intergrowth P2/O3 biphasic layered structure with reversible anionic redox chemistry and structural evolution for Na-ions batteries. Sci Bull (Beijing) 2023; 68:180-191. [PMID: 36658032 DOI: 10.1016/j.scib.2023.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Layered oxides have attracted unprecedented attention for their outstanding performance in sodium-ion battery cathodes. Among them, the two typical candidates P2 and O3 type materials generally demonstrate large diversities in specific capacity and cycling endurance with their advantages. Thus, composite materials that contain both P2 and O3 have been widely designed and constructed. Nevertheless, the anionic/cationic ions' behavior and structural evolution in such complex structures remain unclear. In this study, a deep analysis of an advanced Na0.732Ni0.273Mg0.096Mn0.63O2 material that contains 78.39 wt% P2 phase and 21.61 wt% O3 phase is performed based on two typical cathodes P2 Na0.67Ni0.33Mn0.67O2 and O3 NaNi0.5Mn0.5O2 that have the same elemental constitution but different crystal structures. Structural analysis and density functional theory (DFT) calculations suggest that the composite is preferred to form a symbiotic structure at the atomic level, and the complex lattice texture of the biphase structure can block unfavorable ion and oxygen migration in the electrode process. Consequently, the biphase structure has significantly improved the electrochemical performance and kept preferable anionic oxygen redox reversibility. Furthermore, the hetero-epitaxy-like structure of the intergrowth of P2 and O3 structures share multi-phase boundaries, where the inconsistency in electrochemical behavior between P2 and O3 phases leads to an interlocking effect to prevent severe structural collapse and relieves the lattice strain from Na+ de/intercalation. Hence, the symbiotic P2/O3 composite materials exhibited a preferable capacity and cyclability (∼130 mAh g-1 at 0.1 C, 73.1% capacity retention after 200 cycles at 1 C), as well as reversible structural evolution. These findings confirmed the advantages of using the bi/multi-phase cathode for high-energy Na-ion batteries.
Collapse
Affiliation(s)
- Liuyun Zhang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China
| | - Chaohong Guan
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingqiang Zheng
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China
| | - Huangxu Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Shihao Li
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China
| | - Simin Li
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China
| | - Yanqing Lai
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China
| | - Zhian Zhang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China.
| |
Collapse
|