1
|
Zhang J, Lang Q, Yu J, Yang Y, Che J, Chen L, Wang G. Dynamic Release Electrolyte Design for Stable Proton Batteries. CHEMSUSCHEM 2025; 18:e202402105. [PMID: 39651991 DOI: 10.1002/cssc.202402105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
Aqueous proton batteries (APBs) have recently demonstrated unprecedented advantages in the fields of ultralow temperature and high-power energy applications due to kinetically favorable proton chemistry. Proton acids (e. g. H2SO4, H3PO4) as the common proton-conducting electrolyte, however, seriously corrode electrode materials and current collectors, resulting in limited cycle life of APBs. Here we reported protonated amine as a feasible proton transport mediator and releasing source for APBs based on its dynamic chemical dissociation equilibrium. Free protons in the electrolyte are limited to a quite low level. Consequently, the optimized electrolyte with a nearly neutral pH value significantly suppresses corrosion and broadens material selection option for APBs. The CuFe-TBA electrode exhibited a long cycle performance over 40000 cycles with only ~0.0004 % attenuation rate per cycle in the optimized electrolyte. The WO3 and VO2(B) electrode also displayed high cycling stability. Benefiting from enhanced electrode stability in the optimized electrolyte, the resultant CuFe-TBA/WO3 and CuFe-TBA/VO2(B) full batteries display impressive long-term cycling performance with high-capacity retention. Our work presents a proton dynamic-release electrolyte for durable APBs which is highly promising for scalable energy systems.
Collapse
Affiliation(s)
- Jian Zhang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS), Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Lang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS), Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiayuan Yu
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS), Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yixiao Yang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS), Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiulong Che
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS), Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liang Chen
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS), Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Wang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS), Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Talin AA, Meyer J, Li J, Huang M, Schwacke M, Chung HW, Xu L, Fuller EJ, Li Y, Yildiz B. Electrochemical Random-Access Memory: Progress, Perspectives, and Opportunities. Chem Rev 2025; 125:1962-2008. [PMID: 39960411 DOI: 10.1021/acs.chemrev.4c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Non-von Neumann computing using neuromorphic systems based on analogue synaptic and neuronal elements has emerged as a potential solution to tackle the growing need for more efficient data processing, but progress toward practical systems has been stymied due to a lack of materials and devices with the appropriate attributes. Recently, solid state electrochemical ion-insertion, also known as electrochemical random access memory (ECRAM) has emerged as a promising approach to realize the needed device characteristics. ECRAM is a three terminal device that operates by tuning electronic conductance in functional materials through solid-state electrochemical redox reactions. This mechanism can be considered as a gate-controlled bulk modulation of dopants and/or phases in the channel. Early work demonstrating that ECRAM can achieve nearly ideal analogue synaptic characteristics has sparked tremendous interest in this approach. More recently, the realization that electrochemical ion insertion can be used to tune the electronic properties of many types of materials including transition metal oxides, layered two-dimensional materials, organic and coordination polymers, and that the changes in conductance can span orders of magnitude has further attracted interest in ECRAM as the basis for analogue synaptic elements for inference accelerators as well as for dynamical devices that can emulate a wide range of neuronal characteristics for implementation in analogue spiking neural networks. At its core, ECRAM shares many fundamental aspects with rechargeable batteries, where ion insertion materials are used extensively for their ability to reversibly store charge and energy. Computing applications, however, present drastically different requirements: systems will require many millions of devices, scaled down to tens of nanometers, all while achieving reliable electronic-state tuning at scaled-up rates and endurances, and with minimal energy dissipation and noise. In this review, we discuss the history, basic concepts, recent progress, as well as the challenges and opportunities for different types of ECRAM, broadly grouped by their primary mobile ionic charge carrier, including Li, protons, and oxygen vacancies.
Collapse
Affiliation(s)
- A Alec Talin
- Sandia National Laboratories, Livermore, California 94551, United States
| | - Jordan Meyer
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jingxian Li
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mantao Huang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Miranda Schwacke
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heejung W Chung
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Longlong Xu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elliot J Fuller
- Sandia National Laboratories, Livermore, California 94551, United States
| | - Yiyang Li
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bilge Yildiz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Kim KS, Park JS, Yoon YC, Kim J, Li J, Yildiz B, Tasan CC. Remove hydrogen and store it too: an acid-in-clay based electro-chemical solution. MATERIALS HORIZONS 2025; 12:926-934. [PMID: 39540825 DOI: 10.1039/d4mh01071j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Extracting hydrogen from metallic components can open up a new pathway for preventing hydrogen embrittlement. To this end, we propose an electrochemically driven, all-solid method for hydrogen control, capable of both extracting and storing hydrogen simultaneously. In this approach, we employ acid-in-clay as a proton conducting electrolyte at room temperature. Through this electrochemical treatment, hydrogen is efficiently extracted from pre-charged steels, thereby restoring their tensile properties and preventing embrittlement. Moreover, it has been confirmed that the extracted hydrogen can be efficiently collected at the counter electrode, demonstrating the significant advantages of the process.
Collapse
Affiliation(s)
- Kyung-Shik Kim
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Jin-Sung Park
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Young-Chul Yoon
- Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwoo Kim
- Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ju Li
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Bilge Yildiz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Cemal Cem Tasan
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Cui Z, Xu T, Yao T, Mao G, He X, Liu Q, Shen L, Yu Y. Tailoring Acid-Salt Hybrid Electrolyte Structure for Stable Proton Storage at Ultralow Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412104. [PMID: 39737663 DOI: 10.1002/adma.202412104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/17/2024] [Indexed: 01/01/2025]
Abstract
The critical challenges in developing ultralow-temperature proton-based energy storage systems are enhancing the diffusion kinetics of charge carriers and inhibiting water-triggered interfacial side reactions between electrolytes and electrodes. Here an acid-salt hybrid electrolyte with a stable anion-cation-H2O solvation structure that realizes unconventional proton transport at ultralow temperature is shown, which is crucial for electrodes and devices to achieve high rate-capacity and stable interface compatibility with electrodes. Through multiscale simulations and experimental investigations in the electrolyte employing ZnCl2 introduced into 0.2 M H2SO4 solution, it is discovered that unique anion-cation-H2O solvation structure endows the electrolyte with low-temperature-adaptive feature and favorable water network channels for rapid proton transport. In situ XRD and multiple spectroscopic techniques further reveal that the stable 3D network structure inhibits free water-triggered deleterious electrode structure distortion by immobilizing free water molecules to achieve outstanding cycling stability. Hence, VHCF//α-MoO3 hybrid proton capacitors deliver an unexpected capacity of 39.8 mAh g-1 at a high current density of 1 A g-1 (-80 °C) and steady power supply under ultralow temperatures (96% capacity retention after 1500 cycles at -80 °C). The anti-freezing hybrid electrolyte design provides an effective strategy to improve the application of energy storage devices in ultralow temperatures.
Collapse
Affiliation(s)
- Zhaodi Cui
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, P. R. China
| | - Tiezhu Xu
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, P. R. China
| | - Tengyu Yao
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, P. R. China
| | - Guihong Mao
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, P. R. China
| | - Xiaoxi He
- Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Qingsheng Liu
- School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Laifa Shen
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, P. R. China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
5
|
Li Z, Lin Y, Ruan J, Liao M, Wang F, Jiang R, Qu X, Li Q, Yang J, Li X, Zhang Z, Li Y, Sun D, Fang F, Wang F. Localized Water Restriction in Ternary Eutectic Electrolytes for Ultra-Low Temperature Hydrogen Batteries. Angew Chem Int Ed Engl 2025; 64:e202416800. [PMID: 39498612 DOI: 10.1002/anie.202416800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
Proton batteries are promising candidates for next-generation large-scale energy storage in extreme conditions due to the small ionic radius and efficient transport of protons. Hydrogen gas, with its low working potentials, fast kinetics, and stability, further enhances the performance of proton batteries but necessitates the development of novel electrolytes with low freezing points and reduced corrosion. This work introduces a localized water restriction strategy by incorporating a tertiary component with a high donor number, which forms strong bonds with water molecules. This approach restricts free water molecules and reduces the average hydrogen bond ratio and strength. As-prepared ternary eutectic electrolytes lowered the freezing point to -103 °C, significantly lower than the traditional binary electrolyte (9.5 m H3PO4, -93 °C). This electrolyte is highly compatible with the Cu0.79Co0.21[Fe(CN)6]0.64 ⋅ 4H2O (CoCuHCF) cathode, reducing material dissolution and current collector corrosion. The H2||CoCuHCF battery using this electrolyte demonstrated a high-power density of 23664.3 W kg-1, excellent performance at -80 °C, and stable cyclability over 1000 cycles (>30 days) at -50 °C. These findings provide a framework for proton electrolytes, highlighting the potential of hydrogen batteries in challenging environments.
Collapse
Affiliation(s)
- Ziyue Li
- Department of Materials Science, Fudan University, Shanghai, 200433, Shanghai, P. R. China
| | - Yuxiao Lin
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, P. R. China
| | - Jiafeng Ruan
- Department of Materials Science, Fudan University, Shanghai, 200433, Shanghai, P. R. China
| | - Mochou Liao
- Department of Materials Science, Fudan University, Shanghai, 200433, Shanghai, P. R. China
| | - Fengmei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, Shanghai, P. R. China
| | - Ruohan Jiang
- Department of Materials Science, Fudan University, Shanghai, 200433, Shanghai, P. R. China
| | - Xuelian Qu
- Department of Materials Science, Fudan University, Shanghai, 200433, Shanghai, P. R. China
| | - Qin Li
- Department of Materials Science, Fudan University, Shanghai, 200433, Shanghai, P. R. China
| | - Jinyu Yang
- Department of Materials Science, Fudan University, Shanghai, 200433, Shanghai, P. R. China
| | - Xinjie Li
- Department of Materials Science, Fudan University, Shanghai, 200433, Shanghai, P. R. China
| | - Zihao Zhang
- Department of Materials Science, Fudan University, Shanghai, 200433, Shanghai, P. R. China
| | - Yunsong Li
- Zhejiang Laboratory, Hangzhou, 311100, Zhejiang, P. R. China
| | - Dalin Sun
- Department of Materials Science, Fudan University, Shanghai, 200433, Shanghai, P. R. China
| | - Fang Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, Shanghai, P. R. China
| | - Fei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, Shanghai, P. R. China
| |
Collapse
|
6
|
Wu S, Taylor M, Guo H, Wang S, Han C, Vongsvivut J, Meyer Q, Sun Q, Ho J, Zhao C. A High-capacity Benzoquinone Derivative Anode for All-organic Long-cycle Aqueous Proton Batteries. Angew Chem Int Ed Engl 2024; 63:e202412455. [PMID: 39390734 DOI: 10.1002/anie.202412455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
Quinone compounds, with the ability to uptake protons, are promising electrodes for aqueous batteries. However, their applications are limited by the mediocre working potential range and inferior rate performance. Herein, we examined quinones bearing different substituents, and for the first time introduce tetraamino-1,4-benzoquinone (TABQ) as anode material for proton batteries. The strong electron-donating amino groups can effectively narrow the band gap and lower the redox potentials of quinone materials. The protonation of amino groups and the amorphization of structure result in the formation of an intermolecular hydrogen-bond network, supporting Grotthuss-type proton conduction in the electrode with a low activation energy of 192.7 meV. The energy storage mechanism revealed by operando FT-IR and ex situ XPS features a reversible quinone-hydroquinone conversion during cycling. TABQ demonstrates a remarkable specific capacity of 307 mAh g-1 at 1 A g-1, which is one of the highest among organic proton electrodes. An all-organic proton battery of TABQ//TCBQ has also been developed, achieving exceptional stability of 3500 cycles at room temperature and excellent performance at sub-zero temperature.
Collapse
Affiliation(s)
- Sicheng Wu
- School of Chemistry, the, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mackenzie Taylor
- School of Chemistry, the, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Haocheng Guo
- School of Chemistry, the, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shuhao Wang
- School of Chemistry, the, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chen Han
- School of Chemical Engineering, the, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) beamline, ANSTO - Australian Synchrotron, Clayton, VIC, 3168, Australia
| | - Quentin Meyer
- School of Chemistry, the, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Qian Sun
- School of Chemistry, the, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Junming Ho
- School of Chemistry, the, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, the, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Wang R, He J, Yan C, Jing R, Zhao Y, Yang J, Shi M, Yan X. A Long-Range Planar Polymer with Efficient π-Electron Delocalization for Superior Proton Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402681. [PMID: 39077938 DOI: 10.1002/adma.202402681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/30/2024] [Indexed: 07/31/2024]
Abstract
Due to the unique "Grotthus mechanism", aqueous proton batteries (APBs) are promising energy devices with intrinsic safety and sustainability. Although polymers with tunable molecular structures are ideal electrode materials, their unsatisfactory proton-storage redox behaviors hinder the practical application in APB devices. Herein, a novel planar phenazine (PPHZ) polymer with a robust and extended imine-rich skeleton is synthesized and used for APB application for the first time. The long-range planar configuration achieves ordered molecular stacking and reduced conformational disorder, while the high conjugation with strong π-electron delocalization optimizes energy bandgap and electronic properties, enabling the polymer with low proton diffusion barriers, high redox activity, and superior electron affinity. As such, the PPHZ polymer as an electrode material exhibits fast, stable, and unrivaled proton-storage redox behaviors with a large capacity of 273.3 mAh g-1 at 0.5 A g-1 (1 C) in 1 M H2SO4 electrolyte, which is the highest value among proton-inserted electrodes in aqueous acidic electrolytes. Dynamic in situ techniques confirm the high redox reversibility upon proton uptake/removal, and the corresponding protonation pathways are elucidated by theoretical calculations. Moreover, a pouch-type APB cell using PPHZ electrode exhibits an ultralong lifespan over 30 000 cycles, further verifying its promising application prospect.
Collapse
Affiliation(s)
- Renyuan Wang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Jing He
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Chao Yan
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Renwei Jing
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Yue Zhao
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Jun Yang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Minjie Shi
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Xingbin Yan
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
8
|
Qin Z, Li X, Dong Q, Qi K, Chen S, Zhu Y. Limiting Interfacial Free Water and Proton Concentration by Hydrogel Electrolytes for Stable MoO 3 Anode in a Proton Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400108. [PMID: 38511540 DOI: 10.1002/smll.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Aqueous rechargeable proton batteries are attractive due to the small ionic radius, light mass, and ultrafast diffusion kinetics of proton as charge carriers. However, the commonly used acidic electrolyte is usually very corrosive to the electrode material, which seriously affects the cycle life of the battery. Here, it is proposed that decreasing water activity and limiting proton concentration can effectively prevent side reactions of the MoO3 anode such as corrosion and hydrogen precipitation by using a lean-water hydrogel electrolyte. The as-prepared polyacrylamide (PAAM)-poly2-acrylamide-2-methylpropanesulfonic acid (PAMPS)/MnSO4 (PPM) hydrogel electrolyte not only has abundant hydrophilic groups that can form hydrogen bonds with free water and inhibit solvent-electrode interaction, but also has fixed anions that can maintain a certain interaction with protons. The assembled MoO3||MnO2 full battery can stably cycle over 500 times for ≈350 h with an unprecedented capacity retention of 100% even at a low current density of 0.5 A g-1. This work gives a hint that limiting free water as well as proton concentration is important for the design of electrolytes or interfaces in aqueous proton batteries.
Collapse
Affiliation(s)
- Zili Qin
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xilong Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qi Dong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kaiwen Qi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shiyuan Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yongchun Zhu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
9
|
Guo H, Zhao C. An Emerging Chemistry Revives Proton Batteries. SMALL METHODS 2024; 8:e2300699. [PMID: 37691016 DOI: 10.1002/smtd.202300699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/04/2023] [Indexed: 09/12/2023]
Abstract
Developing new energy techniques that simultaneously integrate the fast rate capabilities of supercapacitors and high capacities of batteries represents an ultimate goal in the field of electrochemical energy storage. A new possibility arises with an emerging battery chemistry that relies on proton-ions as the ion-charge-carrier and benefits from the fast transportation kinetics. Proton-based battery chemistry starts with the recent discoveries of materials for proton redox reactions and leads to a renaissance of proton batteries. In this article, the historical developments of proton batteries are outlined and key aspects of battery chemistry are reviewed. First, the fundamental knowledge of proton-ions and their transportation characteristics is introduced; second, Faradaic electrodes for proton storage are categorized and highlighted in detail; then, reported electrolytes and different designs of proton batteries are summarized; last, perspectives of developments for proton batteries are proposed. It is hoped that this review will provide guidance on the rational designs of proton batteries and benefit future developments.
Collapse
Affiliation(s)
- Haocheng Guo
- School of Chemistry, Faculty of Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, Faculty of Science, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
10
|
Zhao FJ, Zhu Y, Chen Y, Ren XY, Dong H, Zhang H, Ren Q, Luo HB, Zou Y, Ren XM. Acidified Nitrogen Self-Doped Porous Carbon with Superprotonic Conduction for Applications in Solid-State Proton Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305765. [PMID: 37821399 DOI: 10.1002/smll.202305765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Solid proton electrolytes play a crucial role in various electrochemical energy storage and conversion devices. However, the development of fast proton conducting solid proton electrolytes at ambient conditions remains a significant challenge. In this study, a novel acidified nitrogen self-doped porous carbon material is presented that demonstrates exceptional superprotonic conduction for applications in solid-state proton battery. The material, designated as MSA@ZIF-8-C, is synthesized through the acidification of nitrogen-doped porous carbon, specifically by integrating methanesulfonic acid (MSA) into zeolitic imidazolate framework-derived nitrogen self-doped porous carbons (ZIF-8-C). This study reveals that MSA@ZIF-8-C achieves a record-high proton conductivity beyond 10-2 S cm-1 at ambient condition, along with good long-term stability, positioning it as a cutting-edge alternative solid proton electrolyte to the default aqueous H2 SO4 electrolyte in proton batteries.
Collapse
Affiliation(s)
- Feng-Jia Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yun Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ying Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xing-Yu Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Hao Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Han Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Qiu Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Hong-Bin Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yang Zou
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
11
|
Yan X, Wang F, Su X, Ren J, Qi M, Bao P, Chen W, Peng C, Chen L. A Redox-Active Covalent Organic Framework with Highly Accessible Aniline-Fused Quinonoid Units Affords Efficient Proton Charge Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305037. [PMID: 37728857 DOI: 10.1002/adma.202305037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/17/2023] [Indexed: 09/21/2023]
Abstract
Owing to their intrinsic safety and sustainability, aqueous proton batteries have emerged as promising energy devices. Nevertheless, the corrosion or dissolution of electrode materials in acidic electrolytes must be addressed before practical applications. In this study, a cathode material based on a redox-active 2D covalent organic framework (TPAD-COF) with aniline-fused quinonoid units featuring inherently regular open porous channels and excellent stability is developed. The TPAD-COF cathode delivers a high capacity of 126 mAh g-1 at 0.2 A g-1 , paired with long-term cycling stability with capacity retention of 84% after 5000 cycles at 2 A g-1 . Comprehensive ex situ spectroscopy studies correlated with density functional theory (DFT) calculations reveal that both the -NH- and C=O groups of the aniline-fused quinonoid units exhibit prominent redox activity of six electrons during the charge/discharge processes. Furthermore, the assembled punch battery consisting of a TPAD-COF//anthraquinone (AQ) all-organic system delivers a discharge capacity of 115 mAh g-1 at 0.5 A g-1 after 130 cycles, implying the potential application of the TPAD-COF cathode in aqueous proton batteries. This study provides a new perspective on the design of electrode materials for aqueous proton batteries with long-term cycling performance and high capacity.
Collapse
Affiliation(s)
- Xiaoli Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
| | - Feixiang Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xi Su
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
| | - Junyu Ren
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Meiling Qi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Pengli Bao
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
| | - Weihua Chen
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Henan, 450001, China
| | - Chengxin Peng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
12
|
Lv C, Li Y, Zhu Y, Zhang Y, Kuang J, Zhao Q, Tang Y, Wang H. Quasi-Solid-State Aluminum-Air Batteries with Ultra-high Energy Density and Uniform Aluminum Stripping Behavior. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304214. [PMID: 37587016 PMCID: PMC10582464 DOI: 10.1002/advs.202304214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/22/2023] [Indexed: 08/18/2023]
Abstract
Aqueous aluminum-air batteries are attracting considerable attention with high theoretical capacity, low-cost and high safety. However, lifespan and safety of the battery are still limited by the inevitable hydrogen evolution reaction on the metal aluminum anode and electrolyte leakage. Herein, for the first time, a clay-based quasi-solid-state electrolyte is proposed to address such issues, which has excellent compatibility and a liquid-like ionic conductivity. The clay with uniform pore channels facilitates aluminum ions uniform stripping and reduces the activity of free H2 O molecules by reconstructing hydrogen bonds network, thus suppressing the self-corrosion of aluminum anode. As a result, the fabricated aluminum-air battery achieves the highest energy density of 4.56 KWh kg-1 with liquid-like operating voltage of 1.65 V and outstanding specific capacity of 2765 mAh g-1 , superior to those reported aluminum-air batteries. The principle of constructing quasi-solid-state electrolyte using low-cost clay may further promote the commercialization of aluminum-air batteries and provide a new insight into electrolyte design for aqueous energy storage system.
Collapse
Affiliation(s)
- Chaonan Lv
- Hunan Provincial Key Laboratory of Chemical Power SourcesCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Yixin Li
- Hunan Provincial Key Laboratory of Chemical Power SourcesCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Yuanxin Zhu
- Hunan Provincial Key Laboratory of Chemical Power SourcesCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Yuxin Zhang
- Hunan Provincial Key Laboratory of Chemical Power SourcesCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Jialin Kuang
- Hunan Provincial Key Laboratory of Chemical Power SourcesCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Qing Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Yougen Tang
- Hunan Provincial Key Laboratory of Chemical Power SourcesCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| | - Haiyan Wang
- Hunan Provincial Key Laboratory of Chemical Power SourcesCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083P. R. China
| |
Collapse
|
13
|
Lei Y, Zhao W, Yin J, Ma Y, Zhao Z, Yin J, Khan Y, Hedhili MN, Chen L, Wang Q, Yuan Y, Zhang X, Bakr OM, Mohammed OF, Alshareef HN. Discovery of a three-proton insertion mechanism in α-molybdenum trioxide leading to enhanced charge storage capacity. Nat Commun 2023; 14:5490. [PMID: 37679354 PMCID: PMC10485074 DOI: 10.1038/s41467-023-41277-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
The α-molybdenum trioxide has attracted much attention for proton storage owing to its easily modified bilayer structure, fast proton insertion kinetics, and high theoretical specific capacity. However, the fundamental science of the proton insertion mechanism in α-molybdenum trioxide has not been fully understood. Herein, we uncover a three-proton intercalation mechanism in α-molybdenum trioxide using a specially designed phosphoric acid based liquid crystalline electrolyte. The semiconductor-to-metal transition behavior and the expansion of the lattice interlayers of α-molybdenum trioxide after trapping one mole of protons are verified experimentally and theoretically. Further investigation of the morphology of α-molybdenum trioxide indicates its fracture behavior upon the proton intercalation process, which creates diffusion channels for hydronium ions. Notably, the observation of an additional redox behavior at low potential endows α-molybdenum trioxide with an improved specific discharge capacity of 362 mAh g-1.
Collapse
Affiliation(s)
- Yongjiu Lei
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Wenli Zhao
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, PR China
| | - Yinchang Ma
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Zhiming Zhao
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jian Yin
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yusuf Khan
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Nejib Hedhili
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Long Chen
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Qingxiao Wang
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Youyou Yuan
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center, KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
14
|
Huang M, Schwacke M, Onen M, Del Alamo J, Li J, Yildiz B. Electrochemical Ionic Synapses: Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205169. [PMID: 36300807 DOI: 10.1002/adma.202205169] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Artificial neural networks based on crossbar arrays of analog programmable resistors can address the high energy challenge of conventional hardware in artificial intelligence applications. However, state-of-the-art two-terminal resistive switching devices based on conductive filament formation suffer from high variability and poor controllability. Electrochemical ionic synapses are three-terminal devices that operate by electrochemical and dynamic insertion/extraction of ions that control the electronic conductivity of a channel in a single solid-solution phase. They are promising candidates for programmable resistors in crossbar arrays because they have shown uniform and deterministic control of electronic conductivity based on ion doping, with very low energy consumption. Here, the desirable specifications of these programmable resistors are presented. Then, an overview of the current progress of devices based on Li+ , O2- , and H+ ions and material systems is provided. Achieving nanosecond speed, low operation voltage (≈1 V), low energy consumption, with complementary metal-oxide-semiconductor compatibility all simultaneously remains a challenge. Toward this goal, a physical model of the device is constructed to provide guidelines for the desired material properties to overcome the remaining challenges. Finally, an outlook is provided, including strategies to advance materials toward the desirable properties and the future opportunities for electrochemical ionic synapses.
Collapse
Affiliation(s)
- Mantao Huang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Miranda Schwacke
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Murat Onen
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jesús Del Alamo
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bilge Yildiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
15
|
Su Z, Guo H, Zhao C. Rational Design of Electrode-Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries. NANO-MICRO LETTERS 2023; 15:96. [PMID: 37037988 PMCID: PMC10086093 DOI: 10.1007/s40820-023-01071-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Rechargeable proton batteries have been regarded as a promising technology for next-generation energy storage devices, due to the smallest size, lightest weight, ultrafast diffusion kinetics and negligible cost of proton as charge carriers. Nevertheless, a proton battery possessing both high energy and power density is yet achieved. In addition, poor cycling stability is another major challenge making the lifespan of proton batteries unsatisfactory. These issues have motivated extensive research into electrode materials. Nonetheless, the design of electrode-electrolyte interphase and electrolytes is underdeveloped for solving the challenges. In this review, we summarize the development of interphase and electrolytes for proton batteries and elaborate on their importance in enhancing the energy density, power density and battery lifespan. The fundamental understanding of interphase is reviewed with respect to the desolvation process, interfacial reaction kinetics, solvent-electrode interactions, and analysis techniques. We categorize the currently used electrolytes according to their physicochemical properties and analyze their electrochemical potential window, solvent (e.g., water) activities, ionic conductivity, thermal stability, and safety. Finally, we offer our views on the challenges and opportunities toward the future research for both interphase and electrolytes for achieving high-performance proton batteries for energy storage.
Collapse
Affiliation(s)
- Zhen Su
- School of Chemistry, Faculty of Science, The University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Haocheng Guo
- School of Chemistry, Faculty of Science, The University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, Faculty of Science, The University of New South Wales Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
16
|
Onen M, Emond N, Wang B, Zhang D, Ross FM, Li J, Yildiz B, Del Alamo JA. Nanosecond protonic programmable resistors for analog deep learning. Science 2022; 377:539-543. [PMID: 35901152 DOI: 10.1126/science.abp8064] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nanoscale ionic programmable resistors for analog deep learning are 1000 times smaller than biological cells, but it is not yet clear how much faster they can be relative to neurons and synapses. Scaling analyses of ionic transport and charge-transfer reaction rates point to operation in the nonlinear regime, where extreme electric fields are present within the solid electrolyte and its interfaces. In this work, we generated silicon-compatible nanoscale protonic programmable resistors with highly desirable characteristics under extreme electric fields. This operation regime enabled controlled shuttling and intercalation of protons in nanoseconds at room temperature in an energy-efficient manner. The devices showed symmetric, linear, and reversible modulation characteristics with many conductance states covering a 20× dynamic range. Thus, the space-time-energy performance of the all-solid-state artificial synapses can greatly exceed that of their biological counterparts.
Collapse
Affiliation(s)
- Murat Onen
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.,MIT-IBM Watson AI Lab, 75 Binney St., Cambridge, MA 02142, USA
| | - Nicolas Emond
- MIT-IBM Watson AI Lab, 75 Binney St., Cambridge, MA 02142, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Baoming Wang
- MIT-IBM Watson AI Lab, 75 Binney St., Cambridge, MA 02142, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Difei Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.,MIT-IBM Watson AI Lab, 75 Binney St., Cambridge, MA 02142, USA
| | - Frances M Ross
- MIT-IBM Watson AI Lab, 75 Binney St., Cambridge, MA 02142, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Ju Li
- MIT-IBM Watson AI Lab, 75 Binney St., Cambridge, MA 02142, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.,Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Bilge Yildiz
- MIT-IBM Watson AI Lab, 75 Binney St., Cambridge, MA 02142, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.,Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Jesús A Del Alamo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.,MIT-IBM Watson AI Lab, 75 Binney St., Cambridge, MA 02142, USA
| |
Collapse
|